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Abstract: Nonintrusive load monitoring (NILM) is an important technique for energy management
and conservation. In this paper, a deep learning model based on an attention mechanism, temporal
pooling, residual connections, and transformers is proposed. This article presents a novel approach
for NILM to accurately discern energy consumption patterns of individual household appliances. The
proposed method entails a sequence of layers, including encoders, transformers, attention, temporal
pooling, and residual connections, offering a comprehensive solution for NILM while effectively
capturing appliance-specific energy usage in a household. The proposed model was evaluated using
UK-DALE, REDD, and REFIT datasets in both seen and unseen cases. It shows that the proposed
model in this paper performs better than other methods stated in other papers in terms of F1-score
and total error of the results (in terms of SAE). This model achieved an F1-score equal to 92.96 as well
as a total SAE equal to −0.036, which shows its effectiveness in accurately diagnosing and estimating
the energy consumption of individual home appliances. The findings of this research show that the
proposed model can be a tool for energy management in residential and commercial buildings.

Keywords: nonintrusive load monitoring (NILM); deep learning; attention mechanism; temporal
pooling; residual connections; transformers

1. Introduction

NILM is the process of identifying loads and their power consumption from a power
source using a separation algorithm. By continuously monitoring the energy consumption
of buildings, one can proactively identify and prevent energy wastage. This information
can then be communicated to consumers, empowering them to take necessary actions to
optimize energy usage. It has been reported that consumer behavior plays a vital role in
the effective use of energy. Additionally, consumers are more likely to modify their energy
consumption patterns, if they choose to do so. Smart meters provide information solely on
the overall energy consumption at the building level rather than at the individual appliance
level. These aggregate energy consumption data are valuable for load forecasting purposes,
as highlighted in [1]. Nevertheless, many studies indicate that knowledge of total energy
consumption is unlikely to cause a substantial shift in consumer energy consumption
behavior [2]. Typically, the advantages of employing NILM include:

1.1. Energy Efficiency

By knowing which appliances consume the most energy, people can take steps to
optimize usage patterns and save on energy bills.
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1.2. Demand Response

NILM enables the identification of high-demand appliances and their usage patterns.
This information is valuable for utilities and grid operators in order to implement demand
response programs that include modifying power consumption during peak periods to
reduce pressure on the power grid.

1.3. Monitoring and Maintenance of Home Appliances

NILM can help identify irregularities, breakdowns, or inefficient performance by
monitoring individual home appliances. It can provide insights into the performance of
devices and alert users to potential problems, allowing them to take preventive maintenance
actions or replace faulty equipment.

1.4. Resident Behavior Analysis

NILM can provide valuable information about resident behavior and lifestyle patterns
based on their energy consumption profile. This information can be used for various
purposes such as designing targeted energy-saving programs, understanding occupant
comfort, or optimizing building design and operation.

1.5. Load Balancing and Optimization

NILM helps in understanding the distribution of power consumption across different
devices. This knowledge can be used to balance loads, manage peak demands more
effectively, and optimize energy consumption within a building or across a network.

1.6. Energy Consumption Audit

NILM proves to be a valuable instrument for assessing energy usage across residential,
commercial, or industrial settings. It provides intricate details regarding energy consump-
tion at the individual device level, enabling auditors to pinpoint areas for enhancing energy
conservation and assess the efficacy of implemented energy efficiency measures [3].

NILM has undergone a shift in methodology with the advent of neural network
(NN) methods, presenting notable differences and advantages over traditional approaches.
Traditional methods often rely on manually extracted features and rule-based algorithms to
disaggregate energy consumption data. In contrast, NN methods harness the power of deep
learning, allowing for automatic feature extraction and the learning of delicate patterns
within the data. This inherent adaptability enables NN methods to handle diverse and
complex energy consumption scenarios more effectively. Additionally, NN methods tend to
exhibit improved performance when faced with noisy or unstructured data, enhancing their
robustness in real-world applications. The ability of NN methods to adapt and generalize to
varying load patterns makes them particularly advantageous in the dynamic and evolving
landscape of NILM, offering a promising path for more accurate and versatile energy
disaggregation.

In this paper, we introduce a new deep learning model incorporating encoders, tem-
poral pooling, residual connections, and transformers to build up a comprehensive method
for NILM applications. The proposed model is applied to different public NILM datasets,
and the performance is evaluated based on common metrics. The results show the efficacy
of the proposed method in comparison with other, previous models.

The remainder of this paper is structured as follows. Section 2 provides a compre-
hensive review of prior works pertaining to NILM. Subsequently, Section 3 delves into a
discussion on the datasets and evaluation criteria. Section 4 outlines the proposed method
in detail. Following this, Section 5 explores experiments and results, drawing comparisons
with other methodologies. Lastly, Section 6 concludes the paper, highlighting potential
future directions.
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2. A Review of Previous Works Related to NILM

NILM approaches can be generally divided into supervised and unsupervised meth-
ods [4]. In the supervised method, the power consumption of appliances is collected and
can be used to train models. NILM unsupervised methods also include hidden Markov
models (HMM) [5,6], factorial hidden Markov models (FHMM) [6,7], and methods based
on event detection and clustering [8,9]. Comprehensive reviews of NILM unsupervised
methods can be found in [7,10]. Also, with the development of deep neural networks, vari-
ous methods based on supervised NILM neural networks have also been presented [11,12].
Recently, thanks to convolutional neural networks (CNNs), significant progress has been
made in this field [13,14]. Most NILM methodologies presented in the literature are based
on approaches using signal processing [7,8], factorial hidden Markov models [5,6,8,14], or
deep neural networks [11].

Also, our previous work entitled “Non-Intrusive Load Monitoring (NILM) Using deep
neural networks: A Review” can be seen in [15]. This paper reviews some recent NILM
methods based on deep learning and introduces the most accurate methods for residential
loads. It summarizes public databases for NILM evaluation and compares methods using
standard performance metrics. In the following, several methods related to solving the
NILM problem are introduced with the help of deep learning methods, which are used to
present the proposed method.

2.1. The WaveNILM Method

The method presented in [16] is called WaveNILM. In the paper, the authors explain
that NILM is an important tool for energy-saving purposes as it allows the estimation of
the energy consumption of a device from a single measurement. The WaveNILM network
architecture is based on Dilated causal convolutional layer (DC-CNN). This version of
DC-CNN adds a gating mechanism to the output of the DC-CNN filters, which has the
ability to control the flow of information during the convolutional layer, and it achieves
this by multiplying the output of each filter by the gate values. This mechanism allows the
convolutional layer to selectively enhance or suppress the features in our input sequence
based on their relevance to the problem in question. Samples related to current and previous
time steps have been used as input in dilated causal convolutions. Then, the output of
each convolutional layer is given as input to the sigmoid (gate) activation function and the
ReLu(regressor) activation function. Then, these two output values (from the two named
activator functions) are multiplied together, and the desired block output is obtained.
After that, the output of each block is copied. One part is used as an input for the next layer,
and the other part passes through all the subsequent convolutional layers and is used in
the final layer of the WAVENILM network (skip connection). Each of these layers also has
10% dropout [16].

2.2. The Variational Autoencoders Method

In the article [17], a new method based on variational autoencoders is proposed to
calculate the power consumption of each electrical device. This method is an unsupervised
method, and it has been shown that the said method performs better than many algorithms
used in NILM. The network used in this paper consists of two main parts: IBN-Net and VAE.
The IBN-Net network is used to extract relevant features from the raw power consumption
measurements. This structure has been used to extract features in the VAE model. The VAE
model also consists of an encoder and a decoder. The encoder network maps the measured
power values to the space with lower dimensions, while on the other hand, the decoder
network maps the data from this space with lower dimensions to the estimated power
consumption values of each of the existing electrical devices. Figure 1 shows the proposed
network structure in the variational autoencoders method.
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Figure 1. Proposed network in variational autoencoders method (a) VAE structure (b) IBN-Net.
Adapted with permission from Ref. [17].

2.3. The COLD Method

The article [18] used the SNSalgorithm to solve the NILM problem. In the article,
a neural network-based structure called COLDis developed, which is able to identify 1
to 10 electrical devices that work simultaneously. The synthetic data generated with the
help of SNS provide a less accurate model than the real measurements. In the article,
artificial data generated through the utilization of the SNS algorithm is employed, wherein
simulated mass power consumption data are simulated. a maximum of 10 times at the
same time. This synthetic data generated, with the help of the SNS algorithm, are used as
input for COLD network training and evaluation. The network introduced in the article is
based on the deep ReLu network with the proposed self-attention mechanism. The core
of the proposed network is the ReLu feedforward network, which is able to estimate any
continuous function. The input of the network is the matrix of spectrograms obtained from
the STFTcorresponding to the cumulative consumption data signal, and the output of the
network are the binary vectors that indicate the activity or inactivity of electrical appliances
at each time step. Figure 2 shows the COLD network structure.

Figure 2. COLD network structure [18].

2.4. The ELECTRIcity Method

In the article [19], a new method for solving the NILM problem based on transformers
is presented. ELECTRIcity uses a transformer to extract features from the cumulative signal.
In the article, the UK-DALE dataset and a dataset collected from a household in Greece
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are used. The proposed network consists of two main parts: a preprocessing part and a
training part. During the preprocessing stage, the model consists of a transformer-based
generator and a discriminator to improve the performance of the model. The generator
has the task of producing synthetic signals for electrical devices using a cumulative signal.
The discriminator is also responsible for distinguishing the artificial data produced by the
generator and the real data, as well as separating them from each other. Throughout the
training phase, the pretrained transformer undergoes supervised fine-tuning to enhance
its capability in predicting the electricity consumption of electrical appliances. Here,
the encoder–decoder structure along with the attention mechanism are used to extract
the features in the cumulative signal of electricity consumption. Figure 3 also shows the
ELECTRIcity network structure.

Figure 3. ELECTRIcity network structure [19].

2.5. The Deep Dilated Residual Network Method

Like the previous articles, the aim of the article [20] is to separate the consumption
of electrical appliances based on the amount of consumption of the whole household.
The data used in the article are WikiEnergy and UK-DALE datasets. The WikiEnergy
dataset encompasses information on the power consumption of over 600 households in
Beijing, measured at 60-second intervals. The architecture considered for the paper is a
combination of ResNet and dialed convolution network architecture. To solve the gradient
vanishing problem, a network called a residual network is proposed. The difference
between this network and normal networks is that it has a shortcut connection that passes
through one or more layers and does not consider them; actually, it takes a shortcut and
connects one layer to a further layer. The presence of this connection implies that a value
of 1 is added to each of the coefficients of the primary derivatives, preventing them from
diminishing regularly. Figures 4 and 5 show the structure of the residual layer and the
ResNet network, respectively.

Figure 4. The structure of the residual layer. Adapted with permission from Ref. [20].



Electronics 2024, 13, 407 6 of 20

Figure 5. ResNet network structure. (a) Original, and (b) Pre-activated residual structure. Adapted
with permission from Ref. [20].

In the main architecture of the ResNet network, the order of the layers is as in (a).
The problem in this architecture is that the presence of the ReLu activator function at the
end of the block makes the output of each block always non-negative, and as a result,
during training, the output of the middle blocks becomes larger and larger regularly, while
the output of each block should be a value between (−∞,+∞) so that the range of changes
of the final outputs is not too far from the range of inputs. For this reason, the structure
of the block has been changed to structure (b). In this structure, the same layers as in
structure (a) exist, but they are used in a different order, and the ReLu layer is not located
at the end of the block. As a result, the output of the block can be negative or positive.
The network used in the above article is of the ResNet type, which uses dilated convolution
in its convolutional layers. The details of the network are also stated in Table 1.

Table 1. D-ResNet network details [20].

Residual Block Number of
Residual Units

Number of Convolutional
Layers in the Block Dilation Rate

1 3 30 1
2 4 40 2
3 6 50 3
4 3 50 3

2.6. The Attention-Based Method

The objective of the article [21] is to disaggregate the power consumption of household
electrical appliances. However, the methodology employed in the article diverges from
previous studies, incorporating an attention mechanism. The data used in the article are
the REDD and UK-DALE datasets. The network consists of two blocks: classifier and
regression. The classifier block includes six convolutional layers, one fully connected layer
of a length of 1024, and the ReLu activation function. The regression block also includes
four convolutional layers, a bilateral block, an attention layer, and a fully connected layer.
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Finally, the output of the network is obtained by multiplying the output of the classifier
block and the regression block.

3. Proposed Method

This article presents a novel approach for NILM by leveraging a model incorpo-
rating attention mechanism, temporal pooling, residual connections, and transformer
architecture to accurately discern energy consumption patterns of individual household
appliances, which are explained in detail in [22] and this section. The proposed method
entails a sequence of layers, including encoders, transformers, attention, temporal pooling,
and residual connections, offering a comprehensive solution for NILM while effectively
capturing appliance-specific energy usage in a household. The components of the proposed
method are discussed in the following subsections:

3.1. Attention Mechanism

An attention mechanism [23] is a technique used in deep learning models to improve
the performance of sequence-to-sequence models. This mechanism enables the model to
selectively focus on parts of the input sequence that are most relevant to the current time
step, rather than processing the entire sequence at once. An attention mechanism is used
to enable the model to focus on significant parts of the input sequence. This mechanism
allows the model to pay more attention to the important parts of the input and ignore the
irrelevant parts.

3.2. Temporal Pooling

Temporal pooling [24] is a technique used in machine learning and computer vision
to extract useful information from sequential data such as video or speech signals. This
method allows the model to work with fixed-size inputs (by summarizing the information
in the sequence) in a compact representation. In NILM, temporal pooling is used to
sample the input sequence and provides the possibility of effective management of longer
sequences. This approach enables the model to extract relevant features from the input
sequence while reducing the computational complexity.

3.3. Residual Connection

A residual connection [25], also known as a skip connection, is a type of connection
used in deep neural networks. It involves connecting the output of one layer to the input
of the next layer, bypassing one or more layers in between. The purpose of a residual
connection is to make the gradient flow more smoothly in the network during training.
This can help avoid the vanishing gradient problem that can occur in deep networks. In the
context of NILM, residual connection can be used to improve the performance of deep
learning models by allowing them to learn the residual power consumption of each device.
This residual electricity consumption can be used to estimate the energy consumption of
individual appliances, which can improve the accuracy of the overall NILM system.

3.4. Transformers

A transformer is a type of neural network architecture that has become increasingly
popular in NLP tasks such as language translation, text classification, and language model-
ing. The transformer architecture is based on the self-attention mechanism, which allows
the model to evaluate the importance of different words in a sentence when making a
prediction. It also consists of an encoder and a decoder, each of which consists of several
layers of self-attention and feed-forward neural networks. In the encoder, the self-attention
mechanism allows the model to compute a representation of each word in the sentence
with respect to other words in the sentence. The decoder uses this representation to pro-
duce a translation of the input sentence in the target language. Recently, transformers
have been applied in the field of NILM to separate household power consumption into
individual appliances.
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In general, it can be said that the proposed model is a comprehensive solution to the
NILM problem and includes a variety of innovative techniques that enable it to identify
energy consumption patterns of personal appliances in a household.

3.5. Architecture of the Proposed Method

The overall model is initially composed of 4 encoder layers that are brought together.
The final output of these 4 encoder layers is given as input to a fully connected layer. In the
next step, the output of this layer is given to a transformer, and the tensor obtained from
this transformer layer along with the output of the encoder layer is given as input to the
attention layer. Then, the output from the attention layer is added to the output of the final
encoder, and the first jump connection of the model is applied here. Then, this obtained
output enters 4 consecutive blocks of temporal pooling (TP layer), and finally, the outputs
obtained from these 4 blocks are glued together. Then, as a jump connection, the tensor
resulting from pasting the output of these blocks is added with the output of the fully
connected layer (FC layer), and in the final step, the tensor resulting from this addition is
given as input to the decoder and passes through a convolution layer after that. Figure 6
shows the general structure of the model.

Figure 6. Structure of the proposed model.

3.6. Data Preprocessing

The consumption data of each device and the total number of houses in the dataset
used in this article were preprocessed before being processed by the neural network.
The preprocessing performed in this research is similar to the preprocessing performed
in [26]. Also, the DS CleanerPython library [27] was used for preprocessing, cleaning, and
converting time series data into a standard file format. This library also has a function
for resampling datasets. In general, the preprocessing performed in this article can be
summarized as follows.

3.7. Removal of Excessively High Powers

Measuring devices have errors and sometimes record too much power. We considered
a maximum power for each device, and powers higher than that value are removed.

3.8. Changing the Sampling Interval from 6 s to 1 min

The power consumed at any moment will be equal to the average power measured in
the previous minute.
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3.9. Removing the Meter Error

If a device is off and turns on for a short period of time, or if it is on and turns off for a
short period of time, that short off/on period is not considered.

3.10. Forming the off/on Data Set

The main dataset includes the power consumption of the devices. Based on the values
of the exponents, we form a new binary dataset that indicates whether the device was on
(one) or off (zero) at any given moment in time.

3.11. Total Power Normalization

The total power values of all devices are divided by 2000 (watts) so that their value is
normal. Also, the average power value is subtracted from its original value to make the
average signal zero, because it is more desirable to use small values with zero average for
input in neural network training.

3.12. Network Input and Output

The inputs of the network are the consumption data of individual devices and the
total consumption data of the house, which are preprocessed before being processed by
the neural network. The network outputs are also an estimate of the activation status of
the equipment for each moment, which are obtained through the classification of several
classes of active loads at the same time. It can be said that each input contains 510 con-
secutive samples from the training set (1 × 510), and the corresponding output contains
480 activation status for each device (480 × 3).

3.13. Simulation and Testing Environment

In this research, the Python programming language and the Torch, Pandas, NumPy,
Scikit-Learn, Matplotlib, Math, etc., libraries were used in a Google Colab environment to
train and test the proposed model. The Google Colab platform offers the added benefit of
running tests in a virtual environment, which makes code management easier. In addition,
Google Colab makes use of Google’s high-performance computing resources without the
need for expensive hardware. In our experiments, we utilized Google Colab with the
following specifications: 12 GB of RAM, a T4 GPU with 16 GB of memory, and a 78 GB
hard disk.

In a real-world scenario, both edge-based and cloud-based approaches can be utilized
to implement this solution. However, choosing a cloud implementation is more practical
when striving to uphold the solution’s cost-effectiveness.

3.14. Computational Complexity

The computational complexity of the proposed method depends on the number of
operations within its architecture compared with other deep learning models. Transformer-
based models are recognized for their self-attention mechanisms, introducing a quadratic
dependency on sequence length and leading to increased computational complexity in
sequence processing. Nevertheless, the inclusion of a temporal pooling component in
the proposed method enhances the efficiency of temporal feature processing. In contrast
to traditional models like recurrent neural networks (RNNs) or long short-term Memory
(LSTM) networks, which exhibit sequential dependencies and can be computationally inten-
sive, the transformer-based model offers advantages in parallelization due to its attention
mechanism. It is important to note that there exists a trade-off between computational
burden and the accuracy achieved by the algorithms.

4. Datasets and Evaluation Methods

In this section, we first introduce the publicly available NILM datasets. Then, perfor-
mance criteria to evaluate the NILM methods will be discussed.
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4.1. NILM Datasets

In the research community, many NILM datasets have been made publicly available
for developing NILM algorithms and benchmarking their results and performance in the
public domain [15]. Each dataset has its own characteristics due to changes in devices
that were controlled in different periods of time in certain environments or buildings [28].
Table 2 lists popular NILM datasets that are publicly available for research purposes (some
of which are also used in the described methods).

Table 2. Datasets publicly accessible for the development of NILM algorithms.

Dataset Sampling Rate/Interval Duration Country

UK-DALE 16 kHz 2 years UK
REFIT 8 s 2 years UK
REDD 16.5 kHz 19 days US

BLUED 12 kHz 1 week US
Dataport 1 Hz +4 years US
AMPds 1 min 2 years Canada

COMBED 30 s 1 month India
PLAID 30 kHz 5 s US

In this article, UK-DALE [29], REDD [30], and REFIT [31] datasets are used. The UK-
DALE dataset is a widely used dataset in NILM research, which stands for “UK Domestic
Appliance-Level Electricity”. This collection contains energy consumption data collected
from a group of UK households. The REDD dataset, which stands for “Reference Energy
Disaggregation Data Set”, is also a famous dataset used for research related to NILM. This
dataset contains high-frequency energy consumption data collected from various Canadian
households and includes a wide range of different appliances and devices such as lights,
refrigerators, air conditioners, etc. The REFIT dataset also includes nine individual device
measurements at 8 s intervals per house collected from 20 houses. In this article, the
results pertaining to three types of electrical appliances, namely “Refrigerator,” “Washing
machine,” and “Dishwasher,” are analyzed within these datasets.

4.2. Evaluation Metrics

A confusion matrix is used to obtain a more comprehensive picture in evaluating the
performance of the model. This matrix is an N × N matrix used to evaluate the performance
of a classification model, where N is the number of target classes. This matrix compares
the actual target values with the values predicted by the machine learning model. Figure 7
shows the confusion matrix.

The following four terms constitute the fundamental terminology that will assist us in
discerning the metrics used for evaluation [32]:

True positives (TP): When the actual value is positive and the predicted value is also positive.
True negatives (TN): When the real value is negative and the prediction is negative.
False positives (FP): When the actual is negative but the prediction is positive. Also known
as a type 1 error.
False negatives (FN): When the actual is positive but the prediction is negative. Also
known as a type 2 error.
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Figure 7. Confusion matrix for binary classification.

There are measures other than the confusion matrix that can help achieve better
understanding and analysis of the models and their performance.

4.3. Accuracy

Accuracy is a common measure in classification that measures the overall accuracy of
the predictions made by a classification model by comparing them with the real labels of
the samples. This measure is calculated using the following formula:

Accuracy =
(True Positives + True Negatives)

(True Positives + True Negatives + False Positives + False Negatives)
(1)

4.4. Precision

It is a performance measure that evaluates the accuracy of positive predictions made by
a classification model. This measure is one measures the proportion of correctly predicted
positives out of all predicted positives. Precision is often used in conjunction with other
evaluation metrics, such as recall and F1-score, to provide a comprehensive analysis of a
model’s performance. This criterion is calculated using the following formula:

Precision =
True Positives

(True Positives + False Positives)
(2)

4.5. Recall

Recall, also known as sensitivity or the true positive rate, is a performance measure
that evaluates the ability of a classification model to correctly identify positive samples.
This metric measures the proportion of true positives that are correctly predicted out of all
true positives. Recall is calculated using the following formula:

Recall =
True Positives

(True Positives + False Negatives)
(3)

4.6. F1-Score

The F1-score is a commonly used performance measure in classification problems, es-
pecially when dealing with unbalanced datasets. This measure combines the precision and



Electronics 2024, 13, 407 12 of 20

recall measures into a single value to provide a balanced measure of a model’s performance.
The F1-score is calculated using the following formula:

F1-Score =
2 × (precision × recall)

precision + recall
(4)

4.7. MCC

The MCC is commonly used in machine learning to evaluate binary classification
models. To provide a function of a model’s performance, especially in situations where
the dataset is unbalanced, it considers positives, true negatives, false positives, and false
negatives. Its formula is given below:

MCC =
(TP × TN)− (FP × FN)√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(5)

4.8. MAE

MAE stands for mean absolute error, which is a common measure to evaluate the
accuracy of regression models. This measure measures the average absolute difference
between the predicted values and the actual values of the target variable. This criterion is
calculated using the following formula [33]:

MAE = (
1
n
)× ∑ |yi − ŷi| (6)

4.9. SAE

As stated earlier, SAEor sum absolute error, is measure to evaluate the accuracy of
regression models. Instead of averaging the absolute differences between the predicted and
actual values, SAE sums these absolute differences for all cases (according to the formula
below).

SAE = ∑ |yi − ŷi| (7)

5. Experiments and Results

To evaluate the effectiveness of the proposed model, a simple LSTM block model with
temporal pooling is tested first. The results of this initial test serve as a basis for comparison
with the proposed model. In the next step, a more advanced model is designed based on
the identified key elements. The results of the experiments show that the proposed model
works better than the basic model. In general, the results of this study show the importance
of combining key elements such as an attention mechanism, temporal pooling, residual
connection, and transformers in NILM models. These elements allow the model to better
capture the complex temporal patterns and dependencies of energy consumption data,
ultimately leading to improved performance and accuracy. Tables 3 and 4 show the results
of network training in a seenand unseencase.

Table 3. The results of network training in a seen case.

Model Metrics/Appliances F1 Precision Recall Acc MCC MAE SAE

LSTM
Fridge 0.883 0.891 0.874 0.894 0.787 13.94 −0.02
Dishwasher 0.922 0.913 0.933 0.996 0.92 20.99 0.004
Washing machine 0.979 0.976 0.983 0.997 0.978 41.89 −0.076

Proposed model
Fridge 0.886 0.892 0.88 0.897 0.79 13.85 −0.018
Dishwasher 0.925 0.926 0.925 0.996 0.923 20.58 −0.017
Washing machine 0.978 0.975 0.982 0.997 0.978 42.02 −0.74
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Table 4. The results of network training in an unseen case.

Model Metrics/Appliances F1 Precision Recall Acc MCC MAE SAE

LSTM
Fridge 0.878 0.895 0.859 0.907 0.795 16.99 −0.041
Dishwasher 0.816 0.798 0.939 0.99 0.797 32.99 0.02
Washing machine 0.859 0.843 0.956 0.996 0.844 8.53 0.012

Proposed model
Fridge 0.876 0.891 0.862 0.908 0.802 16.8 −0.038
Dishwasher 0.849 0.803 0.901 0.993 0.809 30.24 0.061
Washing machine 0.857 0.842 0.874 0.997 0.848 8.26 0.029

5.1. Model Training

In the first step, the UK-DALE dataset is used to train the network. The designed model
is trained using the data of houses 1 and 5 of this dataset, while the performance check is
performed on the whole dataset of house 2. The training and testing periods are completely
separated. The network is trained on homes other than the one tested (the unseen case) to
evaluate the model’s ability to generalize and recognize general features of a type of home
appliance. This approach is based on multiclass classification of simultaneous active loads,
and it estimates appliance consumption as a constant average value during activation.

Network parameters are optimized by the gradient descent method using Adam’s
optimization algorithm, with a learning rate of 10−4 and a batch size of 32. For both seen
and unseen modes, training is planned for 250 epochs. Figures 8 and 9 show the plots of
loss by epoch during network training for each of the two seen and unseen cases.

Figure 8. Plot of loss by epoch in the seen case in the UK-DALE dataset.

In the following, to check the performance of the designed model on other datasets,
this model was trained on REDD and REFIT datasets, and the loss plots by epoch in the
seen and unseen cases in REDD and REFIT datasets are shown in Figures 10–13.
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Figure 9. Plot of loss by epoch in the unseen case in the UK-DALE dataset.

Figure 10. Plot of loss by epoch in the seen case in the REDD dataset.

Figure 11. Plot of loss by epoch in the unseen case in the REDD dataset.
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Figure 12. Plot of loss by epoch in the seen case in the REFIT dataset.

Figure 13. Plot of loss by epoch in the unseen case in the REFIT dataset.

The results of the model designed on UK-DALE, REDD, and REFIT datasets are shown
in Tables 5–7. It can be seen that the results obtained on the REDD and REFIT datasets are
relatively less accurate than the results obtained on the UK-DALE data set.

Table 5. The results of the proposed model in the seen and unseen modes on the UK-DALE dataset.

State Appliances/Metrics F1 Precision Recall Acc MCC MAE SAE

Seen
Fridge 0.886 0.892 0.88 0.897 0.79 13.85 −0.018
Dishwasher 0.925 0.926 0.925 0.996 0.923 20.58 −0.017
Washing machine 0.978 0.975 0.982 0.997 0.978 42.02 −0.074

Unseen
Fridge 0.876 0.891 0.862 0.908 0.802 16.8 −0.038
Dishwasher 0.849 0.803 0.901 0.993 0.809 30.24 0.061
Washing machine 0.857 0.842 0.874 0.997 0.848 8.26 0.029
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Table 6. The results of the proposed model in the seen and unseen modes on the REDD dataset.

State Appliances/Metrics F1 Precision Recall Acc MCC MAE SAE

Seen
Fridge 0.877 0.882 0.874 0.855 0.768 14.38 −0.02
Dishwasher 0.917 0.917 0.918 0.993 0.917 22.75 −0.021
Washer–dryer 0.973 0.971 0.976 0.993 0.962 45.11 0.078

Unseen
Fridge 0.87 0.888 0.854 0.899 0.792 16.91 0.043
Dishwasher 0.845 0.8 0.896 0.991 0.803 30.44 −0.072
Washer–dryer 0.855 0.84 0.872 0.996 0.845 8.39 0.038

Table 7. The results of the proposed model in the seen and unseen modes on the REFIT dataset.

State Appliances/Metrics F1 Precision Recall Acc MCC MAE SAE

Seen
Fridge 0.833 0.841 0.826 0.848 0.735 16.83 0.036
Dishwasher 0.908 0.905 0.911 0.993 0.908 23.26 −0.024
Washing machine 0.97 0.971 0.97 0.995 0.966 45.74 0.089

Unseen
Fridge 0.868 0.888 0.849 0.896 0.795 18.66 0.054
Dishwasher 0.844 0.797 0.897 0.99 0.801 32.52 −0.073
Washing machine 0.854 0.84 0.869 0.995 0.839 9.02 −0.038

5.2. Comparison of Results of the Proposed Model with the Previous Studies

In this section, the results of the proposed model for solving the NILM problem are
compared with the results obtained from previous studies. The purpose of this comparison
is to evaluate the effectiveness of the proposed model and determine whether it has a better
performance than other existing methods. To achieve this goal, the results of the proposed
model are compared with the results of seven introduced articles. In Table 8, the results of
the different methods mentioned before for dishwasher (DW), fridge–freezer (FR), kettle
(KE), microwave (MW), and washing machine (WM) are compared. It is important to note
that the criteria used in these articles may differ, making direct comparisons challenging.
As a result, some criteria are not included in the table for an overall comparison of all
methods. Looking at the row related to the presented method, it can be seen that the
proposed model reaches an F1-core of 92.96 and SAE equal to −0.036, which is better than
the results obtained from other methods. The value of the F1-score of the proposed model
shows that the model is able to achieve a balance between accuracy and recall, which is
important for accurately identifying home appliances and their electricity consumption.
The negative SAE score also shows that the proposed model is able to estimate the electricity
consumption of each home appliance with high accuracy without underestimating the
actual electricity consumption. As a result, the presented model shows superior perfor-
mance in the accurate estimation of the electricity consumption of individual household
appliances compared to previous methods in the literature.

5.3. The Results of Different Data Resolutions

In the following, the proposed model was tested in seen and unseen cases on the
UK-DALE dataset with a resolution of 2 min and a resolution of 30 s. From Tables 9 and 10,
it can be seen that by reducing the frequency of data collection from 30 s to two minutes,
the accuracy of the model also decreased. Also, by reducing the sampling frequency, despite
the increase in the volume of network input data, the results did not change much.
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Table 8. Overall comparison of the proposed method with previous methods.

Model Metric DW FR KE MW WM Overall

WaveNILM

Acc - - - - - 94.7
MAE - - - - - -
SAE - - - - - -

F1 (%) - - - - - -

VAE-NILM

Acc - - - - - -
MAE 23.4 21.6 22.1 10.8 6.7 16.9
SAE - - - - - -

Fl (%) 32.1 80.6 73.5 64.6 87.1 67.6

COLD

Acc - - - - - -
MAE - - - - - -
SAE - - - - - -

Fl (%) - - - - - 94.55

ELECTRIcity

Acc 98.4 84.3 99.9 99.6 99.4 96.32
MAE 18.96 22.61 9.26 6.28 3.65 12.152
SAE - - - - - -

Fl (%) 81.8 81.0 93.9 27.7 79.7 72.82

D-ResNet

Acc 98.8 99.6 99.8 100 99.6 99.56
MAE 7.8 2.627 2.518 1.505 2.966 3.48
SAE 0.010 0.020 0.024 0.162 0.072 0.0576

Fl (%) 79.6 99.4 85.9 97.8 82.6 89.06

LDwA

Acc - - - - - -
MAE 6.57 13.24 5.69 3.79 7.26 7.31
SAE 3.91 6.02 3.74 2.98 4.87 4.30

Fl (%) 68.99 87.01 99.81 67.55 71.94 79.06

Proposed model

Acc 99.6 89.7 - - 99.7 96.33
MAE 20.58 13.85 - - 40.02 24.82
SAE −0.017 −0.018 - - −0.074 −0.036

Fl (%) 92.5 88.6 - - 97.8 92.96

Table 9. The results of the proposed model in the seen and unseen cases on the UK-DALE dataset
with a resolution of 2 min.

State Appliances/Metrics F1 Precision Recall Acc MCC MAE SAE

Seen
Fridge 0.829 0.846 0.814 0.831 0.725 18.94 0.062
Dishwasher 0.908 0.916 0.902 0.992 0.909 23.87 −0.036
Washing machine 0.972 0.966 0.969 0.995 0.953 45.18 −0.089

Unseen
Fridge 0.857 0.854 0.862 0.897 0.784 18.68 0.058
Dishwasher 0.834 0.796 0.876 0.991 0.791 36.85 0.084
Washing machine 0.845 0.829 0.863 0.994 0.813 11.28 0.033

Table 10. The results of the proposed model in the seen and unseen cases on the UK-DALE dataset
with a resolution of 30 s.

State Appliances/Metrics F1 Precision Recall Acc MCC MAE SAE

Seen
Fridge 0.889 0.895 0.884 0.898 0.793 13.69 −0.017
Dishwasher 0.92 0.922 0.918 0.995 0.919 20.74 −0.017
Washing machine 0.974 0.968 0.981 0.997 0.974 42.11 −0.078

Unseen
Fridge 0.886 0.899 0.875 0.912 0.816 16.63 0.031
Dishwasher 0.838 0.789 0.894 0.99 0.798 31.3 0.072
Washing machine 0.85 0.836 0.864 0.996 0.842 8.18 0.032
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6. Conclusions and Future Works

This article addressed the challenge of nonintrusive load monitoring (NILM) by
proposing an advanced Seq2Seq model combined with a transformative approach. The pri-
mary objective was to accurately disaggregate household energy consumption into in-
dividual appliances. To tackle this, the methodology incorporated key innovations: an
attention mechanism, temporal pooling, residual connection, and transformers. These tech-
niques collectively enabled the model to focus on relevant segments of the input sequence,
manage longer sequences effectively, facilitate smoother gradient flow, and leverage the
self-attention mechanism for precise data representation. The comparison in Table 8 shows
that the proposed model is able to improve the results compared to previous methods.
The proposed model is compared with previous models in terms of various criteria such
as accuracy, F1-score, precision, and recall. In addition, the proposed model is able to
overcome some of the limitations of previous models, such as their inability to accurately
identify the consumption patterns of individual household appliances in a household.
The proposed model is able to achieve better accuracy and precision in identifying each
device. From Table 8, it can be seen that the presented model is able to improve the results
in general.

Finally, considering the findings and limitations of the current research, recommenda-
tions for future studies are presented:

• This model can be expanded to add additional features such as time, day, weather condi-
tions, etc., to increase the accuracy of device detection and energy consumption estimation.

• The proposed model can be tested on a larger and more diverse dataset to further
evaluate its effectiveness and generalization in practical settings where various factors
such as noise, interference, and data quality can affect its accuracy.

• The effect of different metaparameters on model performance can be investigated to
identify the optimal configuration for specific datasets and scenarios.

• The proposed model can be extended to multitask learning settings to simultaneously
perform other related tasks such as device identification.

Overall, these future research directions can help advance the field of NILM and
contribute to the development of more accurate and efficient energy management systems.
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16. Harell, A.; Makonin, S.; Bajić, I.V. Wavenilm: A causal neural network for power disaggregation from the complex power signal.
In Proceedings of the ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Brighton, UK, 12–17 May 2019; pp. 8335–8339.

17. Langevin, A.; Carbonneau, M.A.; Cheriet, M.; Gagnon, G. Energy disaggregation using variational autoencoders. Energy Build.
2022, 254, 111623. [CrossRef]

18. Kamyshev, I.; Kriukov, D.; Gryazina, E. Cold: Concurrent loads disaggregator for non-intrusive load monitoring. arXiv 2021,
arXiv:2106.02352.

19. Sykiotis, S.; Kaselimi, M.; Doulamis, A.; Doulamis, N. Electricity: An efficient transformer for non-intrusive load monitoring.
Sensors 2022, 22, 2926. [CrossRef] [PubMed]

20. Xia, M.; Liu, W.; Wang, K.; Zhang, X.; Xu, Y. Non-intrusive load disaggregation based on deep dilated residual network. Electr.
Power Syst. Res. 2019, 170, 277–285.

21. Piccialli, V.; Sudoso, A.M. Improving non-intrusive load disaggregation through an attention-based deep neural network. Energies
2021, 14, 847. [CrossRef]

22. Azad, M.I.; Rajabi, R.; Estebsari, A. Sequence-to-Sequence Model with Transformer-based Attention Mechanism and Temporal
Pooling for Non-Intrusive Load Monitoring. In Proceedings of the 2023 IEEE International Conference on Environment and
Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain,
6–9 June 2023; pp. 1–5.

23. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December
2017; pp. 1–11.

http://doi.org/10.3390/en14030767
http://dx.doi.org/10.1016/j.enbuild.2021.111623
http://dx.doi.org/10.3390/s22082926
http://www.ncbi.nlm.nih.gov/pubmed/35458907
http://dx.doi.org/10.3390/en14040847


Electronics 2024, 13, 407 20 of 20

24. Lazebnik, S.; Schmid, C.; Ponce, J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories.
In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New
York, NY, USA, 17–22 June 2006; Volume 2, pp. 2169–2178.

25. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

26. Massidda, L.; Marrocu, M.; Manca, S. Non-intrusive load disaggregation by convolutional neural network and multilabel
classification. Appl. Sci. 2020, 10, 1454. [CrossRef]

27. Pereira, M.; Velosa, N.; Pereira, L. dsCleaner: A Python Library to Clean, Preprocess and Convert Non-Intrusive Load Monitoring
Datasets. Data 2019, 4, 123. [CrossRef]

28. Batra, N.; Singh, A.; Singh, P.; Dutta, H.; Sarangan, V.; Srivastava, M. Data driven energy efficiency in buildings. arXiv 2014,
arXiv:1404.7227.

29. Kelly, J.; Knottenbelt, W. The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five
UK homes. Sci. Data 2015, 2, 150007. [PubMed]

30. Kolter, J.Z.; Johnson, M.J. REDD: A public data set for energy disaggregation research. In Proceedings of the Workshop on Data
Mining Applications in Sustainability (SIGKDD), San Diego, CA, USA, 21–24 August 2011; Volume 25, pp. 59–62.

31. Firth, S.; Kane, T.; Dimitriou, V.; Hassan, T.; Fouchal, F.; Coleman, M.; Webb, L. REFIT Smart Home Dataset; Loughborough
University: Loughborough, UK, 2017. [CrossRef]

32. Theodoridis, S.; Koutroumbas, K. Chapter 10—Supervised Learning: The Epilogue. In Pattern Recognition, 4th ed.; Theodoridis,
S., Koutroumbas, K., Eds.; Academic Press: Boston, MA, USA, 2009; pp. 567–594.

33. Vaygan, E.K.; Rajabi, R.; Estebsari, A. Short-Term Load Forecasting Using Time Pooling Deep Recurrent Neural Network. In
Proceedings of the 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and
Commercial Power Systems Europe (EEEIC/I&CPS Europe), Bari, Italy, 7–10 September 2021; pp. 1–5.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/app10041454
http://dx.doi.org/10.3390/data4030123
http://www.ncbi.nlm.nih.gov/pubmed/25984347
http://dx.doi.org/10.17028/rd.lboro.2070091.v1

	Introduction
	Energy Efficiency
	Demand Response
	Monitoring and Maintenance of Home Appliances
	Resident Behavior Analysis
	Load Balancing and Optimization
	Energy Consumption Audit

	A Review of Previous Works Related to NILM
	The WaveNILM Method
	The Variational Autoencoders Method
	The COLD Method
	The ELECTRIcity Method
	The Deep Dilated Residual Network Method
	The Attention-Based Method

	Proposed Method
	Attention Mechanism
	Temporal Pooling
	Residual Connection
	Transformers
	Architecture of the Proposed Method
	Data Preprocessing
	Removal of Excessively High Powers
	Changing the Sampling Interval from 6 s to 1 min
	Removing the Meter Error
	Forming the off/on Data Set
	Total Power Normalization
	Network Input and Output
	Simulation and Testing Environment
	Computational Complexity

	Datasets and Evaluation Methods
	NILM Datasets
	Evaluation Metrics
	Accuracy
	Precision
	Recall
	F1-Score
	MCC
	MAE
	SAE

	Experiments and Results
	Model Training
	Comparison of Results of the Proposed Model with the Previous Studies
	The Results of Different Data Resolutions

	Conclusions and Future Works
	References

