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A systematic review of the relationship 
between muscle oxygen dynamics and energy 
rich phosphates. Can NIRS help?
Kevin Maliszewski1, Andri Feldmann2, Kevin K. McCully3 and Ross Julian1,4* 

Abstract 

Background Phosphocreatine dynamics provide the gold standard evaluation of in-vivo mitochondrial function 
and is tightly coupled with oxygen availability. Low mitochondrial oxidative capacity has been associated with health 
issues and low exercise performance.

Methods To evaluate the relationship between near-infrared spectroscopy-based muscle oxygen dynamics 
and magnetic resonance spectroscopy-based energy-rich phosphates, a systematic review of the literature related 
to muscle oxygen dynamics and energy-rich phosphates was conducted. PRISMA guidelines were followed to per-
form a comprehensive and systematic search of four databases on 02-11-2021 (PubMed, MEDLINE, Scopus and Web 
of Science). Beforehand pre-registration with the Open Science Framework was performed. Studies had to include 
healthy humans aged 18–55, measures related to NIRS-based muscle oxygen measures in combination with energy-
rich phosphates. Exclusion criteria were clinical populations, laboratory animals, acutely injured subjects, data 
that only assessed oxygen dynamics or energy-rich phosphates, or grey literature. The Effective Public Health Prac-
tice Project Quality Assessment Tool was used to assess methodological quality, and data extraction was presented 
in a table.

Results Out of 1483 records, 28 were eligible. All included studies were rated moderate. The studies suggest muscle 
oxygen dynamics could indicate energy-rich phosphates under appropriate protocol settings.

Conclusion Arterial occlusion and exercise intensity might be important factors to control if NIRS application 
should be used to examine energetics. However, more research needs to be conducted without arterial occlusion 
and with high-intensity exercises to support the applicability of NIRS and provide an agreement level in the concur-
rent course of muscle oxygen kinetics and muscle energetics.

Trial registration https:// osf. io/ py32n/.

Key points  

1. NIRS derived measures of muscle oxygenation agree with gold-standard measures of high energy phosphates 
when assessed in an appropriate protocol setting.

2. At rest when applying the AO protocol, in the absence of muscle activity, an initial disjunction between the NIRS 
signal and high energy phosphates can been seen, suggesting a cascading relationship.
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Introduction
Mitochondria are complex filamentous organelles that 
are the primary structures responsible for cellular ener-
getics [1, 2]. Mitochondria use electrons from substrate 
oxidation to shift protons within the electron transport 
system, causing a chemiosmotic gradient and driving 
ATP production as an energy currency. The last electron 
acceptor is oxygen, concluding that there is no substrate 
oxidation and no energy flux during energy demands 
without oxygen [3, 4]. Near-infrared spectroscopy (NIRS) 
can be used in vivo as a non-invasive and simple assess-
ment to measure the oxygen consumption rate in skeletal 
muscle [5–7].

As shown, after muscle activity or ischemic states, 
phosphocreatine (PCr) recovery depends on oxidative 
ATP production by mitochondria [8–10]. Consequently, 
the dependence of PCr recovery on oxidative ATP pro-
duction and overall oxygen availability may indicate a 
close correlation between oxygen availability and energy-
rich phosphates. During activity, ATP levels in the mus-
cle are buffered through PCr, dynamically depleted and 
synthesized through creatine kinase. Under high ATP 
demands, mitochondrial respiration is stimulated by ris-
ing ADP concentrations, reflected by PCr concentrations 
in the muscle [11, 12]. Assuming creatine kinase equilib-
rium, the recovery rate of PCr after exercise represents 
mitochondrial ATP production [13, 14]. These changes 
can be measured via phosphorus nuclear magnetic reso-
nance spectroscopy (P-MRS) and provide quantifiable 
information about phosphocreatine, ATP, and inorganic 
phosphate (Pi). Overall, mitochondrial function [15, 16] 
and a higher oxidative capacity [17–20] are associated 
with enhanced performance, from patients with chronic 
illness to endurance athletes. Since magnetic resonance 
spectroscopy (MRS) is expensive, limited in availability, 
and complex movements of healthy individuals are not 
feasible, NIRS has garnered more interest in assessing 
oxidative capacity, comparing muscle oxygen kinetics 
and changes in energy-rich phosphates [6, 7]. Moreover, 
muscle oxygen kinetics are increasingly measured in both 
laboratory and applied sports settings to assess muscle 
performance and training status [21]. However, studies 
regarding oxygen dynamics differ in their approaches and 
show contradictory results that do not consistently dem-
onstrate the connection between muscle oxygen dynam-
ics and energy-rich phosphates [6, 7, 21, 22].

Perrey & Ferrari [21] previously conducted a systematic 
review on muscle oximetry in sports science, present-
ing the development of the application of oximetry in 
sports during the past 35 years. The authors highlighted 
the need for a more in-depth comparison of physiologi-
cal parameters to show the advantages of the routine 
use of muscle oximetry [21]. Nonetheless, Campbell and 
Marcinek [23] discussed nuclear MRS and optical meas-
urements for in vivo evaluations of mitochondrial bioge-
netics in their narrative review and provided an overview 
of some possible approaches. The authors submitted 
that NIRS could represent an alternative to P-MRS for 
measuring mitochondrial capacity in skeletal muscle and 
emphasize this novel approach’s development, validation, 
and application.

A better and more comprehensive understanding of the 
relationship between corresponding muscle oxygen val-
ues measured by NIRS and energy-rich phosphates dur-
ing rest, activity, or ischemic assessments will be helpful 
in the development of non-invasive continuous examina-
tions of integrated energetics in athletes.

A preliminary literature search showed that there is 
currently no systematic summary regarding the relation-
ship between muscle oxygenation measured by NIRS 
and phosphate synthesis and resynthesis. This review 
will favor a practical perspective on an integrated and 
dynamic evaluation of energetics and analyses of oxygen-
ation data solely from muscle oxygen kinetics and phos-
phate-related measurement methods. Therefore, this 
review examines how muscle oxygenation data measured 
by NIRS represents energy-rich phosphates according 
to published research to address whether NIRS can be 
useful in determining energy-rich phosphates. As will 
become evident, apart from a systematic literature review 
the results are narrative in nature, as large methodical 
and technical variation makes any systemic analysis or 
modeling difficult.

Methods
The study was conducted according to the Preferred 
Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA) statement [24]. The protocol was 
pre-registered on the Open Science Framework before 
full searches and analysis (https:// osf. io/ py32n). Since 
the current study reviewed published studies, ethical 
approval or patient consent was unnecessary.

3. During exercise and recovery a disruption of oxygen delivery is required to provide the appropriate setting for eval-
uation through either an AO protocol or high intensity contractions.

Keywords Near-infrared spectroscopy, NIRS, Energy rich phosphates, PCr, Muscle oxygen dynamics, Oxidative 
capacity, Arterial occlusion, Exercise, Muscle oxygenation

https://osf.io/py32n
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Search strategy and study identification
Literature was searched in PubMed/MEDLINE, Scopus, 
and Web of Science. All searches were conducted on Feb-
ruary 11, 2021. The Boolean method was used with the 
operators AND/OR/NOT to limit the results to relevant 
studies containing the following search terms: “near-
infrared spectroscopy”, “NIRS”, “SmO2”, “HHb”, “O2Hb”, 
“TSI”, “mVO2” or “tHb” in combination with “phosphate”, 
“phosphorus”, “creatine phosphate”, “phosphocreatine”, 
“adenosinetriphosphate”, “adenosine triphosphate”, and 
“phosph*”. Reference lists from the selected studies were 
screened for other relevant studies; duplicates and stud-
ies known to the authors were also included. Two authors 
(KM and AF) have independently screened the titles 
and abstracts for relevance. The two mentioned authors 
examined the remaining full texts based on the inclu-
sion and exclusion criteria. In the event of discrepancies 
arising, a third author (RJ) provided an examination of 
the relevant articles to reach a consensus decision. The 
detailed search strategies for each database are available 
in a supplementary file (Supplemental material, https:// 
osf. io/ 7u4ym/? view_ only= 1048d 187f5 1c4cd b970b b6dc6 
63273 8d).

Selection criteria
Inclusion
Studies eligible for the present review article had to [1] 
be published in the English language, [2] have abstracts 
available for screening, [3] include relevant data con-
cerning the relationship of oxygenation data and energy-
rich phosphates, [4] include human subjects at age 
18–55 years. There was no limitation to publication date 
since the first NIRS studies were published in 1977 and 
contributed to the understanding of the development of 
NIRS measurements [25].

Exclusion
Studies were excluded if one of the following criteria 
were met: (1) acute injured and other clinical population, 
(2) laboratory animals, (3) in vitro or in situ experiments 
(muscle biopsies, high-resolution respirometry, measur-
ing enzymatic activity), (4) data only assessing NIRS, (5) 
dietary intervention, (6) non-research letters and edito-
rials, case studies, case series, grey literature - such as 
theses and dissertations -, abstracts or congress commu-
nications were excluded, as well as epidemiological, com-
mentaries, literature, narrative, and systematic reviews.

Data extraction and quality assessment
One author (KM) extracted the relevant data from each 
included study using predesigned table forms on Micro-
soft Excel. A second author (AF) confirmed the results. 

Discrepancies between authors were resolved by the third 
author (RJ). For examining the methodological quality of 
all included studies, the Effective Public Health Practice 
Project Quality Assessment Tool (EPHPP) (Armijo-Olivo 
et  al., 2012) was used and performed independently by 
two reviewers (KM & AF). The EPHPP assess the ana-
lytical cross-sectional and intervention studies, which 
will include the comparisons of the measurement tools. 
All questions had to be rated as strong (3 points), moder-
ate (2 points), or weak (1 point), and domain scores were 
averaged to provide the total score. The maximum total 
score per study was 3.00. Based on their total score, stud-
ies were assigned a quality rating of weak (1.00–1.50), 
moderate (1.51–2.50) or strong (2.51–3.00).

Results
Study selection
As shown in Fig.  1, 2722 records were identified in the 
four electronic databases (MEDLINE/Pubmed, Scopus, 
and Web of Science). One thousand two hundred forty-
seven duplicates were removed, and 1483 remained for 
screening. Forty-one studies were considered relevant 
after assessing the title and abstract inspection. Full-text 
screening showed 28 articles included in the systematic 
review (Fig. 1).

Study characteristics
The main characteristics of included studies are pre-
sented in Table 1. Studies were published between 1994 
and 2020. Exercise intensity in the studies varied from 
resting to maximal intensity. Muscles of the lower and 
upper extremities and lumbar were included. Moreo-
ver, arterial occlusion (AO) was applied in 15 studies 
[6, 26, 28–30, 32, 34–36, 38, 45, 49, 50, 52]. Two studies 
included data on ischemia in the absence of exercise [28, 
29]. All other studies involve training and/or post-exer-
cise recovery. The study populations were heterogeneous, 
ranging from sedentary to highly active participants. The 
sample size ranged from four to 50 participants.

Quality of studies
EPHPP tool was conducted to assess the cross-sec-
tional and intervention studies. The complete analysis 
is reported in Table 2. The mean quality score for the 28 
articles was 2.15 ± 0.23, thereby moderate. All articles 
achieved a moderate score. The withdrawals and drop-
outs category did not apply to most studies because a 
lower dropout risk exists in crossover study designs. 
Studies have been rated between weak and strong when 
other techniques were applied.

https://osf.io/7u4ym/?view_only=1048d187f51c4cdb970bb6dc6632738d
https://osf.io/7u4ym/?view_only=1048d187f51c4cdb970bb6dc6632738d
https://osf.io/7u4ym/?view_only=1048d187f51c4cdb970bb6dc6632738d
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Discussion
Our systematic review of 28 studies identified research 
investigating energy-rich phosphate changes and 
NIRS during rest, exercise, and ischemia. All articles 
achieved a moderate score (Range = 1.80–2.50). Since 
the relationship between two physiological variables 
were compared in the studies, most included studies 
assessed the variables within a cross-sectional study 
design. This led 18 out of 28 studies to a low grading 
concerning the study design. Although observational 
study design is appropriate to infer a relationship [53], 
the quality appraisal tool tended to produce lower qual-
ity scores for those studies.

Overall, the results of this review were inconclusive. 
No consistent relationship between oxygen levels and 
PCr were identified. Measurement protocols were het-
erogeneous and had a low sample size. Additionally, 
heterogeneous formulas for NIRS-based variables were 
used, making it challenging to compare oxygen kinet-
ics between studies. Because of the high heterogeneity 
of NIRS-based variables, the categorization of variables 
was not applied. Nevertheless, considering the current 
state of knowledge, the application of NIRS to deter-
mine changes in energy-rich phosphates would appear 
appropriate when certain conditions are met.

Energy rich phosphates and NIRS at rest with and without 
AO
Differences in oxygen kinetics and the time course of 
high-energy phosphates during rest with AO have been 
observed. In general, the absence of blood flow with 
an AO was used to decouple muscle oxygen delivery 
from oxygen consumption and focus on muscle oxygen 
consumption. Hamaoka et  al. [26] described the first 
observations at rest. Muscle oxygen declines in a linear 
fashion attenuating at 240 sec and leading to a plateau at 
360 sec. Particularly at rest, these observations can vary 
with low metabolic rate and high individual variation; 
for this reason, muscle activation is included in the pro-
tocol to stimulate metabolism. When  O2 was measured 
to be insufficient to maintain ATP level, PCr decreased, 
broken down to maintain ATP level for resting metabo-
lism [26]. This can only be examined if a sufficient gra-
dient is reached between blood vessels and the tissue or 
mitochondria. Furthermore, Sako et  al. [32] observed a 
decrease in PCr as soon as Hb reached a plateau in AO 
resting measurements 5 min after the start of AO. Nota-
bly, when AO was applied for 5 min periods during rest 
in the study by Binzoni & Hildebrand [28], PCr and ATP 
concentrations did not change. In contrast to the con-
stant PCr and ATP levels at rest, a constant change in 

Fig. 1 PRISMA flow diagram of the selection process of the journal articles included in the systematic review
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desaturation was observed during the applied ischemic 
periods. It can be concluded that at rest under an 
extended period of ischemia (i.e., no longer than 5 min), 
no change in PCr occurs, even if changes in NIRS-related 
values are observed. This can be extrapolated because if 
sufficient oxygen levels are available to support oxidative 
metabolism, high resting PCr can be maintained. As oxy-
gen levels decline, this is no longer the case. Therefore, 
during short periods of ischemia at rest, NIRS will not 
reflect PCr.

The deoxygenation rate of NIRS-O2 has been shown to 
be a function of work rate [54], and during ischemia at 
rest and exercise, 2 to 8-fold increases have been docu-
mented [6, 30]. Since pH in skeletal muscle decreases 
only when coupled to muscular contraction, the glyco-
lysis rate is assumed to be low at rest [55] and increases 
exponentially with the onset of exercise. Hence, the 
authors attempted to explain that oxygen stores, namely 

Hb and Mb, could have the capabilities to maintain tissue 
metabolism during AO at rest [30].

Energy‑rich phosphates and NIRS during exercise
A few studies measured NIRS and MRS simultaneously 
during exercise. Without AO rate of deoxygenation 
(time constant: 42 ± 12.5 sec) was in line with the time 
constant of the decrease in PCr (48.2 ± 10.2 sec) at the 
onset of intermitted contraction exercise (5 sec isometric 
contractions and 5 sec relaxation) at 50% of MVC [33]. 
Additionally, to show that at 50% of MVC exercise can 
potentially occlude arterial blood flow, Hamaoka et  al. 
[33] compared a 10 sec occluded isometric hold with a 
non-occluded trial. The rate of deoxygenation was simi-
lar in both trials (2.23 ± 1.25%/sec versus 2.13 ± 1.18%/
sec), hence in their preliminary study, Hamaoka and col-
leagues [33] were the first that demonstrates that the rate 
of muscle deoxygenation by NIRS during an intermittent 

Table 2 Quality assessment based on the Effective Public Health Practice Project (EPHPP)

All questions have been rated as strong (3 points), moderate (2 points) or weak (1 point), and domain scores were averaged to provide the total score. The maximum 
total score per study was 3.00. Based on their total score, studies were assigned a quality rating of weak (1.00–1.50), moderate (1.51–2.50) or strong (2.51–3.00)

Author Selection 
Bias

Study Design Control for 
Confounders

Blinding Data 
Collection

Withdrawals 
and Dropouts

Global Rating Global Rating

McCully et al. [22] 2 1 2 2 3 N/A 2 Moderate

Hamaoka et al. [26] 2 1 2 2 3 N/A 2 Moderate

Yoshida et al. [27] 2 2 2 2 2 1 1.83 Moderate

Binzoni et al. [28] 2 1 1 2 3 N/A 1.80 Moderate

Binzoni et al. [29] 2 1 3 2 3 N/A 2.20 Moderate

Boushel et al. [30] 2 1 2 2 2 N/A 1.80 Moderate

Kutsuzawa et al. [31] 2 1 2 2 3 N/A 2 Moderate

Sako et al. [32] 2 1 2 2 3 N/A 2 Moderate

Hamaoka et al. [33] 2 1 2 2 3 N/A 2 Moderate

Kime et al. [34] 2 1 2 2 3 N/A 2 Moderate

Kime et al. [35] 2 1 2 2 3 N/A 2 Moderate

Nagasawa et al. [36] 3 1 2 2 3 N/A 2.2 Moderate

Forbes et al. [37] 3 2 2 2 3 N/A 2.4 Moderate

Kimura et al. [38] 3 3 2 2 2 N/A 2.4 Moderate

Jones et al. [39] 3 2 2 2 3 3 2.4 Moderate

Forbes et al. [40] 3 2 2 2 3 3 2.5 Moderate

Zange et al. [41] 3 1 2 2 3 N/A 2.2 Moderate

Layec et al. [42] 3 1 2 2 3 1 2 Moderate

Willcocks et al. [43] 2 1 2 2 3 2 2 Moderate

Layec et al. [44] 3 2 1 2 3 1 2 Moderate

Layec et al. [45] 3 2 2 2 3 3 2.5 Moderate

Ryan et al. [6] 3 1 3 2 3 3 2.5 Moderate

Fulford et al. [46] 3 2 2 2 3 1 2.2 Moderate

Hart et al. [47] 3 2 2 2 3 3 2.5 Moderate

Layec et al. [48] 3 2 2 2 3 3 2.5 Moderate

Bendahan et al. [49] 3 1 2 2 3 1 2 Moderate

Yanagisawa et al. [50] 3 1 2 2 3 N/A 1.8 Moderate

Heskamp et al. [51] 3 1 1 2 3 2 2 Moderate
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exercise at 50% of MVC without AO indicates only mus-
cle oxygen consumption.

The biochemical effect of extensive ATP hydrolysis 
from exercise resulting in increasing proton accumula-
tion and consequently a shift in pH [27, 37, 47, 48, 56] 
is an important factor to consider when looking at NIRS 
and PCr response during exercise. In a study by Will-
cocks and colleagues [43] using constant-work rates 
without pH changes, HHb and PCr were not associ-
ated; PCr decreased from rest to end-exercise regard-
less of HHb responses. However, when exercise intensity 
increases and thus significant changes in pH occur, ATP 
production increased approximately twofold when MVC 
was elevated from 15 to 30% in rhythmic handgrip exer-
cise when using either MRS or NIRS data to calculate 
high energy phosphates [30]. In a ramp test, energy-rich 
phosphate changes and HHb show similar behavior [49]. 
During 10, 20, and 30% of MVC, NIRS data can predict 
the course of PCr [49]. Nevertheless, no direct com-
parison between PCr and HHb was undertaken. From a 
physiological perspective, at higher intensities above 50% 
of MVC, an increased glycolytic rate could decrease the 
ADP effect on oxidative phosphorylation and, therefore, 
the availability of intramuscular  O2 in mitochondria [37, 
38, 46]. Accordingly, when lower intensity exercise is 
performed (e.g., at 30% of MVC), intramuscular oxida-
tive metabolism matters more and curtails both PCr and 
glycolysis as energy suppliers [31, 38, 44]. Thus, visual 
inspection of data, quantitative analysis, and physiologi-
cal explanations support the assumption that exercise 
intensity similarly impacts the rate of decline of muscle 
oxygenation and PCr. Considering this fact, we support 
the hypothesis that the change of PCr is greatly influ-
enced oxygen availability [8–10].

PCr and muscle oxygen kinetics can be affected by 
prior ‘priming’ exercise, dependent on intensity. In par-
ticular, shifts in pH influence PCr kinetics [57]. PCr 
recovery follows a biexponential function with two dis-
tinct phases, an initial and a slow component [58]. While 
it is unclear what the exact mechanisms of control (i.e., 
cytosolic ADP) of the initial phase are, the slow compo-
nent would appear to be tightly coupled to pH. This is a 
reasonable outcome considering the role of H+ in cre-
atine kinase equilibrium and, therefore, the mass-action 
ratio. Priming can increase muscle oxygenation in a sub-
sequent high intensity exercise bout with pH level and 
muscle efficiency influencing PCr hydrolysis. This may 
lead to a larger reduction in PCr [39]. Though an increase 
in muscle oxygen could be seen, PCr decreased faster 
and thereby dissociated PCr kinetics from muscle oxy-
gen kinetics. Forbes and colleagues [40] examined the 
influence of the recovery time between two high inten-
sity exercise bouts with 3 min, 6 min, and 15 min. PCr 

slow component was similarly reduced in all three bouts, 
whereas HHb onset kinetics were only slowed in the 
3 min bouts. During the mid to later (approx. 2–6 min-
ute) course of the second exercise bout, independent of 
the recovery time, PCr was significantly higher than in 
the first, indicating changed metabolism regardless of 
the recovery time. HHb was elevated only in the exer-
cise bout after 3 min recovery. As a result, this led to the 
assumption that PCr consumption is not influenced by 
 O2 delivery, fatigue mechanisms, PCr level or intracellu-
lar acidosis at the onset of the second exercise bout [40].

Contrastingly, Layec et  al. [42] reported an increased 
deoxygenation amplitude, a decrease in PCr breakdown, 
and a decrease in glycolysis in consecutive bouts of high-
intensity knee-extension exercise, illustrating a shift from 
glycolytic to oxidative ATP production in the second 
exercise bout. A reduced ADP stimulus was proposed 
as the reason for the shift since, at the end of the second 
exercise bout oxygenation level was increased, and the 
ADP level decreased. This could indicate higher intracel-
lular  O2 extraction for higher ATP production rates with 
concurrent lower ADP levels [42]. Although a coupling of 
NIRS data with PCr behavior was observed in this study, 
the authors argued that the control of oxidative phos-
phorylation could rely on the more complex relationship 
between PCr and muscle oxygen kinetics and essentially 
be influenced by additional factors such as phosphate 
potential, pH, and ADP [42]. Given these contradictions, 
there appears to be room for interpretation regarding 
how exercise and priming influence muscle oxygen kinet-
ics and phosphate metabolism.

Further, when exercise is introduced under AO, meta-
bolic stress is indicated by both PCr and NIRS param-
eters [41, 50]. Blood flow restriction intervention from 
Yanagisawa et  al. [50] revealed that both PCr and Hb 
were significantly changed when AO occurred. Moreo-
ver, during the four-minute course of the exercise, the 
comparison of restricted versus non-restricted blood 
flow constituted a significant difference in the decrease 
of Hb from the very first minute onward; in fact, PCr 
decreases were significantly different from the second 
minute onward. These findings support the assumptions 
that insufficient  O2 supply as a result of AO occurs, ATP 
supply could increasingly depend on oxygen stores and 
glycolytic metabolism. Nevertheless, the study did not 
directly compare the course of Hb and PCr and, thus, 
limits further conclusions.

Energy rich phosphates and NIRS during recovery
Most studies in the present review included recov-
ery measurements. McCully et  al. [22] were the first to 
assess the relationship between PCr and Hb saturation. 
Their results indicated a similar course of PCr and Hb 
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after exercise. Additionally, their results demonstrated a 
decoupling of Hb and PCr when exercise intensity was 
increased to maximal bouts intensity [22]. Consequently, 
the potential benefit of the function of reoxygenation 
kinetics as an indicator of PCr recovery kinetics during 
recovery periods may be limited to low intensity exercise 
with controlled pH (approximate pH of 7.0).

Moreover, in high oxidative capacity muscle, it was 
shown that after a short duration, high intensity isomet-
ric exercise, the reoxygenation rate during the recovery 
phase is slower due to greater  O2 utilization capacity [34, 
35]. In particular, these observations were made when 
 O2 demand was maximized at high intensity exercise. 
Results of Kime et  al. [34, 35] and Hamaoka et  al. [33] 
show, contrary to McCully et al. [22], that higher inten-
sities are necessary to create a bridge between NIRS 
and MRS-based PCr. This is likely due to the degree to 
which NIRS is removed from the direct measurement 
of PCr, and oxygen dynamics functions as a limited sur-
rogate. It was shown that muscle oxygen consumption 
at 90% of MVC was significantly higher than at 30 and 
60% of MVC. Additionally, the correlation between Tc of 
PCr and  HbO2 reoxygenation rate could only be found at 
90% of MVC and not at 30 and 60% of MVC [35]. Con-
sequently, at higher intensities above approximately 50% 
of MVC, an increase in glycolytic metabolism could 
decrease the ADP effect on oxidative phosphorylation 
and, therefore, the availability of intramuscular  O2 in 
mitochondria [38].

There may be room here for a confounder in the rela-
tionship between PCr breakdown and recovery, and mus-
cle oxygenation kinetics, which may clarify some of the 
contradiction. Difference in muscle oxygen on and off-set 
kinetics as a result of fitness may be the factor determin-
ing the goodness of fit between muscle oxygenation and 
PCr [22]. The higher the fitness the smaller the  O2 sup-
ply and demand gap at the onset and offset of exercise, as 
shown by  VO2 kinetics [59], and therefore the better the 
relationship between deoxygenation and reoxygenation 
and PCr kinetics. Finally, Heskamp and colleagues [51] 
showed that the close relation between PCr and oxygen 
supply remains independent of spatial variation. The oxy-
gen supply increased from distal to proximal along the 
tibialis anterior muscle, just as the PCr recovery rate did. 
A strong correlation between Hb recovery rate constant 
and PCr recovery rate constant confirmed the relation-
ship (r = .956 and r = .852).

A calculation of ATP change based on NIRS vari-
ables was demonstrated by Hamaoka et al. [26] and Sako 
et  al. [32]. Hamaoka et  al. [26] and Sako et  al. [32] cal-
culated muscle metabolic rate based on NIRS values and 
expressed it as millimolar ATP per second. Significant 
correlation occurred between NIRS-based muscle  O2 

consumption in absolute terms with ADP and PCr [26] 
and between NIRS-based muscle oxidative metabolic 
rate with PCr resynthesis rate post exercise [32]. The 
results provide evidence that NIRS could quantitively 
indicate the rate of muscle oxidative metabolism. The 
calculation of muscle consumption and muscle oxidative 
metabolic rate in both studies was similarly achieved (Hb 
decline rate with AO after exercise)/(Hb rate with AO at 
rest) × (Resting metabolic rate measured by P-MRS). The 
equation illustrates the dependence of these methods on 
P-MRS data. In the absence of P-MRS data, NIRS data 
alone cannot complete these calculations therefore limit-
ing their applications.

In contrast, recovery constants only by NIRS have been 
experimentally validated against P-MRS independent 
of P-MRS [6, 36]. These time constants correlated well 
(r2 = .88–.95) and agreed in Bland-Altman Plots. The 
authors demonstrated that the indices solely based on 
NIRS could provide information about the muscle oxida-
tive capacity.

Limitations
The present study has two major limitations. First, many 
of the studies evaluated applied time constants or com-
plex calculated indices to provide information about 
muscle metabolism rather than to compare the direct 
course of PCr and muscle oxygen kinetics during exer-
cise. The heterogeneous data offered in the review pro-
vides evidence for a relationship between PCr and muscle 
oxygen kinetics when appropriate protocol settings are 
used, as correlations confirm (Table  1). Essential condi-
tions for study protocols are measurement methods, 
intensity of priming exercise, recovery time, and intra-
cellular pH level. Thus, comparison and interpretation of 
the results are strongly limited. Second, this study aimed 
to obtain information about the application of NIRS to 
examine integrated energetics in athletes. However, NIRS 
can only measure the balance between  O2 consump-
tion and delivery. This limits its scope of application, 
and the authors mainly cited used the AO to calculate 
oxygen consumption and derive from that phosphate 
levels. AO restricts the practical application of NIRS to 
be integrated into dynamic measurement and diagnos-
tics. Hamaoka et al. [33] were the only ones to examine 
the necessity of AO above 50% of MVC. Based on their 
assumptions, it could be possible to solely measure the 
muscle oxygen consumption with high intensity exercises 
without AO and, thus, indicate the course of PCr during 
everyday sport science settings. Because of the significant 
correlations between PCr and the rate of deoxygenation 
(r =  .96, p > .05) and the agreement of the time constant 
of the rise of the rate of deoxygenation and the time con-
stant of the decrease in PCr, it seems that NIRS has the 
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potential to indicate PCr during exercise. Though first 
quantitative measures were provided, further investiga-
tions would be beneficial to support those findings and 
strengthen the evidence of muscle oxygen kinetics as an 
indicator of energy rich phosphates in an applied sport 
science context.

Future directions
In future studies a greater emphasis should be placed 
on the integration of NIRS with P-MRS to leverage the 
strengths of both measurements. Exercise, in particu-
lar strenuous exercise, involves low oxygen conditions 
and NIRS is uniquely placed to characterize oxygen lev-
els during such exercise. P-MRS on the other hand is 
uniquely designed to measure changes in glycolysis and 
muscle pH, which is important in understanding strenu-
ous exercise. While not covered in this review, joining 
NIRS measures with other MRS or MRI techniques like 
1H-MRS may provide a more comprehensive evaluation 
of muscle energetics, by exploiting the different tech-
niques inherent strengths and weaknesses [60–62]. In 
this way future studies can be classified into three gen-
eral categories, those that include NIRS as a necessity for 
context with MRS and MRI data collection, those that 
include NIRS as an extension to the findings of the MRS/
MRI findings, and those that apply NIRS independently 
or as surrogate of MRS/MRI findings. While true for all 
three categories, the third category in particular lends 
itself to combining NIRS and other noninvasive assess-
ments to answering very practical and in situ questions, 
given the increasing portability of NIRS and other non-
invasive tools. For example, the combination of NIRS 
to assess muscle metabolism and triaxial accelerometry 
to measure muscle movements and position in space; 
or with electromyography (EMG) to measure muscle 
activation and metabolism. Including a multi-site NIRS 
measurements with assessments of whole-body oxygen 
consumption would seem to greatly advance our under-
standing of whole body movement and metabolism. In 
summary, muscle responses to exercise are a fundamen-
tal part of the how the body addresses questions exercise 
and intensity, and future research should include both 
comprehensive assessments of muscle function with 
multimodal approaches, as well as assessments of local 
and whole body responses to exercise.

Conclusion
In conclusion, 28 studies have included both NIRS 
derived muscle oxygen kinetics and energy rich phos-
phates. The results suggest that the application of NIRS 
can indicate the change in energy rich phosphates 
when assessed in an appropriate protocol setting. High 
intensity exercise may be necessary, such that oxygen 

delivery is disrupted. For this reason, the AO method 
or high intensity exercise should be included in NIRS-
based studies evaluating high energy phosphates. The 
heterogeneity of the data, protocols and interopera-
tions limit the interpretation of the data. More research 
needs to be conducted using MRS and NIRS without 
AO and with high intensity exercise to demonstrate an 
agreement in the concurrent course of muscle oxygen 
kinetics and muscle energetics.
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