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Abstract

Magnetic Resonance Imaging (MRI) is an indispensable tool in healthcare and research, with
a growing demand for its services. The appeal of MRI stems from its non-ionizing radiation
nature, ability to generate high-resolution images of internal organs and structures without
invasive procedures, and capacity to provide quantitative assessments of tissue properties
such as ectopic fat, body composition, and organ volume. All without long term side effects.
Nine published papers are submitted which show the cultivation of quantitative measures of
ectopic fat within the liver and pancreas using MRI, and the process of validating whole-body
composition and organ volume measurements. All these techniques have been translated into
large-scale studies to improve health measurements in large population cohorts. Translating
this work into large-scale studies, including the use of artificial intelligence, is included.
Additionally, an evaluation accompanies these published studies, appraising the evolution of
these quantitative MRI techniques from the conception to their application in large cohort
studies. Finally, this appraisal provides a summary of future work on crowdsourcing of
ground truth training data to facilitate its use in wider applications of artificial intelligence.
In conclusion, this body of work presents a portfolio of evidence to fulfil the requirements of

a PhD by published works at the University of Salford.
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Introduction

Medical Imaging plays a significant role in clinical care and research trials (Munn & Jordan,
2011). Everyday millions of medical images are produced, which are used for the diagnosis
of disease and response to treatment (Mohamed Y. Abdallah & Algahtani, 2019). With
medical imaging moving from qualitative to quantitative (Hosny et al., 2018), immense
amounts of electronic imaging data need storage but also hold additional untapped
information, which could contribute to evidence-based practice and patient care (Canvasser et
al., 2014). An example is organ segmentation to measure volume, which can help quantify
disease states, function, and response to treatment (Geraghty et al., 2004). Technological
advances and an ageing population mean that demand for imaging services will increase
(Board of the Faculty of Clinical Radiology, 2019; Care Quality Commission, 2018).
However, high vacancy rates for Radiologists and Radiographers mean demand outstrips the
supply of imaging services.

In addition to increased demand for clinical imaging, it is becoming more common to
perform large cohort studies, thus creating large amounts of data available to researchers
(About UK Biobank | UK Biobank, 2022; German National Cohort (GNC) Consortium,
2014). Although not all large-scale cohort studies include imaging, the advantages are well
recognised (MRC Population Health Sciences Group (PHSG), 2014). No matter how large,
an imaging protocol for a research study requires it to be safe, applicable, feasible, robust,
reliable, and repeatable. MRI has the advantage of not using ionising radiation and is an
obvious choice when undertaking the imaging portion of a large-scale study. Furthermore,
MRI can investigate tissue properties non-invasively. MRI opens the possibility of gaining
insight into markers of health which may have previously only been possible using biopsy,
post-surgery or at post-mortem.

The advent of artificial intelligence (AI) has the potential to play a significant role in several
areas of radiology problem-solving, where its impact has been described as profound (SELECT

COMMITTEE ON ARTIFICIAL INTELLIGENCE. COLLATED WRITTEN EVIDENCE



VOLUME, 2017). However, due to algorithm development and training, the performance of an
Al system is only as good as the training data, sometimes referred to as “ground truth”, which
should be comprehensive and of high quality. Robust methods of acquiring and analysing
medical images are required to provide high-quality data for the development and training of
artificial intelligence systems. When data becomes available, it comes with a financial and time
investment to analyse and annotate. So, extracting meaningful results worthy of publication
and translation into improved clinical care will only be achieved on the required scale with
additional resources. That is, skilled staff such as radiographers who can perform annotation
and analysis, in other words, the production of robust and fully validated ground-truth cohorts.
To ensure good quality data for Al development and training, it is essential that the data is
accurately, reliably, and consistently acquired. The role of the radiographer in this process is
essential in ensuring as they are acquiring consistently high quality data whilst still ensuring
participant safety and comfort (Scheek et al., 2021). More recently, radiographers are
beginning to play a pivotal role in the use of artificial intelligence in radiology, especially
around ground-truth production and validation.

This thesis presents nine papers and supporting evidence to fulfil the requirement PhD by
publications. The papers are evidence of the cultivation of new qualitative MRI (qMRI)
techniques and their translation into large-scale cohort studies. The submitted papers covers a
journey of learning and development after entering a research environment. Gaining skills
and understanding of research principles and how trials are conducted, including how
quantitative data are acquired. Evolving by participating and assuming more responsibility
for performing the analysis to produce viable results, including ground truth, how this process
occurs, and the choices that determine the methods that are selected. This evolution also
includes creating and optimizing imaging techniques that produce viable data before

initiating independent ideas for unique and novel investigations. Finally, this is a
commentary on how the portfolio demonstrates original and unique contributions while
discussing the detailed understanding required to render gMRI techniques suitable for larger

imaging research studies.



Review of Literature

Introduction

When undertaking any form of research, a strategy is required to tackle the research question,
which outlines a plan to collect, interpret, analyse, interpret, and draw conclusions from the
data. According to the research design, there are various types and subtypes that can be
further divided into groups, but the overarching approach falls into quantitative, qualitative,
and mixed methods (Creswell & Guetterman, 2018)

In recent years there has been an increase in large-scale research studies in response to the
need to understand the mechanisms underpinning non-inheritable disease, epidemiology and
thus inform government policy regarding health and spending. Cohort studies collect vast
amounts of data from population groups who share a common characteristic, with some
following participants for decades or even several generations (Barrett & Noble, 2019).
Notable in these studies is that there is no intervention and control group, and data can be
collected either retrospectively or prospectively. However, little is documented about
including imaging in such large-scale studies. Thus, the literature has been examined to

establish the background and history of large-scale studies and how imaging is incorporated.

Longitudinal vs Cross Sectional Studies

In 2016 the Proceedings of the Academy of Sciences (PNAS), a highly regarded peer-
reviewed scientific journal, published an article by Chaleckis et al. (2016) entitled “Individual
Variability in Human Blood Metabolites Identifies Age-Related Differences” (Chaleckis et
al., 2016). The authors presented a robust investigation into the differences in blood
metabolites in two different age groups-young (15 young (29 + 4y of age) and old (15 elderly
(81 = 7y of age). Makinen et al. (2016) responded by writing to the editor of PNAS,
criticising the conclusions. Attention was drawn to the causal and mechanistic claims from
two groups containing only fifteen participants and how cross-sectional studies should be
interpreted cautiously (Mékinen & Ala-Korpela, 2016). Confounding factors such as lifestyle
and socioeconomic status can lead to distorted associations and misleading claims (Smith et

al., 2007) .



The year before Chaleckis was published, Belsky et al. (2015) had already highlighted the
need to study human ageing in the first part of life when ageing trajectories start to diverge.
In addition, longitudinal studies are required as age-related diseases start manifesting and
accelerated ageing can be identified. Thus, advocating the need for both cross-sectional and
longitudinal studies (Belsky et al., 2015). Case-controlled studies can consider many
variables when there is a lengthy period between exposure and the emergence of a disease
(Mann, 2003). However, the outcome is either the presence of disease or not, and many
influencing factors can be missed. Nevertheless, case-controlled studies can help generate

hypotheses for further investigation.

Large Cohort Study

A large cohort study is the best way to study the hundreds, maybe thousands of variables and
interactions with environmental factors (Manolio & Collins, 2010). Selection bias can be
minimised by including a random sample of the population and minimising 'lost' participants.
Belsky et al. included over 1037 participants in their study, which leads to the question of
how many participants amounts to a large-scale study? For example, in a functional MRI
(fMR]) study, Desmond and Glover (2002) concluded that twelve was enough to identify a
statistically significant effect. However, this publication was about signal changes in the brain
in a single population and the authors acknowledge that different parameters may be required
when observing different populations, for example young and old. Nevertheless, there has
also been a rise in large-scale imaging studies in psychiatry, with the number of participants
expanding to thousands with the “statistical mantra is that more subjects means more power”
(Turner, 2014).

In 2014, the Medical Research Council (MRC) published 'Maximising the value of UK
population cohorts', a review of the most significant UK population cohort studies 34 cohorts
was identified, 17 of which include longitudinal data. In this review, one of the inclusion
criteria was that the initial sample size at recruitment was >1000 (MRC Population Health
Sciences Group (PHSG), 2014). Without any firm definition, 1000 was suggested as an
acceptable figure but there is always the possibility that significance could be achieved with
smaller numbers or reduced by the utilisation of more accurate and reproducible techniques
use if the assessment of the variables of interest. Moreover, there is scope to achieve a large

cohort by combining smaller studies, combining the data, and performing a meta-analysis.



However, researchers can be reluctant to share data (Molloy, 2011), and there will be

complications with standardisation due to widely varying protocols (Turner, 2014).

History of Large-Scale Cohort Studies

There is evidence that Sir James McKenzie attempted a longitudinal study of the health
residents of St. Andres in the 1890 and early 1900s at the Mackenzie Institute of Clinical
Research (Mccormick, 1981). 92 cases were included and 42 showed evidence of ischemic
heart disease (IHD). Thus, McKenzie concluded that IHD was common at the time. Several
long-term studies were established in the 1940s in the USA, including the Framington Heart
Study (Mahmood et al., 2014), with the first cohort consisting of 5209 participants. This has
expanded over the last 74 years to include offspring of the original cohort and more diverse
ethnicities. Now including 7 cohorts of 15,448 total participants the study has identified
common factors which contribute to cardiovascular disease (4bout FHS | Framingham Heart
Study, 2022).

Perhaps the best known large longitudinal studies is the British Doctors Study which started
sending questionnaires about smoking habits to doctors in 1951. Collecting data from 58,761
respondents a link between smoking and lung cancer was established (Doll & Hill, 1954,
1964). Follow up of this cohort continued until 2001. These studies have resulted in new
understanding of disease prevalence and contributory factors.

One of the challenges facing researchers is finding and recruiting a representative sample of
the population. When devising a study to investigate the side effect of contraception,
researchers required a group who are intelligent, cooperative, health conscious and would be
easy to follow. Registered nurses were identified, and the Nurses Cohort Study was founded
in 1976. In 2002 the third cohort was enlisted and participants now number 280,000. The
study has expanded beyond contraception and yielded many exciting findings, for example,
'"Nuts may protect against heart disease.' (Guasch-Ferré et al., 2017). A further large-scale
study is the 45 and Up Study in Australia, which started recruiting in 2006 and now
comprises of a huge cohort of 250,000 normal participants (‘Australia’s Largest Ongoing
Study of Health and Ageing | 45 and Up Study | Sax Institute’, 2023). The studies undertaken
with this cohort includes questionnaires or interviews and some biological samples, such as

blood and urine but there is no imaging of this cohort.



More recently, the German National Cohort has included imaging in 56,971 of 205,415
normal participants recruited between 2014 and 2019 (German National Cohort (GNC)
Consortium, 2014). While all participants have collected interviews, medical examinations
and samples, the MRI programme sub-set includes whole-body, brain, and cardiac imaging.
In 2014, one in thirty people were enrolled in cohorts in the UK and linking to primary health
records creates an invaluable national resource (Pell et al., 2014). A current directory of
cohort studies in the UK can be found on the UK Research and Innovation (UKRI) website
(Cohort Directory, 2023). The Medical Research Council (MRC), a council of UKRI,
encourages the more extensive use of imaging modalities to add value and enhance
understanding of disease in cohort studies (MRC Population Health Sciences Group (PHSG),
2014). Nevertheless, there is little in the literature regarding how imaging can and should be
introduced to a cohort study. Undeniably, acquisition parameters and protocols are
documented, but the details of developing and implementing an imaging protocol are often

unseen.



Magnetic Resonance Imaging

Although there is some debate about who invented human magnetic resonance imaging
(MRI) machines (Matthews, 2022), there is no doubt that it is a versatile piece of technology
which has revolutionized medical imaging. The soft tissue image contrast produced by MRI
is superior to other imaging modalities, and as it does not use ionising radiation has become
widely used in both clinical and research fields. Many parameters can be manipulated to
influence the final image, meaning MRI is an adaptable imaging modality (Bornert & Norris,
2020). Thus, the notion that 'one size fits all' is not applicable to MRI, and the operator has a
lot of opportunities to exploit, such as time to repeat (TR), echo time (TE), matrix, slice
thickness (ST) and field of view (FOV) among others. MRI is about compromise and striking
a fine balance between the final image's requirements and maximizing image quality. This
process is often referred to as optimisation and is an essential process in the design and

implementation of imaging protocols.

Why Choose MRI?

There is often uncertainty regarding why MRI may be chosen instead of other imaging

modalities.

Figure 1: Different Imaging Modalities

From left to right, plain radiograph of the skull base, computerised tomography (CT) of the head, positron

emission tomography (PET) of the brain and contrast-enhanced (CE) angiography of the cerebral arteries.

All the above images contain and convey clinically relevant information but do this by using
ionising radiation. This type of radiation in the form of X-Rays or gamma rays carries enough
energy to liberate electrons and is considered a carcinogen by the World Health Organisation
(lonizing Radiation, Health Effects and Protective Measures, 2016). In contrast, MRI does
not use electromagnetic radiation in the ionising spectrum. Although there are short-term
effects of MRI scanning, and limitations in terms of tolerance, there is currently no

compelling evidence of any long-term harm (Herate et al., 2022).



Figure 2: Selection of Image Contrast in MRI.

From left to right, T1-weighted, fluid-attenuated inversion recovery (FLAIR), T2-weighted, diffusion-weighted,

and magnetic resonance angiography (MRA).

In a single MRI image acquisition examination, many different tissue contrasts can be
obtained non-invasively, in any orientation and without the need for the administration of
iodine-based contrast media. The superior tissue contrast and lack of ionising radiation mean
that MRI is often the imaging modality of choice in research studies where serial imaging is
necessary.

However, there are limitations that need to be considered when selecting MRI as the imaging
modality. Safety is fundamental, and all individuals entering the MR environment should be
carefully screened and free of any contraindications, such as ferromagnetic metallic implants.
Furthermore, some implants, although non-magnetic, can heat up during imaging, are MR
conditional, and are only safe under certain limited scanning conditions. The international
standard for the safe use of MRI has been published by the International Electrotechnical
Commission (IEC) (IEC 60601-2-33:2022 Medical Electrical Equipment- Part 2-33,2022),
and the UK has its own safety guidelines published by the Medicines and Healthcare
Products Regulatory Agency (MHRA) (Magnetic Resonance Imaging Equipment in Clinical
Use, 2022).

How does MRI work?

MRI is based on the natural magnetisation of hydrogen nuclei when placed in an external
magnetic field. Other elements can be imaged, such as oxygen, sodium, nitrogen, carbon, and
fluorine, but only hydrogen is of an adequate quantity and concentration in the human body
to provide conventional images. These elements are utilized because of their angular
momentum, which is a result of an odd mass number/atomic weight and is known as MR-

active nuclei.
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Figure 3: Diagram of MRI scanner (Hornak, 2020)

Placing the body in a strong magnetic field causes the hydrogen proton axis to line up along
the scanner longitudinal axis and creates a magnetic vector. Extra energy is introduced in the
form of a radio wave pulse that is specific to the element and field strength, and the magnetic
vector is deflected from the longitudinal to the transverse plane.

When the radio wave is switched off, the magnetic vector returns to its original resting state,
which is variable for different tissues and is measured in two ways. Longitudinal relaxation is
referred to as T1 recovery, whereas axial relaxation is T2 decay and occurs in the transverse
plane when the axial spin dephases and loses its phase coherence. T1 and T2 are time
constants measured in milliseconds (ms) and are specific to different tissues in the body. As

relaxation occurs, a signal is generated, which is called free induction decay (FID).

Pulse Sequences

To produce useful images, a series of events involving RF pulses and switching gradient
fields are followed by the collection of the signal. These events are determined by the
required image contrast and type of pathology required for detection. Collectively, this series
of events is called a pulse sequence and falls broadly into two categories: spine echo or

gradient echo.



The spin echo uses a second RF pulse to rephase and create an echo, whereas a gradient echo
applies switching gradients to create an echo event after the initial RF pulse. By applying
additional gradients, the local magnetic field can be altered in small increments; thus,
different parts of the body resonate at different frequencies and spatial encoding is achieved.
The signal emitted from the subject is gathered on receiver coils, built up in k-space-the
spatial frequency information in two or three dimensions and becomes an image via Fourier

transformation.
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Figure 4: Pulse Sequences (Ebrahim, Mohamed, 2023)

Field Strength

A factor not manipulated by the operator is static field strength (BO) which refers to the
power of the operating magnetic field measured in Tesla (T). It is proportional to the nuclear
magnetic signals produced by magnetic resonance and is a major factor in image quality. It
affects the signal-to-noise ratio (SNR) and T1 of tissue, but poor homogeneity leads to
inadequate image quality, something which blighted early systems (Bornert & Notris, 2020).
Field homogeneity describes the uniformity of the magnetic field within the bore (isocentre).
It is measured in parts per million (ppm) over the diameter of a spherical volume (DSV).
SNR is supralinearly proportional to B0, so using the highest field strength available is
logical. However, many imaging departments may not have a choice of field strength, and
access can be limited depending on demand.

Is bigger always better though? Higher field strengths, especially when first introduced, were
prone to inhomogeneity, resulting in special distortion and inadequate fat suppression. This is

corrected by improved shimming, the act of making small adjustments to the main magnetic

field.
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Artefacts in the form of magnetic susceptibility increase at higher field strength (Huang et al.,
2015). Another consideration is safety which is influenced by B0O. An object or implant which
is mildly affected at 0.5T can turn into a dangerous projectile at 3T (Shellock & Crues, 2022)
Combined with increased risk of heating, specific absorption rate (SAR) and limits of
occupational exposure (Medecines and Healthcare products Regulatory Agency, 2022) there

is now increasing interest in exploiting lower field strengths (Sheth et al., 2021).

Limitations of MRI

There is no doubt that MRI is a remarkable imaging modality, but there are limitations to be
considered. The most obvious is the static magnetic field, which determines the location and
limits those who can enter the MRI environment. Thus, some willing research participants
and patients are excluded owing to the presence of metallic implants. Further complications
of implants are that some can heat up during scanning due to the time-varying magnetic fields
inducing electrical currents in the implant. These time-varying magnetic fields can also
induce peripheral nerve stimulation (PNS), which manifests as twitching and discomfort in
the extremities. Further heating is created by the deposition of RF energy in both implants
and human tissue, which can cause discomfort and can be dangerous for vulnerable members
of the population who cannot regulate their temperature.

From a patient perspective, MRI is often poorly tolerated, with the acoustic noise being
reported as at least a nuisance and at most 'intolerable.” Noise levels can exceed permitted
safe levels of 85 decibel (dB) and ear protection is required to protect hearing and improve
comfort (MHRA, 2021).

Claustrophobia is another difficulty, with the restricted space inside the scanner causing
anxiety, which can be so severe that some people cannot endure the procedure at all, and so
are excluded unless anaesthesia is administered.

In addition, long scan times can be difficult to deal with and contribute to motion artifacts
during imaging, as patients become restless and uncomfortable.

Despite good tissue contrast, it is still appropriate to administer gadolinium (Gd) contrast
medium, which was previously considered safe. However, recent evidence suggests Gd
retention after repeated administration and the possibility of nephrogenic systemic fibrosis in

patients with impaired kidney function (Do et al., 2020).
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Image Quality

When referring to quality, it is important to differentiate between a quality assurance (QA)
program and the subjective assessment of image quality. QA is a ‘process to ensure that any
product or service meets a required standard” (Koller et al., 2006), and a recommended set of
tests specifically for MRI is included in The Institute of Physics and Engineering in Medicine
guidelines (Quality Control and Artefacts in Magnetic Resonance Imaging, 2017).

In contrast, image quality is subjective and best described as enabling the observer to extract
information from the image and make an exact diagnosis (Holmes & Griffiths, 2016). In an
ideal situation, an image will have a high signal, contrast resolution, spatial resolution, and
have low levels of noise and be free of artefacts. When considering participants and
equipment usage, images also need to be acquired within a concise scan time. Unfortunately,
it is not possible to have all of these, and trade-offs always need to be made when optimising
pulse sequences. Therefore, the operator requires a good understanding of MRI parameters

and the impact on the images and participants when manipulating any of these parameters.

Signal-to-Noise Ratio

The magnetic resonance (MR) signal is a term which is frequently referred to and is defined
as ‘the voltage induced in the receiver coil by the precession of net magnetic vector in the
transverse plane’ (Westbrook et al., 2011) and corresponds to the brightness of any pixel
and/or voxel in the image (McRobbie et al., 2006) and so is a key factor in the final image.
Sadly, noise is also generated by the system and the presence of the patient/subject in the
main magnetic field occurring at all frequencies and random in time. In contrast, signal is
variable and relative to noise, so the signal-to-noise ratio (SNR) is a major consideration
when manipulating parameters. According to Westbrook et al. (2011), the factors which
affect SNR are proton density, voxel volume, repetition time (TR), echo time (TE), flip angle,
number of excitations, receiver bandwidth and coil type. However, other factors have been
recognised, such as the use of multi-element surface coils, parallel imaging and different

reconstruction filters (Dietrich et al., 2007).
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Low Contrast Resolution

As already mentioned, MRI produces images with superior soft tissue contrast compared to
other imaging modalities (Bryan, 2009). This can be exploited to image all organs, including
those previously unattainable by imaging such as the pituitary gland (Bradley et al., 2001).
Low contrast resolution refers to the MRI system's ability to distinguish between two
structures with similar signal intensities. The type of MRI sequence used affects contrast
resolution, as different sequences are sensitive to different tissue properties.

The contrast mechanisms can be divided into intrinsic and extrinsic. Intrinsic qualities are T1,
T2 and proton density (PD). Scanning parameters are manipulated by the operator

to "weight’ the image towards the desired contrast. The choice of sequence, either spin echo
or gradient echo, will then determine which parameters are at the disposal of the operator,
which includes TR, TE and, in the case of gradient echo, flip angle. Since these parameters
are time-dependent, manipulation can change the timing of the scan and limit choices related
to slice number to ensure scan times remain optimised.

Extrinsic contrast mechanisms, however, include flow, the introduction of contrast media, fat
suppression techniques including inversion recovery (IR), refocusing pulses, slice thickness
and field strength contribute to the image contrast to varying degrees. The impact on the
image will vary between body parts and the structure under examination.

It is acknowledged that MRI examinations are longer than other imaging. Indeed, the very
first image of a human performed by Damadian and his team took five hours on a machine
named the Indomitable (Damadian, 1972). Since then, much progress has been made with
stronger gradients, faster rise times and slew rates; however, motion is always a problem.
Along with hardware improvements, developing under-sampling techniques using the fact
that k-space is symmetrical reduces scan time but at the expense of image quality (Moratal et
al., 2008). The introduction of parallel imaging techniques has seen scan times reduced
further, though with a new type of artefact (Pruessmann et al., 1999). More recently, this
technique has been developed further to include under-sampling (Candes et al., 2004) and is

now commercially available as compressed SENSE (Geerts-Ossevoort et al., 2018).

Spatial Resolution

In MRI, spatial resolution refers to the ability of the imaging system to distinguish between

two adjacent structures or features in an image. It is a measure of the smallest distance
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between two objects that can be reliably resolved by the MRI scanner. Resolutions come in
various forms, and all of them impact the overall resolution in some way. Contrast was
discussed in the previous section.

The spatial resolution is limited by the size of the imaging voxels, which are three-
dimensional rectangular solids, resulting in a different resolution in the three directions. The
size of the imaging voxel is governed by the matrix, field of view (FOV) and slice thickness
(ST) (Allisy-Roberts, Penelope & Williams, Jerry, 2008). Variations in any of these three
parameters will result in changing the size of the voxel and, thus, the spatial resolution.
However, changes to the phase encoding direction of the FOV will also impact the time of
the scan, so a balance between scan length and the required spatial resolution is vital. In
contrast, though, reducing phase encoding steps can be used to reduce the scan time if the
shape of the anatomy allows it by selecting a rectangular FOV(RFOV) (Westbrook et al.,
2011).

A significant influence on spatial resolution is the choice of slice thickness, as this determines
the depth of the voxel. The scanner hardware will determine the minimum slice thickness
possible while using two dimensional 2D (2D) imaging though thinner slices can be achieved
by utilising three-dimensional (3D) imaging techniques but with a time penalty.

Selecting the minimum slice thickness and gap appears to be a logical choice. However, since
the voxel represents the signal from a small volume of tissue, reducing the slice thickness will
reduce the amount of signal which can be measured, which has an impact on the overall
image quality (McRobbie et al., 2006). But a larger voxel, although improving the signal, can
cause partial voluming where individual signal intensities are averaged together and not
distinct within the vowel.

All the parameters which influence spatial resolution are controlled by the operator. Again, a
judgment is required to balance all the requirements of the image and the capabilities of the

scanner and subject.

Temporal Resolution
Temporal resolution is the ability of the imaging system to capture images rapidly over time,
allowing for the visualisation of dynamic processes in real-time or near real-time. Examples

are cardiac MRI and flow measurements.
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Artefacts

Artefacts on the MR image can degrade the quality and are broadly defined as “any feature
on an image which misrepresents the object in the field of view” (McRobbie et al., 2006). The
most common fall into three categories: motion, inhomogeneity, or digital imaging. Motion is
predominately caused by involuntary movement or physiological motion caused by normal
bodily functions, such as respiration. Inhomogeneous artifacts are due to imperfections in the
main magnetic field and the susceptibility of tissue-air interfaces. Finally, a variety of
artifacts are caused by the digital imaging processes and Fourier Transform. Some artefacts
are inevitable and can only be minimised while some can be illuminated completely. Being
able to recognise artefacts, along with a thorough understanding of causes and remedies is

imperative to maximise image quality.

Noise

Electrical noise exists in all conductors and materialises as a grainy and mottled appearance
on the MR image. However, further noise arises mainly from naturally occurring electrical
currents within the human body, which create fluctuating magnetic fields. Thus, random
noise is induced in the coil by the electronically charged particles such as sodium and
potassium during nerve conduction (McRobbie et al., 2006). Noise and the relationship with

signal and contrast are expressed as a ratio and calculated mathematically.

This succinct overview of MRI parameters has displayed many options available to the
operator, none without an impact. Therefore, it is essential that the reason for imaging is

specified, the operator is knowledgeable and uses a judicious choice of all the parameters.

Imaging Parameters and Terminology

The control of the events in a pulse sequence is chosen by the operator by manipulating

parameters. Some of the most common included in this text are:

Field of View Area included in the imaging

Inversion Recovery Pulse sequence beginning with 180-degree
inverting pulse resulting in heavy T1
weighting.

Multi Echo (ME) Repeated gradient reversal to produce
multiple echo events.
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Flip Angle

Amount of rotation the net magnatraction
experiences upon application of RF pulse.

In and Out of Phase Imaging during phase coherence and again
out of phase coherence.

k-space Part of the processor where spatial
frequencies are stored.

Parallel Imaging Using multiple coils to fill segments of k-
space

Phase Position of the magnetic moment on its
precessional path.

Phase Encoding Location of a signal based on phase.

Shimming Optimising the homogeneity of the main
magnetic field.

Slice Thickness (ST) The depth of the selected slice

Echo Time (TE) Time from 90-degree pulse to the echo.

Repetition Time (TR) Time between successive 90-degree radio

frequency (RF) pulses.
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Paper 1

Cardiac T2* and lipid measurement at 3.0 T-initial experience

Declan P. O ’Regan, Martina F. Callaghan, Julie Fitzpatrick, Rossi P. Naoumova, Joseph V.
Hajnal, Stephan A. Schmitz

Abstract This study was designed to assess whether breath-hold cardiac multiecho imaging
at 3.0 T is achievable without significant image artefacts and if fat/water phase interference
modulates the exponential T2* signal decay. Twelve healthy volunteers (mean age 39) were
imaged on a Philips Intera 3.0 T MRI scanner. Multiecho imaging was performed with a
breath-hold spoiled gradient echo sequence with a seven echo readout (echo times 1.15-8.05
ms, repetition time 11 ms) using a black-blood prepulse and volume shimming. T2* values
were calculated with both mono- and biexponential fits from the mean signal intensity of the
interventricular septum. The global mean T2* was 27.3 ms+6.4. The mean signal-

to-noise ratio (SNR) of the septum was 22.849.9, and the contrast-

to-noise ratio (CNR) of the septum to the left ventricular cavity 20.349.4. A better fit was
obtained with a biexponential model and the mean fat fraction derived was 3.7%. Cardiac
functional parameters were in the normal range and showed no correlation with T2*. Cardiac
T2* estimation with gradient multiecho imaging at 3.0 T can be achieved with minimal
artefact and modelling the signal decay with a biexponential function allows estimation of

myocardial lipid content as well as T2* decay.

Introduction

Transfusional iron overload is a frequent cause of heart failure in patients with thalassaemia
[1, 2]. Biochemical measures of iron overload are inconsistent predictors of myocardial iron
deposition [3] and so an accurate non-invasive assessment of iron overload may guide
diagnosis, treatment and response. Iron deposition complexes such as ferritin, haemosiderin
and low molecular weight cytosol iron cause a shortening of T2* largely due to paramagnetic
effects [4]. Gradient echo sequences with readouts at multiple echo times can be used to
rapidly acquire a set of increasingly T2*-weighted images. The fitting of an exponential curve

to the magnitude signal intensity of these images allows the measurement of T2* in a defined
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anatomical region. The inverse correlation of T2* with liver iron concentration, as obtained
by biopsy, has been used to validate this technique [5]. Cardiac-triggered gradient-echo
sequences may be used to obtain T2* measurements of the heart to estimate the severity of
myocardial iron deposition as well as assessing systolic and diastolic function. This technique
has shown good inter-study and inter-scanner reproducibility [5, 6], correlates with invasive
biopsy [3, 7] and can monitor response to chelation therapy [8—10].

Cardiac imaging at 3.0 T may offer significant advantages over previous techniques for
measuring myocardial T2*. The higher field strength has the advantage of potentially
doubling the signal-to-noise ratio (SNR) compared to conventional 1.5 T systems and this
may allow imaging at greater spatial or temporal resolution. Higher SNR may also allow the
interference effects of fat and water signals within the myocardium to be detected [11]. The
greater susceptibility effects at high field strength might also result in improved sensitivity to
lower concentrations of tissue iron. However, there are several technical issues which remain
problematic for high-field cardiac T2* imaging such as susceptibility artefact and poor
shimming [12].

This study was designed to assess whether breath-hold cardiac multiecho imaging at 3.0 T is
achievable without significant image artefacts and if fat/water phase interference modulates

the exponential T2* signal decay.

Materials and methods

Subjects

Imaging was performed on 12 subjects (9 male, 3 female) with a mean age of 39 (range 27—
49). No subjects had a history of iron overload or cardiac disease. Ethical approval was granted
for the study and all participants gave written informed consent. Specific absorption rate

(SAR) limits were 4.0 W/kg.

MR sequences

The MRI studies were performed on a 3.0 T Philips Intera system (Best, The Netherlands).
The maximum gradient strength was 31 mT/m and the maximum slew rate 200 mT/m/ms. A
six-element cardiac phased array receiver coil was used and a vector-ECG system used for R-
wave detection. Scout images were obtained and used to plan an axial stack of cine balanced-

steady state free precession images in the left ventricular short axis from base to apex.
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Sequence parameters for the cine sequence were matrix 176x256, flip angle 45°, field of
view 350 mm, slice thickness 8 mm with a 2-mm gap, TE 1.8 ms, TR 3.7 ms and 20 cardiac
phases. Velocity-encoded imaging was performed across the mitral valve to assess diastolic
function with a through plane velocity encoding parameter of 80 cm/s.

Multiecho imaging was performed with a breath-hold spoiled gradient echo sequence with a
seven echo readout. A single acquisition was made through the mid cavity of the left
ventricular short axis. The multiecho sequence parameters were matrix 128x256, flip angle
20°, field of view 320 mm, slice thickness 10 mm, turbo field echo factor 6 and TR 11 ms.
The echo times chosen were when the signals from fat and water are alternately in-phase and
out-of-phase with respect to each other. Proton spectroscopy studies have determined that the
chemical shift of intrahepatic lipid relative to water is 3.4 ppm [13] and so the first TE chosen
was 1.15 ms with a ATE of 1.15 ms (TEs-1.15, 2.30, 3.45, 4.60, 5.75, 6.90 and 8.05 ms).
Cardiac triggering was set for mid-diastole to reduce motion artefact. Localised higher-order
shimming was used with a volume placed over the whole heart. A black- blood double
inversion prepulse was used for suppression of ghosting artefact from the blood pool. Images

were acquired in held expiration.

Quantitative analysis

Quantitative image analysis was performed by a cardiac radiologist (DPO’R). The cine
sequences were analysed using Philips (Best, The Netherlands) ViewForum software release
4.1. The endo- and epicardial borders were defined on the left ventricular cine images using a
standard methodology [14] to derive left ventricular mass, ejection fraction, end diastolic
volume (LVEDV), end systolic volume (LVESV), peak filling rate (PFR) and time to PFR.
On the velocity-encoded images a region of interest was defined across the mitral valve
orifice and flux rates calculated and an E:A ratio derived. Multivariate linear regression
analysis was performed on these functional indices with myocardial T2* as a dependent
variable using SPSS software (SPSS Inc, Chicago, IL) assuming significance at p < 0.05.
T2* analysis was performed using ImageJ software (U.S. National Institutes of Health,
Bethesda, MD) and SigmaPlot (Systat software Inc, San Jose, CA). Polygonal regions of
interest were drawn around the interventricular septum. The endocardial boundary was
excluded to avoid contamination with the blood pool signal. Curve fitting was performed

with a single process exponential decay model using the following equation:
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S(2)| = |Soe™ /T2 | + ¢

where |So| is the initial magnitude signal intensity and |S(t)| the magnitude signal intensity at
echo time t and T2* the global decay constant. An offset correction (c) was included to model
the effect of noise bias in the data [15]. Parametric colour maps of global T2* were obtained
with a pixel-by-pixel analysis using Matlab 7.0 (Mathworks, Natick, MA).

A biexponential curve-fitting equation was used to model the chemical shift interference

effects of fat and water components as a function of echo time [11]:
. * . * .
|S(Z)| — SWe t/T2 W+Spe t/T27 p+iAwt +c

where Sy and St are the components of the magnitude signal (|]S(t)|) due to water and fat,
respectively, T2*,, and T2*¢ their respective decay constants, t the time after excitation, and
Ao the difference in frequency between fat and water. To reduce the number of degrees of
freedom in the model the frequency difference between fat and water was taken to be 3.4
ppm. The signal components due to water (Sw) and fat (Sr), as well as their respective T2*
decay constants (T2*,, and T2%*), were modeled with an iterative curve-fitting technique
using the Levenberg- Marquardt algorithm [16] (SigmaPlot version 10, SPSS Inc, Chicago,
IL). A comparison between the two models, which have different degrees of freedom, was
made with an F-test assuming significance at p<0.05. The goodness of fit of the two models
was described by the 12 statistic.

SNR and CNR measurements were obtained from the mean signal intensity of the
interventricular septum (SISeptum) and the left ventricular cavity (SICavity). The myocardial
septum was manually segmented with a polygonal region of interest. A circular region of
interest was placed within the left ventricular cavity avoiding the papillary muscles.
Background noise (N) was assessed from the standard deviation of the signal intensity of a
rectangular region of interest placed in the background and orientated in the phase encoding
direction. The standard deviation of the noise was multiplied by the Rayleigh factor (1.53) to
account for the non-Gaussian distribution of noise in magnitude images [17]. SNR was

calculated as:
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mean (SI Sep,um) / Standard deviation(N) x 1.53

and the CNR as -

mean (SISep,um) — mean (Slcav,-,y) /
Standard deviation(N) x 1.53

Results

All subjects tolerated the study and images of diagnostic quality were obtained. Image quality
was maintained throughout the multiecho acquisition, although at the longest echo times

signal loss was observed at the inferolateral wall of the LV (Fig. 1). Parametric colour maps

were obtained showing the regional variation in global T2* values (Fig. 2).

§

Fig. I Two images from a black-blood multiecho sequence of the left ventricle. The first echo at 1.15 ms is
shown on the left and the last echo at 8.05 ms on the right. Image quality is maintained with only minor

susceptibility effect in the inferolateral wall at the longer echo times
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Fig. 2 A parametic colour map of the global T2* values (ms) within the heart

Results are expressed as a mean = 1 SD. The mean T2* of the myocardial septum was 27.3
ms + 6.4. Using r2 as a measure of goodness-of-fit, the single process decay model (12 =
0.979) (Fig. 3) was inferior to the fat/water chemical shift biexponential model (r2=0.998)
(Fig. 4). The F-test indicated that the higher-order biexponential model provided a better fit
(p <0.05). The model indicated a fat fraction of 3.7%, a T2* (water) of 26 ms and T2* (fat)
of 2 ms. The mean SNR of the septum was 22.8+9.9, and the CNR of the septum to the left
ventricular cavity 20.3 &+ 9.4 (Table 1). The mean LV mass was 88.9 g + 32.0, LVEDV 148.8
ml +46.3, LVESV 59.8 ml + 25.4, ejection fraction 60.3% =+ 7.5, cardiac output 6.0 /min +
1.7, E:A ratio 1.8 &+
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Fig. 4 The same data are plotted as in Fig. 3, but an improved fit is obtained with a biexponential decay model

to account for fat/water phase interference within the myocardium

0.6, PFR 467 ml/s+103.4, and the time to PFR 124.6 ms+ 40.3. There was no correlation
between T2* values in these healthy subjects and the measured parameters of systolic and

diastolic function.

Discussion

This pilot study demonstrates that black blood breath-hold multiecho cardiac T2*
measurement is achievable at 3.0 T field strength with minimal image artefacts. The phase
interference between fat and water signals modulates the signal intensity as a function of echo
time and a better fit is obtained with a biexponential model. This technique allows both the

myocardial fat content and the T2* decays of fat and water to be determined.

Table 1 The values for each participant undergoing multiecho imaging

Global T2* SNR CNR
1 29.0 25.9 23.6
2 28.8 17.9 15.8
3 18.2 13.0 11.0
4 21.4 40.0 37.2
5 239 344 32.7
6 28.2 17.6 13.0
7 25.0 27.6 25.1
8 21.5 242 223
9 28.0 13.6 11.8
10 43.5 6.6 6.0
11 30.9 19.8 17.6
12 28.5 33.0 28.1

The principle of cardiac multiecho imaging is that myocardial iron concentration has a

predictable relation- ship with tissue relaxivity. The T2* decay can be expressed as:
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r;' rl- | i 148
and will be dependent on the tissue T2, the variation in magnetic field (AB) and the
gyromagnetic ratio (y). Iron deposition complexes, such as ferritin and other iron
nanoparticles, have complex properties of ferromagnetism, antiferromagnetism and
paramagnetism [18]. They appear unique in that their 1/T2 shows a linear dependence on
field strength [19]. Field-dependent change in 1/T2 may there- fore be highly specific for
changes in ferritin levels [18]. The difference in T2-relaxation times for the heart has not
been reported, but the T2 of the solid abdominal viscera is slightly shorter at 3.0 T than 1.5 T
using spin-echo techniques [20]. Gradient echo sequences are also sensitive to local field
inhomogeneities caused by the microscopic field gradients of iron particles leading to a
shortening of T2*. Empirically 1/T2* at 3 T is twice that at 1.5 T in subjects with iron
overload with a small offset depending on the non-iron component of the tissue [12].
Therefore extrapolation to 3.0 T of biopsy-validated T2* data obtained at 1.5 T [5] should be
feasible.
In this study the mean cardiac T2* values are derived from a relatively early range of echo
times between 1.15 ms and 8.05 ms. In patients with iron overload with a very short T2* it is
important to sample the signal decay curve as early as possible to avoid underestimation of
iron con- tent. Furthermore, the short echo times used in this study limit artefact due to
cardiac motion, flow effects and blood oxygenation level dependent effects [15]. Normal
values of myocardial T2* using a breath-hold multiecho sequence at 1.5 T have been reported
as 33.3 ms*7.8 with eight readouts between 2.6 and 16.7 ms and a TR of 20 ms [21]. A
combination of single and multiecho T2* measurement at 3.0 T has reported myocardial T2*
values in healthy volunteers (excluding outliers) of 33.3 ms + 8.3 with eight readouts between
1.6 and 12.8 ms and a TR of 13 ms [12]. Our study addressed potential sources of artefact by
using localized volume shimming and a black blood prepulse. Our findings at 3 T show a
myocardial T2* of 27.3 ms + 6.4 with seven readouts between 1.15 and 8.05 ms and a TR of
11 ms. The similar relaxation values at 3.0 T compared to lower field strengths may reflect
the absence of measurable quantities of ferritin in the myocardium of normal volunteers. In
the healthy subjects that were imaged, with no history of iron overload, there does not appear

to be any significant correlation of myocardial T2* with the measured parameters of systolic
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or diastolic function. Our study examined a small number of normal volunteers and a larger
cohort may be needed to define normal ranges for T2* at 3 T. Myocardial T2* measurement
has shown good inter-study and inter-scanner reproducibility at 1.5 T [5, 6], but this has yet
to be determined at 3 T.

A deviation from a simple exponential T2* decay in myocardium due to fat and water phase
interference has been noted previously [15]. The use of in-phase and out- of-phase echo times
and fitting to a biexponential model allows an estimate of myocardial lipid content to be
made [11]. In volunteers the lipid content is small but introduces a time dependency to the
signal decay. Cardiac steatosis can be measured with proton spectroscopy and is detectable in
diabetic patients [22] and may have a role in cardiac failure [23]. However, the amount of fat
detected was small and the variation in signal intensity would be lessened in T2* protocols
using intermediate echo time intervals.

Cardiac imaging at 3.0 T has demonstrated the potential for significant improvement in
signal-to-noise ratios (SNR) and image quality [24, 25], but may be associated with greater
B1 and BO field inhomogeneities, longer T1 relaxation and power deposition limitations [26].
Multi- echo imaging of the heart therefore poses a number of challenges at high field
strength. Radio frequency power deposition was reduced by using a shallower flip angle
(20°) than that typically used at 1.5 T field strength (35°). The potential loss of SNR may be
compensated for by using a shorter TR although this will depend on the longest echo time in
the multiecho acquisition. Susceptibility artefact appeared relatively minor and was limited to
signal loss of the inferolateral epicardial left ventricle at longer echo times. This effect has
been observed at lower field strength and may be due to deoxygenated blood in the posterior
vein of the left ventricle causing local field inhomogeneity [27]. Motion artifact was
minimized by imaging during suspended respiration and limiting the acquisition window to
mid-diastole. A double inversion- recovery black blood prepulse was employed to further
reduce ghosting artifact from the blood pool and localized higher-order volume shimming
was used to improve B homogeneity.

When quantifying magnitude MR images there is a potential for noise bias when the SNR
falls below 2 [28]. However, the high SNR offered by 3.0 T imaging limits the potential error
introduced by structural noise variation. As the signal decay was being measured in normal

volunteers with no iron overload, a signal plateau was not reached. However an offset
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correction was included in the models for consistency as significant underestimation of T2*
may occur in severe iron overload due to noise bias [15].

The most appropriate measurement of SNR and CNR is controversial, and a standard
approach has been taken in this study using a “noise-only” region in the field of view [24, 25,
29]. However, the noise is not evenly distributed in an image formed by a phased array coil
and apparently noise-free areas in the background may be contaminated by artefact [30].
Nevertheless, our method serves as an appropriate indicator of image noise and contrast. An
advantage of the good SNR achievable at 3.0 T is that it may be traded for higher spatial or
temporal resolution with the use of parallel imaging techniques. Breath-hold multi-slice
imaging may become feasible, and smaller voxels may allow better differentiation of

endocardial and epicardial variation in T2*[31].

Conclusion

Cardiac T2* estimation with gradient multiecho imaging at 3.0 T can be achieved with
minimal artefact by the use of localised shimming and black blood imaging. Modelling the
signal decay with a biexponential function allows estimation of myocardial lipid content as

well as T2* decay.
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Paper 2

Liver Fat Content and T2*: Simultaneous Measurement by Using

Breath-hold Multiecho MR Imaging at 3.0 T-Feasibility’

Declan O'Regan, Martina Callaghan, Marzena Wylezinska-Arridge, Julie Fitzpatrick, Rossi

Naoumova, Joseph Hajnal, Stephan Schmitz

Abstract

Research ethics committee approval was obtained for this study, and written informed
consent was obtained from all participants. The purpose was to prospectively evaluate the
feasibility of breath-hold multiecho in- and out -of- phase magnetic resonance (MR) imaging
for simultaneous lipid quantification and T2* measurement. A spoiled gradient-echo
sequence with seven echo times alternately in phase and out of phase was used at 3.0 T.
Imaging was performed in a lipid phantom, in five healthy volunteers (all men; mean age, 37
years), and in five obese individuals with hyperlipidemia or diabetes (four men, one woman;
mean age, 53 years). A biexponential curve-fitting model was used to derive the relative
signal contributions from fat and water, and these results were compared with results of liver
proton MR spectroscopy, the reference standard. There was a significant correlation between
multi-echo and spectroscopic measurements of hepatic lipid concentration (r* = 0.99, P
<.001). In vivo, the T2* of water was consistently longer than that of fat and reliably enabled
the signal components to be correctly assigned. In the lipid phantom, the multiecho method
could be used to determine the fat-to-water ratio and the T2* values of fat and water
throughout the entire range of fat concentrations. Multiecho imaging shows promise as a

method of simultaneous fat and T2* quantification.

Introduction

Accurate noninvasive assessment of liver fat content is an important tool in the evaluation of
patients with hepatic steatosis [1]. Lipid quantification with magnetic resonance (MR)
imaging relies on the difference in resonant frequency between fat and water molecules. With

gradient-echo sequences, the signal intensity is at a maximum when the transverse
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magnetization vectors of fat and water within the voxel are in phase and at a minimum when
the vectors are out of phase [2]. Single and dual-echo techniques have previously been used
to estimate lipid content within the liver [2-9] and adrenal glands [10]. However, signal
intensity loss on in-phase images caused by the presence of liver iron is a potential pit fall in
the determination of liver fat percentage by using dual-echo imaging [11]. A separate
sequence is therefore required to correct for global T2* effects. A further limitation is that
dual-echo methods do not enable differentiation of whether the dominant component is fat or
water, so an additional sequence with either gradient-echo imaging or breath-hold
spectroscopy is required to resolve this [12,13]. In contrast, multiecho imaging has the
potential to enable more accurate and efficient measurement of tissue fat content in a single
sequence. The signal intensity variation in a multiecho acquisition would be expected to
depend on the individual T2* decays of the fat and water components, as well as a periodic
oscillation of signal intensity between in-phase and out-of-phase echo times dependent on the
fat-to-water ratio [14-17]. A rapid single sequence allowing accurate tissue fat quantification
as well as T2* measurement would be of potential value in lipid deposition disorders. Thus,
the aim of our study was to prospectively evaluate the feasibility of breath-hold multiecho in-

and out of phase MR imaging for simultaneous lipid quantification and T2* measurement.

Advances in Knowledge

e Unlike with dual-echo methods, with multiecho MR imaging, fat measurement can be
performed without the need to acquire a separate T2* map, and the signal components
may be correctly assigned to fat and water on the basis of their different T2* values.

e Results of fat quantification in the liver by using a multiecho technique correlate

highly (r> = 0.99, P <.001) with those of T2-corrected proton MR spectroscopy.

Materials and Methods

Financial support was given by Bayer Schering Pharma (Newbury, Berkshire,England) and
Philips Medical Systems (Best, the Netherlands). The authors had control of the data and

information submitted for publication.
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Lipid Phantom Study

A phantom was constructed by pouring equal volumes of mineral oil (liquid petrolatum;
Johnson and Johnson, New Brunswick, NJ) and water into a cylindric container [6]. The
water was doped with 10mmol/L copper sulfate solution to shorten its T2. An oblique
imaging plane was chosen that passed through the boundary of the two immiscible layers.
Therefore, the oil-to-water ratio within a voxel at a given point in the image varied along a
continuous gradient from pure oil to pure water (Fig 1). The oil percentage at a given point
was determined through cross reference to a coronal high-spatial resolution T1-weighted
gradient-echo MR image obtained perpendicular to the plane of the fluid layers. The
sequence parameters were as follows: flip angle, 80°; field of view, 3320 mm; section
thickness, 4 mm; receiver band width, 1930 Hz/pixel; acquired voxel size, 0.5 x 0.5 x 4 mm;
repetition time msec/echo time msec, 16/2.3; number of signal averages, two; and a

frequency encoding direction oriented parallel to the oil and water interface.

Implication for patient care

e Multiecho MR imaging shows promise as a method for simultaneous fat and T2*

quantification in the liver.

Human Participants

The study was undertaken with the approval of the Hammersmith Hospital research ethics
committee, and written informed consent was obtained from all study participants. Five obese
individuals with a history of hyperlipidemia or diabetes (four men, one woman; mean age,
53} years; range, 35-67 years; mean body mass index, 36.2 kg/m? range, 33-40 kg/m?) were
enrolled. The control group consisted of five healthy volunteers with no history of excess
alcohol use (<30 g per day) or diabetes (five men; mean age, 37 years; range, 32-44 years;

mean body mass index, 25.0 kg/m?; range, 22-30 kg/m?).

Multiecho Sequence

The MR imaging studies were performed with a 3.0-T MR imaging system (ltera; Philips)
operating with Release 1.7 software. A software patch was installed to enable multiecho

imaging. The same scaling factors were applied to each image in the multiecho acquisition.
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The maximum gradient strength was 31 mT/m, and the maximum slew rate was 200
mT/m/msec. Imaging was performed by using a breath-hold spoiled gradient-echo sequence
with a seven-echo readout, resulting in a total acquisition time of 4 seconds for a single
section. The multiecho sequence parameters were as follows: flip angle, 20°; field of view,
320 mm; section thickness, 10 mm; receiver bandwidth, 780 Hz/pixel; acquired voxel size,
2.5 x 2.5 x 10 mm; repetition time, I7 msec; and number of signal averages, two. Proton
spectroscopy studies have revealed that the chemical shift of intrahepatic lipid relative to
water is 3.4 ppm (I8); hence, in vivo, the first echo time (TE) chosen was 1.15 msec, with a
ATE of 1.15 msec (TEs: 1.15, 2.30, 3.45, 4.60, 5.75, 6.90, and 8.053 msec). The chemical
shift in the oil phantom was determined as 3.5 ppm, and the ATE was reduced to 1.12 msec
(TEs: 1.12, 2.24, 3.36, 4.48. 5.60, 6.72. and 7.84 msec) for these experiments. Body imaging
was performed by one technologist (J.F., with 10 years of experience in MR imaging). A six-
channel phased-array receiver coil was used, and images were acquired in held expiration, A
single-section multiecho sequence was performed in a transverse plane passing through the
liver and spleen, superior to the main portal vein. Higher-order shimming was used, with a
volume manually placed over the liver. Participant tolerance of the examination, signs of
peripheral nerve stimulation, and image quality were monitored. Liver spectroscopy was
performed by one operator (M.W., with 10 years of experience in spectroscopy).
Spectroscopy was performed during the same study as multiecho imaging. Single-voxel
spectroscopic measurement of intrahepatic fat levels was performed according to a protocol
previously validated at 1.5T [19]. An 8-cm? cubic volume of interest was placed over the
right lobe of the liver, avoiding intrahepatic blood vessels. The Q-body coil was used to
transmit and receive. A point -resolved spectroscopy sequence [20] without water
suppression was used for spatial localization and spectra acquisition. To correct for T2 decay,
three consecutive spectra were acquired with echo times of 40, 60, and 135 msec. The

repetition time was 2000 msec, and 32 signals were acquired.

Data Analysis: Modeling of Fat and Water Phase Interference

In tissues containing lipid and water, there will be oscillation in signal intensity as a function
of echo time. The signal intensity of each component will also show T2* decay, The

magnitude signal intensity (|S|) may therefore be modeled with the following equation:
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where S, and Sy, are the components of the signal from water and fat, respectively, and T2%,
and T2 are their respective decay constants, while t is the time after excitation and A, is the
difference in frequency between fat and water. To reduce the number of degrees of freedom
in the model, the frequency difference between fat and water was considered to be 3.4 ppm.
The signal components from water (S,,) and fat (S¢), as well as their respective T2* decay
constants (T2",, and T2";), were modeled with an iterative curve-fitting technique by using
the Levenberg-Marquardt algorithm (21) and software (SigmaPlot, version 10; SPSS,
Chicago,III). For the purpose of comparison with results of MR spectroscopy, the lipid
content was expressed as a percentage of the total signal as follows: lipid content percentage
= 100%- [Sf/ (Sw)+ S¢)]. A comparison was made with fat estimation performed by using a
conventional dual-echo method by analyzing only the first pair of in-phase and out-of-phase
echoes with the following equation: lipid content percentage= [(S;p - Sop)* 100%] /(2-S)p),
where S;p and S, are the signal intensities on the in-phase and out of phase images,

respectively [6].
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Fig. 1 Oil and water phantom: immiscible layers of mineral oil and water were used to
simulate a range of oil-to-water ratios. Top.: An obliqgue MR imaging section (16/2.3; flip
angle, 80°; frequency encoding direction, left to right) was positioned across the interface of
the two layers, and 11 points along this gradient from 0% to 100% oil were used to position
the regions of interest (ROIs) on the multiecho images Bottom left: Out-of-phase image
(17/1.15; flip angle, 20°) shows position of first rectangular ROI and demonstrates signal
cancellation in voxels containing fat and water. Bottom right: In-phase image (17 /2.3; flip

angle, 20°) is shown for comparison.

Image Analysis

The raw image data were exported from the imaging unit for off-line re-construction and
were converted to "Analyze" format by using software (Matlab, version 7.0; Mathworks,
Natick, Mass). Analysis of multiecho imaging studies was performed by one operator
(D.P.O., with 6 years of experience in MR imaging) with a Pentium 4 3.0-GHz computer by
using software (ImageJ; National Institutes of Health, Bethesda, Md). The coronal TI-

weighted image of the oil and water phantom was used to identify the relative proportions of
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fat and water along the oblique imaging section. Eleven equally spaced divisions along this
gradient, from 0% to 100% oil, were cross-referenced to a position on the multiecho images.
Each ROI placed on the multiecho images measured 40 x 10 pixels. On the liver images, a
circular ROI (30 mm in diameter) was placed in the same location as the spectroscopy voxel,
avoiding vascular structures. In each case, the mean signal intensity was measured at each
echo time. 'The curve fitting algorithm using the biexponential model was used to derive the
fat fraction, as well as the component T2* decays for fat and water. An automated pixel-by-
pixel analysis was performed to obtain color-coded parametric maps of liver fat and water

percentages, also by using the Matlab software.
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Fig. 2 Graph shows results of fat percentage estimation across range of oil-to-water ratios in
the oil and water phantom by using the dual-echo and multiecho sequences. The component
with the longer T2* has been assigned to water in the multiecho analysis. The dual-echo plot
assumes that water is the dominant component. Dotted lines=calculated fat percentage at

50:50 oil-to-water ratio for each method.

Reference Standard Liver Spectroscopy

The phase-corrected spectra were analyzed in the time domain by using the AMARES
algorithm included in the MRUI software package [22]. Resonance fitting was performed by
M.W. to obtain signal intensities for lipid (S5) and water (S,, ). Exponential regression
analysis of the peak amplitudes at each echo time was used for T2 decay correction. Lipid

fraction was derived from Sf and S, in the same manner as that used with the multiecho

technique.
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Statistical Analysis

Statistical analysis was performed by using software (SPSS, version 12, SPSS; and MedCale,
version 9, MedCale Software, Mariakerke, Belgium). Results are presented as mean values +
1 standard deviation. Bland-Altman plots [23] were used to analyze the agreement between
multiecho and MR spectroscopic estimations of liver fat content and between multiecho and
dual-echo estimations of liver fat content, The correlation between liver fat concentration as
determined with multiecho imaging and concentration as determined with MR spectroscopy
was assessed by using linear least-squares regression. The means of the in vivo T2*,, and

T2"; values were compared by using a paired-samples t test. P < .05 was considered to

indicate a significant difference.

Fig. 3 Transverse breath-hold multiecho MR imaging acquisition (17/1.15--8.05; flip angle,
20°; field of view, 320 mm;, section thickness, 10 mm) in liver with seven readouts. Images
are alternately out of phase and in phase from left to right in each row. Image quality is

maintained throughout the range of echo times.

Results

Oil and Water Phantom

The multiecho sequence modeling derived the two signal intensity components and their
respective T2* values throughout the range of oil-to-water ratios. The two signal intensity
components (oil and water) had mean T2* values of 94.4 msec + 11.6 and 5.1 msec +2.3

respectively. The correct interpretation of the oil-to-water ratio at each position along the
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phantom was obtained if the component with the longer T2* value was assumed to be water.
The dual-echo method does not allow a determination of the dominant component, and,
accordingly, less signal cancellation was seen at each end of the oil concentration gradient. At
the midpoint of the phantom, with a 50:50 oil-to-water ratio, the multiecho method derived a

fat content of 49%; the dual-echo method derived a fat content of 27% (Fig 2).

In Vivo Multiecho Sequence and MR Spectroscopy

MR imaging was well tolerated by all participants; there was good image quality throughout
the range of echo times (Fig 3). Specific absorption rates were within specified limits (4.0
W/kg), and no peripheral nerve stimulation was reported. The proton spectra demonstrated
satisfactory line widths, with water and lipid peaks at 4.7 and 1.3ppm, respectively. The
multiecho sequence modeling converged on a fit for S and Sy and the individual 2%, and
T2"; components in all subjects but one (Table). This healthy volunteer had a fat content of
only 1.3% at multiecho imaging, and the T2"f, could not be derived. In the patient group, the
mean hepatic fat fraction determined with multiecho imaging was 17.7% + 7.3, while the
mean water T2* value was 16.0 msec + 4.1 and the mean lipid T2* value was 7.4 msec = 2.1.
In the volunteer group, the mean hepatic fat fraction was 2.7% =+ 1.4, while the mean water
T2* value was 21.8 msec + 11.7 and the mean lipid T2* value was 4.6 msec + 1.8. Among all

subjects, there was a significant difference between the mean T2%,,, and T2"; values (P <.05),
and the T2", value was consistently greater than the 72" value (Figs 4, 5).

Bland-Altman analysis revealed a systematic underestimation of fat content with the dual-
echo method compared with the multiecho method, with the mean limits of agreement being -

2.6% + 2.4 (1.96 times the standard deviation) (Fig 6). Results of least-squares analysis

Results of MR Spectroscopy, Dual-Echo Modeling, and Multiecho Modeling of Liver
Fat Content in Healthy Volunteers and Obese Individuals

Fat Percentage Fat Percentage  Fat Percentage T2*, with T2*, witt

Group and i MR with Dual-Ect with Muiltiect Multiecho Multiecho
Participant No Spectroscopy Modeling Modeling Modeling A
Healthy volunteers

1 158 0 1.3 1.8

2 1.6 0 20 16.0 6.0

3 26 0 3.1 19.2 6.1

4 1.3 0 20 41.8 26

5 3.7 05 438 20.0 3.6
Obese individuals

6 11.0 72 10.7 200 7.0

7 10.6 7.0 102 17.7 50

8 203 16.5 205 11.2 6.

9 207 19.3 19.7 19.0 10.6

10 287 251 275 12.1 8.0
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indicated a significant correlation between multiecho and spectroscopic measurements of
hepatic lipid (y = 0.94x + 0.63, r> = 0.99, P< .001) (Fig 7). A Bland-Altman analysis revealed
that the mean limits of agreement of fat quantification with the multiecho method compared
with quantification with MR spectroscopy was 0.03% + 1.5 (1.96 times the standard
deviation) (Fig 8). A computer simulation was used to measure the expected error in fat
estimation with the dual-echo method in a system with biexponential decay. Representative
values for the T2* of fat and water obtained in this group of subjects were used in the
simulation (Fig 9). For instance, this demonstrated that at 30% fat, the dual-echo method
would be expected to produce a 6% (uncorrected for T2*) or 4% (with global T2* correction)

underestimation of true fat content.

Note — In participants 1-4, the first out-of-phase image had higher signal intensity than the

in-phase image for the dual-echo analysis

“0‘..) ]

7001\
2 i
2 600 \ Ve \ {
= \ / a— \
- \_/ \
- | -y \

st ¥ {, A
n \§_ _\%\

300+ ;

0 2 4 6 8 0

Echo time/ms
Fig. 4 Plot of mean signal intensity in ROI in steatolic liver with the multiecho sequence

shows the bi exponential model's convergence on a best fit curve.

Discussion

Our results demonstrate the feasibility of using in-phase and out-of-phase multiecho imaging
to quantify liver fat content and T2* with one sequence. Coregistered pixel maps of liver fat
content and T2* values may be automatically generated. The technique shows excellent
agreement with T2-corrected single-voxel spectroscopy, and each set of images is obtained in
a short breath hold. Multiexponential analysis of fat-water systems has been shown to be
feasible with spin-echo sequences in phantoms [15], and gradient-echo sequences have been

used to assess bone marrow composition at 1.5 T [16] and lower field strengths [17].
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However, to our knowledge, there are no published reports of the use of multiecho phase
interference techniques to quantify liver fat content. Dual-echo imaging is in routine clinical
use for the semiquantitative assessment of liver fat content. However, multiecho sequences
overcome a number of limitations of conventional dual-echo techniques for fat quantification.
First, the method allows a determination of the fat-to-water ratio that is corrected for T2*
effects without the need for additional mapping sequences and potential image
misregistration. This may be a substantial limitation of dual-echo imaging in patients with
cirrhosis because of the T2*-shortening effects of iron deposition [11]. Dual-echo
quantification also fails at low fat fractions when T effects predominate over fat-water signal
cancellation. The multiecho technique also allows a further correction to be made for the
differential T2* decays of fat and water, although the effect on fat estimation is expected to
be only approximately 5% in vivo. However, the ability to distinguish between the water and
fat signal components over comes an important limitation of dual echo fat estimation. The
dual-echo approach requires an additional gradient echo sequence with different T1
weighting [12] or visual inspection of results of breath-hold spectroscopy [13] to confirm
whether fat or water is the majority component. Despite these steps, there remains ambiguity
between 45% and 55% fat content [6], and spectroscopic results that are uncorrected for T2
decay may have similar limitations. Our findings indicate that in the liver, the T2* of water is
consistently longer than that of fat at 3.0 T, and this allows the signals to be correctly
assigned if the liver fat content is a least 2%. Below this level, noise within the image
prevents the signal contribution of fat from being modeled. In this study, the multiecho
sequence was optimized for the quantification of tissue fat. However, as the sequence also
inherently measures tissue T2*, it has the potential to provide coregistered information on
hepatic iron content. Gradient multiecho techniques, with an arbitrary echo time interval,
have been histologically validated in the assessment of hepatic iron overload at 1.5 T [24] and
enable a reliable assessment of global tissue T2* [25-27]. However, the echo times chosen
must allow adequate sampling of the T2* decay curve, and this will depend on the severity of
the iron overloading being investigated. Multiecho imaging with biexponential analysis has
the advantage over simple relaxometry of being able to model the effects of both T2* decay
and fat-water phase interference on signal intensity. Our study had limitations. MR
spectroscopy was chosen as a reference standard for the multiecho technique because it has

been validated at 1.5 T [18,28-30]. Early experience in liver MR spectroscopy at 3.0 T
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demonstrated it to be a promising technique [31,32], and it has the potential to achieve
improved signal-to-noise characteristics and greater spectral resolution. However, these
advantages may be offset by increased line widths due to increased field inhomogeneities and
decreased T2 relaxation times [33]. No histologic correlation of hepatic steatosis was made in
our study because the patients in the study group did not have an indication for liver biopsy.
Furthermore, the measurement of lipid in histologic samples relies on semiquantitative
methods [34,35]. The ratio calculated with the multiecho sequence reflects the molar
concentrations of resonating hydrogen nuclei in fat and water, but this may be readily
converted into fat content by liver weight or volume for comparison with biopsy data [19].
The biexponential model was not extended to include T1 decay constants for fat and water.
To reduce the TI weighting of the sequence while maintaining an adequate signal-to-noise
ratio, a shallow flip angle of 20°was chosen, the tissue T1 relaxation time of the liver is also
significantly longer at 3.0 T than at 1.5 T (36), and this may also reduce the effects of T1
contrast on fat quantification. The chemical shift was also chosen as a fixed parameter in the
model and was used to determine the optimum echo times for maximum and minimum phase
cancellation. A potential under-estimation of lipid concentration would be obtained if the
actual chemical shift differed from this value, The model also assumed that there was a single
lipid resonance and did not allow for the effects of separate methyl and methylene groups, for
instance. The accuracy of the curve-fitting algorithm will also depend on the metric used to
measure goodness of fit, as well as the effects of noise in the data. The oil phantom
demonstrated the behavior of the multiecho sequence over a wide range of oil concentrations.
Chemical shift will displace the fat and water voxels, but these errors were minimized by the
choice of frequency encoding direction and by not including the edges of the phantom in our
ROI measurements. The radiofrequency excitation pulse is a sine function, and the shape of
the section profile may modulate the transition from oil to water voxels. Flip angle
inhomogeneity and susceptibility effects at the boundary of the layers may also affect the
linearity between the calculated and the measured oil concentration. The difference in T2* of
the oil and water components was also greater than that seen in vivo. In conclusion, results of
our feasibility study show that multiecho MR imaging provides a technique for quantifying
liver fat content that is highly correlated with T2-corrected proton spectroscopy. In contrast to
dual-echo methods, multiecho imaging overcomes the potential errors due to T2* effects and

enables the correct assignment of the fat and water signal components in a sequence
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performed during a single breath hold. This technique also allows the simultaneous

acquisition of coregistered fat and T2* maps of the liver.

T2* Water / ms T2* Fat/ ms

Fig.5 Color-coded parametric maps of multiecho data in patient with hepatic steatosis.
Coregistered images of water and fat percentage, as well as their respective T2* values (in
milliseconds), were derived from a single multiecho acquisition. Color bars and numbers in

top row= percentages; those in bottom row= milliseconds.
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Fig. 6 Bland-Altman plot of agreement of liver fat assessment in vivo between dual-echo and
multiecho MR imaging. The mean of each pair of measurements is plotted against their
difference. Dashed lines= 95% confidence intervals, solid line = mean value, ®= healthy

volunteers, o= obese individuals.
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Fig. 7 Graph shows relationship between fat estimation in the liver performed by using
multiecho MR imaging technique and that performed by using MR spectroscopy (MRS) (v =
0.94x+ 0.63, r’= 0.99, P < .001). ® = Healthy volunteers, o = obese individuals.
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Fig. 8 Bland-Altman plot of agreement of liver fat assessment in vivo between MR

spectroscopy and multiecho imaging. The mean of each pair of measurements is plotted
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against their difference. Dashed lines= 95% confidence intervals, solid line = mean value, ®

= healthy volunteers, o = obese individuals.
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Fig. 9 Graph shows simulation of expected differences in fat percentage calculation by using
three methods. The bi exponential model was used to simulate in- and out-of-phase signal
intensities throughout the entire range of fat-to-water ratios. Physiologic T2* values (T2",,,
20 msec; T2%*, 5 msec) estimated from in vivo data have been used in the model. For this
comparison, Tl effects were not included in the model. The ideal correlation was assumed to
be given by the multiecho method, which corrects for the individual T2* decays of fat and
water. The first in-phase and out-of-phase echo times from the simulation were used for fat
quantification with the dual-echo method, with water assumed to be the dominant component.
These values were then corrected (corr.) for global T2* decay by using regression analysis of

the in-phase echo times.
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Paper 3

Reduction of total lung capacity in obese men: comparison of total

intrathoracic and gas volumes

R. Watson', N. Pride’, E. Louise Thomas?, J. Fitzpatrick®, G. Durighel?, J. McCarthy?, S.
Morin?, P. Ind!, and J. Bell?

Abstract

Reduction of total lung capacity in obese men: comparison of total intrathoracic and gas
volumes. J Appl Physiol 108: 1605-1612, 2010. First published March 18, 2010;
doi:10.1152/japplphysiol.01267.2009. - Restriction of total lung capacity (TLC) is found in
some obese subjects, but the mechanism is unclear. Two hypotheses are as follows: /)
increased abdominal volume prevents full descent of the diaphragm; and 2) increased
intrathoracic fat reduces space for full lung expansion. We have measured total intrathoracic
volume at full inflation using magnetic resonance imaging (MRI) in 14 asymptomatic obese
men [mean age 52 yr, body mass index (BMI) 35-45 kg/m?] and 7 control men (mean age 50
yr, BMI 22-27 kg/m?). MRI volumes were compared with gas volumes at TLC. All
measurements were made with subjects’ supine. Obese men had smaller functional residual
capacity (FRC) and FRC-to-TLC ratio than control men. There was a 12% predicted difference
in mean TLC between obese (84% predicted) and control men (96% predicted). In contrast,
differences in total intrathoracic volume (MRI) at full inflation were only 4% predicted TLC
(obese 116% predicted TLC, control 120% predicted TLC), because mediastinal volume was
larger in obese than in control [heart and major vessels (obese 1.10 liter, control 0.87 liter, P
0.016) and intrathoracic fat (obese 0.68 liter, control 0.23 liter, P < 0.0001)]. As a consequence
of increased mediastinal volume, intrathoracic volume at FRC in obese men was considerably
larger than indicated by the gas volume at FRC. The difference in gas volume at TLC between
the six obese men with restriction, TLC ~ 80% predicted (OR), and the eight obese men with
TLC 80% predicted (ON) was 26% predicted TLC. Mediastinal volume was similar in OR
(1.84 liter) and ON (1.73 liter), but total intrathoracic volume was 19% predicted TLC smaller
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in OR than in ON. We conclude that the major factor restricting TLC in some obese men was

reduced thoracic expansion at full inflation.

Introduction

About 50 years ago it was established that functional residual capacity (FRC) and expiratory
reserve volume (ERV) are reduced in most seated obese subjects [14, 32]. More recently,
reduction in total lung capacity (TLC), formerly thought only to occur in massively obese
subjects [28], has been found in some subjects with less severe obesity [17]. Consistent with
the development of a restrictive pattern of lung function in some obese subjects, prospective
studies have shown that weight gain is associated with loss of vital capacity (VC) [6, 7, 34],
while weight loss is associated with increase in VC [22, 28, 29, 31]. The mechanical factors
reducing VC and TLC in obesity are uncertain, but it has been speculated that increased
abdominal volume in some way reduces inspiratory descent of the diaphragm and consequent
expansion of the thorax. Recent studies of induced ascites in dogs have shown that, at FRC,
the lung-expanding action of the diaphragm was reduced. The mechanism was an increase in
abdominal elastance combined with an expansion of the ring of insertion of the diaphragm to
the lower rib cage [19, 20]. A further possible cause of reduction in TLC is an increase in
intrathoracic fat competing for space with the lungs within the intrathoracic cavity. This
mechanism would be analogous to that proposed for the re- strictive pattern associated with
chronic heart failure, which is much improved after cardiac transplantation [16, 23].

We are not aware of studies measuring total intrathoracic volume and its major compartments
at full inflation in either normal weight or obese subjects. Such measurements would define
the contribution of any increase in intrathoracic fat to the restrictive pattern in obesity and also
allow an estimate of intrathoracic volume at all other gas volumes, including FRC.

In the present exploratory study, we have measured total intrathoracic volume at full inflation
using magnetic resonance imaging (MRI) and compared these results with measurements of
TLC and subdivisions in 7 control and 14 obese men. Both measurements were made in the
supine position. These measurements were made as part of a study that also measured
abdominal volumes and visceral and subcutaneous fat in all the subjects; these results will be

the subject of a separate report.
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Methods

Subjects
All subjects were healthy, middle-aged men without significant symptoms, in particular, no
history of cardiac or respiratory disease, sleep disturbance, breathlessness, or reduced effort

tolerance. Control men were normal weight or slightly overweight, with the highest body mass
index (BMI) being 27.5 kg/mz. Obese subjects were seen on a preliminary occasion to establish

that their BMI was between 35 and 45 kg/m2 (grade 2 or 3 obesity) and that spirometry showed
no obstructive features. Written, informed consent was obtained from all subjects, and the

protocol was approved by the Hammersmith Research Ethics Committee.

Anthropometry

Height without shoes and weight wearing light clothing were measured on a stadiometer. Hip
circumference was taken at the level of the trochanters. Waist circumference (standing with
arrested normal breathing) was measured at the midlevel between lowest rib and iliac crest.
Four skinfold thicknesses (triceps, biceps, subscapular, suprailiac) were measured, as
recommended by Cotes et al. [8] and Durnin and Womersley [9]. In some men with a large
amount of subcutaneous fat, it was not possible to measure a skinfold with the skin calliper,

which was then recorded as 45 mm.

Lung Function

Spirometry was measured seated using a portable Vitalograph flowhead (Vitalograph Maids
Moreton, Bucks, UK). Subjects were asked to perform slow vital capacities (SVC) and then
forced expirations to obtain forced expiratory volume in 1s (FEV). The best of at least three
readings of each was taken.

TLC and subdivisions were measured in duplicate in the supine position using the multibreath
helium dilution (MBHe) technique (Morgan Benchmark) [4]. Subjects were positioned
comfortably on the mouth- piece and, when relaxed and breathing regularly, were turned into the
circuit at the end of a tidal expiration. Occasional deep inhalations were made by the subject, and
helium equilibrium was reached in 3 min. The subject was then asked to take a full inspiration
[inspiratory capacity (IC)] to TLC, followed by a SVC. TLC was taken as the sum of the gas volume
at which the subject was turned into the circuit (FRC) and IC. The residual volume (RV) was

TLC-SVC. Two repeatable measurements of FRC were obtained and averaged. European
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reference values [27] were used for spirometry, TLC, VC, and RV. After these measurements
and while attached to a recording spirometer and remaining supine, the subjects were trained
to take a repeatable full inspiration followed by breath holding for 17s; this maneuver would

be used and repeated several times during the (immediately subsequent) MRI scans.

MRI Acquisition

With the use of a Philips Achieva 1.5-T MRI scanner with a Q-Body Coil (Philips Medical
System, Best, NL) a T1-weighted turbo spin echo sequence, which covered the entire thoracic
cavity, was acquired. Subjects lay supine with arms by their side and hips and knees slightly
flexed and were instructed to make a full inflation and then breath hold for 17s while images
were acquired in the coronal plane. Typical parameters: field of view 530 x 300 mm; repetition
time 400 ms; echo time 17 ms; number of slices 50/stack; slice thickness 6 mm; interslice gap
1 mm; reconstructed voxel 1.56 x 1.56 mm; and 5 breath holds. During scanning, a marker was
placed on the midsternum to indicate sternal displacement and monitored during the breath hold
to ensure inspired volume was maintained. In addition, the definition of the lung border was
checked visually to ensure that there was no motion artifact during a breath hold. Total MRI

scan time was 20 min.

Analysis and Identification of Fat, Lungs, Heart, and Main Vessels

Each coronal slice was segmented into six tissue types on the basis of pixel density using
commercial imaging software (Slicomatic 4.2; Tomovision, Montreal, Canada). Adipose tissue
has a high signal intensity compared with most other tissues, but an experienced operator
(VardisGroup, London, UK), who was unaware of the objectives of the study, coded tissue

compartments using expert anatomical knowledge, as previously reported [30].
Calculation of Intrathoracic Volumes

See Fig.1. The intrathoracic cavity at full inflation was well defined by the pleural border
of the lungs over almost all of its surface. The cavity was bounded by the rib cage, anteriorly
by the sternum, posteriorly by the vertebral column, caudally by the diaphragm, and cranially
at the level of the lung apices. The total intrathoracic cavity volume was subdivided into three
volumes. /) The first is total lung volume (TLV). In addition to gas volume, TLV includes the
volume of intrapulmonary tissue, blood, and fluid. Because the cranial boundary of TLV was at

the apex of the lungs, air in the intrathoracic trachea was included. When comparing TLV with
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TLC measured by MBHe, 0.07 liter was deducted from TLC to allow for the volume of air in
the extrathoracic airway (TLC*) (24). 2) The second volume is intrathoracic fat. 3) The third
volume is heart and major blood vessels (aorta, superior vena cava, and major hilar
extrapulmonary vessels) and other mediastinal structures (e.g., esophagus). We refer to the sum
of the second and third volumes as mediastinal volume. To estimate intrathoracic volume at FRC
or RV, IC or VC was subtracted from the measured value of total intrathoracic volume at full
inflation. The difference between gas volume and intrathoracic volume at any level of lung
inflation then equals (mediastinal volume plus lung tissue volume). This ignores any change
in intrathoracic blood volume (heart, major extrapulmonary vessels, intrapulmonary blood
vessels) that may occur with lung deflation.

All lung gas volumes and all MRI volumes were measured as liters. To allow for differences in
height between individuals, we also expressed gas volumes (TLC and subdivisions) as a
percentage of predicted values (%opred) (27). Because we required a height-corrected unit of
volume to compare gas and MRI volumes, we also empirically expressed all MRI volumes as a
percentage of predicted TLC. We are not aware of any data relating heart and/or mediastinal
volume to height or to TLC.

Cranial limit

intra
thoracic
fat sc thorax fat

Intra thoracic
cavity

Fig. 1. Coronal section of magnetic resonance imaging (MRI) scan of thorax in an obese man, shaded to show
lungs, heart, and intrathoracic fat (mainly pericardial). For clarity, this scan was acquired with the subject

supine, but with his arms ex- tended above his head.sc, Subcutaneous

Results

Anthropometry
See Table 1. Control and obese men were well matched for age, but control men were, on
average, 5 cm taller than the obese men (P = 0.07). Obese men had highly significant

increases in BMI and standard markers of obesity.
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Lung Function Results: Spirometry
See Table 2. The obese men had some reduction in seated FEV; and VC (both as absolute

volumes and %pred), but FEV,/VC was normal.

Obese Subdivisions

Controls 80%predicted TLC (ON) 80%predicted TLC (OR)

Table 1. Anthropometry of subjects

Values are means SD; n, no. of subjects. TLC, total lung capacity; ON, obese nonrestrictive; OR, obese restrictive; waist/hip, ratio of waist

to hip. P values: controls vs. obese. Nonsignificant (NS) P 0.2.

Supine TLC and Subdivisions

The most striking and consistent abnormalities in the obese men were a small FRC and FRC-
to-TLC ratio (FRC/TLC), leading to a small ERV. As a further consequence of the low
FRC/TLC, mean IC was identical in the obese and control men. Differences in mean TLC, VC,
RV, and FEV; between obese and control men were not statistically significant. There was no
relation between FRC or FRC/TLC and BMI within either group. A principal objective of this
study was to examine factors that might be responsible for a reduced TLC, so we have
subdivided the obese men into those with a restrictive disorder (TLC < 80%pred; group OR;
n = 6) and those with TLC 80%pred (group ON; n = 8). This arbitrary but commonly used
subdivision (2 men in the ON subgroup had TLC 82%pred) is used to facilitate presentation
of the results in Tables 2 and 3. In Figs. 2—4, individual results for all 21 men that we studied

are shown with ON and OR subgroups identified by different symbols.

Comparison of Obese Men With TLC < 80%pred (OR) and with TLC > 80%pred (ON)
There were no differences in mean values of any of the anthropometric features between the
two obese subgroups (Tablel). The OR subgroup with TLC < 80%pred also had smaller mean
values of all subdivisions of TLC (VC, RV, FRC, IC; P <0.03 in all cases), except ERV (P =
0.51). The ON subgroup had similar values of TLC, VC, RV, and FEV; as the control men

(P values > 0.15 in all cases), but differed from the control men in having a smaller FRC

(P = 0.036) and ERV (P = 0.014).
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Intrathoracic Volumes at Full Inflation Measured by MRI

See Table 3. Total intrathoracic volume at full inflation was, on average, 0.71 liter larger in
control than obese men; ex- pressing total intrathoracic volume as %pred TLC, mean control
and obese values were 120 and 116%pred TLC, respectively (Table 3). This 4% difference
compared with a 12%difference in TLC %pred measured by MBHe dilution (Table 2). These
mean results conceal great between-individual variability within both groups (Figs. 2—4). Each
of the three compartments of total intrathoracic volume differed between control and obese men.
By far, the largest compartment was TLV, which occupied, on average, 88% of the total
intrathoracic volume in control men. Mean TLV (%pred TLC) was smaller in the obese men
than in the control men (P = 0.016). Mean values of both mediastinal components of
intrathoracic volume were larger in the obese men than in the control men (Fig. 2): mean heart
and major blood vessel volume was 1.10 liter in obese vs. 0.87 liter in control men (P =
0.016), while mean volume of intrathoracic fat (mainly pericardiac and mediastinal, but
sometimes also extending over the adjacent pleural surface of the diaphragm, Fig. 1) was 0.68
liter in obese and 0.23 liter in control men (P < 0.0001). Because of the increased mediastinal
volume, the inflated lungs only occupied, on average, 78% of the total intrathoracic cavity
volume in obese men. Thus increased mediastinal volume might contribute to re- duction in
TLC in some of the obese men. However, mean mediastinal volume was similar in the obese
subgroups with (OR 1.84 liter) and without (ON 1.73 liter) reduced TLC (P = 0.56). The
relation between TLV and total intrathoracic volume in all 21 men is shown in Fig. 3. In the
ON men, whose values of TLV overlapped those of the control men, mean total intrathoracic
volume was actually slightly greater (124%pred TLC) than in the control group (120%pred
TLC). In contrast, total intrathoracic volume was only 105%pred TLC in the OR subgroup.
This 19%pred TLC difference in mean total intrathoracic volume between ON and OR (P =

0.005) was the major factor accounting for the smaller TLC MBHe in the OR subgroup
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Table 2. Spirometry and lung volumes

Obese Subdivisions

Controls Obese P >80%predicted TLC (ON) < 8BFepredicted TLC (OR)
n 7 14 ‘ 8 6
Seared

FEV,

Liters 4.12+08 34508 0.07 381 =08 29704

S Predicted 106 = 14 9% £ 15 0.155 1055 = 129 832+ 48
FEV,/VC, % 76 7 816 NS 80=x7 82+4

Supine

TLC

Liters TI5=08 59613 0.04 6.83 09 481 =06

%Predicted” 9% =8 84 *15 0.08 95 =10 69+ 4
vC

Liters 523+08 44309 0.063 498 =07 371 206

S Predicted” 108.1 = 11.8 9.3+ 17.1 NS 1111 =05 836 +93
RV

Liters 1.91 £05 1.53 £ 06 NS 18507 111 £02

FPredicted” 417 68 + 25 NS 81 =26 508
FRC, liters 33205 21307 0.001 251 =08 1.61 £ 03
FRC/TLC, % 464 = 6.1 35059 0.0005 36.1 =72 335+33
ERV, liters 1.40 £ 05 0.60 =04 0.006 0.66 =05 051 03
IC. liters 3.84 £ 0.69 384 £ 0.69 NS 43204 32004

Values are means = SD; n, no. of subjects. FEV, forced expiratory volume in 1s; VC, vital capacity; RV, residual

volume,; FRC, functional residual capacity; ERV, expiratory reserve volume; IC, inspiratory capacity. *Predicted

values are for upright TLC and subdivisions. P values: controls vs. obese. NS = P > (.2

Table 3. Total intrathoracic volumes at full inflation measured by magnetic resonance imaging

Obese Subdivisions

Control Obese P 80%predicted TLC (ON) 80%predicted TLC (OR)

n 7 14 8 6
Total intrathoracic volume

Liters 892 09 821,13 NS 887 10 732711

YoPredicted TLC 1208 16 13 NS 124710 10 1N

Heart and vessels, Iiters 087 02 110002 0.016 10402 118 02

Fat, liters 023 01 068 02 0.0001 069 02 066 03

Lungs (TLV)

Liters 782 08 643 13 0.004 71408 548708

""""""" YePredicted TLC 1057 %08 13 0.016 999 % 786 %
Lungs (TLV)/total mtrathoracic volume, % 8815 78432 0.0001 80181 75745

Values are means = SD; n, no. of subjects. P values: controls vs. obese. NS = P >0.2.

Comparison of Lung Volume at Full Inflation Measured by MRI and MBHe Dilution

Individual values of TLV measured by MRI were closely related to, but slightly greater than,
TLC* measured by MBHe dilution (Fig. 4). The mean volume difference (TLV-TLC¥*),

which reflects the volume of intrapulmonary tissue and fluid, was 0.74 liter in control and

0.54 liter in obese men (difference nonsignificant, P = 0.61).
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0 Obese <80%pred TLC (OR)
B Obese >80%pred TLC (ON)
A Control subjects (C)

Volume of mediastinal compartments
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Total intrathoracic volume (L)

0.0

heart & major vessels at

Fig. 2. Contributions of volumes of heart
and major blood vessels (left) and intrathoracic fat (right) to total intrathoracic volume in control and obese
men. Symbols distinguish control men from obese restrictive (OR) and obese nonrestrictive (ON) subgroups.
TLC, total lung capacity.

Mean mediastinal
volume
J Obese <80%pred TLC (OR) 1.84L

M Obese >80%pred TLC (ON) 1.73L
/\ Control subjects (C) 1.10L

11

10 4

Total intrathoracic volume [MRI] (litres)
~

4 5 6 7 8 9 10 11

Total lung volume (TLV) [MRI] (litres)
Fig. 3. Total lung volume (TLV) at full inflation plotted against total intrathoracic volume in control and obese
men. The thick diagonal line is the line of identity, and the dashed lines indicate when the total intrathoracic
volume is 1 or 2 liters greater than TLV. Note that many values of TLV in ON subgroup and in control men

overlap.
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Comparison of Gas volumes and Estimates of Intrathoracic Volumes When the Lungs
are Deflated

Because mediastinal volume was, on average, 0.68 liter larger in obese than control men,
differences between control and obese men in all intrathoracic volumes were smaller than the
difference in corresponding gas volumes. For example, while mean FRC gas volume was
45%pred TLC in control and 30%pred TLC in obese men, mean intrathoracic volume at FRC

was 69%pred TLC in control and 62%pred TLC in obese men (Fig. 5).

Discussion

In this exploratory study, in obese middle-aged men, we measured total intrathoracic volume
and its components at full inflation to investigate the features of restrictive lung disease (TLC
< 80%pred). A restrictive pattern was found in 6 of the 14 men and was associated with a
smaller total intrathoracic volume. Mediastinal volume was 0.68 liter larger in obese than
control men due to increase in volumes occupied by the heart and major blood vessels and by

intrathoracic fat, but was similar in obese men with and without restrictive lung disease.

Methodology

Subjects. We chose men for this exploratory study of restrictive lung disease associated with
obesity, because two prospective studies [6, 34] have shown that loss of VC with increase in
weight is greater in men than in women. Possibly this is because men have a more central
pattern of obesity than women; in our department, visceral abdominal fat measured by MRI
averages 14.8% of total body fat in obese men and 8.9% in obese women (E. L. Thomas,
unpublished observations). MRI scanning technique. The pleural edges of the lungs were well
defined during breath holding, allowing an accurate measurement of TLV. Intrathoracic fat
was also clearly visualized by its characteristic density. The heart and major blood vessels,
including the extrapulmonary hilar vessels, were the major contributors to the remaining
mediastinal compartment, which includes organs such as the esophagus. This nonvascular
volume should be small and similar in control and obese men. The close correspondence
between values of TLV and TLC (Fig. 4) in an individual supports the effectiveness of the
“training” in breath holding at full inflation; furthermore, it suggests that helium equilibrated
with true total gas volume in the obese men, even though they were supine with a very low

FRC/TLC, and so probably had some airway closure during tidal breathing [15]. Frequent deep
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inspirations were made during helium equilibration so as to allow access of helium to lung
beyond any closed airways. TLV measured by imaging includes intrapulmonary tissue, fluid,
and blood, as well as gas, so (TLV-TLC¥*) potentially estimates lung tissue and fluid volume,
albeit with limited accuracy because of the following. 1) TLV and TLC were measured in
separate maneuvers, during which esophageal pressure was not measured. Hence we do not
know if a comparable lung recoil pressure was achieved in all full-inflation maneuvers, nor
whether glottal closure occurred during breath holding. 2) These estimates depend on the
difference between two volumes, which are 8 —10 times larger. Nevertheless, our mean
estimate of lung tissue and fluid volume for the 21 men of 0.61 liter (0.74 liter in control men,
0.54 liter in obese men) is similar to previous estimates in healthy subjects using gas uptake of
0.61 liter [5], or by comparing volumes measured by chest radiographs at full inflation with
body plethysmography of 0.72 liter [26]. We had expected lung tissue volume to be larger in
the obese than the control men, because, in obesity, intrapulmonary blood volume is probably
larger [2, 18, 29], particularly when supine. Differences between supine and seated gas volumes.
There is no consistent supine change in RV, but supine values of TLC and VC in normal
subjects are, on average, slightly lower (200 ml or less) than seated values [3, 21, 32, 33, 35],
with the reduction being attributed to an increase in central blood volume when supine. Similar
small reductions in supine TLC and VC have been shown in obese subjects [3, 32, 33, 35];
indeed, previously our laboratory found that supine TLC in obese subjects, some of whom had
lung restriction, was, on average, only 80 ml smaller than seated values [33]. Hence we believe
our results for TLC, VC, and RV also apply to seated subjects. This is not the case for FRC.
Whereas in normal subjects, FRC falls by 700 — 800 ml on going from the seated to the supine
position [3, 21, 32, 33, 35], in severely obese subjects our laboratory [33, 35] and others [3, 32]
have shown that supine falls in FRC are much smaller and may even be absent. The difference
in values of FRC, FRC/TLC, and ERV between control and obese subjects shown in Table 2,

therefore, would be even larger if the subjects were seated.
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Fig. 4. Comparison of TLC measured by multibreath helium dilution (TLC*) and TLV measured by MRI in

control men. The diagonal line is the line of identity. In this comparison, measured TLC has been reduced by the

estimated volume of the extrathoracic airway (see METHODS).
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functional residual capacity; RV, residual volume. Increased mediastinal volume in the obese men results in the

differences in intrathoracic volumes between obese and control men being smaller than the corresponding

differences in gas volumes.

Comparison of Supine Lung Gas Volumes in Obese Men with and without Restriction

Obese men had highly significant reductions in supine FRC, FRC/TLC, and ERV compared

with control men. Reduction in TLC in the obese men was more variable and, when results

were corrected for height differences between control and obese men, did not quite reach
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statistical significance vs. control subjects. In early studies of individual patients with “morbid”
obesity with hypercapnia (“Pickwickian”, or obesity hypoventilation syndrome), reduction in
TLC was a prominent feature [14, 29], but was often not found in later, less selected studies of
obesity [28]. Recently, the relation of BMI to seated TLC and subdivisions has been clarified
by Jones and Nzekwu [17], who studied 373 men and women (their results were not
distinguished) whose BMI ranged from 20 to 58 kg/m?. Mean values of seated TLC, FRC, VC,
ERV, and RV all declined progressively with increasing BMI, but at very different rates and
with a wide scatter of results, especially for ERV and RV. The largest and most consistent
reductions were in FRC and, consequently, also in ERV, which were found in mild obesity. At
a BMI of 30 -35 kg/m? mean FRC was 75% and mean ERV 47% of values at BMI of 20
kg/m? ; values of ERV as small as 20%pred or less were common, limiting the possibility of
any further reduction at higher BMI. As a result, an exponential curve was fitted to these data.
In contrast mean reductions in TLC, VC, and RV with increase in BMI were much smaller, so
that group mean values remained within the normal range (TLC and VC both 88%pred, RV
90%pred), even in subjects with BMI 40 kg/m? Our finding that obese men had large
reductions in FRC, whether or not they were in the ON or the OR group, is, therefore, consistent
with Jones and Nzekwu’s findings. Total intrathoracic volume in obesity. In control men, the
fully inflated lungs occupied, on average, 88% of the total intrathoracic volume, but in obese
men only 78% because of their larger mediastinal volume, which, in the obese men, averaged
1.78 liter (25.2%pred TLC) compared with 1.10 liter (14.8%pred TLC) in the control men. We
are not aware of earlier measurements of intrathoracic fat, but an increase in central blood
volume was consistently noted in early studies of obesity hypoventilation syndrome, even in
the absence of overt heart failure [18, 29], and has been confirmed more recently in obese
subjects without any symptoms to suggest clinical heart disease [2]. The mean 10% pred TLC
increase of mediastinal volume in the obese compared with the control men hardly contributed
to the large difference in TLC between the ON and OR groups, because mean mediastinal
volume was only 0.11 liter larger in the OR than in the ON subgroup. Indeed, Fig. 3 shows that,
whereas individual values of TLV largely overlap in the ON and control groups, total
intrathoracic volume at a given TLV tends to be larger in the ON individuals, perhaps
suggesting the thoracic wall has “accommodated” to the larger mediastinal volume. The major
contributor to restriction of TLC in the OR group was that, while the eight ON men had a mean
total intrathoracic volume at full inflation slightly larger (124%pred TLC) than the control men
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(120%pred), in the six OR men, mean total intrathoracic volume at full inflation was 105%pred
TLC. Possibly, therefore, in some obese men, the large abdomen limits caudal movement of
the diaphragm at full inflation. Recent experiments inducing acute ascites in dogs have shown
that the load on the diaphragm was increased by an increase in abdominal elastance, but, in
addition, the lung-expanding action of the diaphragm was impaired by reduction in its pressure-
generating ability [19, 20]. We are not aware of comparable studies of diaphragm function and
load in human obesity. The immediate cause of reduction in TLC is a reduction in VC (changes
in RV are small and inconsistent). Reductions in VC with increase in weight have been shown
in men in three prospective studies over 5—7 yr, with mean losses of forced VC (FVC) of 26
ml [6], 21 ml [7] and 17 ml [34] for each kg of weight gained. Two of these studies also studied
women [6, 34] in whom losses of FVC per kg weight gain were considerably smaller.
Conversely, rises in VC following reductions in weight were first reported in small studies
many years ago [29, 31]. In the last decade gastric surgery has become a popular method to
induce large and rapid reductions in weight; so far only a few studies have reported the effects
on spirometry, but in them mean FVC has consistently increased 6 mo or more after operation
[22]. The precise mechanism by which VC is reduced by increase in weight, why this loss of
VC is larger in men than in women, and why reduction in TLC is very variable among obese
men of similar age and BMI all remain uncertain. Reduction in FRC and RV. The reduction in
FRC and ERYV in healthy subjects when lying supine is attributed to a rightward displacement
of the PV curve of the relaxed chest wall, increasing its pressure at a given gas volume, and
reducing relaxation volume (Vr) [1]. A comparable supine decrease in Vr would be expected
in obesity. In practice, in severe obesity when supine FRC hardly falls below seated values,
FRC is probably maintained above Vr as a response to expiratory flow limitation [25, 35]. Our
finding of an increase in mediastinal volume in obesity potentially alters the interaction
between elasticity of the chest wall and of the lungs. Classically, this interaction is related to a
common volume, defined by the volume of gas contained in the lungs. When considering the
pleural cavities, this convention obscures the normal difference between the volume enclosed
by the parietal pleura and intrapulmonary gas volume, which arises from the tissue and fluid
content (including blood) within the lungs. In intrathoracic disease, the difference between total
intrapleural volume and intrapulmonary gas volume may be increased, as originally analyzed
by Fenn [11] for pneumothorax, or for both pleural cavities with increase in intrapulmonary

fluid, blood, or tissue volume in conditions such as interstitial lung fibrosis [12]. FRC, TLC,
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and RV all are partly determined by active or passive characteristics of the chest wall and
respiratory muscles, so their values in thoracic diseases can be fully interpreted only if chest
wall volume is known or can be inferred [13]. Previously, two papers have suggested that
restriction of TLC may be partially reversed by heart transplantation, due to the effects of
increased heart volume in chronic heart failure [16, 23]; one of these studies [16] estimated the
change in heart volume following heart transplantation from chest radiographs. In the present
study, we have measured mediastinal volume in a few healthy middle-aged men. This volume,
when combined with lung tissue and fluid volume, is responsible for the “normal” difference
between total intrathoracic volume and total gas volume. So far, despite the wide availability
of three-dimensional imaging techniques that could measure simultaneously total intrathoracic
volume and TLV, we have not found any published estimates of mediastinal volume to check
against our value of 1.10 liter. The acquired increase in mediastinal volume in obesity implies
that the difference between intrathoracic volume and the corresponding gas volume has
increased on average by 0.68 liter in adult life. In middle-aged healthy men, chest wall
compliance in the operating tidal range close to FRC averages 0.176 I/cmH,O seated and 0.161
I/cmH, O supine [10]. Hence an acute increase of 0.68 liter in mediastinal volume could
increase pressure exerted by the relaxed chest wall by as much as 4 cmH,O, which would have
a large effect on Vr. However, with a chronic increase in mediastinal volume, the elastic
properties of the chest wall may show partial or even complete adaptation. Increase in
mediastinal volume may also influence the value of RV, at least in younger obese adults in
whom RV is determined by a static balance between the maximum muscle pressure and the
outward recoil of the passive structures of the chest wall as its volume is reduced [1]. The
minimum gas volume of the lung at RV may be reduced if there is an increase in indistensible
volume within the thoracic cavity. This may explain that, while gas volume at RV was smaller
in the obese men than in the control men, intrathoracic volume at RV was slightly larger in the
obese men than in the control men (see Fig. 5). Thus it seems possible that increase in
mediastinal volume may influence the values of FRC and RV in obesity, even if it is not
important in restricting TLC in obesity. In conclusion, we found that reduction in TLC in obese
men was associated with reduced expansion of the thoracic cage. Both intrathoracic fat volume
and the volume of heart and major blood vessels were larger in the obese than the control men,

but these volumes did not differ between obese men with and without lung restriction. Further
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studies are required to determine the factors impairing full expansion of the thorax in some

obese men.
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Paper 4

Whole body fat: Content and distribution

E. Thomas', J. Fitzpatrick', S. Malik?, S. Taylor-Robinson?, J. Bell

Abstract

Obesity and its co-morbidities, including type II diabetes, insulin resistance and cardiovascular
diseases, have become one of the biggest health issues of present times. The impact of obesity
goes well beyond the individual and is so far-reaching that, if it continues unabated, it will
cause havoc with the economies of most countries. In order to be able to fully understand the
relationship between increased adiposity (obesity) and its co-morbidity, it has been necessary
to develop proper methodology to accurately and reproducibly determine both body fat content
and distribution, including ectopic fat depots. Magnetic Resonance Imaging (MRI) and
Spectroscopy (MRS) have recently emerged as the gold-standard for accomplishing this task.
Here, we will review the use of different MRI techniques currently being used to determine
body fat content and distribution. We also discuss the pros and cons of MRS to determine
ectopic fat depots in liver, muscle, pancreas and heart and compare these to emerging MRI
techniques currently being put forward to create ectopic fat maps. Finally, we will discuss how
MRI/MRS techniques are helping in changing the perception of what is healthy and what is

normal and desirable body-fat content and distribution.

Introduction

Obesity has become one of the major health concerns of modern times. It is estimated that
over 700 million people across the world are currently either overweight or obese [1]. In the
UK alone, latest studies show that over 60% of the adult population is either over weight (with
a body mass index (BMI) between 25-30 kg/m?) or obese (with a BMI between 30—40 kg/m?),
while 30.3% of children (aged 2—15) are overweight or obese. This increase in body adiposity
is closely associated with a number of non-communicable diseases, including type-2 diabetes,
hypertension, cardiovascular disorders and some forms of cancer. Indeed, type-2 diabetes is

today a major worldwide problem, with more than 346,000,000 diabetics across the planet
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and these figures may double by 2030 [1]. In some countries, levels of diabetes now affect
over 20% of the adult population. The social and economic impact of the obesity pandemic,
and its co-morbidities, cannot be overstated, and at this rate is likely to have a severe impact
on healthcare provision in many economies [2]. Adipose tissue (or body-fat) is a multifaceted
and complex organ [3]. Besides functioning as a system for excess energy deposition,
protection from the cold and everyday hazards, adipose tissue produces an assortment of
molecular messengers (adipokines), which influence a diverse array of functions, including
appetite, fertility, neuronal development and plasticity, inflammatory responses, and the
action of other hormones, including insulin [4]. Yet, despite these positive functions, a close
association between excess body adiposity and the development of non-communicable
diseases has been reported in many epidemiological studies [5]. Moreover, these associations
are further strengthened if age and physical activity (or the lack of it) are included in the
paradigm. Detailed studies of adipose tissue content and distribution suggest that the latter
plays an important part in these associations [6]. Indeed, a number of adipose-tissue related
sub-phenotypes have now been identified, including ‘thin on the outside fat on the inside’
(TOFI) and ‘fat-fit’ subjects, which indicate the importance of having accurate and
reproducible measurements of both the total body-fat and its distribution [7]. For example, in
the case of TOFI, subjects with normal BMI (<24.9 kg/m?) but increased abdominal obesity,
have increased risk of developing insulin resistance and type II diabetes, while the “fat-fit”,
subjects with BMI > 30 kg/m? appear metabolically normal despite their elevated body
adiposity [8]. In order to understand these somehow paradoxical findings, it is important to
get a better definition of the different concepts/ words involved in many of these associations,
including ‘adipose tissue’, ‘body-fat’ and ‘ectopic fat’. The use of the words ‘fat’ or ‘body-
fat” has become synonymous with obesity, and in general refers to the fat found immediately
under the skin covering substantial parts of the surface of the body. Strictly speaking, this fat
layer is actually ‘subcutaneous adipose tissue’ and is part of a larger organ: adipose tissue,
which makes up a significant part of our bodies. Adipose tissue can also be found surrounding
organs such as the liver, pancreas, kidneys and the heart, to some degree. It is also found in
muscles and other areas of the body including part of the orbital cavities. All these fat depots,
which in many instances are not in direct physical contact with each other, appear to work in
a coordinated manner, and are normally referred to as ‘total adipose tissue’. Besides these fat

depots, fat can also be accumulated within certain organs and tissue, including liver, pancreas,
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heart and muscle, and these deposits are technically known as ‘ectopic fat depots’. Some of
these depots have recently been shown to be important independent risk factors for disease
development and clearly deserve closer scrutiny if the underlying mechanism that underpins
the associations between increased body adiposity is to be unravelled [9]. The need for an
accurate and reproducible method to determine levels of different fat depots, including ectopic
fat, has driven the scientific community to investigate the potential use of imaging
technologies, including CT, magnetic resonance imaging and spectroscopy (MRI/MRS). Thus,
in the last two decades MRI/MRS have become the gold-standard for such studies, especially
as the scientific community moves into the post-genomic era and an understanding is sought
of the gene-environment interactions that contribute to the determination of fat content and
distribution in different subjects and their role in the reported gender and ethnic differences.
With this in mind, we will review the use of MRI and MRS in the study of adipose tissue and
ectopic fat and how these techniques are helping us to get a better understanding of the role
of body fat not only in disease development, but also in the process of achieving optimal

health.

Indirect methods for body-fat measurements

A number of techniques are currently available to assess body fat content. Indirect methods
include: body-mass-index (BMI), skinfold anthropometry, bioelectrical impedance,
underwater weighing, and body water dilution [10]. While there are pros and cons for all of
these methodologies, the one thing they have in common is that they give little or no
information concerning adipose tissue distribution. Moreover, most of these techniques are
based on indirect measurements of either body water or body volume and necessitate
equations to convert these into total fat measurements. While these methodologies do provide
valuable information, particularly at a population level, they are not always applicable to all
ethnic groups or to subjects with extremes of body types. This is mainly due to the fact that
they were derived from specific populations, generally Caucasian. More importantly, they say
nothing about intra-abdominal (also known as ‘visceral fat”) or ectopic fat levels, two crucial
factors in the association between body adiposity and disease development. We will therefore

not discuss these methods further.
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Direct Methods for body fat measurements

CT and MRI to measure adipose tissue content and distribution

The fact that different fat depots within the body appear to contribute, to a differing extent, to
the risk of developing non-communicable diseases, has made it clear that measuring total body
fat content alone was not sufficient. This has necessitated the development and implementation
of new techniques that could accurately measure body fat content and distribution and which
could be applicable to all populations and body types. The first technique used which appeared
to meet all of these criteria was CT scanning. Total adipose tissue content could be measured
as well as individual adipose tissue depots, particularly intra-abdominal adipose tissue depot
[11-14]. However, a major drawback of CT scanning is the radiation dose it delivers, which
greatly limits its application, particularly for longitudinal studies and in paediatric populations.
With the advent of in vivo magnetic resonance techniques, MRI was seen as an ideal alternative.
The first studies applying MRI to measure adipose tissue content and distribution in humans
were published in the mid-1980s [15— 17]. MRI has since been fully validated against both
animal and human post-mortem dissection studies [18-21], showing that this technique gives
extremely accurate and reproducible measurements of adipose tissue content and distribution.
Since then, this area of research has grown beyond recognition. Fig.1 shows a graphical
representation of papers published in the last 30 years using MRI techniques to measure
adipose tissue content and distribution and in particular, visceral fat. It is likely that this graph
underestimates the number of papers in this area, particularly those published in recent years.
Initially, the use of MRI for adipose tissue assessment was driven mainly by research groups
based in radiology departments or MR research units, with the development of MR
methodologies being the primary
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Fig. 1 Number of publications between 1989 and 2012 found on Pubmed using MRI adipose tissue content.

distribution and visceral adipose tissue in various combinations as key word searches.

Development and application of different MRI sequences to assess adipose tissue

A number of MRI sequences have been developed and applied in order to measure body fat
content and distribution in humans and animals. In one of the first reports on the potential use
of MRI to measure adipose tissue, the group from Aberdeen, working at 0.08T, tested a variety
of sequences to differentiate between fat and lean tissue, including proton density, T; -weighted,
inversion recovery and saturation recovery sequences [15]. They found the greatest degree of
tissue contrast with the inversion recovery (IR) pulse sequence (TR 370 ms, interval of 170
ms), which they employed in subsequent publications [22]. An inversion recovery sequence,
with transverse images, was also used in the seminal paper by Seidell et al. working at 1.5T
(TR 820 ms, TE 20 ms, interval of 300 ms) [14]. This IR sequence has now been largely
replaced by the more robust T; -weighted spin-echo sequence (Table 1). A typical image
example obtained with this sequence is shown in Fig.2, with fat appearing as high signal (white),
showing good differentiation from muscle, fluid, bone and internal organs (grey). However,
this technique is not without problems, since it is relatively slow and is susceptible to
respiratory motions, factors that can be important when dealing with older population or
newborn babies. Variations of this sequence have been proposed, including a gradient-echo
sequence, which produces very similar looking images, but allows faster acquisition time, since
it only requires a single radiofrequency pulse, and fast-switching gradients. There are some
disadvantages to this approach, however, including loss of signal from static magnetic field
inhomogeneity. This can result in gradient-echo acquisitions being more affected by magnetic

susceptibility artefacts compared with spin-echo sequences. There have been many attempts to

72



produce dedicated MRI sequences which allow more rapid acquisition, overcome
breathing/motion induced artefacts, and enable faster and automated image analysis, (a major
bottleneck in most studies using MRI or CT to measure adipose tissue content and distribution)
(Table 1). One technique that appears to be gaining great favour with researchers is the use of
water-suppressed sequences to produce fat and water only images. (For a typical example of
this technique refer to Fig.9, Section 3.1.2). Although this sequence is an attractive alternative
to T, -weighted spin-echo sequences, it does not come without problems. It is far more sensitive
to motion/respiratory artefacts and highly susceptible to misidentification of non-adipose tissue

fat (e.g. bowel fat)

Whole body versus regional body assessment

As well as different MRI sequences for data acquisition, researchers have used a variety of
approaches to the number of images they acquire and at which anatomical location. The initial
impetus to accurately measure and map total and regional adipose tissue necessitated protocols
in which images were obtained throughout the body (whole-body imaging). Subsequently
single-slice and region-specific multi-slice protocols were developed (Fig. 3). Table 1
illustrates the variety of MR approaches to measuring whole body or abdominal adipose tissue
used by different research groups around the world. It is not possible to make this list fully
comprehensive, given the sheer number of different groups now applying these techniques.
Groups where a predominantly single-slice acquisition approach is used have not been included

for reasons of space
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Fig. 2. Spin-echo image acquired in the abdomen at the level of the umbilicus, showing high signal arising from

adipose tissue.

Whole body versus regional body assessment

For a detailed quantitative map of adipose tissue content and distribution, whole-body scanning
is the most accurate and reproducible protocol available to researchers. However, this
technique is also the most time-consuming, both in terms of MRI data acquisition (between 5
and 10 min) and image analysis (between 3 and 12 h). This protocol was originally published
by Ross and colleagues and involved the acquisition of ca. 41 transverse slices (10 mm thick,
with 40 mm gaps in-between), from the head to toe of subjects lying, with their arms extended
above their head, in a prone position in the magnet [62]. Others, including Thomas et al. and
Machann et al. have used a similar protocol, but with a smaller inter-slice gap of 10 mm, which
results in a larger dataset (>110 slices), but better delineation of the intra-abdominal fat depots
and internal organs [31,25]. Shen and colleagues suggested accuracy could be further improved
by further reducing the slice thickness and obtaining contiguous data, particularly in datasets
from infants and children [63]. In adults this is generally not very practical, particularly if a
manual or semi-automatic approach is used to analyse the resulting datasets. Interestingly, Shen
et al. also studies the effect of slice thickness on the volume of adipose tissue measured,
providing the slice gap was less than 40 mm the difference between the measured and the true
volumes is within 5% [64]. Furthermore Thomas et al. showed the coefficient of variation for
measurement of abdominal adipose tissue increased in relation to the size of the interslice gap
at a rate of 1.16%/cm [31]. A typical whole-body dataset obtained from a healthy volunteer,

containing 113 transverse T; -weighted images, is shown in Fig. 4. The images start in the toes
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and end in the fingertips. While adipose tissue is clearly visible and can be quantified
throughout the body, it should be noted that a significant degree of anatomy can also be
observed. Hence, with the use of whole-body phenotyping, incidental findings of unexpected
pathology can become a significant issue, particularly in older and more overweight
populations [65]. Indeed, we and others have reported that up to 25% of volunteers from the
general population, none of whom had any known medical conditions, were found to show
abnormalities in their images, including hepatic and kidney cysts, missing kidneys and other
relatively benign conditions. However, up to 5% of volunteers had clinically significant
findings, many requiring some sort of clinical intervention. Thus, the possibility of incidental
findings is something that must be considered in whole body MRI research, since dealing with
unexpected pathology has ethical and financial implications as procedures have to be in place
to ensure suitable follow-up for volunteers in whom abnormalities have been detected during
the course of imaging studies. Despite its ability to give the most accurate quantitative
measurements of adipose tissue, whole-body imaging approaches are currently used by a
relatively small minority of groups world-wide. One of the main reasons for this is scanner
design. Many MRI scanners do not currently have full computer-controlled table movement,
which normally enables a subject to be moved through the magnet for a head-to-foot whole-
body imaging; others may not have multiple coil-array systems for full body coverage. These
factors are particularly important for obese subjects; the bore size (tunnel) of most clinical MR
scanners is relatively small, making it difficult to accommodate very obese subjects. This
problem is illustrated in Fig. 5. In this case, despite the patient fitting within the bore, at the
maximum field-of-view (c.a. 530 mm, which is close to the maximum field-of-view that most
clinical scanners allow) there is insufficient coverage to image the entire width of this subject’s
abdomen. Furthermore, despite some manufacturers producing MRI scanners with a
sufficiently large bore (and even some open-side magnets) to accommodate very obese patients,
the usable field-of-view is sometimes small relative to overall bore size, making adipose tissue
measurement extremely challenging. For scanners without computer-controlled full table
movement (or whole-body coil arrays), alternative approaches have been developed, including
scanning subjects in two halves. First, subjects are scanned from head-to-abdomen and then
repositioned to cover the lower part of the body. However, considerable care is required to
ensure that the images from both halves of the body are correctly combined; otherwise

undersampling or oversampling of the adjoining areas can occur. This is an important issue
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since this area corresponds to the abdomen, the very anatomical point with the highest impact
on health and disease. Regardless of the protocol used to obtain whole-body fat images, this
scanning approach allows researchers to obtain quantitative information from at least 11
adipose tissue depots (including total adipose tissue content). These are summarised in Fig. 6.
Clearly, imaging only part of the body, such as the abdomen as some researchers have proposed,
would make it impossible to measure some of these fat depots, in particular inter-muscular
adipose tissue, which is thought to be an independent risk factor for cardiovascular disease
[66,67]. Moreover, whole-body imaging has other potential benefits; depending on sequence
of choice and number of slices acquired, it may also be possible to measure other tissues and
organ volumes including skeletal muscle, liver, kidney, heart, pancreas and bone marrow
volumes [43,68-70]. Whole-body imaging approaches are also extremely useful in the study
of patient groups where changes in overall fat distribution need to be assessed, as for example
subjects with lipodystrophy (acquired or congenital), and patients with genetic mutations
known to affect fat distribution. In these cases, coronal images (Fig. 7) are a valuable adjunct

to the standard transverse images [71].

Single-Slice

Multi-Slice

Fig. 3. Various imaging strategies for imaging adipose tissue. (a) T1-weighted whole body coronal image, for
visual purposes this image has been segmented into (b) showing all major organs separately coded, allowing the
volume of each organ to be measured. (c) The same image is segmented into subcutaneous (green) and internal
(red) adipose tissue. Using a multi-slice approach the abdomen only is scanned, in (d) from the femoral heads to
the slice containing the top of the liver/bottom of the lungs, approximate slice positions shown. This is also the
area used to define visceral and abdominal subcutaneous adipose tissue in many whole body data sets [31]. (e),
a more limited multi-slice acquisition, with images centred on vertebral bodies. Finally the single slice approach

where just one image is obtained from a fixed point in the abdomen showing the (f) black&white and (g) segmented
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images. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

mn

.- ) ) ) a ) ) ) ~

Fig. 4. Whole body MRI dataset from a healthy volunteer obtained at 1.5T. Fat appears as high intensity signal
(white).
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Fig. 5. Abdominal MR image from a volunteer too large to be fully imaged with a maximum available field-of-

view of a standard 1.5T clinical scanner.

Abdominal MRI scanning

Several alternatives to whole-body imaging have been proposed, either to overcome the
technical short-comings of scanners and/or to shorten examination/analysis time. These
methodologies centred on acquiring images from the abdominal region of the body, which
contains some of the main risk-factors associated with excess body adiposity, principally
visceral adipose tissue and hepatic ectopic fat. As can be seen from Table 1, there is significant
disparity in both the number of slices and the total abdominal area covered by these protocols.

However, one can broadly group these protocols into two main approaches, multi-slice and

single-slice acquisitions (Fig. 3).

Abdominal
Subcutaneous
adipose tissue

Subcutaneous

adipose tissue
5 Peripheral

Subcutaneous
adipose tissue

Total adipose tissue

Intra-abdominal
adipose tissue
(visceral)

Internal adipose
tissue

Non-abdominal
internal adipose
tissue

Fig. 6. Schematic showing adipose tissue measurements that can be made from a whole body MRI dataset.
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Fig. 7. Coronal images allowing a qualitative assessment of adipose tissue deposition

Multi-slice abdominal MRI scanning

As the name points out, multi-slice protocols, applying similar MRI sequences to those utilised
in whole-body scanning, aim to map part or the whole of the abdominal cavity. In general,
these protocols use a variable number of slices, either contiguous or with fixed gaps, covering
from the top of the liver down to the top of the head of the femoral bone (Fig. 3). These
protocols are currently in use at many research centers as they have the advantage of being less
time-consuming than whole-body imaging, requiring less time for scanning and data analysis,
while still giving full information about abdominal adiposity. Recently, the multi-slice
protocols have become the method of choice for large population studies, including biobanks.
Often biobank phenotyping protocols require a large battery of detailed imaging procedures,
including brain and cardiac anatomical and functional assessment, in addition to measures of
abdominal and ectopic fat (usually liver); hence there is pressure to reduce scanning time,

which abdominal imaging readily provides.

82



Single-slice MRI abdominal scanning

A number of studies have shown that there is a strong correlation between visceral adipose
tissue measurements obtained from a single abdominal slice and total adipose tissue volume.
This has led some groups to propose single-slice imaging as an alternative to both multi-slice
and whole-body scanning for assessing abdominal adiposity. Several factors drive this trend,
including cost of both scanner and analysis time. For example, it is possible to scan at least five
volunteers with a single-slice protocol in the time it would take to obtain a whole-body dataset
from a single individual. Moreover, given that image analysis can be extremely time consuming,
a single slice reduces this to a bare minimum. However, this methodology is not without
problems, not least the choice of anatomical landmark from which to acquire the single-slice
image. This is not a minor issue as whole-body studies have shown that the distribution of
adipose tissue within the abdominal cavity is highly heterogeneous [72,73]. The simplest
proposed solution to this dilemma has been the use of the umbilicus, as this anatomical
landmark can be easily located during patient positioning on the MR bed, without the need for
pilot scans in coronal or sagittal planes. The main drawback with this approach is the fact that
the relative position of the umbilicus differs considerably between subjects, especially in
overweight and obese volunteers. More robust solutions have been investigated, including
acquiring single-slice images at various vertebral landmarks, most notably at L4-L5, L.3-L4,
L2-L3, or at known distances away from these landmarks and comparing these with whole
volume acquisitions [37,73—81]. The most commonly reported anatomical landmark for single-
slice imaging tends to be at the level of L4—L5. However, while no complete consensus exists
at present, and some authors state that a single slice at L4—L5 is a good predictor of the entire
visceral adipose tissue depot [74,82], the majority of literature agrees that a slice 5-10 cm
higher than L4-L5, close to L2-L3, is a preferable site [37,75,79—81]. However, the ability to
predict total adipose tissue from a single-slice appears to vary, depending on gender and overall
body adiposity, with different findings reported in lean and obese men and women [37,73,75].
Moreover, reliance on single-slice imaging can, in many circumstances, lead to an over- or
underestimation of the true levels of visceral adipose tissue. This is of particular importance in
weight loss/gain interventional studies, where adipose tissue reduction is known to be
differentially affected across the abdominal cavity. For instance Thomas and colleagues
showed a greater reduction in visceral adipose tissue at L2-L.3 compared with L4-L5 in a

cohort of overweight women following an exercise intervention [73]. Indeed, recent studies
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have shown that changes in visceral adipose tissue cannot be predicted accurately using single-
slice MRI, suggesting that multiple-slice protocols may be essential to detect such changes
accurately [78,76]. Furthermore, using a multiple slice protocol in interventional studies over
a single-slice approach significantly reduces the number of participants necessary to detect

small changes [78]

Image Analysis

Image analysis is an important consideration when using MR techniques to assess body fat
content and distribution. Indeed, in many cases it can become the bottleneck for large studies.
From Table 1, it can see that there is considerable variation in not only the type of data obtained
to measure adipose tissue content, but also in the way in which it is analysed. Whilst there are
several commercially available packages, including Analyze (Mayo Clinic, Rochester, MN,
USA), slice-O-matic™ (Tomovision, Montreal, Canada) NIH Image and ImageJ (National
Institutes of Health, Bethesda, MD, USA), Hippo Fat™, and Matlab (The Mathworks, Inc.),
many investigators use in-house written software, reflecting the growing need for a robust and
reproducible automated method for adipose tissue analysis, particularly for large whole body
datasets. Currently, the most used dedicated program is SliceOmatic (Tomovision, Montreal,
Canada). The majority of analysis programmes work in two stages; the first step, a threshold,
is determined manually or automatically based on the image intensity differences between
adipose and lean tissues. Following this, the areas of SAT and VAT are delineated. More semi-
automatic packages have additional refinements to assist the identification of adipose tissue
including boundary enhancement, histogram-based region growing, clustering or mathematical
morphology to define regions or pixels as fat or non-fat. There are also fully automated
approaches [83,84] which have used a variety of methods incorporating various algorithms and
masks. Some of these methods contain prior anatomical knowledge, but many of these still lack
the ability to accurately differentiate between adipose tissue compartments, and to
comprehensively exclude high signal from bone marrow, as well as motion-induced artefacts
arising from peristalsis, respiration, and flow in lean and obese subjects [85—87]. Indeed,
Bonekamp et al. identified approximately 16 different software packages, of which only five
were available for testing since the others were either written in-house, discontinued, or part of
the scanning software [87]. Since that paper was written there have been many publications

reporting new automated methods, but in general these are not commercial and therefore not
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readily available for testing. One of the main considerations when analysing adipose tissue
images, particularly those from the chest or abdomen, is accurate identification of visceral fat.
Fatty intestinal content, bone marrow, and artefact arising from motion will all produce pixels
with a similar intensity to adipose tissue. Separating these out is essential, particularly in very
lean individuals where they may contribute to a significant proportion of overall adipose tissue.
The manual editing required for this form of process can introduce errors, unless the operator
has sufficient expertise to identify and remove non-adipose signals. Some of these issues have
led to the development and implementation of scanning protocols which attempt to minimise
these factors, such as breath-hold, cardiac/respiratory gating, ultra-fast scanning of the
abdomen and chest and/or scanning subjects in a prone position to minimise respiratory motion.
An alternative approach is to obtain fat-only-images, which in theory should improve analysis
accuracy. However, this can introduce its own uncertainty, due to lack of anatomical detail on

images; hence a second anatomical dataset is sometimes included as an analysis reference.

Application of MRI measurement of adipose tissue

Since its initial development, the applications of MRI to measurements of adipose tissue
content and distribution in relation to health and disease have been numerous. Whilst MRI is
accepted as a gold standard methodology for measuring adipose tissue, its limitation as a field-
based method for population studies and its relative cost precludes many investigators from
using it in their research. Consequently, it often applied to validate and improve cheaper
portable field methods of measuring body composition [88—92]. MRI has been used extensively
to map unusual distributions of adipose tissue - this has been applied to populations of patients
with HIV-related lipodystrophies [93], and acquired/congenital generalised and partial
lipodystrophies [34,71]. It has been used to show reduced visceral adiposity in patients with
Prader Willi Syndrome [94], and elevated visceral adiposity in women with Turner’s syndrome
[95,96], PCOS [32,97] and Cushing’s disease [47]. Increased visceral adipose tissue has also
been shown in adults and children with growth hormone deficiency; this has also been shown
to reduce following therapy with growth hormone [30,95]. Several gene mutations and
polymorphisms have been investigated, with some showing significant effects on adipose
tissue distribution, and with others having little effect [98,99]. Other factors which have been
shown to alter adipose tissue distribution include preterm birth. MRI has been applied to this

population; it was found that the increased levels of visceral adipose tissue observed in infancy

85



persist into adulthood [100,101]. Numerous cross-sectional studies have used MRI to measure
adipose tissue, reporting differences in both content and distribution as a result of age, gender,
and ethnicity [31,102,103]. There have also been extensive studies measuring differences in
adiposity between lean, overweight and obese populations. Changes in adipose tissue
distribution have been described as a result of the menopause, which is thought to result in a
preferential accumulation of visceral fat [104]. There have also been many interventional
studies performed using MRI (for reviews see [104-106]), quantifying the impact of diet
(restriction, overfeeding, composition modulation and supple mentation) and exercise [107—
109]. Both long [110] and short term calorie restriction have been shown to result in loss of
visceral adipose tissue [111], and overfeeding conversely causes an increase in this fat depot
[112]. Changes in response to aerobic and resistance exercise have been compared, as well as
gender differences in the response to an exercise programme, with men being shown to lose
more visceral adipose tissue, but less subcutaneous adipose tissue in response to exercise than
women [113]. Other interventions have been investigated; these include the effect of weight
loss induced by drugs including orlistat, metformin, rosiglitazone, pioglitazone, and
dexfenfluramine [114—117], as well as following obesity surgery [118]. Of particular interest
is the trajectory of adipose tissue changes during weight gain or loss. Indeed, studies
monitoring weight regain in women following anorexia nervosa show an interesting pattern of
body fat redistribution with an initial increase in visceral adipose tissue, which does normalise
with time [119]. There have also been extensive studies mapping depot-specific differences
such as visceral compared to subcutaneous adipose tissues. Visceral fat is now recognised as a
stronger and independent predictor of the metabolic syndrome compared with subcutaneous
adipose tissue [120]. Similarly MRI has been used to unravel the inter-relationship between
‘deep’ and ‘superficial’ subcutaneous adipose tissue, gluteal and femoral subcutaneous adipose
tissue, as well as regional differences within the visceral fat depot [121-127]. More recently,
enhanced phenotyping methods have used MRI to classify subjects according to their adipose
tissue distribution, and these have been shown to identify a number of sub-phenotypes in the
general population whose metabolic risk factors are not proportionate with their overall size
and adiposity (Fig. 8). There is mounting evidence to support the notion of ‘metabolically
normal obesity’, in which subjects are metabolically healthy despite their substantially elevated
body adiposity [128,129]. A similar phenotype is found in obese individuals described as ‘fat-
fit’ [130]. In both of these groups MRI has been used to show that the metabolic ‘health’ is
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related to fat distribution, in particular reduced visceral adipose tissue [7,7,120,128].
Conversely a phenotype has also been reported, in which normal-weight subjects have an
elevated risk of metabolic disease, at odds with their apparently normal body size. This is
commonly referred to as ‘metabolically obese but normal-weight’ [131]. Again this phenotype
has been further refined using MRI to show a disproportionate accumulation of visceral fat in

these individuals, now commonly referred to as TOFI (Thin Outside, Fat Inside) [7,120,132].

Potential future areas of interest in MRI adipose tissue research

There are several topics that are receiving increasing attention within the research community,
including the role of hypoxia and blood supply in adipose tissue function, detection of
macrophage infiltration within adipose tissue, assessment of regional differences in fatty acid
composition and mobilisation (fatty acid uptake and storage) and the development of fibrosis
within adipose tissue. Whether there is the potential for MRI to inform these areas of research

remains to be seen.

TOFI (Thin outside,
fatinside)

Fat outside, fat
inside

Fat outside, thin
inside

Fig. 8. Phenotypic variation in adipose tissue distribution.

Ectopic Fat

There is increasing interest in the potential role of ectopic fat in the development and impact
of non-communicable disease. Ectopic, from Greek ektopos meaning out of position, refers

to the storage of fat in non-adipose tissue depots such as skeletal muscle, liver, pancreas and
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heart. The mechanisms by which ectopic fat accumulates are not fully understood, but one
theory, the so called ‘overflow hypothesis’, suggests that under some circumstances
adipocytes may lose their ability to expand to store excess energy, leading to an ‘overspill’ of
triglycerides into other organs [133]. The implications of ectopic fat accumulation are
considerable; ectopic fats are closely linked with the development of insulin resistance and
the metabolic syndrome [134]. Until the advent of MR techniques, research into ectopic fat
was somewhat limited by the need to obtain tissue biopsies, and although muscle (and
sometime the liver) biopsies could be obtained for research purposes, research into ectopic fat
accumulation in the heart and pancreas was clearly impractical. The development and
application of MRI and MRS has resulted therefore in a significant increase in our

understanding of the relationship between adipose tissue and various ectopic fat depots.

Techniques to measure ectopic fat

'H MR spectropy-based methods

In vivo proton magnetic resonance spectroscopy ("H MRS) is now routinely used to detect and
quantify ectopic fat deposition in skeletal muscle (in the form of intra- and extra-myocellular
lipids — IMCL and EMCL, respectively) [135-137] and liver (known as intra-hepatocellular
lipid — IHCL) [138,139]. It is also used to measure both cardiac [140] and pancreatic [141] fat
deposition. However, measurement of ectopic fat in these organs is more technically
demanding, due to motion in the case of the heart, and its size and location in the case of the
pancreas. As such, there are fewer publications regarding the non-invasive measurement of
ectopic fat in these organs. Indeed, pancreatic fat assessment by MRS, although feasible, has
been in part replaced by the use of MRI-based techniques, as these are less susceptible to
contamination from surrounding adipose tissue signals. In most published studies of ectopic
fat, the MRS localisation technique of choice appears to be the PRESS sequence (point-
resolved-spectroscopy) developed in the early 1980s [142]. Some groups use a STEAM
sequence (stimulated echo acquisition mode) instead, but this does tend to be more susceptible
to motion, diffusion, and quantum effects (such as homonuclear coupling, which can result in
difficulty in phasing and baseline correcting the spectra) and possibly a lower SNR [143]. An
alternative MRS sequence used mainly in the liver is Chemical Shift Imaging (CSI) [144].
This allows spectra from across a 2D or 3D plane to be acquired in a single acquisition. In this

sequence, the spatial location is phase-encoded with a spectrum recorded at each phase
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encoding step. Multiple spectra from across the liver are collected, providing measurements of
potential regional differences in ectopic fat deposition. Thus, as in vivo MRS allows for
accurate and reproducible acquisition of metabolic data, in a localised and region specific
manner, from almost any organ of the body, it has become the gold-standard for ectopic

measurements in skeletal muscle, liver and heart.

MRI-based methods

An alternative to in vivo MRS for assessing ectopic fat is the use of MRI-based techniques.
Recently, there have been an increasing number of publications, describing a variety of MRI-
based sequences to measure liver fat deposition, exploiting the natural chemical shift
differences between fat and water [145-149]. While the MRS-based techniques limit
themselves mainly to single voxel [150] these methods allow for very high resolution
assessment of regional variations of fat content. However, it should be mentioned that these
techniques do involve the use of breath-holds during the scan, which may not be appropriate
for many patient groups. It remains to be seen whether in future these techniques will be equally
or more prevalently used than MRS. MRI-based techniques to assess ectopic fat fall broadly
into two categories: those based on differences in the signal phase of fat and water, and those
that make use of the chemical shift differences between the fat and water resonances, allowing
for selective saturation of resonances. The former tend to be based on the so-called *“DIXON"’
sequences, which are sequences designed to generate images containing only fat or water [151].
To achieve this separation, images are acquired in which the signals from fat and water are
both ‘“in phase’” and ‘‘out of phase’’, subtracted and summed, resulting in water- and fat-only
images. In this way fat content of any tissue can be readily measured. Typical water-only and
fat-only images obtained with a DIXON-based technique can be seen in Fig. 9. The original
sequence, referred to as a ‘two-point DIXON’, has since evolved to include a third echo, which
helps to overcome some of the problems associated with field inhomogeneities [152,153]. The
term ‘DIXON’ is now commonly used to encompass all chemical-shift based sequences to
obtain separate water and fat images. These methods are today used both for obtaining fat-only
images to quantify adipose tissue, as well as for detecting ectopic fat accumulation, principally
in the liver. A further refinement of the DIXON technique is the so-called ‘3D IDEAL’
(Iterative Decomposition with Echo Asymmetry and Least squares estimation) imaging and

reconstruction method [153]. The advantage of this method is the fact that the data is obtained
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as a volume, and is therefore more representative of the organ under investigation. It has also
been reported to result in improved fat-to-water ratios, by correcting for transverse relaxation,
as well as intravoxel dephasing, and can overcome field inhomogeneity problems. Its
measurement of liver fat content has been reported to be comparable with '"H MRS. However,
it does requires prior knowledge of the chemical-shift spectral frequency and amplitude, which
are measured in subcutaneous adipose tissue and then applied to the measurement of ectopic
organ fat [147]. Significant differences in the fatty acid composition between different fat
depots could therefore be a potential source of error. More recently, a multi-echo (ME) MRI
sequence has been developed and applied to measure ectopic fat, reportedly being more
accurate and robust than the DIXON-based methods, while at the same time providing an
accurate measurement of T, [149]. This method has been most commonly applied in the liver
and pancreas. It has the advantage over single voxel MRS in that regional differences in ectopic
fat distribution can be measured. Furthermore, it is often possible to obtain a single slice
containing the liver and pancreas, allowing simultaneous measurement of fat within two
separate organs (see Fig. 10), thereby considerably reducing scanning time. A further benefit
of using this method is the T*, value; since changes in T*, are indicative of elevated iron
content, it provides a useful and clinically relevant additional measurement [154]. Thus, from
the many images normally obtained with the ME sequence, decay curves are generated which
show the change in signal intensity at each of the acquired echo times. In tissues containing
lipid and water, there will be oscillation in signal intensity as a function of echo time. At some
echo times the fat and water signals are in phase (higher signal) and at others they are out of
phase (lower signal), this gives rise to the oscillations in the decay curve. An organ with very
little fat infiltration will generate a very smooth decay curve (without obvious oscillations in
the decay), whereas one containing a higher level of fat shows significant oscillations
throughout the decay. From these data, ‘heat-maps’ can be generated to visualise regional
differences in fat deposition. For instance, Fig. 10 shows the heat maps from four individuals
with varying levels of fat in their liver and pancreas. Clearly, this kind of resolution in regional
fat distribution could not be achieved by the use of MRS sequences. In addition, the use of
multi-slice acquisition allows researchers to map fat content across the entire liver. An example
of this can be seen in Fig. 11, which shows the large variation in fat throughout the entire liver

of a volunteer.
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Fig. 9. Water (a) and fat (b) only MR images of the thigh of an overweight volunteer

E.L Thomas et al./Progress in Nuclear Magnetic Resonance Spectroscopy 73 (2013) 56-80

Pancreas

Fig. 10. A series of multi-echo (a—d) and corresponding heat-map images (e—f) from four volunteers with varying
levels of ectopic fat in both the liver and pancreas. A scale reflecting fat content from blue (low) to red (high) is
also shown. Images (a) + (e) show high liver and high pancreatic fat. Images (b) + (f) show low liver and with

fat infiltrating into the pancreas. Images (c) + (g) show high liver and low pancreatic fat. Images (d) + (h) show
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low liver and low pancreatic fat. The heat-map values were localised to the liver, hence the lack of relationship
between the levels of fat in the adipose tissue and its colour. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

Ectopic fat in skeletal muscle

The relationship between elevated triglyceride within muscle cells (known as intra-
myocellular lipids or IMCL) and insulin resistance was initially established using muscle
biopsies or ex-vivo tissue samples, in combination with electron microscopy and oil staining
[155]. Elevated IMCL have been observed in diabetes and are inversely related to insulin
action [156,157]. This area of research was changed completely in 1993, when Schick and
colleagues demonstrated that it was possible to differentiate between triglycerides stored
within muscle cells (IMCL) and the inter-muscular adipose tissue stored between muscle cells
(referred to in the MRS community as extra-myocellular lipids or EMCL) using in vivo 'H
MRS [135]. A typical MRS spectrum obtained from the soleus muscle of a healthy volunteer
can be seen in Fig. 12. Resonances arising from IMCL, EMCL, total creatine and choline-
containing groups can be readily observed. Most studies using 'H MRS to measure IMCL use
a PRESS sequence with a voxel size ranging from 1.8 to 8 cm?®. A minority have used CSI,
which enables simultaneous acquisition of multiple small voxels (MRSI) [158,159]. Most
work has been published at 1.5T, but there are studies at 3T [160], 4T [161] and 7T [162].
Measurements are commonly made in the muscles of the lower calf — soleus, tibialis and
occasionally, the gastrocnemius muscle. This differs from most biopsy studies where
measurements are usually taken from the vastus lateralis located in the thigh. This is mainly
due to practical scanning considerations rather than specific scientific reasons. However, there
have additionally been reports of IMCL measurements by 'H MRS in the thigh, arms [163],
psoas [164] and paraspinal muscles [165]. As can be seen in Fig. 12, despite the fact that the
four separate resonances arising from IMCL and EMCL can be readily observed, there is a
significant degree of overlap between the four peaks. This can be an issue for analysis,
necessitating the use of software with a degree of sophistication, generally requiring a degree

of prior knowledge to accurately fit the peaks. This overlap can be more of a problem in
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subjects with elevated EMCL, which increases as a result of aging, as well as in conditions
including obesity, diabetes and also in patients with muscle disease such as polymyositis.
Interestingly, it has been reported that the separation between the IMCL and EMCL
resonances is muscle-dependent. This appears to be related to the alignment of muscle fibres,
the greater the number of fibres in the muscle running parallel to the magnetic field, the greater
the separation between peaks. In the tibialis, where the fibres are mostly parallel, the
separation between IMCL and EMCL signals is greater than in the soleus muscle where the
fibres are found in a more oblique orientation [136]. While there have been a few publications
that measured absolute concentrations of IMCL, expressing results in mmol/kg wet weight,
most studies present the IMCL data either as a ratio or as a percentage of the total water or
creatine in the spectrum. The development of in vivo '"H MRS has made it possible to study
many different patient groups, as well as paediatric populations, and has also enabled
longitudinal and interventional studies that would not have been possible using a biopsy
approach. IMCL levels have been shown to vary according to muscle fibre type, with the
highest levels found in oxidative muscles (such as the soleus muscle) and lower levels in
glycolytic muscles (such as the tibialis muscle) [158,166]. IMCL levels have also been shown
to be elevated in obesity [167] and reduced following weight loss [168,169]. The earlier
observations of the relationship between IMCL and insulin resistance were confirmed [170—
172], and it was proposed that the composition, not just the overall amount of triglyceride
present may be a factor in the development of insulin resistance [173]. However, the
relationship between IMCL and insulin resistance is by no means clear cut. For instance there
have been reports of populations in whom there is a disassociation between insulin sensitivity
and IMCL levels, for example populations of South Asian origin [174] or low birth weight
subjects [175]. Furthermore it is possible to manipulate insulin sensitivity, independent of
changes in IMCL [176] and several groups have reported that endurance trained athletes have
high IMCL levels, despite high insulin sensitivity [177—179]. While trained athletes rapidly
deplete their IMCL reserves during endurance exercise [ 180], there is evidence to suggest that
IMCL can be increased following moderate exercise training [181]. It is thought that the
muscles of endurance trained athletes possess a high oxidative capacity, enabling efficient use
of IMCL as an energy source during exercise. This apparent contradiction has necessitated a
rethink regarding whether elevated IMCL actually causes insulin resistance, or is a secondary

effect [182]. Further research will be needed to unravel this complex relationship. More
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recently, diffusion weighted imaging has been proposed as a potential method to differentiate
between IMCL and EMCL in vivo, based on the observation that EMCL has a higher apparent
diffusion coefficient compared with IMCL. As yet these are just ex vivo and animal studies,
but it will be interesting to see this approach find significant application in human research
[183]. MRI has also been used to measure muscle fat infiltration. As previously mentioned,
Gallagher et al. have measured total body IMAT (also known as EMCL) using whole body
MRI. Multi-echo imaging has also been used to measure muscle fat content [184]. However,
with current technology MRI is unable to fully differentiate IMCL and EMCL; as such MRS

will continue to be regarded as the technique of choice in this area of research.

E.L. Thomas et al /Progress in Nuclear Magnetic Resonance Spectroscopy 73 (2013) 56-80

Fig. 11. Heat maps generated from multi-echo images acquired at various positions throughout the liver showing

variations in hepatic fat content.
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Fig. 12. Calfimage and resulting ' H MR spectrum from a 2 x 2 x 2 cm® PRESS voxel positioned in the tibialis
muscle. Resonances from choline (Cho), total Creatine (comprising both creatine and phosphocreatine) (Cty,),
and the CH: and CH; parts of the triglyceride for both EMCL and IMCL can be identified. IMCL content is
calculated as the ratio of IMCL to Cr.

Ectopic fat in the liver

The study of fat deposition in the liver has a considerably long history, and indeed even some
of Leonardo Da Vinci’s drawings depict fatty liver. Many studies in the past have demonstrated
that fat accumulates in the liver following excessive alcohol intake, and as a consequence of
obesity and diabetes [185—187]. Ectopic fat deposited within the liver is commonly referred to
as non-alcoholic fatty liver disease (NAFLD) or non-alcoholic steatohepatitis [188]. However,
despite its long clinical history, NAFLD was, until relatively recently, considered as a relatively
benign condition. It is now understood that excess fat deposited in the liver can cause hepatic
inflammation, which in some individuals leads to fibrosis, which may in turn slowly progress
to cirrhosis and may ultimately result in hepatocellular carcinoma [189,190]. Moreover ectopic
liver fat has been, more recently, closely and independently associated with insulin resistance
[191,192], a key stage in the subsequent development of type II diabetes. Thus, understanding
the mechanism by which hepatic fat accumulates, and developing effective strategies to reduce
it, is critically important, given that NAFLD prevalence is estimated at 30—40% in the US
population, for example [139]. In addition to needle-biopsy which had been regularly used in
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a clinical setting, there are a wide variety of non-invasive techniques to detect and quantify fat
infiltration in the liver, including ultrasound, CT and MRI [193,194]. Ultrasound is perhaps the
most frequently used, particularly in a clinical setting as it is cheap and widely available.
However, it tends not to be quantitative and levels of fat infiltration are somewhat subjectively
classified as absent, mild, moderate or severe [194]. CT indirectly assess liver fat content by
measuring the ratio of liver density to that of the spleen, but the associated radiation somewhat
limits its longitudinal application and use in paediatric studies. In the research setting, 'H MRS
measurement of hepatic fat content is becoming increasingly routine and widespread.
Quantitative MRI measurement of hepatic fat is also becoming more common, with a wide
variety of sequences available; for reviews of the different available methods see [145-148].
The practical details for the '"H MRS of liver are quite similar to those discussed previously for
muscle. Again, the vast majority of studies have been performed at 1.5T using a PRESS
sequence, although some groups use chemical shift imaging, which allows regional changes to
be observed across the liver, without the need to acquire repeated PRESS voxels. Fig. 13 shows
typical spectra from subjects with low and high fat infiltration in the liver. A 2 x 2 x 2 cm?
voxel is carefully positioned in the liver avoiding obvious blood vessels, fatty tissue and the
gall bladder. The resulting spectrum contains resonances arising from water at 4.7 ppm, and
the CH: and CH3 parts of the triglyceride backbone at 1.3 and 0.9 ppm respectively. Liver fat
data obtained by 'H MRS are normally presented as a ratio or as a percentage of the total water
in the spectrum, although some authors present liver fat in mmol/kg, assuming a hepatic water
content of 71.1%. There are a variety of approaches to calculating this ratio, and as a result
levels of IHCL may vary between different papers depending on the formula used. The most

commonly used are described below:

i ii iii

CH, CH, CH, +CH,
water Water-CH, Water+CH, +CH;

Most researchers use one of the above methods; others do not separate the CH- from CH3 signal
and present IHCL as fat/water ratio or the (fat/water + fat) ratio. At low levels of fat deposition
the various methods produce similar results, but at higher levels of fat infiltration there can be
considerable differences. For instance using the three different approaches, a very low fat

infiltration would result in IHCL values (i) 0.71%, (ii) 0.70%, (iii) 0.81%; moderate fat
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infiltration (i) 14.28%, (i1) 12.00%, (iii) 12.82%; and finally high fat infiltration (i) 56.72%, (i1)
32.33%, (iii) 34.77%. In essence, this is only an issue when comparing data from different
research groups. The validation and application of 'H MRS to assess ectopic fat in the liver has
been extensively reviewed [120,146,195]. Liver fat has been shown to be a key risk factor for
the development of insulin resistance and type-2 diabetes [35,196]. We now know, through
this in vivo work, that liver fat is increased in conditions including obesity [138], type-2
diabetes [197], polycystic ovarian syndrome (PCOS) [32], and Turner’s syndrome [96], as well
as being modulated by age [7,198], diet [199,200], physical activity and fitness [8,199,201—
203], and gender with women having reduced levels of liver fat compared with men [7,204]. It
also varies between different ethnic groups with individuals of Afro-Caribbean origin having
lower levels, compared to Caucasian or Hispanic populations [205,206]. Ectopic liver fat is
also elevated in congenital partial and generalised lipodystrophy, as well as antiretroviral
therapy-associated lipodystrophy, found in some treated HIV patients [207,208]. Furthermore,
leptin replacement has been shown to reduce liver fat content in subjects with lipodystrophy
[209,210]. Preterm birth has been shown to result in elevated liver fat in infancy, which persists
into adulthood [211,100]. Elevated liver fat has consistently been shown to be effectively
reduced following lifestyle interventions, which generally involve moderate calorie restriction
and increased physical activity [169,212,213]. Liver fat has also been shown to be reduced
using 'H MRS following treatment with rosiglitazone [214], pioglitazone [215], metformin
[216] and orlistat [116], as well as following weight loss induced by bariatric surgery [217].
While the development of 'H MRS and its application to the study of liver fat has greatly
increased the knowledge of the relationship between liver fat and other adipose tissue depots,
and how levels can be modulated by various interventions, our understanding of this depot is
still far from complete. Further technical development and applications are essential,
particularly if we are to be able to differentiate non-invasively between those with ‘benign’
fatty infiltration and those with fatty infiltration that progresses to irreversible liver disease and

established cirrhosis
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Fig. 13. Transverse image showing location of a 2 x 2 x 2 cm?® PRESS voxel positioned within the liver and
corresponding '"H MR spectra from volunteers with (a) low and (b) high levels of fat infiltration. Resonances can
be seen arising from water, and the CH: and CH;s parts of the triglyceride for hepatic fat. IHCL content is

calculated as the ratio of CH: to water.

Ectopic fat in the pancreas

The pancreas has a dual function being both an endocrine and exocrine organ. Digestive
enzymes are secreted into the small intestine by the exocrine portion to aid digestion. The
endocrine portion of the pancreas is made up of clusters of cells called islets of Langerhans,
distributed throughout the pancreas. There are four main types, classified by their secretions.
The B cells are of particular interest, since they secrete insulin and are intimately involved
with glucose homeostasis. It has been suggested that ectopic accumulation of triglycerides in
pancreatic islets causes B-cell dysfunction, leading to pancreatic lipotoxicity [218-220],
although it is unclear whether this is a direct consequence of triglyceride accumulation or a
consequence of high levels of circulating lipids. These unresolved questions have driven the
development of non-invasive techniques to study the pancreas. Until relatively recently, most
studies have required ex-vivo tissue, cell cultures or rodent models, mainly due to the difficulty
in assessing pancreatic fat in vivo. Needle biopsies are not practical due to the associated risk
of developing pancreatitis. Ultrasound and CT have been applied to detect the presence of
pancreatic steatosis, but as in the liver, this tends to be non-quantitative and is often regarded

as a subjective measurement. Pancreatic fat was first measured non-invasively using '"H MRS
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by Tushuizen and colleagues in 2007; they showed that pancreatic fat content was elevated in
subjects with type-2 diabetes, and that it was inversely associated with -cell function [220].
Lingvay et al. comprehensively validated the use of 'H MRS to quantify pancreatic
triglyceride against biochemical measurements in rodents [141]. Furthermore, they
demonstrated the reproducibility of the method in humans and showed in a relatively large
cohort of subjects that pancreatic steatosis increases with BMI and impaired glycaemia. In a
relatively short period of time, several other groups published studies using 'H MRS to
measure pancreatic fat content and were able to demonstrate that pancreatic fat content is
related to both insulin resistance and liver fat content [203,221]. However, 'H MRS of the
pancreas is far more challenging, compared to '"H MRS of the liver, due to the size, shape and
location of the former. In some individuals, the pancreas has a smooth and well-defined shape,
allowing relatively easy positioning of the voxel within the organ. However, in others, the
pancreas has a more fragmented appearance, with the surrounding adipose tissue appearing
to infiltrate the organ (Fig. 14). Positioning even a small voxel within the pancreas with this
presentation is problematic, since the resulting spectra carry a risk of contamination from the
surrounding adipose tissue. This has been one of the main factors that have driven
development of MRI to quantitate pancreatic steatosis. Schwenzer and colleagues have
extensively compared in/out-of phase sequences with spectral-spatial excitation imaging
sequences [222], finding that both provided reliable estimates of pancreatic fat content, though
it was more likely that fat-selective spectral-spatial methods would be utilised clinically, since
they required fewer additional corrections to quantify fat content. In our own experience, we
find excellent correlation between 'H MRS and multi-echo imaging techniques, but since
multi-echo avoids contamination from surrounding visceral adipose tissue, we find that it
leads to a more successful examination in many cases. A further advantage of quantitative
imaging methods is that regional variation in fat deposition throughout the pancreas can be
measured using a single sequence. This appears to be particularly important in the pancreas
since some studies have reported the pancreatic head contains less fat than the body and tail
[222]. However, other studies have reported no regional variation [223]. Indeed, many of the
recent papers measuring pancreatic fat content have used MRI-based methods [150,224-229].
Interestingly, in some publications liver fat is often measured using 'H MRS, despite
pancreatic fat being measured by MRI [224]. These studies have shown that pancreatic fat

content increases with age [222,226] and can be predicted by visceral adipose tissue content
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[226,228]. It has also been shown that there are ethnic differences in pancreatic fat content,
with higher levels reported in Hispanic compared with African American subjects [226].
Furthermore, it has been shown that pancreatic fat can be reduced following a period of dietary
restriction, which also resulted in normalisation of § -cell function [225]. Some studies have
reported a significant correlation between hepatic and pancreatic fat content [226,227], while
others have found no relationship between ectopic fat in these two organs [222,229].
Compared to other organs, non-invasive measurement of ectopic fat in the pancreas is very
much in its infancy. However, this is a very rapidly expanding area of research, and it is likely

that our understanding of fat in the pancreas and its consequences will increase substantially.
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Fig. 14. Images through the abdomen showing the appearance of the pancreas in two individuals. Subject (a)
has a well defined pancreas, as can be clearly seen in the expanded image with well-d4efined boundaries, in
whom pancreatic spectra showing a low level of fat infiltration can be reproducibly obtained. Subjects (b) has
an extremely irregularly shaped pancreas, making voxel placement difficult, the resulting spectrum has a high
level fat as seen by the larger CH: resonance. It is difficult to be certain whether all or only some of this fat

arises from ectopic fat within the pancreas.

Ectopic fat in the heart

Fat can be deposited and stored in several locations in and around the heart as intramyocardial,
pericardial, epicardial, and paracardial adipose tissue (also referred to as mediastinal adipose
tissue]. Adipose tissue in this location is essentially found on the epicardial surface, where it is

in direct contact with the myocardium and vessels and serves as a source of energy. There is,
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however, some degree of debate regarding the exact classification of each of these depots which
seems in part to relate to the methodology used to measure these fat depots. Some authors
describe pericardial and epicardial adipose tissue as distinctly different depots, with differences
in adipocyte size and metabolism [230]. Others suggest that pericardial adipose tissue is the
sum of both the epicardial and paracardial fat depots [231]. The different types of fat
accumulation within the heart were described in detail by Richard Quain in an extensive article
in 1850 [232]. Initial studies were conducted post-mortem, but the advent of fluoroscopy,
which employs X-rays to obtain real-time moving images of the heart, enabled non-invasive
studies to be conducted allowing the pericardial fat pad to be studied in living subjects
[233,234]. More recently, echocardiography and CT and MRI have been used to measure this
depot. The adipose tissue deposited around the heart has been shown to increase with age and
level of obesity, in particular visceral adipose tissue content [235]. It is also increased in
patients with diabetes and obstructive coronary artery disease. Fat is also found in other areas
of the heart. Indeed, there are two different patterns of myocardial triglyceride deposition: the
first involves infiltration of adipocytes, usually in the right ventricle interspersed between
myocardial fibres, similar to the EMCL in skeletal muscle. Triglycerides also accumulate
within the cytosol of cardiac myocytes. Here, their presence is referred to as ‘cardiac steatosis’.
Until the advent of "H MRS, this was only measurable at post-mortem or from biopsy samples.
'"H MRS has been used by several research groups to measure this steatosis [140,236-240]. 'H
MRS of the heart is technically more challenging than a similar acquisition in the liver or
skeletal muscle, due to cardiac and respiratory motion, both of which have a significant impact
on both shimming and water suppression. Spectral quality may be further compounded by the
presence of epicardial fat which can cause spectral contamination. However, these difficulties
may be overcome using cardiac and respiration triggering and gating [140,236]. Indeed,
Felblinger et al. compared the effects of breath-hold vs combined ECG and respiratory gating,
and they found spectral quality and reproducibility to be significantly improved using cardiac
triggering [238]. More recent studies have combined ECG triggering with respiratory navigator
echo—based motion compensation, which have been reported to reduce spectral linewidth,
thereby improving spectral resolution and reproducibility [240]. '"H MR spectra are generally
obtained using a PRESS sequence with the voxel positioned within the septum of the heart (Fig.
15). Using '"H MRS to measure myocardial fat, it has been shown that triglycerides can be

detected within the cardiac myocytes of even very lean individuals, and in overweight subjects
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in whom cardiac triglyceride levels are elevated. This fat depot is closely related to increased
left ventricular mass [ 140]. Kankaanpéa et al. have shown that cardiac triglycerides are elevated
in obese compared with lean men [239,240]. However, the functional relevance of cardiac
triglyceride accumulation is still unclear, in part due to the small number of papers published
in this area. While cardiac triglycerides appear to be elevated in obesity, particularly in relation
to visceral adipose tissue, no significant relationship between cardiac triglycerides and BMI or
percentage body fat has been observed [235,242,243]. Furthermore, Gaborit et al. recently
showed that while both cardiac triglycerides and epicardial adipose tissue were elevated in
obese subjects, only epicardial adipose tissue was elevated in obese diabetic subjects, compared
to obese non-diabetic subjects [241]. Furthermore, these authors also found that only the
presence of epicardial adipose tissue was related to glucose tolerance, but they did find that
cardiac triglycerides were independently associated with ventricular stroke volume, suggesting
a specific interaction between cardiac steatosis and cardiac function [241]. There have been
several interventional studies looking at the effect of dietary restriction, exercise, bariatric
surgery and drugs on cardiac triglyceride content with conflicting results. Several papers have
shown that cardiac triglyceride content can be reduced following a very low calorie diet [244]
or exercise training in healthy overweight subjects [245]. Interestingly, the same group found
that a similar exercise program did not reduce cardiac triglyceride content in patients with type-
2 diabetes, despite improvements in cardiac function [246]. However, treatment with
pioglitazone, which has been shown to reduce hepatic fat, did not affect cardiac steatosis [247].
Similarly, starvation studies have been shown to reduce hepatic steatosis while increasing
cardiac steatosis [248]. Furthermore, weight loss following bariatric surgery has been shown
to significantly decrease adiposity, particularly visceral adipose tissue and epicardial adipose
tissue as well as hepatic fat content whilst having no effect on cardiac triglyceride content [249].
While there appear to be some contradictions in the published literature, overall these findings
do indicate that the regulation of ectopic fat depots is organ-specific and that further studies
are required to increase our understanding of the relevance of cardiac triglycerides and their

relationship to adiposity.

Bone marrow

In addition to adipose tissue and ectopic fat, a significant quantity of fat is stored in the body

in the form of bone marrow. The body contains two types of bone marrow: red bone marrow
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consisting of hematopoietic cells, responsible for production of blood cells (this tends to be
found in ‘flat’ bones such as the pelvis, sternum, ribs, and vertebrae); and yellow bone marrow,
found mainly in the middle of long bones, and composed primarily of adipocytes. At birth, all
bone marrow is red; the fat content of bone marrow progressively increases with age [250] and
is considered to be a normal part of skeletal maturation and ageing. By adulthood almost 50%
of bone marrow will have become yellow bone marrow. MRI and MRS have both been applied
to measure the content, composition and distribution of bone marrow. Most studies have
obtained PRESS spectra from the hematopoietic bone marrow located in the vertebral bodies.
MRS has been proposed as a method of monitoring changes in response to treatment, as well
as an aid to diagnosis in conditions including leukaemia, lymphoma, and plasmocytoma [251—
253]. Changes in both the relative ratios of the lipid and water resonances, as well as the peak
lineshapes and relaxation properties have been reported using 'H MRS, following treatment for
leukaemia and bone marrow transplant. Furthermore, age-related changes in bone marrow have
been confirmed non-invasively using 'H MRS [254-256]. Gender differences have also been
reported with males having a higher bone marrow fat content compared with female subjects
[255,256]; however this difference is reversed in older subjects (>60 years age) [257]. Bone
marrow fat content has also been shown to increase with decreasing bone mineral density,
making bone marrow fat content a potentially useful marker of osteoporosis [255,258-260].
Interestingly, Baum et al. have shown regional variation with bone mineral density decrease
from L1 to L3, accompanied by a corresponding increase in bone marrow fat content [261] The
composition of the fatty acids within the bone marrow may also be important; subjects with
type-2 diabetes appear to have lower levels of unsaturated fatty acids within their vertebral
bone marrow, compared to healthy controls [261]. The fat content of bone marrow has also
been related to other adipose tissue depots, particularly visceral adipose tissue. Several authors
have reported that subjects with a greater proportion of fat in their bone marrow have higher
levels of visceral adipose tissue [258]. This may be an important finding, since previous studies
have found a negative association between visceral adipose tissue and bone mineral density
[262]. As well as measuring the fat content of bone marrow by MRS, the whole-body bone
marrow volume has been measured using MRI. From these studies, it has been estimated that
bone marrow comprises up to 7% of total adipose tissue [262]. However, these studies found
no relationship between bone marrow volume and overall adiposity. Indeed, there are several

indications that bone marrow does not function as a typical adipose tissue depot, one of which
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being the paradoxical increase in bone marrow fat content following a period of starvation and

also in anorexia [263].
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Fig. 15. Image of the heart showing voxel positioned within the ventricular septum of the myocardium. The
spectrum was collected using PRESS sequence on a Siemens Verio 3T system with PACE for breathing motion
compensation in concert with near end of systole of the heart cycle. (Tr = 4s, Te = 40 ms, NA = 32, voxel =8 *
18 * 26 mm). (Figure kindly supplied by Dr. L. Szczepaniak, Biomedical Imaging Research Institute of Cedars-
Sinai Medical Centre.

Conclusion

In conclusion, MRI and MRS have become the gold-standards for assessing body fat content
and distribution. A variety of MRI sequences and scanning protocols are currently in use to
determine the total and regional quantities of adipose tissue in human volunteers. The results
from these studies point to the importance of abdominal adiposity in the development of non-
transmittable diseases, including insulin resistance and type II diabetes. Ectopic fat, especially
in liver and pancreas, appears to be another important independent risk factor for these
disorders [264]. With the advent of in vivo MRS and fat-specific MRI sequences, this field of
research is rapidly progressing as it no longer requires the use of needle biopsies to determine
levels of fat infiltration in these and other organs. The use of MR-based techniques to measure
adiposity is becoming increasingly common and is being utilised to assess body fat content
and distribution in utero, at birth, during childhood as well as in the later stages of life, helping
us to transform the way we view the function of this complex, yet essential, organ, adipose

tissue.
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Validation of a fast method for quantification of intra-abdominal

and subcutaneous adipose tissue for large-scale human studies
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Abstract

Central obesity is the hallmark of a number of non-inheritable disorders. The advent of
imaging techniques such as MRI has allowed for a fast and accurate assessment of body fat
content and distribution. However, image analysis continues to be one of the major obstacles
to the use of MRI in large-scale studies. In this study we assess the validity of the recently
proposed fat-muscle quantitation system (AMRA™ Profiler) for the quantification of intra-
abdominal adipose tissue (IAAT) and abdominal subcutaneous adipose tissue (ASAT) from
abdominal MR images. Abdominal MR images were acquired from 23 volunteers with a
broad range of BMIs and analysed using sliceOmatic, the current gold-standard, and the
AMRAT™ Profiler based on a non-rigid image registration of a library of segmented atlases.
The results show that there was a highly significant correlation between the fat volumes
generated by the two analysis methods, (Pearson correlation r = 0.97, p < 0.001), with the
AMRAT™ Profiler analysis being significantly faster (~3 min) than the conventional
sliceOmatic approach (~40 min). There was also excellent agreement between the methods
for the quantification of IAAT (AMRA 4.73 £ 1.99 versus sliceOmatic 4.73 £ 1.75 L, p =
0.97). For the AMRA™ Profiler analysis, the intra-observer coefficient of variation was 1.6%
for IAAT and 1.1% for ASAT, the inter-observer coefficient of variation was 1.4% for IAAT
and 1.2% for ASAT, the intra-observer correlation was 0.998 for IAAT and 0.999 for ASAT,
and the inter-observer correlation was 0.999 for both IAAT and ASAT. These results indicate
that precise and accurate measures of body fat content and distribution can be obtained in a
fast and reliable form by the AMRA™ Profiler, opening up the possibility of large-scale
human phenotypic studies. Copyright © 2015 John Wiley & Sons, Ltd
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Introduction

Todays, it is generally recognized that central obesity is a key risk factor for the development
of a number of metabolic disorders [1,2]. It has also been shown that indirect measures such
as body-mass index (BMI), waist circumference, and bioimpedance are poor predictors of
regional body fat distribution on an individual level [3—5]. The advent of tomographic
imaging modalities such as computer tomography (CT) and MRI has greatly facilitated our
ability to directly measure body fat content and distribution in an accurate and reproducible
manner [6,7]. Currently, it is possible to obtain a whole-body MRI scan of an individual in
less than 5 min, allowing total and regional fat depots to be measured in detail. However,
scan costs and image analysis are still substantial obstacles for large population studies.
Indeed, MRI measures of whole-body regional body fat distribution have up to now been
limited to research studies in relatively small cohorts of subjects, for example 80 subjects in
Reference 7 and fewer than 500 in Reference 5. In studies with larger cohorts such as the
Dallas Heart Study [8], the Framingham Heart Study [9], and the Multi-Ethnic Study of
Atherosclerosis (MESA) [10], very limited abdominal MR/CT imaging was carried out, with
some studies using a single slice to define abdominal adiposity. This clearly puts considerable
limitations on the total information available to researchers [11]. Furthermore, although cost
per scan has reduced considerably in recent years, the time required to analyse these datasets
continues to be a major limiting factor, mainly due to the lack of fast, reliable, and
reproducible methodologies [12]

In the last few years, an increasing number of genome-wide association studies, using ever-
larger cohorts, have been carried out in order to identify common genetic variants associated
with complex diseases including obesity, diabetes, heart disease, and cancer [13]. In many of
these studies, phenotyping of subjects was limited to either weight or BMI, with some using
also waist circumference. More recently a number of large population studies have been
initiated where more in-depth phenotyping is sought, including the use of MRI and dual-
energy X-ray absorptiometry methodologies, for the purpose of measuring body-fat
distribution. One example is the UK Biobank, where up to 100 000 individuals will be
scanned using MRI, while in the German Cohort Biobank it is envisaged that 30 000
volunteers will be scanned, many of whom will be followed longitudinally. Besides the
obvious demand for efficient scanning protocols, the resulting millions of images need to be

analysed in a fast and reproducible manner and at a minimum cost. Although existing manual
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and semi-automated systems can be used to analyse images from small cohorts (<100
subjects), they are not feasible for use in large population studies.

The aim of this study is to evaluate the performance of a rapid semi-automated tool for
quantification of body fat, including intra-abdominal adipose tissue (IAAT) and abdominal
subcutaneous adipose tissue (ASAT) volumes from MR images. Recently, a number of such
methods have been proposed [14—20]. Most of these methods [14—19] rely on binary
classification of adipose tissue, making them sensitive to partial volume effects [21], a
problem that increases with lower spatial resolution. In contrast to these methods, a new
method has been proposed, AMRA™ Profiler, based on quantitative fat imaging where the
entire fat signal within a certain compartment is taken into account [22,23]. In addition to
reducing the sensitivity to partial volume effects, this makes the method less sensitive to
segmentation errors. Also in [19], a similar approach was used where fat fraction was
integrated within the segmented regions. In the work of Wiirslin et al. [20] a fuzzy
segmentation of T; -weighted spin- echo images was used to alleviate the problem of partial
volume effects. In both these approaches, however, the segmentation was based on a two-
dimensional (2D) slice-by-slice analysis. The method used in this study is based on a true
three- dimensional (3D) analysis using atlas-based segmentation.

The qualities of the proposed method make it an ideal tool for potential large-scale human
studies. However, this tool has not been fully validated against the current gold-standard
technique for fat quantitation of MR images. Here, the AMRA™ Profiler is assessed against
the tool of choice for fat quantitation, the commercially available sliceOmatic. The results
show excellent agreement between the methods across a range of BMI, with analysis using
the AMRA™ Profiler taking up to 10 times less time than sliceOmatic. The speed and
robustness of the AMRA™ Profiler make it the ideal tool for small- and large-scale human

phenotypic studies.

Materials and Methods

Image Acquisition

Written, informed consent was obtained from all volunteers. Ethical permission for this study
was obtained from the research ethics committee of Hammersmith and Queen Charlotte’s and
Chelsea Hospital, London (REC: 07Q04011/19). In total, 23 volunteers (12 male, 11 female)

were recruited via advertisements in newspapers, websites, and academic newsletters,
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inviting male and female volunteers from the general public. No age constraints were placed
on recruitment in order to generate cross-sectional data. Average BMI was 31.7 + 5.1 kg/m?
(range 2246 kg/m?); age 3666 years. Each subject was scanned with two different protocols

on a 1.5T multinuclear scanner (Achieva, Philips Medical Systems, Best, The Netherlands).

Scanning Protocol
Two different MRI acquisition protocol were used in this study in order to maximize the

capabilities of each analysis tool.

Established T {-weighted acquisition protocol for sliceOmatic

The first scan was obtained using a rapid T, -weighted protocol as previously described [6].
Briefly, a whole-body axial T;-weighted spin echo sequence was acquired using a body coil
and no respiratory gating (typical parameters: repetition time 560 ms, echo time 18 ms, slice
thickness 10 mm, inter-slice gap 10 mm, flip angle 90°, number of excitations 1). Images
were acquired as nine equal stacks of 12 slices at the isocentre of the magnet with the

subjects in prone position

3D Dixon acquisition for AMRATM profiler.

The second scan was carried out using a phase-sensitive multipoint 3D Dixon acquisition
[24] with coverage from the neck to the knees using the integrated quadrature body coil. In
this scan, the subjects were in a supine position. Seven image stacks were acquired, of which
Stacks 2—5, covering the abdomen, were acquired during breath hold (17s). Parameters for
the image acquisition were as follows: repetition time 5.86 ms (8.16 ms for Stacks 3 and 4
covering the liver), echo time n x 1.15 ms, n = 1-4 (n = 1-6 for Stacks 3 and 4), matrix size
172 x 158, slice thickness 4.2 mm (5 mm for stack 7 covering lower part of thigh), and flip
angle 13°. Given that each acquisition protocol resulted in slightly different anatomical
coverage, for a robust comparison it was therefore decided to extract the same area from both
datasets, using the previously published definition of the abdominal area: ‘from the image

containing the femoral heads, to the slice containing the top of the liver/bottom of the lungs’

[6].
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Image Analysis

Reference Method

SliceOmatic

The T;-weighted images were analysed as previously described using the semi-automated
software sliceOmatic (TomoVision, Montreal, Quebec, Canada), which has become the
leading tool for analysis of body fat in clinical and pre-clinical research [8]. Briefly, total and
regional volumes were recorded in litres (1), comprising ASAT and TAAT [25]. As previously
stated, the abdominal region was defined as the image slices from the slice containing the
femoral heads to the slice containing the top of the liver/bottom of the lungs [6]; therefore,
the measurement of IAAT contains a mixture of visceral, perirenal, and retroperitoneal
adipose tissue. In order to gauge abdominal adiposity as a whole, ‘trunk fat’ (TF) was derived
from the sum of [AAT and ASAT: TF =TAAT + ASAT. The total time for the abdominal
segmentation was approximately 40—60 min per dataset. The sliceOmatic analysis of the T -

weighted images was performed by an independent observer (Vardis Group, London, UK).

AMRA™ Profiler Image Analysis

Image analysis was performed using AMRA™ Profiler (Advanced MR Analytics, Linkdping,
Sweden) as previously described [22,23], with some modifications. Water and fat images
were calculated using a two-step process. First, an initial set of water and fat images was
calculated using the first set of opposite phase (Tr= 2.3 ms) and in-phase (T5 = 4.6 ms)
images, using the inverse gradient method [26,27]. In order to correct for R, * effects and the
fat signal spectrum, a final set of water—fat images was then calculated using all echoes with
an in-house implementation of the IDEAL reconstruction [28,29]. To obtain quantitative fat
images, the water and fat image pairs were calibrated using the method described in
References 20 and 30. In summary, a quantitative fat image is computed based on pure
adipose tissue as an internal signal reference. Hence, the signal intensity level in a given fat
image voxel is related to the intensity in pure adipose tissue, which is given the value 1,
corresponding to 100% adipose tissue. The IAAT and ASAT compartments were
automatically segmented using non-rigid image registration of a library of manually
segmented atlases as described in Reference 22. A library of 10 atlases representing a range

of body shapes with manually segmented labels for IAAT, arms, and internal non-visceral
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adipose tissue was used. A combination of atlas-based segmentation and morphological
operations was used to remove the arms. In order to limit variability due to breathing,
AMRAT™ Profiler uses the top of the femoral head and the top of vertebra T9 as lower and
upper limits of the abdominal region in the segmentation of ASAT. In order to further
improve the segmentation performance for a larger variation of body shapes, the result from
the atlas-based registrations was interpreted as a probability map [31] for each fat
compartment, where 1 means that all atlases agree on the classification of adipose tissue and
0 means that no atlas agrees. The final definition of each fat compartment was obtained by
applying a threshold value to the probability map of each compartment label. A quick visual
inspection of the segmentation of each compartment was performed. In this step, the operator
can observe the automated segmentation suggested by the computer and, if necessary, locally
adjust the default threshold of the probability map in order to interactively change the final
segmentation. To assess inter- and intra-operator variability, the manual interaction was
performed three times by three different operators. All operators were employees at AMRA
and trained to perform this task. To enable a direct comparison with the conventional
sliceOmatic analysis, the volumes were manually cropped at approximately the same levels
as the uppermost and lowest slices used to define the abdominal region in the sliceOmatic
analysis. Finally, the calibrated fat signal was integrated within each segmented
compartment. A scaling with the voxel volume then gave the total volume of adipose tissue

within each compartment.

Statistical Analysis

All data are presented as means + SD. Statistical analysis was performed in Microsoft Excel
2011 (v. 14.2.4) and SPSS (v. 22) for the inter- and intra-observer variability intra-class
correlation coefficient (ICC). The Shapiro—Wilk test was performed to test normal
distribution of the difference between the two methods. Agreement between techniques was
tested with the method of Bland and Altman. The significance of the difference was
determined by a two-tailed paired Student t-test. The inter- and intra-observer variability
were assessed using the coefficient of variation (CoV) and the ICC using a two-way mixed,
absolute agreement model and single measures. Inter-observer CoV was computed for each
observer as the quotient between the standard deviation of the three observations and the
mean observation and then averaged over all 23 subjects. The intra-observer CoV was

computed as the standard deviation of the three observers’ mean observations divided by the
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total mean and then averaged over all 23 subjects. The intra-observer ICC was computed for
each operator separately. The inter-observer ICC was computed between the mean values of

each operator.

Results

Typical MR images and their respective image analysis results from one of the volunteers can
be seen in Fig. 1. Quantitative measurements of IAAT, ASAT, and total TF were extracted
from such images, using the standard sliceOmatic and the AMRA™ Profiler (Table 1). On
average it took over 40 min for the abdominal region from the whole-body dataset to be fully
analysed by sliceOmatic, necessitating continuous manual input from an expert operator. The
AMRAT™ Profiler required less than 3 min of manual intervention. The automated intensity
inhomogeneity correction and calibration of the fat image volume took approximately 10 min
and the atlas-based segmentation took approximately 7 min per atlas on a standard PC. The
Shapiro—Wilk test showed no significant deviation from a normal distribution for the
differences in IAAT, ASAT, and TF measurements (p = 0.077, p=0.147, and p = 0.159
respectively). There was no significant difference in the amount of IAAT measured using
AMRATM Profiler compared with the conventional sliceOmatic analysis (AMRA™ Profiler
4.73 £ 1.99 versus sliceOmatic 4.73 £ 1.75 1, p = 0.97). The difference in quantification of
ASAT was 10.39 £+ 5.38 (AMRATM Profiler) versus 9.78 + 5.36 1 (sliceOmatic), p < 0.001,
and for TF 15.12 = 5.74 (AMRA™ Profiler ) versus 14.50 £ 5.50 1 (sliceOmatic), p = 0.005.
Excellent agreement between the two methods was observed for all fat depots (Fig. 2). For
TAAT the 95% limits of agreement were -1.06 to 1.07 (Fig. 2a). Similar findings were
observed with ASAT, where the 95% limits of agreement were -0.36 to 1.60 (Fig. 2b). For
TF, the linear regression coefficient was 1.03 with an offset of 0.19 1 and the 95% limits of
agreements were -1.26 to 2.50 1 (Fig. 2¢). However, on average the AMRA rapid semi-
automated system volume estimates of ASAT and TF were numerically larger, though not
significantly, than the sliceOmatic analysis (6.3% for ASAT and 4.3% for TF). The
measurement of [AAT was very similar between the two methods (0.1% for IAAT). A linear
regression analysis of the Bland—Altman plots showed a significant linear regression
coefficient of 0.134 (p = 0.029) for IAAT. For ASAT and TF, there was no significant linear
regression (p = 0.834 and p = 0.248 respectively). Neither of the errors in [AAT or ASAT
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showed any significant correlation to the amount of TF (p = 0.248 and p = 0.335
respectively). The intra-observer CoV was 0.9%, 1.5%, and 2.4% for Operators 1-3
respectively (average 1.6%) for IAAT and 0.6%, 1.1%, and 1.6% respectively (average 1.1%)
for ASAT (Table 2). The intra-observer ICC was 1.000, 0.999, and 0.996 for Operators 1-3
respectively (average 0.998) for IAAT and 1.000, 0.999, and 0.998 for Operators 1-3
respectively (average 0.999) for ASAT. The inter-observer CoV was 1.4% for IAAT and
1.2% for ASAT. The inter-observer ICC was 0.999 for both IAAT and ASAT.

Fig 1. MR images from typical volunteer. (a) The calibrated fat image with intra-abdominal
and subcutaneous segmentations made by the AMRA™ Profiler overlaid in red and green
respectively. (b) The approximately corresponding transverse slice from the same subject
analysed by sliceOmatic. In this example both images were acquired with the volunteer

positioned in a supine position to make the images more readily comparable
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Table 1. Measurements of IAAT, ASAT, and trunk AT with the two analysis methods

Subject no IAAT (1) ASAT (I) Trunk AT (1)
sliceOmatic AMRA sliceOmatic AMRA sliceOmatic AMRA
1 1.30 1.16 11.73 11.48 13.03 12.63
2 5.85 6.70 4.44 5.38 10.29 12.08
3 6.24 6.28 11.71 12.52 17.94 18.80
4 412 403 20.67 21.63 24.79 25.66
5 5.50 520 529 5.72 10.79 10.92
6 336 333 2.94 3.46 6.30 6.79
7 5.14 474 5.82 6.56 10.96 11.29
8 4.00 3.48 7.79 7.90 11.80 11.38
9 3.74 313 15.39 15.42 19.13 18.56
10 7.23 8.69 7.73 9.76 14.96 18.45
11 251 2.16 7.84 8.52 10.36 10.68
12 4.18 3.40 10.16 9.74 14.34 13.14
13 7.38 7.14 9.54 10.75 16.92 17.89
14 2.09 236 7.21 7.93 9.30 10.29
15 6.66 6.52 9.92 10.22 16.58 16.74
16 5.72 5.00 7.35 7.75 13.06 12.75
17 4.09 4.10 10.86 11.75 14.95 15.84
18 431 450 430 4.92 8.62 9.42
19 6.06 6.03 11.27 11.67 17.32 17.70
20 7.75 837 6.05 6.76 13.81 15.12
21 339 353 18.71 19.64 22.09 2317
22 2.87 281 4.7 5.40 7.58 8.21
23 522 6.17 23.41 24.14 28.63 30.31

Volumes of intra-abdominal (IAAT), abdominal subcutaneous (ASAT), and total trunk adipose tissue measured in litres for each
volunteer using sliceOmatic and AMRA™ Profiler.

Discussion

Rapid scanning protocols are well as automated image analysis are essential in large
population studies where in vivo imaging modalities are becoming the norm. This study
shows that quantification of central obesity, including IAAT (‘visceral fat’) and ASAT, can
be done using a rapid semi-automated quantification method of MR images acquired with a
very rapid multi-point Dixon protocol. Furthermore, the correlation to the current gold-
standard semi-automated segmentation program (sliceOmatic) was extremely high for all fat
depots. The agreement between the two methods of quantification was also extremely high.
The design of the study was such that not only differences in analysis method were a factor,
but also the MRI acquisition protocol. Whilst it might seem counter-intuitive to both acquire
the data using different MRI sequences (T; versus 3D-Dixon) and have the patient in a
different position (prone versus supine), it was decided that a true test of the standard versus
the AMRA™ Profiler must ensure that the optimal and validated protocol should be used in

each instance, so as to minimize potential bias for any given method. Given the variation in
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acquisition and analysis, it is perhaps more impressive that the agreement in measurement
particular of IAAT is so high. Indeed, the strong linear correlation and excellent agreement
between the sliceOmatic and AMRA™ Profiler results indicates that the latter can be reliably
used for quantification of ITAAT, ASAT, and total TF. Moreover, given that the standard
segmentation technique takes more than 40 min per subject for a trained operator, making it
unfeasible for large population studies, the short analysis time of the AMRAT™ Profiler, less
than 3 min per subject, opens a realistic possibility for the analysis of MRI data sets from
large cohort studies. The computation time for the automated processing, of course, depends
on implementation and hardware. Parallel computing, e.g. using a GPU implementation or
multi-core CPU, could of course reduce the current computation time. The linear regression
coefficient was close to unity for both compartments, though the AMRA™ Profiler volume
estimates were numerically larger for ASAT, though not significantly, than for sliceOmatic
analysis. The differences between techniques were independent of the BMI and/or the total
body fat content of the volunteers. Therefore, it is possible that the methods of defining
which slices from the whole-body dataset to equate to the abdominal compartment generally
used (the top of the liver to top of femoral head) could account for this difference rather than
a difference between the analysis methods per se. There was, however, a positive linear
correlation between the differences in IAAT measures and the IAAT volume, indicating that
for subjects with more IAAT the AMRA™ Profiler tends to give smaller [AAT estimates
than the reference method. The different acquisition approaches necessitated identifying the
selecting matching top and bottom slices from an axial acquisition with relatively thick slices
and inter-slice gaps and from a 3D dataset. A small mismatch, particularly in the lower slices
containing the femoral heads, could have a significant impact of the amount of subcutaneous
adipose tissue included (but not internal adipose tissue), since this covers the area where
anatomically a small change in position can result in a substantial difference in subcutaneous
fat content. A limitation with the AMRA™ Profiler is that it requires fat— water separated or
complex-valued Dixon images, and cannot therefore be used for analysing already existing
data acquired with, for example, a more traditional T;-weighted protocol. However, the
proposed rapid Dixon protocol has several advantages compared with the more traditional T; -
weighted protocol used as reference in this study. First of all, the close to isotropic image
resolution, in combination with the breath-hold technique, gives a complete 3D data volume

rather than a stack of more or less independent 2D image slices. This significantly simplifies
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the use of 3D image processing, which also facilitates volumetric measurements of other
anatomical structures and organs. Second, the calibrated fat image is specifically sensitive to
fat, which is not the case for T;-weighted images. A calibrated fat image also enables
quantification of diffuse fat infiltration, e.g. in muscles and internal organs. It should also be
stressed that the AMRA™ Profiler gives an objective, user-independent quantification of the
fat signal. Only the anatomical definition of the compartment of interest is subject to
segmentation as well as inspection and manual interaction. This is important, e.g., in the
visceral compartment, where intestinal content easily can be mistaken for adipose tissue. The
excellent inter- and intra-observer ICC and the very low interand intra-observer variability
shown in this study confirm this. The CoV for the intra-observer comparison of 1.6% for
IAAT and 1.1% for ASAT can be compared with values reported in an earlier study [32],
where the investigated method (Hippo Fat) had a CoV of 7.25% for IAAT and 1.77% for
ASAT and the sliceOmatic analysis had a CoV of 4.53% for IAAT and 1.85% for ASAT.
The use of a quantitative fat image also means that, as opposed to methods based on
classification of individual voxels into adipose or non-adipose tissue as in References 14-16,
the method used here is much less affected by partial volume effects [21], since the fat in
voxels containing a mix of adipose and nonadipose tissue will also be included. Estimation
errors caused by partial volume effects increase with lower resolution, which is a
consequence of rapid whole-body acquisition. Furthermore, the AMRA™ Profiler used in
this study has also been used for compartmental muscle volume measurements [33], which is

also a relevant factor in metabolic studies.
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Table 2. Measurements of IAAT and ASAT using AMRA™
Profiler by three different operators

Subject no IAAT (I ASAT (1)

Op. 1 Op.2 Op.3 Op.1 Op.2 Op.3

1 7.58 767 766 1259 1267 1272
2 731 736 732 1215 1222 1226
3 3.68 378 388 943 939 954
- 253 260 256 840 838 860
5 132 129 129 1108 1098 11.22
6 573 577 573 595 583 605
7 9.28 941 923 772 775 7.9
8 384 394 391 363 357 356
9 6.73 686 6.73 539 526 536
10 7.05 718 704 1151 1144 1159
11 6.78 695 679 1325 1324 1323
12 445 445 439 2163 2167 2210
13 435 453 449 1939 1886 1903
14 3.15 3.18 3.1 1580 1574 15.70
15 961 976 950 1061 1051 1052
16 436 439 447 1366 1365 1387
17 334 340 337 556 557 561
18 235 243 254 935 935 958
19 498 507 5.02 488 484 494
20 5.38 545 528 744 734 738
21 443 452 456 1293 1291 13.12
22 6.96 738 7.4 2423 2338 2292

23 5.11 518 530 650 644 642

Volumes of IAAT and ASAT measured three times by
three different operators. The CoV for the intra-observer
comparison was 16% for IAAT and 1.1% for ASAT. The
inter-subject CoV for IAAT and ASAT was 1.6% and 1.1%

respectively.




= Bland-Altman plot of IAAT guantification
Z.00
‘E 1.50 -
= +1.96
g 1.00 - sTDEv
=1 -
- o.so -
= -
= - = .
S 0.00 - = = —— rAEAre
= - -
= -0oso0 -
82 - -
£ -1 00 1.96
= STDEV
=1
150
o 1 2 3 a s = 7 = e
Mean volume (1)
b Bland-Altman plot of ASAT gquantification
2.s50
=
g Z2.00 -
= +1.96
= 1.so STDEV
= -
= 100 - - - -
= =
= = > vg rEAre
= 0.50 - * o -
§ =
-
= o.00 -
= - 196
£ oso e STDEWV
=
=1
100
O 2 4 6 B 10 12 14 16 18 20 22 24 26
Mean volume (1)
< Bland-Altman plot of Trunk fat
2 .00 qunrtification
= -
=
g =.00
= +1. 96
= STDEWV
2 Z.00 -
=z -
= 100 o> - - - - -
= - rAEAre
- "
% 0.00 -
= - -
= -
& -1.00 - -1.96
= sSTDEV
=1
2. 00
0O 2 4 6 = 10 12 14 16 18 20 22 24 26
Mean volume (1)

Fig 2. Bland—Altman plots describing agreement between fat volumes measured using
sliceOmatic and the AMRA™ Profiler method for (a) IAAT, (b) ASAT, and (c) total trunk

adipose tissue.
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Paper 6

Changes in Liver Volume in Patients with Chronic Hepatitis C

Undergoing Antiviral Therapy

Julie Fitzpatrick, Jin Kim, Jeremy Cobbold, Mark McPhail, Mary Crossey, Aluel Bak-Bol,
Ashraf Zaky, Simon Taylor-Robinson’

Abstract

Liver volumetric analysis has not been used to detect hepatic remodelling during antiviral
therapy before. We measured liver volume (LV) changes on volumetric magnetic resonance
imaging during hepatitis C antiviral therapy. Methods: 22 biopsy-staged patients (median
[range] age 4519765 years; 9F, 13M) with chronic hepatitis C virus infection were studied. LV
was measured at the beginning, end of treatment and 6 months post-treatment using 3D T1-
weighted acquisition, normalised to patient weight. Liver outlines were drawn manually on 4
mm thick image slices and LV calculated. Inter-observer agreement was analysed. Patients
were also assessed longitudinally using biochemical parameters and liver stiffness using
Fibroscan™. Results: Sustained viral response (SVR) was achieved in 13 patients with a mean
baseline LV/kg of 0.022 (SD 0.004) L/kg. At the end of treatment, the mean LV/kg was 0.025
(SD 0.004, P = 0.024 cf baseline LV/kg) and 0.026 (SD 0.004, P = 0.008 cf baseline LV/kg) 6
months post-treatment (P = 0.030 cf baseline, P = 0.004). Body weight-corrected end of
treatment LV change was significantly higher in patients with SVR compared to patients not
attaining SVR (P = 0.050). End of treatment LV change was correlated to initial ALT (R* =
0.479, P =0.037), but not APRI, AST, viral load or liver stiffness measurements. There was a
correlation of 0.89 between observers for measured slice thickness. Conclusions: LV increased
during anti-viral treatment, while the body weight-corrected LV increase persisted post-

antiviral therapy and was larger in patients with SVR. (J Clin Exp Hepatol 2016;6:15-20)

Introduction

Hepatitis C virus (HCV) is a blood-borne hepatotrophic RNA virus of significant worldwide

public health concern [1]. Currently estimates indicate that there are 270-300 million people
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infected worldwide with the incidence of HCV expecting to peak in the next 10-20 years [1].
Treatment of HCV aims to improve outcome by slowing or halting progression to cirrhosis and
hepatocellular carcinoma (HCC), but serial biopsy during or following treatment is not
considered necessary or ethical at present. Non-invasive methods of assessing pathological
changes in the liver are being assessed, but are often expensive, conceptually difficult or require
specialist equipment [2]. At present, there is no accepted physiological description of any
remodelling changes occurring during antiviral therapy, nor is there an accepted proxy to
virological measurement to assess response to treatment. Patients with chronic liver disease
(CLD) frequently undergo imaging studies using magnetic resonance imaging (MRI) scanning
primarily for the assessment of focal lesions. Volumetric analysis of the liver by MRI [3,4] is
applicable to many clinical settings [5-7]. In operative planning particularly for partial
hepatectomy prior to surgery [3] for malignancy and for live-related liver donation, liver
volume (LV) is useful in assessing the risk of inducing liver failure in the resection candidate
[8] or “‘small-for-size’” syndrome in the graft recipient [9]. Smaller LVs are seen in more
advanced cases of fibrosis and in increasing Child—Pugh class of cirrhosis [10]. In patients with
cirrhosis and portal hypertension, a LV of 75% can be expected, compared to age-matched
controls. LV may also be related to pre-fibrotic metabolic processes such as steatosis or
hepatitis B [11]. Patients with non-alcoholic fatty liver disease (NAFLD) have increased LV
which has been shown to decrease on intensive weight loss programs [12]. Furthermore,
NAFLD is associated with faster disease progression in HCV and may contribute to the
baseline LV prior to treatment. Some authors have suggested that it is useful to assess changes
in volume over time as an indicator of therapeutic effectiveness and or disease progression [13].
MRI is well established as an accurate means to measure LV [4, 14]. Unlike computed
tomography (CT) scanning, MRI avoids the subject being exposed to ionising radiation, and
the use of nephrotoxic contrast media is not necessary for volumetric analysis. CT volumetry
has been employed in LV estimation in patients with acute liver failure [5, 15], although this
is likely due to a pragmatic choice of rapid scanning modality in these critically ill patients.
Longitudinal measurement of LV during treatment for chronic HCV infection has never been
performed previously, and MR would be a preferred platform to perform this readily
understood and exportable potential longitudinal marker. The purpose of this study was to
measure and observe any changes in LV accurately in a cohort of patients undergoing therapy

for chronic hepatitis C infection with pegylated interferon-alpha and ribavirin and assess the
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correlation of volumetric change with biochemical, virological and ultrasound transient
elastography (Fibroscan™, Echosens, Paris, France) indices of treatment response to help

understand putative hepatic remodelling processes during successful viral eradication.

Methods

Patient Selection

Twenty-two patients with chronic hepatitis C (CHC) were prospectively recruited over a 2-
year period from Imperial College Healthcare Trust with prior informed, written consent
obtained from each subject. Ethical approval was obtained from the regional ethics committee
in accordance with the 1975 Declaration of Helsinki, (ethics reference no. 06/Q041/10).
Patients were studied at the beginning and 6 months after stopping treatment with pegylated
interferon alpha 2a and ribavirin, the treatment time being genotype dependent with 24 weeks
treatment given for genotypes 2 and 3, while genotypes 1 and 4 received 48 weeks treatment.
Patients were included if they were aged 18—65 years, had evidence of replicating HCV
infection on HCV RNA testing (Abbott Realtime HCV assay, Abbott Diagnostics, Illinois,
USA), and had been referred for percutaneous liver biopsy for clinical indications. Patients
were excluded if they consumed >20 g of alcohol per day; were obese (with a body mass
index >30 kg/m?) or diabetic; if they were taking antiviral therapy; were co-infected with HIV
or hepatitis B; were currently taking intravenous drugs, antihypertensive or lipidlowering
medications; had ongoing illness or had evidence of hepatic decompensation. Histological
grading was performed by an experienced histopathologist using standardised scoring criteria.
Sustained virological response (SVR) was defined as no detectable virus on quantitative RNA
testing 6 months post-treatment. Length of treatment was decided by genotype as per European

Association for the Study of the Liver (EASL) guidelines [16]. All patients completed the study.

MRI

Patients were scanned using a Philips 1.5 T Achieva™ MRI (Philips Medical Systems, Best,
Netherlands). Scans were performed at baseline, 3 months, end of treatment and 6 months post-
treatment. Using a SENSE surface body coil, TFE 3D T, -weighted DRIVe Equilibrium
sequence were performed in a single breath-hold following hyperventilation. The parameters
were FOV 375 260, TR 7, TE 3.4, FA 15, 50 slices 8 mm/4 mm, thus resulting in 4 mm slice
thickness. All the data were sent to one workstation (Viewforum version R4.2V1L2 [Philips
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Medical Systems, Best, The Netherlands]. The edge of the liver contour was manually drawn
using the curser by an observer with 14 years’ experience in MR imaging (JAF). This process
was repeated for each slice; approximately 50 per examination, a total of 3500 contours were
drawn in total (Figure 1). The ViewForum gives an area in mm [2], which was then multiplied
by 4 to obtain a volume for the slice. These values were summed and divided by 1,000,000 to
obtain a volume in litres. The LV was normalised to patient weight given the expected change
in weight during antiviral therapy. An exercise in reproducibility was also undertaken for LV.
Two observers (one experienced radiographer (JAF) and one hepatologist (AZ) analysed 46
randomised slices five times, over a disparate timeframe resulting in 230 liver areas being
analysed. Further comparison was made by measuring and comparing the two observers

drawing contours five times around five slices.

Non-invasive Markers of Liver Fibrosis

On the same day as MRI volume studies, all patients had serial standard blood liver
biochemistry and both serum Enhanced Liver Fibrosis test (ELF™) (Siemens Healthcare
Global, Erlangen, Germany) and hepatic liver stiffness measurements using Fibroscan™

(Echosens, Paris, France) as non-invasive markers of liver fibrosis.

Statistical Methods

Variables pre- and post-treatment were compared using paired t-testing and repeated measures
ANOVA and % change in these variables was also assessed using oneway ANOVA.
Coefficients of variability among measurements for the same patient were estimated and
variability among observers was assessed using the intra-class correlation coefficient (ICC).
Statistical significance was defined at the 95% level and all P-values calculated were two-tailed.
Normality was assessed using the D’ Agostino-Pearson test. Statistical analysis was performed

using SPSS v 15 (SPSS, Chicago, USA) and MedCalc v 11.1 (MedCalc, Mariakerke, Belgium).
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Fig 1. An example of liver contour drawing of 4 slices of a magnetic resonance imaging study

Results

Twenty-two patients (12M:10F) of median age 47 (19-65) years made up the study cohort.
Eleven patients were current smokers and 7 patients were current alcohol users. The mean BMI
was 25 (3.4) kg/m?. The median fibrosis score on biopsy was 3 (1-6) and necroinflammatory
(NI) score 4 (1-6) from biopsies of median length 26 (4—48) mm. Of these, only two patients
had established cirrhosis and were well compensated with normal albumin levels and
prothrombin times (Child grade A). The other 20 patients had pre-cirrhotic liver disease with
good hepatic synthetic function. Twelve patients were genotype 1, two genotype 2, six
genotype 3 and two genotype 4 with a median baseline viral load of 130417 (1404-3455391
copies/mL). The other baseline clinical and biochemical parameters are shown in Table 1 with

their change during therapy

Volumetry

Thirteen of the participants achieved sustained viral response (SVR), 6 months after finishing
treatment. The mean LV/kg at the start of treatment for all participants was 0.022 (SD 0.004)
L/kg. Including all participants, the LV at the end of treatment was 0.025 (SD 0.004) L/kg

(mean difference %, P = 0.024, Paired t test compared to baseline LV shown in Figure 2) and
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further increased to 0.026 (0.004) L/kg 6 months after the conclusion of treatment (P = 0.008
compared to baseline, P = 0.034, repeat measures ANOVA, linear trend). The change in LV
was more pronounced in those patients who achieved SVR (MD + 0.004, P = 0.008, one way
ANOVA). Volume change was not related to treatment duration or genotype (P = 0.543,
repeated measures ANOVA) and body-weight corrected LV change was dependent on
virological response (P = 0.050, repeated measures ANOVA). Baseline LV was correlated to
waist circumference (R = 0.496, P = 0.016). However, no further correlations were found with
ALT, AST, APRI score, viral load, indices of necroinflammation or fibrosis, Fibroscan-
measured liver stiffness or body mass index (BMI). However, the end of treatment LV was
correlated to initial ALT (R =0.479, P = 0.037), but not to initial APRI, AST or viral load. LV
change was not dependent on the presence of cirrhosis at the start of therapy. There was no
significant change in liver stiffness as measured by ultrasound transient elastography using
Fibroscan™ over the course of therapy (10 (8) kPa to 11 (2) kPa, P = 0.778 Paired t test) and
no correlation between Fibroscan™ change and LV change (R = 0.196, P = 0.487). However,
significant change was noted with ELF™ serum testing (10 (1) to 10 (2), P = 0.0467, paired t
test).

Table 1 Paired Change in Baseline Variables During Treatment Presented as Mean (SD). The Group Interaction was Assessed
Using Repeated Measures ANOVA. ALT = alanine aminotransferase; GGT = gamma-glutamyl transpeptidase; Hb = haemoglobin;
ELF"™ = enhanced liver fibrosis score.

Variable Pre-treatment End of treatment Paired t test Group (SVR) Factor Interaction

GGT, iU/L 77 (65) 56 (40) 0.1393 0.821

AST, iU/L 79 (53) 48 (37) 0.0007 0.212

ELF™ score 10 (1) 10 (2) 0.0467 0.782

Low density lipoprotein, mmol/L 2(1) 25 (64) 0.1631 0.952

Liver volume, L 1.5 (0.3) 1.6 (0.3) 0.0276 0.115
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Fig 2. Comparison of liver volume in participants at baseline before the treatment and after 6 months of
therapy. (4) Participants who did not achieve sustained viral response (P = 0.438), (B) Participants who

achieved sustained viral response (P = 0.020).

Reproducibility

Comparison of LV measurements between the two observers showed a mean difference of 1%
which is not statistically significant. The mean standard error/% slice area for the second
observer was 2—1.5. The mean (SD) area/slice measurement was 9256 (116) mm? with the
standard error over all the analysed slices 53 mm?®. Thus, the % standard error/slice
measurement was measured at 1.02 (£0.18) % with only four slices having a % standard error
greater than 2%. The intra-class correlation coefficient between observer 1 and 2 was 0.707
(95% CI: 0.331-0.867), suggesting good agreement. However, Passing and Bablock regression
while demonstrating an intercept not significantly different from zero (8225 (-2492-12392))
did show a deviation from linearity in the slope (0.574 (0.363—1.1101)), suggesting there may

be errors in agreement dependent on slice area.

Discussion

In this study, we have aimed to accurately measure and observe any variations in LV in a cohort
of patients undergoing therapy for chronic hepatitis C infection with pegylated alpha interferon
and ribavirin and assess the correlation of volumetric change with standard and novel indices
of treatment response. For the first time, we have demonstrated that the LV rises during
antiviral treatment and is more pronounced when measured over a 12-month period in patients,
who achieve SVR. Volume increase could be interpreted as an indication of liver regeneration

and/or recovery and this may be related to reduction in fibrotic load of the liver. Hepatic
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fibrogenesis is dominantly orchestrated by hepatic stellate cell activation, which describes the
conversion of the normally quiescent vitamin A storage cells to ‘myofibroblasts’, which
contribute to both structural and dynamic hepatic fibrosis. Resolution of myofibroblast activity
is regarded as an important step in the reversal of inflammatory damage, initiated by the
expression of extracellular remodelling signals, which contribute to fibrotic load [17]. While
the liver stiffness on Fibroscan™ did not decrease, this is not necessarily the best test to
determine very small changes in fibrosis given that there are a number of false positives related
to an abnormal Fibroscan™ including changes in liver perfusion [18]. Furthermore, changes in
fibrotic load, as they require the reversal of myofibroblastic activation, are likely to resolve
over a longer time frame than during the study period, so the Fibroscan technique may not
detect any small reduction in fibrotic load of the liver in the face of any hepatic
perfusion/inflammatory changes [2]. We observed a small, but significant increase in LV with
SVR. This change is not related to baseline histological severity, suggesting that this is an effect
of viral clearance. Furthermore, no positive correlation can be found in this study between the
observed changes and Fibroscan™ or ELF score. Further studies assessing the changes in LV
with MR-measured perfusion techniques are required. MRI is an expensive imaging modality
and although commonplace in the developed world, demand on this particular resource is high.
However, abdominal and liver studies are commonly performed on MRI due to its superior
tissue contrast and lesion detection [19]. Therefore, the addition of another fast breath-hold
sequence assessing LV in a larger population could be considered, particularly given the
difficulty in performing serial liver biopsies in this population. Both performing and post-
processing of MR images involve highly trained personnel, while manually defining liver
contours is time consuming, and we have shown that bias can be introduced when non-imaging
trained staff perform contour analysis. It would be advantageous to develop automated
techniques to define LV both currently and prospectively on acquired data sets. Novel
registration techniques [20] are currently in development and automated methods may soon be
available, when the limitations of breath-hold acquisitions are overcome. Furthermore, we did
not assess functional LV in this study, which is possible using SPECT-CT [21]. However, this
is unlikely to be a source of bias, as no patients in this study had significant vascular
abnormalities. A particular strength of our study was the reproducibility of MRI LV assessment.
We would recommend that this assessment is done by trained staff, given the findings from

Passing and Bablock regression. This is in agreement with previous studies [14], which
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demonstrated that using MRI is a robust method for measuring LV and has the advantage of
avoiding contrast media use and exposure of ionising radiation to participants. While multiple
other modalities were employed to determine a potential mechanism of hepatic remodelling
via non-invasive imaging our results were not conclusive in this regard. In future studies, it
would be useful to measure LV changes during disease therapy, which in conjunction with the
other imaging modalities discussed here, could further elucidate which mechanisms are

involved hepatic remodelling of long-term fibro-inflammatory diseases.
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Paper 7

Psoas Major Crosssectional Area: A Potential Marker of

Cardiorespiratory Fitness

Julie Fitzpatrick, Edward S Chambers', James R C Parkinson, Gary Frost!, Jimmy D Bell, E

Louise Thomas

Abstract

Cardiorespiratory fitness is an important marker for overall health that significantly correlates
with obesity-associated morbidities and mortality. Maximal oxygen uptake (VO,,,x) recorded
during an incremental exercise test is the gold standard assessment for aerobic fitness. However,
its cost, chronic illness, and frailty often preclude its application. The cross-sectional area (CSA)
of the abdominal psoas major muscle is a predictor of sarcopenia and surgery outcomes and
represents a promising biomarker for cardiorespiratory health. Therefore, in the present study,
we have planned to assess the relationship between psoas major CSA, anthropometry, and body
composition in a UK-based cohort of 210 men and women. Methods: Body mass (kg), height
(cm), waist circumference (cm), VO, .4, and blood pressure were measured in each participant.
The CSA of psoas major, rectus abdominus, and another abdominal muscle of the core muscle
group were assessed. Results: Following adjustment for height, psoas major CSA was found
to be a significant predictor of percentage body fat (P = 0.02) in men, and body mass index
(BMI) in both men (P = 0.015) and women (P = 0.004). We found psoas major CSA correlated
more strongly with VO2max (r = 0.74, P < 0.01) than any other study outcome, including age
and BMI. Conclusion: Psoas major muscle CSA represents an accurate, reproducible, and

time-efficient surrogate for cardiorespiratory fitness and body composition.

Introduction

Physical inactivity significantly contributes to both morbidity and mortality, with public health
organizations now increasingly promoting habitual exercise to reduce the negative impact of a
sedentary lifestyle [1,2]. Improvements in cardiorespiratory fitness are a key target for

intervention, with maximal oxygen uptake (VO,,.x) recorded during an incremental exercise
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test to exhaustion, being considered the gold standard [3,4]. Cardiorespiratory fitness is
inversely related to fat mass [3], type 2 diabetes prevalence [5], and a more reliable predictor
of mortality than other established markers, such as blood pressure or circulating cholesterol
[6]. However, the time commitment and cost of performing these tests often make them
impractical, and chronic illness or frailty in elderly patients precludes their application.
Consequently, there is a need for accurate and reproducible biomarkers for use as surrogates
of cardiorespiratory fitness. Morphometric analysis of core muscle cross-sectional area (CSA)
is emerging as a strong indicator of health outcomes [7], with an increase in muscle fiber CSA
as the main functional adaptation arising from aerobic and strength training.[8] The psoas
major is a large muscle of the abdomen, forming part of the core muscle group, assisting lateral
rotation and abduction of the hip joint.[9] Psoas major CSA has been used in a number of
studies to predict the total body lean muscle mass[10], sarcopenia [11], and surgical outcomes
in elderly patients [12,13]. It therefore represents a potential marker for cardiorespiratory
fitness. In the present study, we would like to characterize how the CSA of psoas major and
the rectus abdominus (RA), another Morphometric analysis of core muscle cross-sectional area
(CSA) is emerging as a strong indicator of health outcomes [7], with an increase in muscle
fiber CSA as the main functional adaptation arising from aerobic and strength training [8]. The
psoas major is a large muscle of the abdomen, forming part of the core muscle group, assisting
lateral rotation and abduction of the hip joint [9]. Psoas major CSA has been used in a number
of studies to predict the total body lean muscle mass [10], sarcopenia [11], and surgical
outcomes in elderly patients [12,13]. It therefore represents a potential marker for
cardiorespiratory fitness. In the present study, we would like to characterize how the CSA of
psoas major and the rectus abdominus (RA), another abdominal muscle of the core muscle
group, vary with age, gender, and BMI in a cross-sectional population. Second, in a subset of
our cohort, we have assessed the relationship between these muscles CSA and VO, .« to gauge

their potential as a surrogate marker for overall physical health.

Materials and Methods

Ethical Approval
Written informed consent was acquired from all volunteers. Ethical approval for this study was
obtained from the Brent National Research Ethics Committee (Rec: 12/L0O/0139). All studies

were carried out in accordance with the Declaration of Helsinki. In total, 210 participants were
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recruited through advertisements in newspapers, websites, academic newsletters, and inviting
male and female volunteers of Caucasian ethnicity from the general public. Participants
presented with no history of chronic disease or excess alcohol intake were included in the study.

Individuals on prescribed medication and pregnant women were excluded from the study.

Anthropometry, blood pressure, and clinical biochemistry

Body mass (kg), height (cm), and waist circumference (cm) were measured in each participant
by a single experienced observer. Fasting glucose, total cholesterol, triglycerides, high-density
lipoprotein, low-density lipoprotein, and insulin were measured by standard methods by the
Department of Chemical Pathology, Imperial College Healthcare National Health Service
Trust. Blood pressure of the participants was measured by trained clinician using an automatic

sphygmomanometer after 5 min of rest in supine position.

Scanning

Individuals underwent magnetic resonance imaging (MRI) at 1.5T (Archiva, Philips Medical
Systems, The Netherlands) following an overnight fast. Participants were in prone position,
and T1-weighted axial images of the whole body were obtained as described previously [14].
During the same scanning session, 'H MR spectra were also acquired at 1.5T. Using a surface

coil, intrahepatocellular lipid (IHCL) was measured relative to liver water content [15].

Psoas major and rectus abdominus

Using the open source image processing program Image-J (NIH, USA), the CSA of the psoas
major was manually isolated at lumbar point L3/L4. The CSA of the rectus abdominis (RA),
which can also be clearly observed within the same axial slice, was measured from the same
MRI images to provide a comparison core muscle. The CSA values for each muscle group in
this study correspond to the sum of the CSA of the right- and left-hand sides [Supplementary
Figure 1]. Due to the strong correlation between psoas major muscle and height, values are also

presented as CSA/height? (mm? /m?) [16].

Reproducibility

To test the reproducibility of the manual analysis of psoas major and RA CSA, two separate
exercises were undertaken. In test 1, left and right muscle CSA [Supplementary Figure 1] were
assessed three times in a row by the same observer; psoas: (Average [standard deviation [SD])

4165.1 = 24.37 mm?, coefficient of variation (CoV): 0.59%; RA: 1826.0 £ 9.2 mm?, and CoV:
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0.50%. In test 2, the same axial slice was measured on three separate occasions, at 1 week
intervals; average (SD): 4117.3 = 61.92 mm? and CoV: 1.5%. In test 2, the analysis was
repeated three times on a single, randomly chosen image, 1 week apart by the same observer;

psoas CoV: 2.9% and RA: 3.7%.

VO, max Assessment
An incremental cycling test to exhaustion [4] was carried out on the same study day as the MRI

scan to obtain VO,,,x in a subset of the cohort (99 individuals [67 male, 32 female]).

Statistical Analysis

Student’s t-test and Spearman’s rank correlations were performed on variables; psoas major
CSA, RA CSA, and VO, .. Linear regression was performed in GraphPad Prism version 6.0
(GraphPad Software, USA). IHCL values were log transformed after adding + 1 to their values
due to the nonnormally distributed nature of the outcome [14]. Correlation was performed in
SPSS 23 (IBM SPSS Statistics for Windows, USA) and linear regression in GraphPad Prism.

P < 0.05 was considered significant. All data were presented as mean + SD.

Results

A total of 210 participants (97F, 113M) took part in the initial study to characterize psoas major
and RA muscles, both raw and adjusted for height, are summarized in Table 1. Average psoas
CSA/height* and RA CSA/height> measurements for the entire cohort were 942 + 93 and 436
+ 141, respectively. Women presented with significantly smaller psoas and RA when compared
to men (psoas CSA/height*: female 741+167 mm? /m?, male 1114 + 266 mm? /h?, P < 0.001;
RA CSA/height?: female 324 + 73 mm? /h?, male 491 + 134 mm? /h?, P < 0.001).
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Table 1: Characteristics of baseline cohort n = 210
(113 male, 97 female)

Mean+SD Range
Age (year) 438145 18-67
Weight (kg) 79.8<18.1 40.7-146.6
Height (m) 1.7£0.1 1.5-2.0
BMI (kg/h®) 26.6+5.1 15.5-47.5
Waist (cm) 90.2+15.7 56.5-131
Hip (cm) 103.6=9.5 76-136
WHR 0.87=0.1 0.67-1.09
Psoas major CSA (mm*/m?) 28571051 718-7458
Psoas major CSA/height* 942+293 231-2312
RA CSA (mm*/m*) 1333£515 554-3217
RA/height* 436141 198-998
S-IMCL 13.4+7 2.28-50.4
T-IMCL 6435 0.25-30.5
THCL 3.7£9.8 0.0-108.7
Total fat (kg) 24.3=11.1 5.4-67.0
Subcutaneous (kg) 19.3£9.2 3.79-57.3
Internal (kg) 5.0£28 0.88-14.7
Subcutaneous 5.5£32 0.65-18.2
abdominal (kg)
Subcutaneous peripheral (kg) 13.8+6.1 3.14-39.7
Visceral (kg) 2.7£19 0.31-104

Nonvisceral internal (kg) 2.3=1.0 0.53-6.2

Data presented as mean = SD. WHR: Waist to hip ratio, BMI: Body mass index, CSA: Cross-sectional area, RA:
Rectus abdominis, S-IMCL: Soleus intramyocellular lipid, T-IMCL: Tibialis intramyocellular lipid, IHCL:
Intrahepatocellular lipid, SD: Standard deviation

Figure 1 shows how muscle CSA, adjusted for height, varied by gender, age, BMI, and
percentage body fat. Linear regression analysis revealed a significant inverse relationship
between psoas CSA/height2 and age in men [r = 0.13; P = 0.016, Figure 1a] with no effect in
women [Figure 1b]. Both psoas major CSA/height® (r = 0.28; P = 0.004) and RA CSA/height®
(r =0.46; P < 0.001) were significant predictors of BMI in women [Figure 1d], while only
psoas major CSA/height? predicted BMI in men (r = 0.22, P = 0.015). Lastly, psoas major
CSA/height* was a significant inverse predictor of body fat percentage in men [r = 0.22; P =
0.02, Figure le]. Examination of the relationship between psoas and RA with metabolically
adverse fat depots, visceral fat and IHCL, can be found in Figure 2. Psoas major CSA/height?
inversely predicted visceral fat in men [r = 0.20; P = 0.02, Figure 2a], while RA CSA/height®
was a significant predictor of IHCL in women [r = 0.22; P = 0.02, Figure 2b]. A comparison
of how psoas major and RA muscles (after adjustment for height) correlate with study
outcomes is shown in Supplementary Figure 2. Both psoas major CSA/height* and RA/height?
were inversely correlated with age (r =—-0.49, P <0.01, r =-0.50, P < 0.01). RA/height2 was
significantly associated with visceral (r = 0.28, P < 0.01) and nonvisceral adipose tissue (r =

0.20, P < 0.05) with no correlation observed with psoas major CSA/height? (P = NS).

164



2500 1500+
a ° - .
£ 2000 E as
£ ‘ : E 1000- s
E 1500 o . %, 8 i E a8 &‘;‘.Aﬁm . . .
®a Y o 858 9 qo _gg 4 a s 0.011
':3:-‘ Q,E...o': .vtpec,%‘f'ﬁ_f’g__._g%_q 20017 '};' a Béa_e.a = ‘“2 p=0.30
D 10004 &£ oS &% . P=0016 = ﬂ% a a hﬁ
[ aow e :ﬁ:n' @ 5001 LV T S Gl
S e ey ™ - Y a rf0013
5004 q—_qg—s#m 20,007 g A pr0.25
o - . - p=0.38 o a -
0 . . . ; . : ) 0 . - : : .
O 10 20 30 40 50 60 70 80 ] 10 20 30 40 50 60 70 80
Age (yrs) Age (yrs)
2500- 1500+
- ° - X
E 20001 E s, R
a o
£ £ 1000 a8 s 7 oce
£ 15004 20,082 E ,ﬁA % L A P=0.004
% - p=0.015 % °-A9g§ oA
S 1000+ = a agd Af? %a _ fon
@ oo @ 5004 S8 alh s a A 2<0.001
§ 5001 p=025 § A A
o o . “
0 . . . . . , 0 . . . . .
16 20 25 30 35 40 45 50 10 20 30 40 50 60
2 2
BMI (kg/m?) &l BMI (kg/m?)
2500+ 1500
Eay ° Em o
E 20001 E s, 84
E o E 1000
E 15004 @ o0 & ool E %Abﬁogé ale
o" o o
B= ""'gr“qmz‘.‘.’.?z%.‘i"_&g’s ° o 200 % .sb"b"'régﬁm %A: #:53:1
4 - )
E 1000 o 0;3@% uﬁg’j‘r‘g W% oo E‘ 500} T Sl oo
- r - o - ~£ - [
sof LR T wh g = o
§ '-_W.F‘ et %= peoss 5 A s 0
0 . . . : ) 0 - . - - . .
10 20 30 40 50 10 20 30 40 50 60 70
e} Body Fat (%) Body Fat (%)

Fig 1: Gender-specific distribution of psoas and rectus abdominus muscle cross-sectional area/height’ with age,
body mass index, and percentage body fat. Cross-sectional area adjusted for height (cross-sectional area/height?)
of psoas major (white square/circle) and rectus abdominus (black square/circle) muscles in men (a, c and e) and
women (b, d, and f) by age (a and b), body mass index (c and d), and percentage body fat (e and f). Linear
regression performed in GraphPad Prism with corresponding r? and P values. 0: Male psoas, A: Female psoas;
m: Male rectus abdominus; A: Female rectus abdominus

Further investigation in a smaller, older subset of the cohort for which VO,,,,.x Was available
(n=105 (72M), age 54.5 &+ 8.5 years) was carried out to assess the validity of psoas major and
RA muscle CSA as a marker for cardiorespiratory fitness. Baseline characteristics for this
cohort are shown in Supplementary Figure 3. Average VO, ¢ Was 2523 + 1091 ml/min, with
female VO, lower (1520 + 332 ml/min) than male (3002 + 998 ml/min). After correction
for weight, male VO,,,x Was 32.2 + 12.1 ml/kg/min, while female was 19.9 + 4.3 ml/kg/min.
Correlation analysis between VO, .« (adjusted for weight) and study outcomes is shown in

Table 2. Psoas major muscle CSA/height2 (mm? /m?) correlated strongly with VO, .«
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(ml/kg/min) (r = 0.56, P <0.01), with no association observed with RA CSA/height* (r=0.17,
P =NS). Both age (r =-0.64) and height (r = 0.49) correlated strongly with VO, ., to a similar
degree of significance (P < 0.01). Gender-specific analysis revealed a significant correlation
between psoas major CSA/height2 and VO, (ml/kg/min) (r = 0.33, P < 0.01) in males. In
female volunteers, VO,,.x (ml’kg/min) correlated strongly with individual adipose
compartments but no associations were observed with anthropometric or core muscle group
measurements [ Table 2]. Gender-specific distribution of psoas major and RA CSA/height® with
VO, max (ml/kg/min) is shown in Figure 3. Linear regression revealed psoas major CSA/height?
which were significant predictors of VO,,,. in male participants [P < 0.001, Figure 3a], with
no effect in women [Figure 3b]. RA muscle was not found to be a significant predictor of

VO, ax 1n either men or women [Figure 3].

Discussion

In the present study, we characterize how the CSA of psoas major and RA muscles varies with
age, gender, and BMI in a cross-sectional population. The CSA of the psoas major strongly
correlated with and was a significant predictor of VO,,,,,4 in @ male subset of our cohort, with
no such relationship observed with RA. Physical inactivity is a leading cause of most chronic
illness and practical methods to determine fitness levels are needed to enable effective
assessment of lifestyle interventions and public health planning [17,18]. The use of MRI and
computerized tomography (CT) scans to measure the content and distribution of body fat is
increasingly common in both research and clinical fields, with cross-sectional abdominal
imaging a common procedure in a diagnostic setting. Postprocessing of abdominal region scans
enables an in-depth investigation of tissue morphology, including the CSA of different muscles.
Muscle size represents a quantitative index, reflecting general health and intervention risk [19].
While obtaining whole-body images can be time-consuming and expensive, studies have
shown that the CSA of abdominal skeletal muscle provides a reliable surrogate of whole body
muscle mass [10]. Within this region lies the psoas major muscle, a component of the core
muscle group and a surrogate marker for sarcopenia and surgical outcomes [9,12,20]. The RA
muscle, often referred to as the abdominals, is another component of the core muscle group
that lies within the L4 region and was included in our analysis as a comparator. The psoas
major is easily identified on axial images in both MRI and CT scan, and analysis of muscle

CSA can be easily translated into any research institute where cross-sectional imaging of the
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abdominal region is available using this simple and straightforward method. Our data indicate
psoas major CSA predicts VO,,,.x, albeit in men only, with no such effect observed with RA.
Correlation analyses of RA and psoas major CSA adjusted for height revealed comparable
degrees of association for the majority of study outcomes. There was however a significant
inverse correlation between psoas major CSA and age, a relationship not observed with RA. In
addition, while the psoas was negatively correlated with total, subcutaneous, and subcutaneous
abdominal fat, RA also showed a positive correlation with metabolically adverse visceral and
internal fat stores [21]. Cardiorespiratory fitness is known to be a significant predictor of fat
mass and together these data indicate that of the two core muscles, the psoas major is the more
viable marker for metabolic and cardiovascular health. Ethnic differences exist regarding
muscle mass distribution [22] and to avoid these potentially confounding effects, study
recruitment was limited to Caucasians. Further research is therefore warranted to determine the
influence of broader participant demographics on the positive associations between psoas
major CSA, cardiorespiratory fitness, adiposity, and fat-free mass. As expected, the CSA of
both psoas major and RA muscles was significantly smaller in women compared to men,
necessitating gender-specific analysis. The inverse relationship observed between psoas and
age in men was expected and reflects an established association [22]. However, in women, we
failed to see a reduction in either psoas major or RA size as age increased, or indeed any
correlation between VO,,.x and other outcomes. Indeed, it is clear that the significant
associations we did observe between VO,.,.x and study outcomes were driven by the
relationship in men. Several factors may have contributed to this; first, the number of women
for which VO2max data were available was considerably smaller (n = 33) compared to men (n
= 72). Second, the range of VO, . Values was more limited in women (511-1175 ml/min)
than men (663-2312 ml/min), perhaps reflecting the reduced levels of reported physical
activity in women who participated; 24% reported “fit” (corresponding to >5 h exercise per
week), compared to 42% of the men. Interventional studies which employ exercise and
subsequently measure the effects on VO, .« and core muscle size will be required to eliminate
the confounding effects of age and determine the efficacy of psoas as a marker of metabolic

fitness.

Limitations of the Study

Sample size in the present study was less.
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Conclusion

Our findings indicate that psoas major CSA measured at L4 is strongly associated with
cardiorespiratory fitness, adiposity, and fat-free mass. Hence, psoas major is a potential marker
of cardiorespiratory fitness. Additional work in a larger, racially diverse population with a more

expansive range of fitness levels will be required to confirm its utility.
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Paper 8

Advancing Pancreas Segmentation in Multi-protocol MRI

Volumes using Hausdorff-Sine Loss Function

Hykoush Asaturyan', E. Louise Thomas, Julie Fitzpatrick’, Jimmy Bell?>, and Barbara

Villarini!

Abstract

Computing pancreatic morphology in 3D radiological scans could provide significant insight
about a medical condition. However, segmenting the pancreas in magnetic resonance imaging
(MRI) remains challenging due to high inter-patient variability. Also, the resolution and speed
of MRI scanning present artefacts that blur the pancreas boundaries between overlapping
anatomical structures. This paper proposes a dual-stage automatic segmentation method: 1) a
deep neural network is trained to address the problem of vague organ boundaries in high class-
imbalanced data. This network integrates a novel loss function to rigorously optimise boundary
delineation using the modified Hausdorff metric and a sinusoidal component; 2) Given a test
MRI volume, the output of the trained network predicts a sequence of targeted 2D pancreas
classes that are reconstructed as a volumetric binary mask. An energy-minimisation approach
fuses a learned digital contrast model to suppress the intensities of non-pancreas classes, which,
combined with the binary volume performs a refined segmentation in 3D while revealing dense
boundary detail. Experiments are performed on two diverse MRI datasets containing 180 and
120 scans, in which the proposed approach achieves a mean Dice score of 84.1 + 4.6% and
85.7 £2.3%, respectively. This approach is statistically stable and outperforms state-of-the-art
methods on MRI.

Introduction

Segmenting the pancreas in 3D radiological scans (e.g. an MRI volume) could provide
significant insight into the severity or progression of type 2 diabetes [1] and ductal
adenocarcinoma [2]. However, pancreas segmentation presents several challenges due to high

structural and inter-patient variability in size and location. The greyscale intensity of the
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pancreas can be very similar to neighbouring tissue, and the boundary contrast can vary
depending on the level of surrounding visceral fat. Differing from computer tomography (CT),
the low resolution and slower imaging speed of MRI presents edge-based artefacts that blur the
imaging boundaries between the pancreas and surrounding organs [3]. In existing research
literature, pancreas segmentation tasks have been driven by two major methodologies: multi-
atlas based [4, 5] coupled with statistical shape modeling [6], and in more recent years,
convolutional neural networks (CNNs) or deep learning [7, 3, 8]. While CNNs have achieved
higher quantitative accuracy scores in 2D medical image segmentation, such methods can
exhibit discontinuity in predicting pancreatic regions between consecutive slices for an input
volume. This paper presents a novel approach for automatic pancreas segmentation in MRI. As
illustrated in Figure 1, the proposed method consists of two successive stages. First, a CNN
specialising in blurred boundary detection is trained to predict targeted pixel-wise pancreas
tissue. This deep learning stage firstly identifies the main pancreas region (ROI) in a dataset of
MRI volumes [8] by training a random forest on extracted texture and probability-wise features
on image patches of 25 x 25 pixels. Next, inspired by the encoder-decoder architecture of
SegNet [9] a new model termed Hausdorff Sine SegNet (HSSN) is developed using the ROI
data. A novel loss function incorporates the modified Hausdorff distance metric and a
sinusoidal component to capture local boundary information, enforce edge detection and thus
raise the true pancreas prediction rate on a 2D (slice-by-slice) basis. The testing stage consists
of two phases. First, the output of the trained HSSN for a given test MRI volume encodes
spatial information to classify every pixel in each slice, thus forming a volumetric binary mask
(VBM). The second phase generates dense contouring by further tackling the low dissimilarity
between organ boundaries: a digital contrast enhancement model is utilised to improve the
greyscale variation between surrounding background classes within close proximity to the
pancreas. A 3D energy-minimising algorithm performs refined segmentation on the enhanced
pancreas that is fused with the VBM, producing greater consistency in spatial smoothness and
prediction among successive slices. The proposed method, which is evaluated on two MRI
datasets with varying noise, outperforms the state-of-the-art approaches [8, 10-12], and
moreover, surpasses the performance of readily employed deep learning-based loss functions.
Although this approach has been tested on pancreas segmentation, the methodology is
reproducible, scalable and generalisable to other organ segmentation tasks. The

implementation is available at https://github.com/med-seg/p.
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Materials and methods

Training the HSSN

The proposed HSSN model has an encoder-decoder topology, as illustrated in Figure 2. The
decoder network uses max-pooling indices to upsample low-resolution feature maps,
consequently retaining high-frequency details to improve pancreatic boundary delineation, and
reducing the total number of trainable parameters in the decoders. Unlike other models that
have been fine-tuned from pre-trained CNNs using a large number of natural images [3, 13],
this network is trained from scratch using exclusively pancreas datasets. Since this organ
accounts for ~1% in a scan, there is a need to weight the loss differently based on the true class:
Median frequency balancing [14] is utilised, in which the weight assigned to a class in the loss
function is the ratio of the median of class frequencies computed on the entire training set
divided by the class frequency. The HSSN also employs data augmentation of random
reflections and translations to reduce overfitting [15], and further address problems caused by
high shape variability.

(1) Training Stage

Test MRI
Volume
(slice-by-slice)

Phase A Phase B

Fig. 1. Overview of proposed approach. (1) develop the HSSN deep learning model using training MRI; and (2)

apply the test MRI to generate segmented pancreas volume.

ConvL.(3x3) ||\ IESSNEE HSSN-D —  Softmax (2)
BatchN. +ReLU || HSSN-E \ .
/ 5 Batch N. + ReLU |} X
Pooling (2 x 2 / )
| Pocling@x2) |/ : ConvL.(3x3) || HSSN-D
HSSN -E Upsample (2 x 2) HSSN-D
| I Pixel classification  Boundary tracing
of predicted
Pooling indices pancreas region
\ J

Fig. 2: Overview of HSSN model. An encoder stage (5 blocks of HSSN-E) downsamples the MRI input through
convolution, batch normalisation and ReLU. A decoder stage (5 blocks of HSSN-D) upsamples its input using the
transferred pooling indices from its corresponding encoder to generate sparse feature maps. From here,

convolution is performed with a trainable filter of weights to density the feature map. Resulting decoder output
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feature maps are fed to soft-max classifier for 2-channel pixel-wise classification of the input image as “pancreas”

or “non-pancreas’’.

Integrated Hausdorff-Sine Loss Function

A novel loss function is proposed for training the segmentation neural network. The
optimisation of the modified Hausdorff distance and a sinusoidal functionality serves to reduce
the boundary matching error and “enhance” a resulting pixel-wise pancreas prediction. Let Ty
and Yy represent the ground-truth and network boundary predictions respectively, where Ty,

Yy © R" such that [Ty, [Yy | < oo. Furthermore, t; and y; € {0, 1} are indexed pixel values in

Ty, and Yy respectively, and can be viewed as boundary points. The Euclidean distance

. ) : min )
between a point t; and set of points, Yy is s (tj, Yy) = yi € Yy ||t]- - y]-| , and the distance

min X
between a point y; and set of points, Ty, is s(yj, Ty,) = t € Ty ||y]- - t]-||. Ife, = ﬁ y; € Yy

s(tj, Yy) and g7 = — s(¥j, Tu), the modified Hausdorff distance loss, Ly,pq is:
ITul tj € Ty
Linna = MAX {gy €7} (1)
Thus, computing the gradient yields:
G if ey > e
—~- (&v)
nna | if ep < 2
—nac ifer<e
6YH E (ST) T Y ( )

undefined jf g, = ¢,
An additional sinusoidal component increases non-linearity during network training and
empirically evaluated, raises the true positive predictions. If 7'and Y represent the ground-truth

and network predictions, the loss Lg;,. is defined:

1 nC .
Lsine =- m X sin (Ti) logz (Yi) (3)
i=1

where nC = 2 is the number of classes (e.g., Y;, refers to “pancreas” and Y, refers to “non-
pancreas”). From here, computing the gradient yields:
M _ 1 sin(T;) @
dY; Y] Yilog10(2)

The model is updated via the combined gradients of Lg;,,. and Ly, 54-
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Testing Stage

(A) Targeted Pancreas Binary Mask

The trained HSSN model performs pixel-wise prediction on each slice in a test MRI volume to
generate a resulting volumetric binary mask (VBM). Columns (a) and (b) in Figure 3 displays
three sample input slices in three different image volumes, and the corresponding positive
pancreas region (white mask) as predicted by the HSSN model. The red contouring in each

image in column (b) is the ground-truth.

Fig. 3: Visualising proposed approach.
(B) Achieve Dense Contouring

The test MRI volume undergoes non-local means for denoising, after which a learned intensity
model incorporates a sigmoid function to exhaustively differentiate pancreatic tissue against
background classes. Every S;-th slice transforms to C(s;) = 1/(1 + exp [g(c—s;)]), where g
controls the actual contrast, and c is the cut-off value representing the (normalised) greyscale
value about which g is changed [12, 16]. The VBM is applied to the enhanced image volume
and processed through a 3D unsupervised energy minimisation method via continuous max-
flow [17], revealing detailed contouring as highlighted in Figure 3, column (c). The accurate
HSSN predictions reduce the level of non-pancreatic tissue carried into the max-flow

segmentation stage, as shown in Figure 3, column (d), eliminating the need for post-processing.

Experimental Results and Analysis

Datasets and Evaluation

Two expert-led annotated pancreas datasets are utilised. MRI-A and MRI-B contain 180 and
120 abdominal MRI scans (T2-weighted, fat suppressed), which have been obtained using a
Philips Intera 1.5T and a Siemens Trio 3T scanner, respectively. Every MRI-A scan has 50
slices, each of size 384 x 384 with spacing 2mm, and 0.9766mm pixel interval in the axial and

sagittal direction. Every MRI-B scan has 80 slices, each of size 320 x 260 with 1.6mm spacing,
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and 1.1875mm pixel interval in the axial and sagittal direction. The proposed approach is
evaluated using the Dice Similarity Coefficient (DSC), precision (PC), recall (RC) and the
Hausdorff distance (HSD) representing the maximum boundary deviation between the

segmentation and ground-truth.

DSC: 91.79% DSC: 83.05% DSC: 90.09%

DSC: 88.04%

D

DSC: 88.99% DSC: 83.42% DSC: 86.01% DSC: 88.41% DSC: 85.70% DSC: 85.18%
(a) (b) () (@ () (0]
MRI-A MRI-B

Fig. 4: Segmentation results in six different MRI scans (volumes). Every column corresponds to a single MRI
volume. From left, first row displays sample MRI axial slices with segmentation outcome (green) against ground-

truth (red), and computed DSC. Second row displays 3D reconstruction of entire pancreas with computed DSC.

Network Implementation

The training and testing data are randomly split into 160 and 20 (MRI-A) and 100 and 20 (MRI-
B). The HSSN model employs stochastic gradient descent with parameters momentum (0.9),
initial learning rate (0.001), maximum epochs (300) and mini-batch size (10). The mean time
for model training is ~11 hours and the testing phase is ~7.5 minutes per MRI volume using
an 17-59-30k-CPU at 3.50 Ghz. Future work can potentially reduce these run-times by a factor
of 10 via multiple GeForce Titan X GPUs.

MRI-A ) ) MRI-B
J(Y%)

JI (%)

DSC (%) — . DSC (%) | el }

55 60 65 70 75 80 85 92 55 60 65 70 75

Fig. 5: Box plots of DSC and JI.

Analysis of Proposed Approach

Figure 4 displays the final segmentation results in six MRI scans, equally split between MRI-
A and MRI-B. Columns (a, b, c¢) are part of MRI-A, yet there is high variation between intensity
and contrast in the original axial MRI slices. Columns (d, e, f) corresponds to exemplars from
MRI-B. As reflected in Figure 5, 85% of MRI-A compared to 95% in MRI-B segmentations
score above 80% in DSC, demonstrating the robust performance of the approach with respect

to poor image quality, intensity distribution and spatial dimensions.
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MRI-A and MRI-B
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Fig. 6: DSC across threshold ranges [0.05, 0.95] via multiple loss functions:
ROC for MRI-A and MRI-B
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Fig. 7: Averaged ROC curves via multiple loss functions.

Hausdorff-Sine Loss

Figure 6 compares the segmentation results (in DSC) using Hausdorff-Sine and the loss
functions, Hausdorff, Cross-entropy, Dice [18] and Jaccard [19] in the probability range
[0.05,0.95]. The cross-entropy penalises true positive predictions, forcing the “optimum”
probability to approximately 0.5. Although the Dice loss minimises the class distribution
distance, squaring the weights in the backpropagation stage causes instability and a higher rate
of false negative predictions. Similarly, the Jaccard loss suffers from low true positive
predictions. Empirically tested, the Hausdorff loss minimises the maximum deviation between
a prediction and desired outcome; however, the addition of a sinusoidal component increases
non-linearity during training, and thus Hausdorff-Sine achieves improved true positive
predictions across differing thresholds while delivering strong discrimination of true negatives.

The ROC curves in Figure 7 highlight the inferior performance of other loss functions in the
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extremely unbalanced segmentation, whereas Hausdorff-Sine generally improves the true

positive accuracy results.

Phase B of Testing Stage

Integrating the second phase (B) produces contextual boundary information that is essential for
accurate segmentation in biomedical imaging. Figure 3, column (b) and column (e) visibly
highlights the differences in segmentation boundary delineation against the ground-truth before
and after this phase. Thus, the mean HSD metric confirms less deviation from the ground-truth
(see Table 1 and 2) by approximately 1 mm, and furthermore, the mean DSC raises by
approximately 4% in both MRI-A and MRI-B.

Table 1: Deep learning model performance using state-of-the-art loss functions versus the integrated novel
Hausdorff and Hausdorff-Sine loss. Datasets MRI-A and MRI-B are evaluated in 9-fold and 6-fold cross-
validation (FCV), respectively. DSC, PC, RC and HSD are presented as mean + standard deviation.

MRI-A: Train/Test (160/20) 9-FCV MRI-B: Train/Test (100/20) 6-FCV
Loss DSC(%) |[PC(%) RC(%) HSD(mm)||Loss DSC(%) PC(%) RC(%) HSD(mm)
CE 77.94+3.6 |88.44+6.18 |95.6+2.26 [12.44+5.5 CE 79.94+4.33 |92.6+6.89 |96.34+2.76 |10.5+3.34
Dice 63.5+9.1 |63.8420.0 |86.8+10.5 [16.84+5.3 Dice 67.1+12.8 |77.2+15.1 |[85.24+16.8 |21.4+12.3
Jac 63.2+9.6 |62.5+19.8 [87.1+£10.0 |17.0£5.4 ||Jac 68.616.96 |68.3116.9 [88.54+8.34 |17.9+7.58
Haus 78.4+6.1 [89.54+9.11 |96.2+4.06 [12.7+4.9 Haus 81.04+4.25 |94.84+3.84 [98.34+2.28 |10.2+4.17
Haus-Sin|79.7+4.0(93.24+7.46|97.2+2.67(11.2+3.6 || Haus-Sin|82.1+2.99|97.7+2.50(99.1+0.78|10.0+6.63

Table 2: DSC, PC, RC and HSD as mean + standard deviation [lowest, highest] for automatic segmentation
methods. Datasets MRI-A and MRI-B are evaluated in 9-fold and 6-fold cross-validation (FCYV), respectively.

MRI-A: Train/Test (160/20) 9-FCV
Method DSC(%) PC(%) RC(%) HSD (mm)
U-Net [10] 66.8+8.8 [42.3, 77.3 71.3+4.4 [62.9, 80.5 85.1+4.8 [76.9, 88.16 16.9+5.8 [8.22, 24.1
Cascaded-CNN [8][52.74+6.9 [34.4, 60.7 64.0+4.1 [50.4, 68.0 75.24+4.6 [68.1, 78.25 21.5+9.3 [15.7, 38.6
Dense V-Net [1 l] 73.6+6.1 [49.6, T8.8 86.1+3.3 [78.5, 88.5 94.6+3.4 [82.8, 96.37 14.44+7.2 [6.63, 20.5
Geo-Desc [l'Z] 78.2 +5.8 [67.1, 86.3] 85.34+9.7 [T0.8, 98.9 93.949.5 [52.5, 99.13 13.84+4.4 [6.11, 18.4
Proposed 84.14+4.6 [72.1, 89.9]_ 95.5+6.3 |71.7, 99.7][97.6+3.0 [89.9, 100.0]/10.6+3.7 [6.184, 18.4]
MRI-B: Train/Test (100/20) 6-FCV
Method DSC(%) PC(%) RC(%) HSD (mm)
U-Net [10] 72.846.0 [58.9, 80.8 83.843.1 [74.2, 87.46 94.64+3.5 [82.8, 95.72 14.04+8.1 [6.82, 21.7
Cascaded-CNN [8][54.8+5.1 [44.4, 65.7 64.3+3.5 [59.5, 67.91 76.2+3.7 [69.9, 79.64 22.3+8.6 [16.0, 37.5
Dense V-Net [11] |74.0+5.3 [65.1. 80.3 85.4+3.1 [TR8.5, 89.74 93.0+3.8 [84.9, 96.35 16.7+7.0 [8.46, 19.8
Geo-Desc [12] 81.245.0 [72.6, 85.8 84.74+5.8 [73.1, 93.64 84.6+8.2 [69.2, 97.28 14.74+4.1 [8.13, 17.6
Proposed 85.712.3 [79.9, 90.3]|96.113.6 [86.7, 100.0]|99.3L0.7 [09.9, 100.0]|9.08L2.0 [4.87, 14.8]

Comparison with the State-of-the-art
Table 2 highlights the proposed approach outperforming state-of-the-art methods [8, 10—12] in

terms of accuracy and statistical stability despite employing non-organ optimised protocol data.
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Conclusion

This paper presents a novel approach for automatic pancreas segmentation in MRI volumes
generated from different scanner protocols. Combined with the proposed Hausdorff-Sine loss,
an encoder-decoder network reinforces pancreatic boundary detection in MRI slices,
outperforming the rate of true positive predictions compared to multiple loss functions. In the
later stage, a 3D hybrid energy-minimisation algorithm addresses the intensity consistency
problem that is often the case when segmenting image volumes on a 2D basis. The proposed
approach generates quantitative accuracy results that surpass reported state-of-the-art methods,

and moreover, preserve detailed contouring.
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Paper 9

Largescale analysis of iliopsoas muscle volumes in the UK

Biobank

Julie Fitzpatrick™, Nicolas Basty**, Madeleine Cule?, Yi Liv?, Jimmy Bell', E. Louise
Thomas' & Brandon Whitcher!.

Abstract

Psoas muscle measurements are frequently used as markers of sarcopenia and predictors of
health. Manually measured cross-sectional areas are most commonly used, but there is a lack
of consistency regarding the position of the measurement and manual annotations are not
practical for large population studies. We have developed a fully automated method to measure
iliopsoas muscle volume (comprised of the psoas and iliacus muscles) using a convolutional
neural network. Magnetic resonance images were obtained from the UK Biobank for 5000
participants, balanced for age, gender and BMI. Ninety manual annotations were available for
model training and validation. The model showed excellent performance against out-of-sample
data (average dice score coefcient of 0.9046 + 0.0058 for six-fold cross-validation). Iliopsoas
muscle volumes were successfully measured in all 5000 participants. Iliopsoas volume was
greater in male compared with female subjects. There was a small but signifcant asymmetry
between left and right iliopsoas muscle volumes. We also found that iliopsoas volume was
signifcantly related to height, BMI and age, and that there was an acceleration in muscle
volume decrease in men with age. Our method provides a robust technique for measuring

iliopsoas muscle volume that can be applied to large cohorts.

Introduction

The iliopsoas muscles, predominantly made up of slow-twitch fibers, are a composite of the
psoas major and iliacus muscles; they are anatomically separate in the abdomen and pelvis but
are merged together in the thigh. The iliopsoas is engaged during most day to day activities,
including posture, walking and running. Together these muscles serve as the chief flexor of the

hip and a dynamic stabilizer of the lumbar spine [1] , with the psoas uniquely having role in
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the movement of both the trunk and lower extremities [2]. Given the key involvement of the
iliopsoas muscles in daily activities, there is increasing interest in its potential as a health
biomarker. This has most commonly taken the form of a cross-sectional area (CSA) through
one (generally the right) or both iliopsoas muscles, with the most common measurement taken
through the psoas muscle. This CSA can be used either as an independent measurement or as
a ratio to vertebral body size [3,4] or in the form of the psoas muscle index, calculated as the
psoas muscle major CSA divided by the height squared [5]. Indeed, psoas CSA has been
suggested as a predictor of sarcopenia [6] , surgical outcome and length of hospital stay post
surgery [7-9] , poor prognosis in response to cancer treatment [10], morbidity following
trauma4 , a surrogate marker of whole body lean muscle mass [11], cardiovascular fitness [12],
changes in cardiometabolic risk variables following lifestyle intervention [13] and even risk of
mortality [14,15]. Measurements of the psoas major muscle are most commonly made from
CSA of axial MRI or CT images [7,12], with most studies generally relying on manual
annotation of a single slice, through the abdomen, these tend to be retrospectively repurposed
from clinical scans rather than a specific acquisition [16—18]. However, the CSA of the psoas
muscle varies considerably along its length [2] therefore small differences in measurement
position can potentially have a significant effect on its overall measured size. Moreover, there
is a lack of consistency within the literature regarding the precise location at which
measurement of the psoas CSA should be made, with researchers using a variety of approaches
including: the level of the third lumbar vertebrae (L3) [6,9,10,17,18], L4 [3,4,14,16], between
L4-L5[11,13], as well at level of the umbilicus [7,8,19] the precise position of which is known
to vary with obesity/ascites. There is further discrepancy between studies regarding whether
the measurements should comprise of one single [10] or both psoas muscles [17], with the
majority of publications combining the areas of both muscles. This lack of consistency together
with the relatively low attention given to robustness and reproducibility of its measurement,
and the reliance on images from retrospective clinical scans have led many to question its
validity as a biomarker [20]. A more objective proposition may be to measure total psoas
muscle volume [21-25], from dedicated images. A variety of approaches have been used thus
far: inclusion of muscle between L2-L5 [21], psoas muscle volume from L3 and approximately
the level of the iliopectineal arch (end point estimated from images in publications) [22,23],
from the origin of the psoas at lumbar vertebrae (unspecified) to its insertion in the lesser

trochanter [24], or with no anatomical information provided at all [25]. Whilst all of these
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approaches include substantially more muscle than is included in simple CSA measurements,
these are still incomplete volume measurements. Moreover, measuring the entire psoas muscle
volume as a single entity is challenging, since even with 3D volumetric scans it is difficult to
differentiate between composite iliacus and psoas muscles once they merge at the level of the
inguinal ligament. Therefore, to measure psoas volume as an independent muscle it is necessary
to either assign an arbitrary cutoff and not include a considerable proportion of the psoas
muscle (estimated to be approximately 50% in some studies [22]) or simply include the iliacus
muscle and measure the iliopsoas muscle volume in its entirety Convolutional Neural Networks
(CNNs) have become a strong tool for automated image segmentation, especially architectures
such as the U-Net [26] for two-dimensional (2D) data or the V-Net [27] for three-dimensional
(3D) data. These techniques owe their popularity to the modest amount of training data required,
robustness and fast execution speed. CNNs have been applied for automated muscle
segmentation in computed tomography [28—30], specifically for 2D segmentation of the psoas
major muscle [29], as well as MRI31, [32]. The increasing use of whole body imaging [33] in
large cohort studies such as the UK Biobank (UKBB), which plans to acquire MRI scans from
the neck to the knee in 100,000 individuals [34], requires different approaches to image
analysis. Manual image segmentation is time consuming and infeasible in a cohort as large as
the UKBB. However, this dataset provides a unique opportunity to measure iliopsoas muscles
volume in a large cross-sectional population. Therefore, development of a robust and reliable
automated method is essential. In this paper, we present an automated method to segment
iliopsoas muscle volume using a CNN and discuss results arising from 5000 participants from

the UKBB imaging cohort, balanced for BMI, age, and gender.

Female Male
Participants 2496 (49.9) 2504 (50.1)
Ethnicity of total cohort
White European 2422 (48.44) | 2416 (48.32)
Asian 18 (0.36) 35(0.70)
Black 17 (0.34) 12 (0.24)
Other 15 (0.30) 9(0.18)
Chinese 11 (0.22) 10 (0.20)
Not reported 7(0.14) 12 (0.24)
Mixed 6(0.12) 10 (0.20)
Age (years) 63.3+8.3 63.3+84
BMI (kg/m?) 262+47 27.0+3.9
Height (cm) 162.5+6.1 176.2 £ 6.8
Weight (kg) 69.3+13.3 |[83.9+135
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Table 1. Demographics of the subjects (n = 5000). Reported values are counts with percentage (%) for categorical

variables and average + standard deviation (SD) for continuous variables.

Materials and methods

Data

A total of 5000 subjects were randomly selected for this study, while controlling for BMI, age,
and gender from the UKBB imaging cohort. Age was discretised into four groups: 44-53, 54—
63, 63—72 and 73-82 years. The eight strata were defined to cover both age and gender.
Weights were used to maintain the proportion of subjects within each age group to match that
of the larger UKBB population. Demographics for the study population (Table 1) were
balanced for gender (female: male ratio of 49.9:50.1). The average age of the male subjects
was 63.3 + 8.4 years and the female subjects was 63.3 + 8.3 years. The average BMI of the
male subjects was 27.0 + 3.9 kg/m? (range 17.6—50.9 kg/m?) and for female subjects 26.2 + 4.7
kg/m? (range 16.1-55.2 kg/m?), with the mean for both groups being categorised as overweight.
The self-reported ethnicity was predominantly White European (96.76%). As per the whole
UKBB population, the sub-cohort in the current study was significantly healthier than the UK
general population. The most common ailment were related to arthropathies, with smaller
proportion reporting a variety of neoplasms, ranging from skin melanomas to benign neoplasms
(Supplementary Table S1). Participant data from the UKBB cohort was obtained as previously
described [34] through UKBB Access Application number 23889. The UKBB has approval
from the North West Multi-Centre Research Ethics Committee (REC reference: 11/NW/0382).
All methods were performed in accordance with the relevant guidelines and regulations, and
informed consent was obtained from all participants. Researchers may apply to use the UKBB
data resource by submitting a health-related research proposal that is in the public interest.
More information may be found on the UKBB researchers and resource catalogue pages
(https://www.ukbiobank.ac.uk/). Raw MR images were obtained from the UKBB Abdominal
Protocol [35] and preprocessed as previously reported [36,37]. The data were acquired on the
same model, a Siemens Aera 1.5 T scanner (Syngo MR D13) (Siemens, Erlangen, Germany),
across three sites (Stockport, Newcastle, Reading, UK). Te Dixon sequence involved six
overlapping series that were acquired using a common set of parameters: TR = 6.67 ms, TE =
2.39/4.77 ms, in-plane voxel size 2.232 x 2.232 mm, FA = 10° and bandwidth = 440 Hz. The

first series, over the neck, consisted of 64 slices, slice thickness 3.0 mm and 224 x 168 matrix;
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series two to four (covering the chest, abdomen and pelvis) were acquired during 17 second
expiration breath holds with 44 slices, slice thickness 4.5 mm and 224 x 174 matrix; series five,
covering the upper thighs, consisted of 72 slices, slice thickness 3.5 mm and 224 x 162 matrix;
series six, covering the lower thighs and knees, consisted of 64 slices, slice thickness 4 mm and
224 x 156 matrix. During preprocessing the data were resampled to voxel size 2.232 x 2.232

x 3.0 mm.

Fig 1. Iliopsoas muscle manual annotations: (a) axial, (b) sagittal, and (c) coronal views, (d—f) showing of the

segmentation (red) overlaid on the anatomical reference data, and (g) 3D rendering of manual segmentation.

Manual Annotation

A single expert radiographer manually annotated both iliopsoas muscles for 90 subjects using
the open-source software MITK [38]. Each axial slice of the water images was examined, the
iliopsoas identified, and the borders of the psoas and iliopsoas manually drawn for 90 subjects.
On average, manual annotation of both muscles took five to seven hours per subject. The
annotated data covered a broad range of age and BMI from male and female UKBB participants.
A typical Dixon abdominal dataset, centered on the iliopsoas muscles, is shown in Fig. 1,
manual iliopsoas muscle annotations are overlaid on the anatomical reference volume in red

and a 3D rendering of the manual annotation.

Model
We trained a model able to predict both muscles individually. The preprocessing steps for the
training data, where the cropping is also needed for applying the model to unseen data, are as

follows. Two arrays of size 96 x 96 x 192 were cropped around the hip landmarks [36], to
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approximate the location of the muscles in order to perform the segmentation (an example of
the cropped regions may be found in Supplementary Fig. S1). After cropping, each volume was
normalised such that the signal intensities lie between zero and one, where the 99th percentile
was used instead of the maximum to avoid possible spikes in signal intensity. That is, all signal
intensities above the 99th percentile were mapped to one. Two sets of 16 training samples were
generated for every subject by separating the right and the left muscles, introducing reflections
exploiting the symmetry of the structures. Further data augmentation included seven random
transformations consisting of translations by up to six voxels in-plane, up to 24 voxels out-of-
plane, and random scaling ranging from —50 to +50% out-of-plane and from —25 to +25% in-
plane, in addition to the original data. We chose larger factors for out-of-plane transformations
to account for the skewed variability in shape and position of the muscles, reflecting the fact
that there is more variation in height than width in the population. After data augmentation,
2880 training samples were produced from the original 90 manually annotated pairs of
iliopsoas muscles. The model used for 3D iliopsoas muscle segmentation closely follows a
similar architecture to the U-Net [26] and the V-Net [27], with a contracting path and an
expansive path connected by skip connections at each resolution level. These network
architectures have been established as the gold standard for image segmentation over the last
few years, as they require modest amounts of training data as a consequence of operating at
multiple resolution levels while providing excellent results within seconds. Several
convolution blocks are used in our model architecture. An initial block (/) containsa 5 X 5 x 5
convolution with eight filters followed by a 2 x 2 X 2 convolution with 16 filters and stride two.
The down-sampling blocks in the contraction (D;,,) consist of i successive 5 x 5 x 5
convolutions with m filters followed by a 2 % 2 x 2 convolution of stride with stride two, used
to decrease the resolution. In the expansion, the up-sampling blocks (U;,,) mirror the ones in
the contraction where there are transpose convolutions instead of stride two convolutions. The
block (L) at the lowest resolution level of the architecture consist of three successive 5 x 5 x 5
convolutions with 128 filters followed by a 2 x 2 x 2 transpose convolution of stride two and
64 filters. The final block (F) contains a 5 x 5 x 5 convolution with 16 filters followed by a
single 1 X 1 x 1 convolution and a final sigmoid activation classification layer. All blocks
incorporate skip connections between their input and output, resulting in residual layers. The
architecture follows: I — D; 35 — D364 — D3 126 — L — U3 128 — Uz g4 —U3z 3, — F with

skip connections between blocks at equivalent resolution levels. Padding is used for the
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convolutions throughout the network and a stride of one, unless otherwise specified, when
moving between the resolution levels. Other than the final sigmoid activation, scaled
exponential linear units (SELU) are used throughout the network. The SELU activation
function has recently been proposed [39], where the self-normalising properties allow it to
bypass batch normalisation layers enabling higher learning rates that lead to more robust and
faster training. The model was trained minimising the Dice score coefficient (DSC) loss [27]
with a batch size of three using the Adam optimiser and a learning rate of le—4 until
convergence at 100 epochs. The learning rate was determined through a parameter sweep (1e—1
to le—6). We performed all of the CNN development, learning, and predictions using Keras
(TensorFlow backend) [40] on a NVIDIA Titan V 12 GB GPU. We limited the batch size to
three due to the GPU memory.
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Fig 2. Bland—Altman plot (a) of iliopsoas muscle volumes determined with CNN-based and manual segmentations
(n = 90), using a six-fold cross-validation experiment. Dotted lines represent the average bias (—0.2%) and the
95% limits of agreement. Overlays of the CNN-based and manual segmentations for two subjects (b, c), where

the manual annotation is red, the CNN segmentation is green and the overlap is yellow.

Validation

A common metric used to evaluate segmentation performance is the DSC, also known as the
F1 score. It is defined as twice the intersection of the labels divided by the total number of
elements. Intersection of labels can also be seen as a True Positive (TP) outcome. The total
number of elements can also be seen as the sum of all False Positives (FP), False Negatives

(FN) and twice the number of TPs.

188



2TP

DSC = :
FP + 2 TP + EN

For validation of the model, we performed a six-fold cross-validation experiment, where in a
single iteration 75 of the manually annotated images (approximately 83%) were used to train
the model and the performance was evaluated on the remaining 15 out-of-sample images

(approximately 17%).

Statistical Analysis

All summary statistics, hypothesis tests and figures have been performed using the R software
environment for statistical computing and graphics [41]. Variables were tested for normality
using the Shapiro—Wilk’s test, the null hypothesis was rejected in all cases. Spearman’s rank
correlation coefficient (p) was used to assess monotonic trends between variables. The
Wilcoxon rank-sum test was used to compare means between groups, and the Wilcoxon signed-
rank test with paired observations. Methods for segmenting the iliopsoas muscle volume were
compared using the Bland-Altman plot. Given the exploratory nature of the research, p-values

< 0.05 were judged to be statistically significant.

Results

Validation

A summary of the cross-validation experiment may be found in Supplementary Table S2. The
average bias was —0.2% with upper and lower limits of agreement being 13.3% and —13.7%,
respectively (Fig. 2). The overlap between the CNN-based and manual segmentations for two
subjects is also provided in Fig. 2, where the DSCs are 0.85 (left) and 0.90 (right) for (b) and
0.96 in both for (c). With consistent DSCs from the cross validation experiment showing a
robust model performance on both muscles, we trained a final model using the entire 90
available manual annotations. Example segmentations from our method are provided in Fig. 3,
displaying a sample of 12 subjects covering a variety of body sizes and habitus. The first three
subjects (a—c) have some of the smallest iliopsoas muscles (total volume =~ 346 ml), the next
three subjects (d—f) have typical iliopsoas muscles (total volume ~ 800 ml) and the third set of
three subjects (g—i1) have some of the largest iliopsoas muscles (total volume =~ 1300 ml). The

final set of three subjects represent subjects whose left and right iliopsoas muscles differ in
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volume (difference in volume =~ 93 ml for j and k, difference in volume = 182 ml for 1). We can
see that the model performs well for all of them, with additional details regarding model

validation provided in Supplementary Fig. S2.

Fig 3. CNN segmentations of the left and right iliopsoas muscles overlaid in purple (right) and blue (left)
from a range of body types and iliopsoas muscle volumes: (a—c) small, (d—f) average, (g—i) large and (j-1)
asymmetric. The top row for each subject displays the signal intensities without the segmentation result,

the bottom row includes the iliopsoas muscle segmentations.

Male -

I
i

-100 0 100
Difference in Volume (ml)

Fig 4. Difference in volume (ml) between the left and right iliopsoas muscles, separated by gender. Negative

values indicate the right iliopsoas muscle is larger than the left.
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Iliopsoas muscle volume

In each gender there was a small (approximately 2%) yet statistically signifcant asymmetry
between lef and right iliopsoas muscles (Wilcoxon signed-rank test; male: d =—7.3 ml; female:
d =—6.5 ml; both p < 1071) (Fig. 4). These differences were not significantly associated with
the handedness of the participants. Significantly larger iliopsoas muscle volumes were

measured in male compared with female subjects (Table 2).

Total volume (ml) 5423 +£72.1 [307.5,904.2 |8145+1254 |467.3,13115 |[p<10~P
Average volume (ml) 2712+36.0 |153.8,452.1 |407.2+62.7 |[233.7,6558 |p<10~'5
Left volume (ml) 267.9+36.8 |134.5,457.2 [403.6+63.5 |247.0,6392 |[p<10""
Right volume (ml) 2744 +£37.0 [159.4,447.0 |4109+64.0 |2203,6751 |[p<10"P
L-R volume difference (ml) —6.5+16.1 |—96.9,625 |—-7.3+228 —95.6,184.4 | p=0.040
lliopsoas muscle index (ml/cm?) | 205.1 £22.6 |124.2,304.1 [261.8+34.2 |157.6,4172 |p <101

Table 2. Iliopsoas muscle volumes (n = 5000). Significance refers to the p-value for a Wilcoxon rank-sums test,

where the null hypothesis is the medians between the two groups (male and female subjects) being equal.

1250
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Total lliopsoas Muscle Volume (ml)
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Male

140 160 180 200
Height (cm)

Fig 5. Scatterplot of total iliopsoas muscle volume (ml) by height (cm), separated by gender.

Relationship between iliopsoas muscle volume and physical characteristics
Significant correlations were observed between the total iliopsoas muscle volume and height

in both genders (male: p = 0.51; female: p = 0.54, both p < 1071%) (Fig. 5). To account for the
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potential confounding efect of height on iliopsoas muscle volume, an iliopsoas muscle index
(IMI) was defined
total iliopsoas muscle volume

IMI = . :
height”

with units ml/m?. Significant correlations were observed between the IMI and BMI in both
genders (male: p = 0.48; female: p = 0.47, both p <1071%) (Fig. 6). A significant negative
correlation was observed between IMI and age in both genders (male: p = —0.31, p < 10-15;
female: p = —0.11, p < 1077). However, the relationship could not be easily explained by a
simple linear method (Fig. 7). In fact the decrease in IMI as a function of age accelerates for

men, starting in their early 60s, while for women it remains relatively constant

Discussion

There is considerable interest in measuring psoas muscle size, primarily related to its potential
as a sarcopenic marker, thereby making it an indirect predictor of conditions influenced by
sarcopenia and frailty, including health outcomes such as morbidity, and mortality [4,6—
10,14,15]. The complexity in measuring total muscle directly, particularly in a frail population
has necessitated the reliance on easily measured surrogates and the psoas muscle CSA is
increasingly used for this purpose. However there is little consistency in the field regarding
how the psoas muscle is measured, with considerable variation between publications. An
automated approach to analysis will reduce the need for manual annotation, allowing more of
the muscle to be measured and enable much larger cohorts to be studied, this is particularly
important as large population based biobanks are becoming more common. In this paper we
have described a CNN-based method to automatically extract and quantify iliopsoas muscle
volume from MRI scans for 5000 participants from the UKBB. Excellent agreement was
obtained between automated measurements and the manual annotation undertaken by a trained
radiographer as demonstrated by the extremely high DSC with testing data. CNNs have been
established as the gold standard in automated image segmentation. Te results, which can be
produced with a modest amount of manual annotations as training data and smart data
augmentation, are highly accurate, fast, and reproducible. Manual annotations become a
bottleneck for large-scale population studies, when the number of participants exceeds many

thousand such as with the UKBB. Applying automated methods to vast amounts of data
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requires a thorough set of quality-control procedures beyond just out-of-sample testing data,
which is often used to validate new methods in machine learning studies. Large-scale quality
control can be done by steps such as looking at maximum and minimum values, asymmetric
values (for symmetric structures such as the iliopsoas muscles), outliers, and overall behavior
of the results. The vast majority of previous studies investigating psoas muscle size have relied
on CSA measurements primarily because of data availability and time constraints [3,4,6—
11,13,14,16-19]. Analysis of CSA is considerably less labour intensive than manually
measuring tissue volumes, furthermore, many studies have repurposed clinical CT or MRI
scans [16—18] which typically will not have been acquired in a manner to enable volume
measurements. This has led to psoas muscle CSA being measured at a variety of positions
relating to lumbar landmarks including L3, L4 and between L4-5, as well as more unreliable
soft tissue landmarks such as the umbilicus, with the CSA measurements used alone, relative
to lumbar area, height, height squared or total abdominal muscle within the image at the
selected level. While lumber landmarks should provide a relatively consistent CSA in
longitudinal studies, comparison between studies and cohorts becomes almost impossible. This
is further compounded by studies that have shown considerable variation in psoas CSA along
its length [2,42], and that regional differences in psoas CSA have been observed in athletes
[43], following exercise training or inactivity [44]. This appears to suggest that CSA at a fixed
position may not accurately reflect changes in the psoas size elsewhere in response to health
related processes. It is clear that to overcome these confounding factors, it is essential to
measure total psoas volume. In this study, we have trained a CNN to segment iliopsoas muscles,
applied it to 5000 UKBB subjects and measured their total volume. Tis measurement includes
the psoas major and iliacus muscles, and as mentioned in the proceeding section, the psoas
minor muscle (if present). This reflects the practical difficulties of isolating the entire psoas
muscle in images in a consistent and robust manner. The merging of the iliacus and psoas
muscles below the inguinal ligament makes their separation not only impractical, but
unachievable with standard imaging protocols. Similarly, it is not possible to separate the psoas
major and minor muscles under these conditions, even if CSA measurements were to be made.
Therefore, a standard operating procedure was required, either measure a partial psoas volume,
selecting an anatomical cut-of before the junction with the iliacus muscle, or to include the
iliacus and measure the iliopsoas muscle volume in its entirety. In this study we have opted for

the latter, as selecting an arbitrary set point would clearly introduce a significant confounding
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factor with unforeseeable impact on the subsequent results. Tus, we have measured the entire
iliopsoas muscle, and although literature comparisons are limited, as there is a paucity of
comparable volumetric studies within the general population, our average reported values for
male subjects (407.2 £ 62.7 ml) were within the range 351.1-579.5 ml in a cohort which
included male athletes and controls [43] Furthermore, our CNN-based method performs very
well, with a small but systematic underestimation of —0.2% when compared with manual
annotations. Incremental improvement of the model is possible using straightforward
techniques, such as increasing the number and variety of training data or expanding the breadth
of data augmentation [45]. These are currently under investigation. We observed a small
(approximately 2%) but significant asymmetry in iliopsoas muscle volume, with the right
muscle being larger in both male and female subjects. Previous studies have looked at the
muscle asymmetry in tennis players, and found that the iliopsoas muscle was 13% smaller on
the non-dominant compared with the dominant side of the body, whereas inactive controls the
dominant size was 4% larger than the non-dominant [43]. Similarly footballers players have
significantly larger psoas CSA on their dominant kicking side [46]. The best equivalent to this
within the UKBB phenotyping data was handedness, which we found not to be related to left
right differences in iliopsoas volume in the current study. An additional factor which may
contribute towards iliopsoas asymmetry relates to the presence or absence of the psoas minor
muscle, a long slim muscle typically found in front of the psoas major. Tis muscle can often
fail to develop during embryonic growth [2] and there can be considerable differences in the
incidence of agenesis which can be unilateral or bilateral with ethnicity thought to be a factor
[47]. Further work is required to understand whether this contributes to the left-right
asymmetry observed in the present study, since it is not possible to resolve this muscle on
standard MRI images. In line with previous studies of psoas CSA, male subjects had
significantly larger iliopsoas muscles compared to females [6]. This is unsurprising since
gender differences in both total muscle and regional muscle volumes are well established
[48,49]. Indeed some studies have suggested using gender specific cut-offs of either psoas CSA
alone or psoas muscle index to identify patients at risk of poorer health outcomes [10].
Furthermore, some studies have suggested that the magnitude of gender differences in trunk
muscle CSA vary depending where are measured. This adds weight to the argument that
volumetric measurements are perhaps more robust than CSA measures for this comparison [50].

It has been proposed that the gender differences in psoas volume could in part relate to the
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impact of height on psoas volume [12]. Indeed, we found a significant correlation between
iliopsoas muscle volume and height similar to those previously reported by earlier studies [49].
However, the gender differences observed in our study were still present when correcting for
height. Interestingly, it has been reported that the relationship between muscle volume and
body weight is curvilinear, since increases in body weight often reflect gain in fat, as well as
muscle mass. In the present study we observe a significant correlation between IMI and BMI.
This is in agreement with previous studies of psoas CSA which have also shown a significant
correlation with BMI [6], indeed some studies combined both metrics as a prognostic marker
[17]. We also found a significant correlation between IMI and age. It is widely reported that
muscle mass declines with age, particularly beyond the fifth decade, a fundamental
characteristic of sarcopenia [51]. The magnitude of this decline was relatively small, but this
may arise by the limited age range within the UKBB data set (4482 years), compared to other
studies that have investigated the impact of age on muscle volume across the entire adult age
span (18—88 years), which usually tend to reveal a more dramatic decline in muscle volume
[49]. In conclusion, we have developed a robust and reliable model using a CNN to
automatically segment iliopsoas muscles and demonstrated the applicability of this
methodology in a large cohort, which will enable future population-wide studies of the utility

of iliopsoas muscle as a predictor of health outcomes.
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Fig 6. Scatterplot of iliopsoas muscle index (ml/m?) by BMI (kg/m?), separated by gender.
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Figure 7. Scatterplot of iliopsoas muscle index (ml/m2?) by age at recruitment (years), separated by gender. The

curves are ft to the data using a generalised additive model with cubic splines.

Code availability

Model weights and instructions for use are available at

https://github.com/recoh/iliopsoas_muscle.
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original papers, short communications from European radiological congresses and
information on society matters makes ER an indispensable source for current information in
this field. The journal is subscribed to by a regular audience of several thousands of readers
worldwide (+ 100.000), making it one of the most widely disseminated journals in
Radiology. (European Radiology, 2023)
https://www-springer-com.salford.idm.oclc.org/journal/330/

ISSN-Electronic 1432-1084

Influence

Paper 1 have been cited 19 times in the literature with Meloni et al. (2014) supporting the
feasibility of performing this technique at a field strength of 3T. Further citations publish
their own T2* values which agree with those published in Paper 1 (Cobb & Paschal, 2009;
Heinrichs et al., 2009; Hezel et al., 2012; Manka et al., 2010; Meloni et al., 2012; Niendorf et
al., 2016; Yamamura et al., 2010).

Thus, initial normative values for cardiac T2* were presented in Pl and subsequently
confirmed by other researcher groups has subsequently been published in peer reviewed
journals. This works is now part of the seminal research that established the use of T2* values

in clinical research.
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Personal Contribution

e All the MR imaging of the complex and demanding procedure that is CMR, including
patient preparation.

e Ensuring compliance with the project's governance and ethics.

e Compliance, documentation, and record-keeping to maintain good clinical practice
along with ensuring that exposure times were not exceeded, the protocol to which the
subject has consented to was followed precisely.

e Ensure that aquired data was fully QC so that T2* values obtained were robust and

reliable.
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Authors Declan P. O 'Regan
Martina F. Callaghan
Julie Fitzpatrick
Rossi P. Naoumova
Joseph V. Hajnal
Stephan A. Schmitz
Title Cardiac T * and lipid measurement at 3.0 T-initial experience
Publication Details | European Radiology
2008
Candidate Acquisition of all imaging data
Contribution Preparation and coaching of study participants

Performing quality control
Archiving and curating imaging data

Review and feedback of final manuscript

Co-Author Confirmation

By signing the Statement of Authorship, author confirms that:

The candidate’s stated contribution to the publication is accurate.

Name Professor D.P. O’Regan
Comments

Signed X ‘3 Q@
Date 6/3/2023
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Paper 2 (P2)

Liver fat content and T2*: Simultaneous measurement by using

breath-hold multiecho MR imaging at 3.0 T — Feasibility

Published in the Radiology in 2008

Produced by the Radiological Society of North America (RSNA), Radiology has long been
recognised as the authoritative reference for the most current, clinically relevant, and highest
quality research in the field of radiology. Radiology is published 12 times a year, online and
in print, and it is one of the top-cited journals in the field. (European Radiology, 2023)
https://pubs.rsna.org/journal/radiology

ISSN: 0033-8419 (print); 1527-1315 (online)

Influence

Paper 2 has been cited 119 times most notably by esteemed researchers in the same field
including Scott Reeder (Reeder et al., 2011a, 2011b, 2012; Reeder & Sirlin, 2010) Harry Hu
(H. Hu et al., 2011; H. H. Hu et al., 2010), Claude B. Sirlin (Sirlin & Reeder, 2010) and Mark
Bydder (Bydder et al., 2010)

In addition, Paper 2 is cited by researchers who have used data from the large cohort study
DIRECT(DIRECT - Dlabetes REsearch on Patient StraTification, 2022). DIRECT included
the ME sequence originating in P2 and adapted into the imaging protocol for this study.
Findings have included the discovery of glycaemic deterioration biomarkers(Koivula et al.,
2019) and the role of physical activity in type 2 diabetes(Koivula et al., 2020).

This paper also served as the basis for the subsequent MRI protocol established by the
Imaging Working Group of the UK Biobank, where over 68,000 participants have already.
The Uk Biobak aims to scan a total of 100,000 participant in its first phase, a further 60,000

will be re-scanned as part of the second longitudinal phase.
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Personal Contribution

My role in P2 was like P1 was to ensure that examination was fully compliant with
the overall objectives of the protocol and that the MR images were of sufficient

quality and reproducibility to ensure best outcome.

P2 included MRS which meant additional sequences and working alongside
additional team members.

The inclusion of patients required the input of a radiographer to ensure patient care
was forthcoming.

The person-centred care provided ensured high quality and consistent data collection

along with a methodical approach to data management.
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Authors

Declan P O'Regan,
Martina F. Callaghan
MarzenaWylezinska-
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RossiP.Naoumova,
Joseph V. Hajnal
Stephan A.Schmitz

Title

Liver Fat Content and T2*: Simultaneous Measurement by
Using Breath-hold Multiecho MR Imaging
at 3T-Feasibility

Publication Details

Radiology

Candidate

Contribution

Acquisition of all imaging data

Preparation and coaching of study participants
Performing quality control

Archiving and curating imaging data

Review and feedback of final manuscript

Co-Author Confirmation

By signing the Statement of Authorship, author confirms that:

The candidate’s stated contribution to the publication is accurate.

Name Professor D.P. O’Regan
Comments

Signed -X ‘ 2 9‘-@
Date 6/3/2023
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Paper 3 (P3)

Reduction of total lung capacity in obese men: Comparison of

total intrathoracic and gas volume

Published in the Journal of Applied Physiology in 2010

The Journal of Applied Physiology publishes the highest quality original research and
reviews that examine novel adaptive and integrative physiological mechanisms in humans
and animals that advance the field. (REF website)
https://journals-physiology-org.salford.idm.oclc.org/journal/jappl

ISSN: 8750-7587 (print); 1522-1601 (online)

Influence

After being published in the Journal of Applied Physiology in 2010 Paper 3 established that
there was a reduced lung capacity in obese men. The authors followed this in 2012 with the
publication ‘Relation between trunk fat volume and reduction of total lung capacity in obese
men’ (Watson et al., 2012). Using the whole-body imaging acquired at the same time as the
thorax volumes they attempted to explain the differences comparing the abdominal fat
volumes. No relationship was found but Paper 3 is cited in the methods section to convey
how the MRI was performed and the images acquired.

After publication Paper 3 is cited in many literature reviews on topics such as asthma and
obesity, ventilating obese patients and mechanical ventilation in obese patients(Guenette et
al., 2010; Littleton, 2012; Ortiz et al., 2015; Peters, Dixon, et al., 2018; Peters, Suratt, et al.,
2018; Ruppel, 2012; Silva et al., 2012; Spelta et al., 2018).

More recently however, Paper 3 has been cited more frequently due to the COVID-19
pandemic. It was established that overweight and obese men had a higher rate of death from
the infection (Chawla et al., 2020; Hamer et al., 2020) and studies have cited Paper 3 as an
explanation for this (Halvatsiotis et al., 2020; Khalili et al., 2021; Pérez-Cruz et al., 2021;
Raeisi et al., 2022; Redwood-Brown et al., 2021; J. Wang et al., 2020; Wicaksana et al.,
2021)

207


https://journals-physiology-org.salford.idm.oclc.org/journal/jappl

Personal Contribution

e First approached as adviser regarding if the imaging component was achievable and
the requirements.

e Designed the MRI sequences, built them, and tested them on the scanner.

e Engaged in discussion into how to screen the patients who would not fit into the
scanner.

e [ then modified two hula hoops to be the same circumference as the scanner interior.

e [ performed all the imaging, quality control and archiving.

e Coached the lead authors on MR image contrast and anatomy recognition and image

analysis.
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Authors Watson, R. A.

Pride, N. B. Thomas, E. Louise Fitzpatrick, J.
Durighel, G.

McCarthy, J.

Morin, S. X.

Ind, P. W.

Bell, J. D.

Title Reduction of total lung capacity in obese men: comparison of total

intrathoracic and gas volumes

Publication Details Journal of Applied Physiology 2010

Candidate . Designed and optimised MRI sequences
Contribution . Performed the imaging including coaching patients.
. Performed quality assurance on images
. Discussed and demonstrated methods of analysis

and reviewed results

. Reviewed final manuscript.

Co-Author Confirmation review of results
By signing the Statement of Authorship, author confirms that:

The candidate’s stated contribution to the publication is accurate.

Name Professor J.D. Bell

Comments This project was very taxing requiring very significant input not
only in the design, but also required a new acquisition modality and
image analysis, all of which was undertaken by Julie. She was also

key in the process of image analysis

Signed

o
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Date 15" of April 2021

Paper 4 (P4)

Whole body fat: Content and distribution

Published in Progress in Nuclear Magnetic Resonance Spectroscopy in 2013

Progress in Nuclear Magnetic Resonance Spectroscopy publishes review papers describing
research related to the theory and application of NMR spectroscopy. This technique is widely
applied in chemistry, physics, biochemistry, and materials science, and also in many areas of
biology and medicine. The journal publishes review articles covering applications in all of
these and in related subjects, as well as in-depth treatments of the fundamental theory of and
instrumental developments in NMR spectroscopy.

https://www-sciencedirect-com.salford.idm.oclc.org/journal/progress-in-nuclear-magnetic-

resonance-spectroscopy

ISSN: 0079-6565 (print) 1873-3301 (on-line)

Influence

Paper 4 has been cited frequently including in other literature searches (Borga, 2018; Borga
et al., 2018; Bray et al., 2018; H. H. Hu et al., 2016; Kersten, 2023; Lim & Meigs, 2013;
Ponti et al., 2019) and book chapters (Heymsfield et al., 2014; Thomas & Bell, 2015)

Most relevant is research which cites Paper 4 in the methods to describe the techniques to
acquire data in DIRECT and the UK Biobank, the latter being the largest human cohort in the
world and from where more than 8,000 paper have been already published in peer-reviewed
journals. These include rational and descriptions in DIRECT (Koivula et al., 2014, 2019)
along with other publications using the DIRECT data (Atabaki-Pasdar et al., 2020) and
notably Wesolowska-Anderson (2022) who describes four groups of type 2 diabetes and

Erikson (2020) who introduce new insight into nutrition and metabolic risk.
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Using UK Biobank data Linge et al. (2018) describe body profiling but further references
have used P4 to describe how the UK Biobank was set up (Littlejohns et al., 2020).

Other publications which use Paper 4 to describe their methods include studies into exercise
training in NAFLD (Shojaee-Moradie et al., 2016), changes in renal sinus fat (Zelicha et al.,
2018), genetic risk of adiposity (Monnereau et al., 2018).

Personal Contribution

e Conduct full literary review of ectopic fat.
e Write up work to ME procedure.
e Provide illustrations of ME and liver fat

e Prepare for publication and review all draft versions.
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Authors Thomas, E. L.
Fitzpatrick, J. A.
Malik, S. J.
Taylor-Robinson, S. D.
Bell, J. D.

Title Whole body fat: Content and distribution

Publication Details | Progress in Nuclear Magnetic Resonance Spectroscopy

2013
Candidate * Designed publication and content
Contribution o Perform literature review of ectopic fat and methodologies

o Participated in writing and editing

¢ Review final manuscript.

Co-Author Confirmation
By signing the Statement of Authorship, author confirms that:

The candidate’s stated contribution to the publication is accurate.

Name Professor J. D. Bell

Comments Julie made a very significant contribution to this publication, from
its original design to its writing and editing. Her knowledge of
existing MRI and MRS techniques and their corresponding
literature were pivotal for the final outcome

Signed

Date 15% of April 2021
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Paper 5 (PS)

Validation of a fast method for quantification of intra-abdominal

and subcutaneous adipose tissue for large-scale human studies

Published in NMR in Biomedicine in 2015

NMR in Biomedicine is a journal devoted to the publication of original full-length papers,
rapid communications and review articles describing the development of magnetic resonance
spectroscopy or imaging methods or their use to investigate physiological, biochemical,
biophysical, or medical problems.

https://analyticalsciencejournals-onlinelibrary-wiley-

com.salford.idm.oclc.org/journal/10991492
ISSN: 0952-3480 (print); 1099-1492 (online)

Influence

Paper 5 has been cited 48 times including test re-test reliability which was published by
Newman et al. (2016) referencing the methods section of P5 and performing the protocol on a
wide bore 3T scanner. The feasibility of using the protocol presented in P5 for large scale
studies was published in PLoS ONE in 2016 after 3000 UKBB participants were analysed
(West et al., 2016). Further evidence of the Profilers use in large scale population studies was
published in Magneton FLASH magazine, a Siemens publication presenting MRI articles,
application tips and technical information (Forsgren & West, 2017). Interestingly, the Profiler
software has expanded beyond abdominal fat segmentation to breast fat volume analysis
published in 2017 where the methods from paper 5 are cited (Petridou et al., 2017). Petridou
et al. (2017) gave new insight into breast density and a robust method of measurement of
fibro glandular tissue without the use of ionising radiation._

The AMRA Profiler has become part of the UK Biobank body imaging protocol and Paper 5
has been cited frequently in the methods sections of papers which have used data from the
UK Biobank. Most notably was Linge et al. (Linge et al., 2018) where the first analysis of
6000 participants drawing attention to how “Different diseases were linked to different body

composition profiles (BCP), which could not be described by a single fat compartment alone”
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and that “more targeted and effective disease treatments could be developed”. More recently
the same author published further findings regarding defining sarcopenia in aging and
Obesity (Linge, Heymsfield, et al., 2020) and adverse muscle composition in NAFLD which
also cite Paper 5 in the methods (Linge, Ekstedt, et al., 2020). In addition, UKBB body data
has been included in a publication looking at cardiovascular outcomes along with data from
the Dallas Heart Study (Tejani et al., 2022).

In similar fashion other publications cite Paper 5 as their methods when using the AMRA
protocol, Profiler software and slice-O-Matic software. These include a variety of findings
including an investigation into the FTO gene and appetite (Reistenbach Goltz et al., 2019),
comparisons between DXA and CT (Coletta et al., 2019), the use of Empagliflozin Treatment
in Obesity (M. H. Lee et al., 2022; Neeland et al., 2021) and my own publication
investigating Large-scale analysis of iliopsoas muscle volumes in the UK Biobank which is

submitted for consideration within this PhD (J. A. Fitzpatrick et al., 2020).

Personal Contribution

e Perform all protocol set up as well as actual imaging including patient preparation.
e QC, curation and archiving of data.
e Oversaw QC of image analysis, provide feedback to inventors at every stage of analysis

and publication.
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Borga, Magnus

Thomas, E. Louise
Romu, Thobias
Rosander, Johannes
Fitzpatrick, Julie
Dahlqvist Leinhard, Olof
Bell, Jimmy D.

Title

Validation of a fast method for quantification of intra-abdominal

and subcutaneous adipose tissue for large-scale human studies

Publication Details

NMR in Biomedicine

2015

Candidate

Contribution

¢ Set up and tested acquisition protocol. Performed all the
imaging acquisition and assessed quality and consistency.

¢ Provided feedback and writing of publication

o Reviewed the final manuscript.

Co-Author Confirmation

By signing the Statement of Authorship, author confirms that:

The candidate’s stated contribution to the publication is accurate.

Name Professor J. D. Bell

Comments Julie actively participated in the designed of the study, its
performance, analysis and writing of this seminal paper, which
became the basis for a larger multi-centre and Biobank studies

Signed | :%@

Date 15M of April 2021
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Paper 6 (P6)

Changes in Liver Volume in Patients with Chronic Hepatitis C

Undergoing Antiviral Therapy

Published in Journal of Clinical and Experimental Hepatology 2016.

Journal of Clinical and Experimental Hepatology (JCEH) is an international peer-reviewed
journal of hepatology and publishes six issues in a year. JCEH publishes outstanding basic
and clinical papers on all aspects of liver diseases, including both human and animal studies.
https://www.jcehepatology.com/

ISSN: 0973-6883 (print); 2213-3453 (online)

Influence

Paper 6 has been cited five times by other studies who have recognized the findings but
interesting Wake et al. (2020) did not see the same increase in liver volume in their study
though did record improved liver function tests with sustained viral response.

In their study ‘Building Large-Scale Quantitative Imaging Databases with Multi-Scale Deep
Reinforcement Learning: Initial Experience with Whole-Body Organ Volumetric Analyses’
which cites Paper 6, Winkle et al. (2021) draw attention to how useful organ volume
measurements is and that manual techniques are not realistic due to time and resources and

call for the annotation process to be automated.

Personal Contribution

e Performed the MR imaging when joining the study after it commenced.

e Curating previously acquired data.

e Identified a method to measure the liver and completed the analysis.

e Organising and performing an exercise in repeatability with a co-author.

e Wrote the first draft of the manuscript and reviewed the final draft after sharing with

the co-authors.
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Paper 7 (P7)

Psoas major cross-sectional area: A potential marker of

cardiorespiratory fitness

Published in International Journal of Clinical and Experimental Physiology March 2017
The aim of the International Journal of Clinical and Experimental Physiology (IJCEP) is to
publish peer reviewed quality research papers in Physiology that have clinical application in
medicine or papers with experimental evidence having a future perspective of application in
medicine.

https://www.ijcep.org/index.php/ijcep

ISSN: 2348-8832 (print); 2348-8093 (online)

Influence

Paper 7 has been cited six times with Byun et al. (2019) agreeing that the psoas CSA is a
predictor of mortality after hip fracture. Hawkins et al. (2018) also cited P7 in their study
which used the PM size to predict outcomes after aortic valve replacement.

Having established a link between PM CSA and CV Fitness this encouraged further work in
this area and exploring the possibility of automating the process of segmentation. The original
manual annotation and analysis of the MR images served as “ground-truth” for a subsequent
Al-based algorithm that allow for automated analysis of abdominal images. This has now been
applied to <60,000 participant in the UK Biobank and will serve as the basis for a follow up

paper in this area.

Personal Contribution

e Conceived the study after a period of observation and discussion with the group head.
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A method for extracting the images was identified along with methods to measure
physical activity.

Persuaded a co-author to join me who had expertise in measuring V02 Max and
statistics.

I performed all the imaging, curation, analysis, and extraction of data.

Created original “ground-truth” for subsequent Al training.

Participate in writing of first draft.

Presented poster at international conference.
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Paper 8 (P8)

Advancing Pancreas Segmentation in Multi-protocol MRI

Volumes using Hausdorff-Sine Loss Function

Conference paper presented at 10th International Workshop on Machine Learning in Medical
Imaging (MLMI 2019) in conjunction with The Medical Image Computing and Computer
Assisted Intervention Society (MICCAI) 2019 Shenzhen, China. Oct 2019

Published in book section Machine Learning in Medical Imaging. Part of the Lecture Notes
in Computer Science book series (LNIP, vol. 11861).

https://link.springer.com/bookseries/558

Influence

P8 has been cited nine times including similar work by other groups in abdominal organ
segmentation (Bakasa & Viriri, 2023; Chen et al., 2019; Sakai, 2021; Sdnchez-Peralta et al.,
2020; R. Wang et al., 2021).

First and last author of P8 presented follow up work for organ segmentation from multiple
modalities and scanner protocols citing the work in P§ (Villarini et al., 2021).

Another group using UK Biobank data have cited P8 when presenting their automated
pipeline for pancreas volume and shape characterization (Triay Bagur et al., 2020). While my
colleagues on P9 have included P8 as a citation in measuring pancreas fat and iron content

(Basty et al., 2020a).

Personal Contribution

¢ Provided in-depth pancreatic anatomical input to co-authors for acquisition and
subsequent Al development

e Perform all segmentation for Al training data.

e Assessment and grading of all output during training of Al-based algorithm.

e QC final output from automated system prior to final data analysis and publication
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Title

Advancing Pancreas Segmentation in Multi-protocol MRI

Volumes using Hausdorff-Sine Loss Function

Publication Details

Machine Learning in Medical Imaging
2019

Candidate

Contribution

¢ Anatomical expert who provided all the ground truth
which the computer programmer used for developing
learning model.

o Assessed the outcomes and graded how well the computer
model had segmented the pancreatic tissue

o Participated in writing and review the final manuscript.

Co-Author Confirmation

By signing the Statement of Authorship, author confirms that:

The candidate’s stated contribution to the publication is accurate.

Name Professor J.D. Bell

Comments Julie provided expert input in the designed and implementation
for this project. Created all the necessary ground-truth for the
machine-learning models, reviewed results and elaborated upon
way to improve the outputs. She help in the writing of the
manuscript and reviewed the final version

Signed | :,5@

Date 15% of April 2021
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Paper 9 (P9)

Large-scale analysis of iliopsoas muscle volumes in the UK

Biobank

Published in Nature Scientific Reports in 2020
Scientific Reports is an online peer-reviewed open access scientific journal published by
Nature Portfolio, covering all areas of the natural sciences Scientific Reports is the 6th most-

cited journal in the world (Scientific Reports, 2023).

https://www-nature-com.salford.idm.oclc.org/srep/

ISSN: 2045-2322 (print); 2045-2322 (online)

Impact and Reach

Thus far, P9 has been cited thirteen times including in an examination of treating psoas
muscle dysfunction(Shi & Han, 2022). Other researchers have also used UKBB data to
measure body composition using deep regression to automate body composition analysis
(Langner et al., 2020, 2021) citing both P5 and P11. Citing P11, Weber et al (2021) also used
convolutional neural networks to investigate fatty infiltration into the cervical muscles.
However, they used both the in and out of phase images to measure the fat content where P11
used only the derived water images.

The psoas muscle is easy to identify and conspicuous on several imaging modalities. Van
Erck et al. (2022) used CT images to measure the total volume of the psoas muscle again
using deep learning. Citing P11 they acknowledge that whole muscle volume is useful but go
on to correlate it to clinical outcomes, concluding that fully automated whole muscle psoas
assessment is a tool with great opportunities in large scale studies and clinical applications.
P11 uses a technique which is prone to artifacts and up to 10% of data can be discarded due
to water-fat swaps. This can be improved by using deep learning to fix these swaps and thus
salvaging this data. My colleagues Basty et al (2021)have developed this citing P11 in the

methods and P4 in the introduction.
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Personal Contribution

e Conceived the study.

e Set up original acquisition protocol at the UK Biobank sites and QC all images.

e Generated ground truth for training data.

e Collaborated in the writing of initial draft of paper, including MR imaging methods
and ground-truth validation.

e Reviewed and edited final draft.
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Aims

Aim 1: to identify the processes required to enable quantification of MRI based parameters

through optimised acquisition and analysis.

AIm 2: identify how these processes were undertaken in papers presented in this thesis.

Aim 3:to identify how the different processes apply from application to big data, and future

technology such as Al and crowd sourcing.

Aim 4: identify areas of optimisation in terms of pipelines and resource limitations (staff)

for future uses of Al

Objectives

In the collation and analysis of this thesis, the following themes were identified: -

Cultivate Quantitative MRI Methods
to Measure Markers of Health and
Translate to Large Scale Studies.

[ Feasibility and Acquisition } [ Optimisation J { Analysis ] { Quality Control } [ Translate ]

The thesis will be broken down into these chapters and sub-sections to demonstrate how this

meets the aims of the research.
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Feasibility and Acquisition

Medical images are created using many modalities and techniques. The information collected

must be validated, relevant and achievable.

* Introduction

* Field Strength

* Ethics and Safety

* Cardiac MRI (CMRI)
* Liver MRI

» Patient experience

* Data

* DIRECT and UKBB

Optimisation

A process of optimisation is appropriate to fine tune imaging parameters to ensure efficient
and effective use of resources. Limited availability of resources is considered along with the

patient experience.

* Introduction

* Lung Volume

* Translate Muti-Echo to Pancreas
* Pancreas Volume

» Fast Whole Body Protocol Validation

Analysis

Information needs to be drawn out from the collected data to reach conclusions. Again,

limited resources demand a straightforward and efficient method.

e Introduction

* In-House Software
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* Open-Source Software
* Viewing Conditions
* Reliability

* Measuring Psoas

Quality Control

Methods to maintain and monitor quality are essential to ensure the data is fit for purpose.

* Introduction

* Pancreas Segmentation

* Machine Learning

* Quality in Large Scale Studies

* Dissemination of Imaging Protocol

e Fat Phantom

Translate

Scaling up to a large-scale study must be standardised when put into practice.

* Introduction

» Large Scale Studies- Patient Perspective
* Upscaling Body Composition Protocol

* QA in Large Scale Studies

* Psoas Muscle in Large Scale Studies
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Critical Appraisal
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Chapter 1
Feasibility and Acquisition

Introduction

The Scientific Method underpins the development of science, and one of the steps is to test a
hypothesis through experimentation (Britanica, 2022). There are many different methods to
use when conducting an experiment, and the collected data can be categorized as qualitative,
non-numerical or quantitative, where the data has a unique numerical value. All methods
involve collecting data for analysis to support or disprove a hypothesis. As such, the quality
of acquired data must be high, and the collection method should be detailed, reproducible and
free of bias. Whether gathering new data, using legacy, sharing, exchanging, or purchasing
data, the manner of acquisition often remains unseen.

Papers 1, 2 and Poster Presentation A was performed at a field strength of 3 Tesla (3T).
Clinical scanners of this field strength were only just starting to become available and
experience at this time was described as anecdotal and unpublished (J. W. K. Lee & Shannon,
2007; Mosher, 2006) The scanner installed by the Medical Research Council imaging facility
at the Hammersmith Hospital in 2003, where this research was conducted was one of the first

in the UK.

Field Strength

Utilising 3T is logical because field strength has the potential to double the SNR and thus
allow greater temporal and spatial resolution. In addition, there is a possibility of improved
sensitivity to lower iron concentrations which may not be measurable at lower field strengths.
P1 included healthy volunteers who were not expected to have abnormally high levels of iron
in their livers, but it was still beneficial for obtaining accurate measurements. However, the
disadvantages of 3T imaging are the increased susceptibility artefact and poor shimming,
both of which are mentioned in P1. The issue of poor shimming at higher field strengths, such
as 3T is addressed in P1. The use of higher-order shimming was applied routinely, as
additional shimming along more directions improves homogeneity in the region under

examination. Higher-order shimming reduces intravoxel dephasing and signal dropout, thus,
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the images have a more uniform signal with less distortion (Zhang et al., 2009). During
CMRI B0 inhomogeneity is exasperated by cardiac motion, flowing blood, and air/tissue
interfaces, therefore the use of higher-order shimming was essential during the acquisition of
P2. More recently, further developments have been introduced with specifically tailored and
customized shimming methods, resulting in more efficient shim times and accurate spatial

encoding (Juchem., et al., 2013; Matter et al., 2016).

Ethics and Safety

In keeping with Good Clinical Practice (GCP), all the papers included in this work were
approved by the relevant ethics committees. However, utilising the higher field strength
brings added safety considerations as, at the time, implanted devices had not been
investigated for safety as thoroughly as at 1.5T, and Specific Absorption Rates (SAR) are
higher. This meant that our study limited the research participants to those with no metallic
implants. This severely restricted recruitment but was believed to be prudent at the time.
Since its publication, the use of 3T scanners has proliferated worldwide and has become the
field strength of choice for some applications, such as musculoskeletal (MSK) (Khodarahmi
& Fritz, 2021; Mosher, 2006). The testing of implants has increased, and now more
implanted devices have been shown to be safe or conditional at higher field strengths. Up-to-
date information is available on MRIsafety.com (Shellock, 2022).

The higher SAR may have meant restricting imaging parameters to stay within MHRA
guidelines, and P1 includes that the SAR was recorded and remained within the safety limits
set by the MHRA (MHRA, 2007). However, it became clear that participants felt hotter in the
scanner when imaging the body (thorax, abdomen, and pelvis) was performed. Participants
reported feelings of warmth during acquisition of P1 and 2 and some were clearly sweating.
This phenomenon of heating is well documented, and the MHRA recommends maintaining
the environment at 25¢ or below and ensuring that atmospheric humidity is below 60%.
However, to counteract any adverse effects, no blankets were offered during scanning, and
the participants were alerted to be aware of excessive warming. Additional monitoring was
performed to obtain verbal assurance that the participants were still at a comfortable
temperature at regular intervals throughout the examination.

Another phenomenon that has been proven using MRI is Peripheral Nerve Stimulation

(PNS). Rapidly changing magnetic gradients induce electrical 