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Abstract 
Magnetic Resonance Imaging (MRI) is an indispensable tool in healthcare and research, with 

a growing demand for its services. The appeal of MRI stems from its non-ionizing radiation 

nature, ability to generate high-resolution images of internal organs and structures without 

invasive procedures, and capacity to provide quantitative assessments of tissue properties 

such as ectopic fat, body composition, and organ volume. All without long term side effects. 

Nine published papers are submitted which show the cultivation of quantitative measures of 

ectopic fat within the liver and pancreas using MRI, and the process of validating whole-body 

composition and organ volume measurements. All these techniques have been translated into 

large-scale studies to improve health measurements in large population cohorts. Translating 

this work into large-scale studies, including the use of artificial intelligence, is included. 

Additionally, an evaluation accompanies these published studies, appraising the evolution of 

these quantitative MRI techniques from the conception to their application in large cohort 

studies. Finally, this appraisal provides a summary of future work on crowdsourcing of 

ground truth training data to facilitate its use in wider applications of artificial intelligence. 

In conclusion, this body of work presents a portfolio of evidence to fulfil the requirements of 

a PhD by published works at the University of Salford.  
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Introduction 

Medical Imaging plays a significant role in clinical care and research trials (Munn & Jordan, 

2011). Everyday millions of medical images are produced, which are used for the diagnosis 

of disease and response to treatment (Mohamed Y. Abdallah & Alqahtani, 2019). With 

medical imaging moving from qualitative to quantitative (Hosny et al., 2018), immense 

amounts of electronic imaging data need storage but also hold additional untapped 

information, which could contribute to evidence-based practice and patient care (Canvasser et 

al., 2014). An example is organ segmentation to measure volume, which can help quantify 

disease states, function, and response to treatment (Geraghty et al., 2004). Technological 

advances and an ageing population mean that demand for imaging services will increase 

(Board of the Faculty of Clinical Radiology, 2019; Care Quality Commission, 2018). 

However, high vacancy rates for Radiologists and Radiographers mean demand outstrips the 

supply of imaging services.   

In addition to increased demand for clinical imaging, it is becoming more common to 

perform large cohort studies, thus creating large amounts of data available to researchers 

(About UK Biobank | UK Biobank, 2022; German National Cohort (GNC) Consortium, 

2014). Although not all large-scale cohort studies include imaging, the advantages are well  

recognised (MRC Population Health Sciences Group (PHSG), 2014). No matter how large, 

an imaging protocol for a research study requires it to be safe, applicable, feasible, robust, 

reliable, and repeatable. MRI has the advantage of not using ionising radiation and is an 

obvious choice when undertaking the imaging portion of a large-scale study. Furthermore, 

MRI can investigate tissue properties non-invasively. MRI opens the possibility of gaining 

insight into markers of health which may have previously only been possible using biopsy, 

post-surgery or at post-mortem.  

The advent of artificial intelligence (AI) has the potential to play a significant role in several 

areas of radiology problem-solving, where its impact has been described as profound (SELECT 

COMMITTEE ON ARTIFICIAL INTELLIGENCE. COLLATED WRITTEN EVIDENCE 
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VOLUME, 2017). However, due to algorithm development and training, the performance of an 

AI system is only as good as the training data, sometimes referred to as “ground truth”, which 

should be comprehensive and of high quality. Robust methods of acquiring and analysing 

medical images are required to provide high-quality data for the development and training of 

artificial intelligence systems. When data becomes available, it comes with a financial and time 

investment to analyse and annotate. So, extracting meaningful results worthy of publication 

and translation into improved clinical care will only be achieved on the required scale with 

additional resources. That is, skilled staff such as radiographers who can perform annotation 

and analysis, in other words, the production of robust and fully validated ground-truth cohorts. 

To ensure good quality data for AI development and training, it is essential that the data is 

accurately, reliably, and consistently acquired. The role of the radiographer in this process is 

essential in ensuring as they are acquiring consistently high quality data whilst still ensuring 

participant safety and comfort (Scheek et al., 2021). More recently, radiographers are 

beginning to play a pivotal role in the use of artificial intelligence in radiology, especially 

around ground-truth production and validation.   

This thesis presents nine papers and supporting evidence to fulfil the requirement PhD by 

publications. The papers are evidence of the cultivation of new qualitative MRI (qMRI) 

techniques and their translation into large-scale cohort studies. The submitted papers covers a 

journey of learning and development after entering a research environment. Gaining skills 

and understanding of research principles and how trials are conducted, including how 

quantitative data are acquired. Evolving by participating and assuming more responsibility 

for performing the analysis to produce viable results, including ground truth, how this process 

occurs, and the choices that determine the methods that are selected. This evolution also 

includes creating and optimizing imaging techniques that produce viable data before 

initiating independent ideas for unique and novel investigations.  Finally, this is a 

commentary on how the portfolio demonstrates original and unique contributions while 

discussing the detailed understanding required to render qMRI techniques suitable for larger 

imaging research studies.  
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Review of Literature  

Introduction 

When undertaking any form of research, a strategy is required to tackle the research question, 

which outlines a plan to collect, interpret, analyse, interpret, and draw conclusions from the 

data. According to the research design, there are various types and subtypes that can be 

further divided into groups, but the overarching approach falls into quantitative, qualitative, 

and mixed methods (Creswell & Guetterman, 2018) 

In recent years there has been an increase in large-scale research studies in response to the 

need to understand the mechanisms underpinning non-inheritable disease, epidemiology and 

thus inform government policy regarding health and spending. Cohort studies collect vast 

amounts of data from population groups who share a common characteristic, with some 

following participants for decades or even several generations (Barrett & Noble, 2019). 

Notable in these studies is that there is no intervention and control group, and data can be 

collected either retrospectively or prospectively. However, little is documented about 

including imaging in such large-scale studies. Thus, the literature has been examined to 

establish the background and history of large-scale studies and how imaging is incorporated.   

Longitudinal vs Cross Sectional Studies 

In 2016 the Proceedings of the Academy of Sciences (PNAS), a highly regarded peer-

reviewed scientific journal, published an article by Chaleckis et al. (2016) entitled “Individual 

Variability in Human Blood Metabolites Identifies Age-Related Differences” (Chaleckis et 

al., 2016). The authors presented a robust investigation into the differences in blood 

metabolites in two different age groups-young (15 young (29 ± 4y of age) and old (15 elderly 

(81 ± 7y of age). Makinen et al. (2016) responded by writing to the editor of PNAS, 

criticising the conclusions. Attention was drawn to the causal and mechanistic claims from 

two groups containing only fifteen participants and how cross-sectional studies should be 

interpreted cautiously (Mäkinen & Ala-Korpela, 2016). Confounding factors such as lifestyle 

and socioeconomic status can lead to distorted associations and misleading claims (Smith et 

al., 2007) .  
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The year before Chaleckis was published, Belsky et al. (2015) had already highlighted the 

need to study human ageing in the first part of life when ageing trajectories start to diverge. 

In addition, longitudinal studies are required as age-related diseases start manifesting and 

accelerated ageing can be identified. Thus, advocating the need for both cross-sectional and 

longitudinal studies (Belsky et al., 2015). Case-controlled studies can consider many 

variables when there is a lengthy period between exposure and the emergence of a disease 

(Mann, 2003). However, the outcome is either the presence of disease or not, and many 

influencing factors can be missed. Nevertheless, case-controlled studies can help generate 

hypotheses for further investigation.   

Large Cohort Study  

A large cohort study is the best way to study the hundreds, maybe thousands of variables and 

interactions with environmental factors (Manolio & Collins, 2010). Selection bias can be 

minimised by including a random sample of the population and minimising 'lost' participants. 

Belsky et al. included over 1037 participants in their study, which leads to the question of 

how many participants amounts to a large-scale study? For example, in a functional MRI 

(fMRI) study, Desmond and Glover (2002) concluded that twelve was enough to identify a 

statistically significant effect. However, this publication was about signal changes in the brain 

in a single population and the authors acknowledge that different parameters may be required 

when observing different populations, for example young and old. Nevertheless, there has 

also been a rise in large-scale imaging studies in psychiatry, with the number of participants 

expanding to thousands with the “statistical mantra is that more subjects means more power” 

(Turner, 2014).    

In 2014, the Medical Research Council (MRC) published 'Maximising the value of UK 

population cohorts', a review of the most significant UK population cohort studies 34 cohorts 

was identified, 17 of which include longitudinal data. In this review, one of the inclusion 

criteria was that the initial sample size at recruitment was >1000 (MRC Population Health 

Sciences Group (PHSG), 2014). Without any firm definition, 1000 was suggested as an 

acceptable figure but there is always the possibility that significance could be achieved with 

smaller numbers or reduced by the utilisation of more accurate and reproducible techniques 

use if the assessment of the variables of interest. Moreover, there is scope to achieve a large 

cohort by combining smaller studies, combining the data, and performing a meta-analysis. 
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However, researchers can be reluctant to share data (Molloy, 2011), and there will be 

complications with standardisation due to widely varying protocols (Turner, 2014).     

History of Large-Scale Cohort Studies 

There is evidence that Sir James McKenzie attempted a longitudinal study of the health 

residents of St. Andres in the 1890 and early 1900s at the Mackenzie Institute of Clinical 

Research (Mccormick, 1981). 92 cases were included and 42 showed evidence of ischemic 

heart disease (IHD). Thus, McKenzie concluded that IHD was common at the time. Several 

long-term studies were established in the 1940s in the USA, including the Framington Heart 

Study (Mahmood et al., 2014), with the first cohort consisting of 5209 participants. This has 

expanded over the last 74 years to include offspring of the original cohort and more diverse 

ethnicities. Now including 7 cohorts of 15,448 total participants the study has identified 

common factors which contribute to cardiovascular disease (About FHS | Framingham Heart 

Study, 2022). 

Perhaps the best known large longitudinal studies is the British Doctors Study which started 

sending questionnaires about smoking habits to doctors in 1951. Collecting data from 58,761 

respondents a link between smoking and lung cancer was established (Doll & Hill, 1954, 

1964). Follow up of this cohort continued until 2001.  These studies have resulted in new 

understanding of disease prevalence and contributory factors.  

One of the challenges facing researchers is finding and recruiting a representative sample of 

the population. When devising a study to investigate the side effect of contraception, 

researchers required a group who are intelligent, cooperative, health conscious and would be 

easy to follow. Registered nurses were identified, and the Nurses Cohort Study was founded 

in 1976. In 2002 the third cohort was enlisted and participants now number 280,000. The 

study has expanded beyond contraception and yielded many exciting findings, for example, 

'Nuts may protect against heart disease.' (Guasch-Ferré et al., 2017). A further large-scale 

study is the 45 and Up Study in Australia, which started recruiting in 2006 and now 

comprises of a huge cohort of 250,000 normal participants (‘Australia’s Largest Ongoing 

Study of Health and Ageing | 45 and Up Study | Sax Institute’, 2023). The studies undertaken 

with this cohort includes questionnaires or interviews and some biological samples, such as 

blood and urine but there is no imaging of this cohort.   
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More recently, the German National Cohort has included imaging in 56,971 of 205,415 

normal participants recruited between 2014 and 2019 (German National Cohort (GNC) 

Consortium, 2014). While all participants have collected interviews, medical examinations 

and samples, the MRI programme sub-set includes whole-body, brain, and cardiac imaging.   

In 2014, one in thirty people were enrolled in cohorts in the UK and linking to primary health 

records creates an invaluable national resource (Pell et al., 2014). A current directory of 

cohort studies in the UK can be found on the UK Research and Innovation (UKRI) website 

(Cohort Directory, 2023). The Medical Research Council (MRC), a council of UKRI, 

encourages the more extensive use of imaging modalities to add value and enhance 

understanding of disease in cohort studies (MRC Population Health Sciences Group (PHSG), 

2014). Nevertheless, there is little in the literature regarding how imaging can and should be 

introduced to a cohort study. Undeniably, acquisition parameters and protocols are 

documented, but the details of developing and implementing an imaging protocol are often 

unseen.        
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Magnetic Resonance Imaging   

Although there is some debate about who invented human magnetic resonance imaging 

(MRI) machines (Matthews, 2022), there is no doubt that it is a versatile piece of technology 

which has revolutionized medical imaging. The soft tissue image contrast produced by MRI 

is superior to other imaging modalities, and as it does not use ionising radiation has become 

widely used in both clinical and research fields. Many parameters can be manipulated to 

influence the final image, meaning MRI is an adaptable imaging modality (Bornert & Norris, 

2020). Thus, the notion that 'one size fits all' is not applicable to MRI, and the operator has a 

lot of opportunities to exploit, such as time to repeat (TR), echo time (TE), matrix, slice 

thickness (ST) and field of view (FOV) among others. MRI is about compromise and striking 

a fine balance between the final image's requirements and maximizing image quality. This 

process is often referred to as optimisation and is an essential process in the design and 

implementation of imaging protocols.  

Why Choose MRI?  

There is often uncertainty regarding why MRI may be chosen instead of other imaging 

modalities.  

  
Figure 1: Different Imaging Modalities 

 From left to right, plain radiograph of the skull base, computerised tomography (CT) of the head, positron 

emission tomography (PET) of the brain and contrast-enhanced (CE) angiography of the cerebral arteries.   

All the above images contain and convey clinically relevant information but do this by using 

ionising radiation. This type of radiation in the form of X-Rays or gamma rays carries enough 

energy to liberate electrons and is considered a carcinogen by the World Health Organisation 

(Ionizing Radiation, Health Effects and Protective Measures, 2016).  In contrast, MRI does 

not use electromagnetic radiation in the ionising spectrum. Although there are short-term 

effects of MRI scanning, and limitations in terms of tolerance, there is currently no 

compelling evidence of any long-term harm (Herate et al., 2022). 
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Figure 2: Selection of Image Contrast in MRI. 

From left to right, T1-weighted, fluid-attenuated inversion recovery (FLAIR), T2-weighted, diffusion-weighted, 

and magnetic resonance angiography (MRA). 

In a single MRI image acquisition examination, many different tissue contrasts can be 

obtained non-invasively, in any orientation and without the need for the administration of 

iodine-based contrast media. The superior tissue contrast and lack of ionising radiation mean 

that MRI is often the imaging modality of choice in research studies where serial imaging is 

necessary.  

However, there are limitations that need to be considered when selecting MRI as the imaging 

modality. Safety is fundamental, and all individuals entering the MR environment should be 

carefully screened and free of any contraindications, such as ferromagnetic metallic implants. 

Furthermore, some implants, although non-magnetic, can heat up during imaging, are MR 

conditional, and are only safe under certain limited scanning conditions. The international 

standard for the safe use of MRI has been published by the International Electrotechnical 

Commission (IEC) (IEC 60601-2-33:2022 Medical Electrical Equipment- Part 2-33, 2022), 

and the UK has its own safety guidelines published by the Medicines and Healthcare 

Products Regulatory Agency (MHRA) (Magnetic Resonance Imaging Equipment in Clinical 

Use, 2022). 

 

How does MRI work? 

MRI is based on the natural magnetisation of hydrogen nuclei when placed in an external 

magnetic field. Other elements can be imaged, such as oxygen, sodium, nitrogen, carbon, and 

fluorine, but only hydrogen is of an adequate quantity and concentration in the human body 

to provide conventional images. These elements are utilized because of their angular 

momentum, which is a result of an odd mass number/atomic weight and is known as MR-

active nuclei.  
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Figure 3:  Diagram of MRI scanner (Hornak, 2020)              

Placing the body in a strong magnetic field causes the hydrogen proton axis to line up along 

the scanner longitudinal axis and creates a magnetic vector. Extra energy is introduced in the 

form of a radio wave pulse that is specific to the element and field strength, and the magnetic 

vector is deflected from the longitudinal to the transverse plane.  

When the radio wave is switched off, the magnetic vector returns to its original resting state, 

which is variable for different tissues and is measured in two ways. Longitudinal relaxation is 

referred to as T1 recovery, whereas axial relaxation is T2 decay and occurs in the transverse 

plane when the axial spin dephases and loses its phase coherence. T1 and T2 are time 

constants measured in milliseconds (ms) and are specific to different tissues in the body. As 

relaxation occurs, a signal is generated, which is called free induction decay (FID).  

Pulse Sequences 

To produce useful images, a series of events involving RF pulses and switching gradient 

fields are followed by the collection of the signal. These events are determined by the 

required image contrast and type of pathology required for detection. Collectively, this series 

of events is called a pulse sequence and falls broadly into two categories: spine echo or 

gradient echo. 
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The spin echo uses a second RF pulse to rephase and create an echo, whereas a gradient echo 

applies switching gradients to create an echo event after the initial RF pulse. By applying 

additional gradients, the local magnetic field can be altered in small increments; thus, 

different parts of the body resonate at different frequencies and spatial encoding is achieved.  

The signal emitted from the subject is gathered on receiver coils, built up in k-space-the 

spatial frequency information in two or three dimensions and becomes an image via Fourier 

transformation. 

 
Figure 4: Pulse Sequences (Ebrahim, Mohamed, 2023)  

Field Strength 

A factor not manipulated by the operator is static field strength (B0) which refers to the 

power of the operating magnetic field measured in Tesla (T). It is proportional to the nuclear 

magnetic signals produced by magnetic resonance and is a major factor in image quality. It 

affects the signal-to-noise ratio (SNR) and T1 of tissue, but poor homogeneity leads to 

inadequate image quality, something which blighted early systems (Bornert & Norris, 2020).  

Field homogeneity describes the uniformity of the magnetic field within the bore (isocentre). 

It is measured in parts per million (ppm) over the diameter of a spherical volume (DSV). 

SNR is supralinearly proportional to B0, so using the highest field strength available is 

logical. However, many imaging departments may not have a choice of field strength, and 

access can be limited depending on demand.    

Is bigger always better though? Higher field strengths, especially when first introduced, were 

prone to inhomogeneity, resulting in special distortion and inadequate fat suppression. This is 

corrected by improved shimming, the act of making small adjustments to the main magnetic 

field.  
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Artefacts in the form of magnetic susceptibility increase at higher field strength (Huang et al., 

2015). Another consideration is safety which is influenced by B0. An object or implant which 

is mildly affected at 0.5T can turn into a dangerous projectile at 3T (Shellock & Crues, 2022) 

Combined with increased risk of heating, specific absorption rate (SAR) and limits of 

occupational exposure (Medecines and Healthcare products Regulatory Agency, 2022) there 

is now increasing interest in exploiting lower field strengths (Sheth et al., 2021).   

Limitations of MRI 

There is no doubt that MRI is a remarkable imaging modality, but there are limitations to be 

considered. The most obvious is the static magnetic field, which determines the location and 

limits those who can enter the MRI environment. Thus, some willing research participants 

and patients are excluded owing to the presence of metallic implants. Further complications 

of implants are that some can heat up during scanning due to the time-varying magnetic fields 

inducing electrical currents in the implant. These time-varying magnetic fields can also 

induce peripheral nerve stimulation (PNS), which manifests as twitching and discomfort in 

the extremities. Further heating is created by the deposition of RF energy in both implants 

and human tissue, which can cause discomfort and can be dangerous for vulnerable members 

of the population who cannot regulate their temperature. 

From a patient perspective, MRI is often poorly tolerated, with the acoustic noise being 

reported as at least a nuisance and at most 'intolerable.’ Noise levels can exceed permitted 

safe levels of 85 decibel (dB) and ear protection is required to protect hearing and improve 

comfort (MHRA, 2021). 

Claustrophobia is another difficulty, with the restricted space inside the scanner causing 

anxiety, which can be so severe that some people cannot endure the procedure at all, and so 

are excluded unless anaesthesia is administered. 

In addition, long scan times can be difficult to deal with and contribute to motion artifacts 

during imaging, as patients become restless and uncomfortable. 

Despite good tissue contrast, it is still appropriate to administer gadolinium (Gd) contrast 

medium, which was previously considered safe. However, recent evidence suggests Gd 

retention after repeated administration and the possibility of nephrogenic systemic fibrosis in 

patients with impaired kidney function (Do et al., 2020). 



   
 

 

 

 

12 

Image Quality  

When referring to quality, it is important to differentiate between a quality assurance (QA) 

program and the subjective assessment of image quality. QA is a ‘process to ensure that any 

product or service meets a required standard” (Koller et al., 2006), and a recommended set of 

tests specifically for MRI is included in The Institute of Physics and Engineering in Medicine 

guidelines (Quality Control and Artefacts in Magnetic Resonance Imaging, 2017).  

In contrast, image quality is subjective and best described as enabling the observer to extract 

information from the image and make an exact diagnosis (Holmes & Griffiths, 2016). In an 

ideal situation, an image will have a high signal, contrast resolution, spatial resolution, and 

have low levels of noise and be free of artefacts. When considering participants and 

equipment usage, images also need to be acquired within a concise scan time. Unfortunately, 

it is not possible to have all of these, and trade-offs always need to be made when optimising 

pulse sequences. Therefore, the operator requires a good understanding of MRI parameters 

and the impact on the images and participants when manipulating any of these parameters. 

Signal-to-Noise Ratio 

The magnetic resonance (MR) signal is a term which is frequently referred to and is defined 

as ‘the voltage induced in the receiver coil by the precession of net magnetic vector in the 

transverse plane’ (Westbrook et al., 2011) and corresponds to the brightness of any pixel 

and/or voxel in the image (McRobbie et al., 2006) and so is a key factor in the final image. 

Sadly, noise is also generated by the system and the presence of the patient/subject in the 

main magnetic field occurring at all frequencies and random in time. In contrast, signal is 

variable and relative to noise, so the signal-to-noise ratio (SNR) is a major consideration 

when manipulating parameters. According to Westbrook et al. (2011), the factors which 

affect SNR are proton density, voxel volume, repetition time (TR), echo time (TE), flip angle, 

number of excitations, receiver bandwidth and coil type.  However, other factors have been 

recognised, such as the use of multi-element surface coils, parallel imaging and different 

reconstruction filters (Dietrich et al., 2007).  
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Low Contrast Resolution 

As already mentioned, MRI produces images with superior soft tissue contrast compared to 

other imaging modalities (Bryan, 2009). This can be exploited to image all organs, including 

those previously unattainable by imaging such as the pituitary gland (Bradley et al., 2001). 

Low contrast resolution refers to the MRI system's ability to distinguish between two 

structures with similar signal intensities. The type of MRI sequence used affects contrast 

resolution, as different sequences are sensitive to different tissue properties. 

The contrast mechanisms can be divided into intrinsic and extrinsic. Intrinsic qualities are T1, 

T2 and proton density (PD).  Scanning parameters are manipulated by the operator 

to ’weight’ the image towards the desired contrast. The choice of sequence, either spin echo 

or gradient echo, will then determine which parameters are at the disposal of the operator, 

which includes TR, TE and, in the case of gradient echo, flip angle. Since these parameters 

are time-dependent, manipulation can change the timing of the scan and limit choices related 

to slice number to ensure scan times remain optimised.   

Extrinsic contrast mechanisms, however, include flow, the introduction of contrast media, fat 

suppression techniques including inversion recovery (IR), refocusing pulses, slice thickness 

and field strength contribute to the image contrast to varying degrees. The impact on the 

image will vary between body parts and the structure under examination.   

It is acknowledged that MRI examinations are longer than other imaging. Indeed, the very 

first image of a human performed by Damadian and his team took five hours on a machine 

named the Indomitable (Damadian, 1972). Since then, much progress has been made with 

stronger gradients, faster rise times and slew rates; however, motion is always a problem. 

Along with hardware improvements, developing under-sampling techniques using the fact 

that k-space is symmetrical reduces scan time but at the expense of image quality (Moratal et 

al., 2008). The introduction of parallel imaging techniques has seen scan times reduced 

further, though with a new type of artefact (Pruessmann et al., 1999). More recently, this 

technique has been developed further to include under-sampling (Candes et al., 2004) and is 

now commercially available as compressed SENSE (Geerts-Ossevoort et al., 2018).   

Spatial Resolution 

In MRI, spatial resolution refers to the ability of the imaging system to distinguish between 

two adjacent structures or features in an image. It is a measure of the smallest distance 
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between two objects that can be reliably resolved by the MRI scanner. Resolutions come in 

various forms, and all of them impact the overall resolution in some way. Contrast was 

discussed in the previous section.   

The spatial resolution is limited by the size of the imaging voxels, which are three-

dimensional rectangular solids, resulting in a different resolution in the three directions. The 

size of the imaging voxel is governed by the matrix, field of view (FOV) and slice thickness 

(ST) (Allisy-Roberts, Penelope & Williams, Jerry, 2008). Variations in any of these three 

parameters will result in changing the size of the voxel and, thus, the spatial resolution. 

However, changes to the phase encoding direction of the FOV will also impact the time of 

the scan, so a balance between scan length and the required spatial resolution is vital. In 

contrast, though, reducing phase encoding steps can be used to reduce the scan time if the 

shape of the anatomy allows it by selecting a rectangular FOV(RFOV) (Westbrook et al., 

2011). 

A significant influence on spatial resolution is the choice of slice thickness, as this determines 

the depth of the voxel. The scanner hardware will determine the minimum slice thickness 

possible while using two dimensional 2D (2D) imaging though thinner slices can be achieved 

by utilising three-dimensional (3D) imaging techniques but with a time penalty.  

Selecting the minimum slice thickness and gap appears to be a logical choice. However, since 

the voxel represents the signal from a small volume of tissue, reducing the slice thickness will 

reduce the amount of signal which can be measured, which has an impact on the overall 

image quality (McRobbie et al., 2006). But a larger voxel, although improving the signal, can 

cause partial voluming where individual signal intensities are averaged together and not 

distinct within the vowel.  

All the parameters which influence spatial resolution are controlled by the operator. Again, a 

judgment is required to balance all the requirements of the image and the capabilities of the 

scanner and subject. 

Temporal Resolution 

Temporal resolution is the ability of the imaging system to capture images rapidly over time, 

allowing for the visualisation of dynamic processes in real-time or near real-time. Examples 

are cardiac MRI and flow measurements. 
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Artefacts 

Artefacts on the MR image can degrade the quality and are broadly defined as “any feature 

on an image which misrepresents the object in the field of view” (McRobbie et al., 2006). The 

most common fall into three categories: motion, inhomogeneity, or digital imaging. Motion is 

predominately caused by involuntary movement or physiological motion caused by normal 

bodily functions, such as respiration. Inhomogeneous artifacts are due to imperfections in the 

main magnetic field and the susceptibility of tissue-air interfaces. Finally, a variety of 

artifacts are caused by the digital imaging processes and Fourier Transform. Some artefacts 

are inevitable and can only be minimised while some can be illuminated completely. Being 

able to recognise artefacts, along with a thorough understanding of causes and remedies is 

imperative to maximise image quality. 

Noise 

Electrical noise exists in all conductors and materialises as a grainy and mottled appearance 

on the MR image. However, further noise arises mainly from naturally occurring electrical 

currents within the human body, which create fluctuating magnetic fields. Thus, random 

noise is induced in the coil by the electronically charged particles such as sodium and 

potassium during nerve conduction (McRobbie et al., 2006). Noise and the relationship with 

signal and contrast are expressed as a ratio and calculated mathematically. 

 

This succinct overview of MRI parameters has displayed many options available to the 

operator, none without an impact. Therefore, it is essential that the reason for imaging is 

specified, the operator is knowledgeable and uses a judicious choice of all the parameters. 

Imaging Parameters and Terminology 

 

The control of the events in a pulse sequence is chosen by the operator by manipulating 

parameters. Some of the most common included in this text are: 

Field of View Area included in the imaging 
Inversion Recovery 
 

Pulse sequence beginning with 180-degree 
inverting pulse resulting in heavy T1 
weighting. 

Multi Echo (ME) Repeated gradient reversal to produce 
multiple echo events. 
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Flip Angle Amount of rotation the net magnatraction 
experiences upon application of RF pulse. 

In and Out of Phase Imaging during phase coherence and again 
out of phase coherence. 

k-space Part of the processor where spatial 
frequencies are stored. 

Parallel Imaging Using multiple coils to fill segments of k-
space 

Phase Position of the magnetic moment on its 
precessional path. 

Phase Encoding Location of a signal based on phase. 
Shimming Optimising the homogeneity of the main 

magnetic field. 
Slice Thickness (ST) The depth of the selected slice 
Echo Time (TE) Time from 90-degree pulse to the echo. 
Repetition Time (TR) Time between successive 90-degree radio 

frequency (RF) pulses. 
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Paper 1 

Cardiac T2* and lipid measurement at 3.0 T-initial experience 

Declan P. O’Regan, Martina F. Callaghan, Julie Fitzpatrick, Rossi P. Naoumova, Joseph V. 

Hajnal, Stephan A. Schmitz 

 

Abstract This study was designed to assess whether breath-hold cardiac multiecho imaging 

at 3.0 T is achievable without significant image artefacts and if fat/water phase interference 

modulates the exponential T2* signal decay. Twelve healthy volunteers (mean age 39) were 

imaged on a Philips Intera 3.0 T MRI scanner. Multiecho imaging was performed with a 

breath-hold spoiled gradient echo sequence with a seven echo readout (echo times 1.15–8.05 

ms, repetition time 11 ms) using a black-blood prepulse and volume shimming. T2* values 

were calculated with both mono- and biexponential fits from the mean signal intensity of the 

interventricular septum. The global mean T2* was 27.3 ms±6.4. The mean signal- 

to-noise ratio (SNR) of the septum was 22.8±9.9, and the contrast- 

to-noise ratio (CNR) of the septum to the left ventricular cavity 20.3±9.4. A better fit was 

obtained with a biexponential model and the mean fat fraction derived was 3.7%. Cardiac 

functional parameters were in the normal range and showed no correlation with T2*. Cardiac 

T2* estimation with gradient multiecho imaging at 3.0 T can be achieved with minimal 

artefact and modelling the signal decay with a biexponential function allows estimation of 

myocardial lipid content as well as T2* decay. 

Introduction 

Transfusional iron overload is a frequent cause of heart failure in patients with thalassaemia 

[1, 2]. Biochemical measures of iron overload are inconsistent predictors of myocardial iron 

deposition [3] and so an accurate non-invasive assessment of iron overload may guide 

diagnosis, treatment and response. Iron deposition complexes such as ferritin, haemosiderin 

and low molecular weight cytosol iron cause a shortening of T2* largely due to paramagnetic 

effects [4]. Gradient echo sequences with readouts at multiple echo times can be used to 

rapidly acquire a set of increasingly T2*-weighted images. The fitting of an exponential curve 

to the magnitude signal intensity of these images allows the measurement of T2* in a defined 
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anatomical region. The inverse correlation of T2* with liver iron concentration, as obtained 

by biopsy, has been used to validate this technique [5]. Cardiac-triggered gradient-echo 

sequences may be used to obtain T2* measurements of the heart to estimate the severity of 

myocardial iron deposition as well as assessing systolic and diastolic function. This technique 

has shown good inter-study and inter-scanner reproducibility [5, 6], correlates with invasive 

biopsy [3, 7] and can monitor response to chelation therapy [8–10]. 

Cardiac imaging at 3.0 T may offer significant advantages over previous techniques for 

measuring myocardial T2*. The higher field strength has the advantage of potentially 

doubling the signal-to-noise ratio (SNR) compared to conventional 1.5 T systems and this 

may allow imaging at greater spatial or temporal resolution. Higher SNR may also allow the 

interference effects of fat and water signals within the myocardium to be detected [11]. The 

greater susceptibility effects at high field strength might also result in improved sensitivity to 

lower concentrations of tissue iron. However, there are several technical issues which remain 

problematic for high-field cardiac T2* imaging such as susceptibility artefact and poor 

shimming [12]. 

This study was designed to assess whether breath-hold cardiac multiecho imaging at 3.0 T is 

achievable without significant image artefacts and if fat/water phase interference modulates 

the exponential T2* signal decay. 

Materials and methods 

Subjects 

Imaging was performed on 12 subjects (9 male, 3 female) with a mean age of 39 (range 27–

49). No subjects had a history of iron overload or cardiac disease. Ethical approval was granted 

for the study and all participants gave written informed consent. Specific absorption rate 

(SAR) limits were 4.0 W/kg. 

MR sequences  

The MRI studies were performed on a 3.0 T Philips Intera system (Best, The Netherlands). 

The maximum gradient strength was 31 mT/m and the maximum slew rate 200 mT/m/ms. A 

six-element cardiac phased array receiver coil was used and a vector-ECG system used for R-

wave detection. Scout images were obtained and used to plan an axial stack of cine balanced-

steady state free precession images in the left ventricular short axis from base to apex. 
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Sequence parameters for the cine sequence were matrix 176×256, flip angle 45°, field of 

view 350 mm, slice thickness 8 mm with a 2-mm gap, TE 1.8 ms, TR 3.7 ms and 20 cardiac 

phases. Velocity-encoded imaging was performed across the mitral valve to assess diastolic 

function with a through plane velocity encoding parameter of 80 cm/s.  

Multiecho imaging was performed with a breath-hold spoiled gradient echo sequence with a 

seven echo readout. A single acquisition was made through the mid cavity of the left 

ventricular short axis. The multiecho sequence parameters were matrix 128×256, flip angle 

20°, field of view 320 mm, slice thickness 10 mm, turbo field echo factor 6 and TR 11 ms. 

The echo times chosen were when the signals from fat and water are alternately in-phase and 

out-of-phase with respect to each other. Proton spectroscopy studies have determined that the 

chemical shift of intrahepatic lipid relative to water is 3.4 ppm [13] and so the first TE chosen 

was 1.15 ms with a ΔTE of 1.15 ms (TEs-1.15, 2.30, 3.45, 4.60, 5.75, 6.90 and 8.05 ms). 

Cardiac triggering was set for mid-diastole to reduce motion artefact. Localised higher-order 

shimming was used with a volume placed over the whole heart. A black- blood double 

inversion prepulse was used for suppression of ghosting artefact from the blood pool. Images 

were acquired in held expiration.  

Quantitative analysis  

Quantitative image analysis was performed by a cardiac radiologist (DPO’R). The cine 

sequences were analysed using Philips (Best, The Netherlands) ViewForum software release 

4.1. The endo- and epicardial borders were defined on the left ventricular cine images using a 

standard methodology [14] to derive left ventricular mass, ejection fraction, end diastolic 

volume (LVEDV), end systolic volume (LVESV), peak filling rate (PFR) and time to PFR. 

On the velocity-encoded images a region of interest was defined across the mitral valve 

orifice and flux rates calculated and an E:A ratio derived. Multivariate linear regression 

analysis was performed on these functional indices with myocardial T2* as a dependent 

variable using SPSS software (SPSS Inc, Chicago, IL) assuming significance at p < 0.05.  

T2* analysis was performed using ImageJ software (U.S. National Institutes of Health, 

Bethesda, MD) and SigmaPlot (Systat software Inc, San Jose, CA). Polygonal regions of 

interest were drawn around the interventricular septum. The endocardial boundary was 

excluded to avoid contamination with the blood pool signal. Curve fitting was performed 

with a single process exponential decay model using the following equation:  
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where |S0| is the initial magnitude signal intensity and |S(t)| the magnitude signal intensity at 

echo time t and T2* the global decay constant. An offset correction (c) was included to model 

the effect of noise bias in the data [15]. Parametric colour maps of global T2* were obtained 

with a pixel-by-pixel analysis using Matlab 7.0 (Mathworks, Natick, MA).  

A biexponential curve-fitting equation was used to model the chemical shift interference 

effects of fat and water components as a function of echo time [11]:  

 
where Sw and Sf are the components of the magnitude signal (|S(t)|) due to water and fat, 

respectively, T2*w and T2*f their respective decay constants, t the time after excitation, and 

Δω the difference in frequency between fat and water. To reduce the number of degrees of 

freedom in the model the frequency difference between fat and water was taken to be 3.4 

ppm. The signal components due to water (Sw) and fat (Sf), as well as their respective T2* 

decay constants (T2*w and T2*f), were modeled with an iterative curve-fitting technique 

using the Levenberg- Marquardt algorithm [16] (SigmaPlot version 10, SPSS Inc, Chicago, 

IL). A comparison between the two models, which have different degrees of freedom, was 

made with an F-test assuming significance at p<0.05. The goodness of fit of the two models 

was described by the r2 statistic.  

SNR and CNR measurements were obtained from the mean signal intensity of the 

interventricular septum (SISeptum) and the left ventricular cavity (SICavity). The myocardial 

septum was manually segmented with a polygonal region of interest. A circular region of 

interest was placed within the left ventricular cavity avoiding the papillary muscles. 

Background noise (N) was assessed from the standard deviation of the signal intensity of a 

rectangular region of interest placed in the background and orientated in the phase encoding 

direction. The standard deviation of the noise was multiplied by the Rayleigh factor (1.53) to 

account for the non-Gaussian distribution of noise in magnitude images [17]. SNR was 

calculated as:  
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Results 

All subjects tolerated the study and images of diagnostic quality were obtained. Image quality 

was maintained throughout the multiecho acquisition, although at the longest echo times 

signal loss was observed at the inferolateral wall of the LV (Fig. 1). Parametric colour maps 

were obtained showing the regional variation in global T2* values (Fig. 2).  

 
Fig. 1 Two images from a black-blood multiecho sequence of the left ventricle. The first echo at 1.15 ms is 

shown on the left and the last echo at 8.05 ms on the right. Image quality is maintained with only minor 

susceptibility effect in the inferolateral wall at the longer echo times  
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Fig. 2 A parametic colour map of the global T2* values (ms) within the heart  

Results are expressed as a mean ± 1 SD. The mean T2* of the myocardial septum was 27.3 

ms ± 6.4. Using r2 as a measure of goodness-of-fit, the single process decay model (r2 = 

0.979) (Fig. 3) was inferior to the fat/water chemical shift biexponential model (r2=0.998) 

(Fig. 4). The F-test indicated that the higher-order biexponential model provided a better fit 

(p < 0.05). The model indicated a fat fraction of 3.7%, a T2* (water) of 26 ms and T2* (fat) 

of 2 ms. The mean SNR of the septum was 22.8±9.9, and the CNR of the septum to the left 

ventricular cavity 20.3 ± 9.4 (Table 1). The mean LV mass was 88.9 g ± 32.0, LVEDV 148.8 

ml ± 46.3, LVESV 59.8 ml ± 25.4, ejection fraction 60.3% ± 7.5, cardiac output 6.0 l/min ± 

1.7, E:A ratio 1.8 ±  

 
 

Fig. 3 A plot to show the variation in mean signal intensity with echo time for the interventricular septum 

(n=12) using a trendline with a single process exponential decay  

 

 



   
 

 

 

 

25 

Fig. 4 The same data are plotted as in Fig. 3, but an improved fit is obtained with a biexponential decay model 

to account for fat/water phase interference within the myocardium 

0.6, PFR 467 ml/s±103.4, and the time to PFR 124.6 ms± 40.3. There was no correlation 

between T2* values in these healthy subjects and the measured parameters of systolic and 

diastolic function.  

 

Discussion  

This pilot study demonstrates that black blood breath-hold multiecho cardiac T2* 

measurement is achievable at 3.0 T field strength with minimal image artefacts. The phase 

interference between fat and water signals modulates the signal intensity as a function of echo 

time and a better fit is obtained with a biexponential model. This technique allows both the 

myocardial fat content and the T2* decays of fat and water to be determined.  
 

Table	1	The values for each participant undergoing multiecho imaging  

 Global T2* SNR CNR 

1 29.0 25.9 23.6 

2 28.8 17.9 15.8 

3 18.2 13.0 11.0 

4 21.4 40.0 37.2 

5 23.9 34.4 32.7 

6 28.2 17.6 13.0 

7 25.0 27.6 25.1 

8 21.5 24.2 22.3 

9 28.0 13.6 11.8 

10 43.5 6.6 6.0 

11 30.9 19.8 17.6 

12 28.5 33.0 28.1 

 

The principle of cardiac multiecho imaging is that myocardial iron concentration has a 

predictable relation- ship with tissue relaxivity. The T2* decay can be expressed as:  
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and will be dependent on the tissue T2, the variation in magnetic field (ΔB) and the 

gyromagnetic ratio (γ). Iron deposition complexes, such as ferritin and other iron 

nanoparticles, have complex properties of ferromagnetism, antiferromagnetism and 

paramagnetism [18]. They appear unique in that their 1/T2 shows a linear dependence on 

field strength [19]. Field-dependent change in 1/T2 may there- fore be highly specific for 

changes in ferritin levels [18]. The difference in T2-relaxation times for the heart has not 

been reported, but the T2 of the solid abdominal viscera is slightly shorter at 3.0 T than 1.5 T 

using spin-echo techniques [20]. Gradient echo sequences are also sensitive to local field 

inhomogeneities caused by the microscopic field gradients of iron particles leading to a 

shortening of T2*. Empirically 1/T2* at 3 T is twice that at 1.5 T in subjects with iron 

overload with a small offset depending on the non-iron component of the tissue [12]. 

Therefore extrapolation to 3.0 T of biopsy-validated T2* data obtained at 1.5 T [5] should be 

feasible.  

In this study the mean cardiac T2* values are derived from a relatively early range of echo 

times between 1.15 ms and 8.05 ms. In patients with iron overload with a very short T2* it is 

important to sample the signal decay curve as early as possible to avoid underestimation of 

iron con- tent. Furthermore, the short echo times used in this study limit artefact due to 

cardiac motion, flow effects and blood oxygenation level dependent effects [15]. Normal 

values of myocardial T2* using a breath-hold multiecho sequence at 1.5 T have been reported 

as 33.3 ms±7.8 with eight readouts between 2.6 and 16.7 ms and a TR of 20 ms [21]. A 

combination of single and multiecho T2* measurement at 3.0 T has reported myocardial T2* 

values in healthy volunteers (excluding outliers) of 33.3 ms ± 8.3 with eight readouts between 

1.6 and 12.8 ms and a TR of 13 ms [12]. Our study addressed potential sources of artefact by 

using localized volume shimming and a black blood prepulse. Our findings at 3 T show a 

myocardial T2* of 27.3 ms ± 6.4 with seven readouts between 1.15 and 8.05 ms and a TR of 

11 ms. The similar relaxation values at 3.0 T compared to lower field strengths may reflect 

the absence of measurable quantities of ferritin in the myocardium of normal volunteers. In 

the healthy subjects that were imaged, with no history of iron overload, there does not appear 

to be any significant correlation of myocardial T2* with the measured parameters of systolic 
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or diastolic function. Our study examined a small number of normal volunteers and a larger 

cohort may be needed to define normal ranges for T2* at 3 T. Myocardial T2* measurement 

has shown good inter-study and inter-scanner reproducibility at 1.5 T [5, 6], but this has yet 

to be determined at 3 T.  

A deviation from a simple exponential T2* decay in myocardium due to fat and water phase 

interference has been noted previously [15]. The use of in-phase and out- of-phase echo times 

and fitting to a biexponential model allows an estimate of myocardial lipid content to be 

made [11]. In volunteers the lipid content is small but introduces a time dependency to the 

signal decay. Cardiac steatosis can be measured with proton spectroscopy and is detectable in 

diabetic patients [22] and may have a role in cardiac failure [23]. However, the amount of fat 

detected was small and the variation in signal intensity would be lessened in T2* protocols 

using intermediate echo time intervals.  

Cardiac imaging at 3.0 T has demonstrated the potential for significant improvement in 

signal-to-noise ratios (SNR) and image quality [24, 25], but may be associated with greater 

B1 and B0 field inhomogeneities, longer T1 relaxation and power deposition limitations [26]. 

Multi- echo imaging of the heart therefore poses a number of challenges at high field 

strength. Radio frequency power deposition was reduced by using a shallower flip angle 

(20°) than that typically used at 1.5 T field strength (35°). The potential loss of SNR may be 

compensated for by using a shorter TR although this will depend on the longest echo time in 

the multiecho acquisition. Susceptibility artefact appeared relatively minor and was limited to 

signal loss of the inferolateral epicardial left ventricle at longer echo times. This effect has 

been observed at lower field strength and may be due to deoxygenated blood in the posterior 

vein of the left ventricle causing local field inhomogeneity [27]. Motion artifact was 

minimized by imaging during suspended respiration and limiting the acquisition window to 

mid-diastole. A double inversion- recovery black blood prepulse was employed to further 

reduce ghosting artifact from the blood pool and localized higher-order volume shimming 

was used to improve B homogeneity.  

When quantifying magnitude MR images there is a potential for noise bias when the SNR 

falls below 2 [28]. However, the high SNR offered by 3.0 T imaging limits the potential error 

introduced by structural noise variation. As the signal decay was being measured in normal 

volunteers with no iron overload, a signal plateau was not reached. However an offset 
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correction was included in the models for consistency as significant underestimation of T2* 

may occur in severe iron overload due to noise bias [15].  

The most appropriate measurement of SNR and CNR is controversial, and a standard 

approach has been taken in this study using a “noise-only” region in the field of view [24, 25, 

29]. However, the noise is not evenly distributed in an image formed by a phased array coil 

and apparently noise-free areas in the background may be contaminated by artefact [30]. 

Nevertheless, our method serves as an appropriate indicator of image noise and contrast. An 

advantage of the good SNR achievable at 3.0 T is that it may be traded for higher spatial or 

temporal resolution with the use of parallel imaging techniques. Breath-hold multi-slice 

imaging may become feasible, and smaller voxels may allow better differentiation of 

endocardial and epicardial variation in T2*[31].  

Conclusion  

Cardiac T2* estimation with gradient multiecho imaging at 3.0 T can be achieved with 

minimal artefact by the use of localised shimming and black blood imaging. Modelling the 

signal decay with a biexponential function allows estimation of myocardial lipid content as 

well as T2* decay.  
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Paper 2 

Liver Fat Content and T2*: Simultaneous Measurement by Using 

Breath-hold Multiecho MR Imaging at 3.0 T-Feasibility¹ 

Declan O'Regan, Martina Callaghan, Marzena Wylezinska-Arridge, Julie Fitzpatrick, Rossi 

Naoumova, Joseph Hajnal, Stephan Schmitz 

Abstract 

Research ethics committee approval was obtained for this study, and written informed 

consent was obtained from all participants. The purpose was to prospectively evaluate the 

feasibility of breath-hold multiecho in- and out -of- phase magnetic resonance (MR) imaging 

for simultaneous lipid quantification and T2* measurement. A spoiled gradient-echo 

sequence with seven echo times alternately in phase and out of phase was used at 3.0 T. 

Imaging was performed in a lipid phantom, in five healthy volunteers (all men; mean age, 37 

years), and in five obese individuals with hyperlipidemia or diabetes (four men, one woman; 

mean age, 53 years). A biexponential curve-fitting model was used to derive the relative 

signal contributions from fat and water, and these results were compared with results of liver 

proton MR spectroscopy, the reference standard. There was a significant correlation between 

multi-echo and spectroscopic measurements of hepatic lipid concentration (r² = 0.99, P 

< .001). In vivo, the T2* of water was consistently longer than that of fat and reliably enabled 

the signal components to be correctly assigned. In the lipid phantom, the multiecho method 

could be used to determine the fat-to-water ratio and the T2* values of fat and water 

throughout the entire range of fat concentrations. Multiecho imaging shows promise as a 

method of simultaneous fat and T2* quantification. 

Introduction 

Accurate noninvasive assessment of liver fat content is an important tool in the evaluation of 

patients with hepatic steatosis [1]. Lipid quantification with magnetic resonance (MR) 

imaging relies on the difference in resonant frequency between fat and water molecules. With 

gradient-echo sequences, the signal intensity is at a maximum when the transverse 
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magnetization vectors of fat and water within the voxel are in phase and at a minimum when 

the vectors are out of phase [2]. Single and dual-echo techniques have previously been used 

to estimate lipid content within the liver [2-9] and adrenal glands [10]. However, signal 

intensity loss on in-phase images caused by the presence of liver iron is a potential pit fall in 

the determination of liver fat percentage by using dual-echo imaging [11]. A separate 

sequence is therefore required to correct for global T2* effects. A further limitation is that 

dual-echo methods do not enable differentiation of whether the dominant component is fat or 

water, so an additional sequence with either gradient-echo imaging or breath-hold 

spectroscopy is required to resolve this [12,13]. In contrast, multiecho imaging has the 

potential to enable more accurate and efficient measurement of tissue fat content in a single 

sequence. The signal intensity variation in a multiecho acquisition would be expected to 

depend on the individual T2* decays of the fat and water components, as well as a periodic 

oscillation of signal intensity between in-phase and out-of-phase echo times dependent on the 

fat-to-water ratio [14-17]. A rapid single sequence allowing accurate tissue fat quantification 

as well as T2* measurement would be of potential value in lipid deposition disorders. Thus, 

the aim of our study was to prospectively evaluate the feasibility of breath-hold multiecho in- 

and out of phase MR imaging for simultaneous lipid quantification and T2* measurement. 

Advances in Knowledge  

• Unlike with dual-echo methods, with multiecho MR imaging, fat measurement can be 

performed without the need to acquire a separate T2* map, and the signal components 

may be correctly assigned to fat and water on the basis of their different T2* values. 

• Results of fat quantification in the liver by using a multiecho technique correlate 

highly (r² = 0.99, P < .001) with those of T2-corrected proton MR spectroscopy. 

Materials and Methods 

Financial support was given by Bayer Schering Pharma (Newbury, Berkshire,England) and 

Philips Medical Systems (Best, the Netherlands). The authors had control of the data and 

information submitted for publication. 
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Lipid Phantom Study  

A phantom was constructed by pouring equal volumes of mineral oil (liquid petrolatum; 

Johnson and Johnson, New Brunswick, NJ) and water into a cylindric container [6]. The 

water was doped with 10mmol/L copper sulfate solution to shorten its T2. An oblique 

imaging plane was chosen that passed through the boundary of the two immiscible layers. 

Therefore, the oil-to-water ratio within a voxel at a given point in the image varied along a 

continuous gradient from pure oil to pure water (Fig 1). The oil percentage at a given point 

was determined through cross reference to a coronal high-spatial resolution T1-weighted 

gradient-echo MR image obtained perpendicular to the plane of the fluid layers. The 

sequence parameters were as follows: flip angle, 80°; field of view, 3320 mm; section 

thickness, 4 mm; receiver band width, 1930 Hz/pixel; acquired voxel size, 0.5 x 0.5 x 4 mm; 

repetition time msec/echo time msec, 16/2.3; number of signal averages, two; and a 

frequency encoding direction oriented parallel to the oil and water interface. 

Implication for patient care 

• Multiecho MR imaging shows promise as a method for simultaneous fat and T2* 

quantification in the liver. 

Human Participants 

The study was undertaken with the approval of the Hammersmith Hospital research ethics 

committee, and written informed consent was obtained from all study participants. Five obese 

individuals with a history of hyperlipidemia or diabetes (four men, one woman; mean age, 

53} years; range, 35-67 years; mean body mass index, 36.2 kg/m² range, 33-40 kg/m²) were 

enrolled. The control group consisted of five healthy volunteers with no history of excess 

alcohol use (<30 g per day) or diabetes (five men; mean age, 37 years; range, 32-44 years; 

mean body mass index, 25.0 kg/m²; range, 22-30 kg/m²). 

Multiecho Sequence 

The MR imaging studies were performed with a 3.0-T MR imaging system (ltera; Philips) 

operating with Release 1.7 software. A software patch was installed to enable multiecho 

imaging. The same scaling factors were applied to each image in the multiecho acquisition. 
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The maximum gradient strength was 31 mT/m, and the maximum slew rate was 200 

mT/m/msec. Imaging was performed by using a breath-hold spoiled gradient-echo sequence 

with a seven-echo readout, resulting in a total acquisition time of 4 seconds for a single 

section. The multiecho sequence parameters were as follows: flip angle, 20°; field of view, 

320 mm; section thickness, 10 mm; receiver bandwidth, 780 Hz/pixel; acquired voxel size, 

2.5 x 2.5 x 10 mm; repetition time, I7 msec; and number of signal averages, two. Proton 

spectroscopy studies have revealed that the chemical shift of intrahepatic lipid relative to 

water is 3.4 ppm (I8); hence, in vivo, the first echo time (TE) chosen was 1.15 msec, with a 

ΔTE of 1.15 msec (TEs: 1.15, 2.30, 3.45, 4.60, 5.75, 6.90, and 8.053 msec). The chemical 

shift in the oil phantom was determined as 3.5 ppm, and the ΔTE was reduced to 1.12 msec 

(TEs: 1.12, 2.24, 3.36, 4.48. 5.60, 6.72. and 7.84 msec) for these experiments. Body imaging 

was performed by one technologist (J.F., with I0 years of experience in MR imaging). A six-

channel phased-array receiver coil was used, and images were acquired in held expiration, A 

single-section multiecho sequence was performed in a transverse plane passing through the 

liver and spleen, superior to the main portal vein. Higher-order shimming was used, with a 

volume manually placed over the liver. Participant tolerance of the examination, signs of 

peripheral nerve stimulation, and image quality were monitored. Liver spectroscopy was 

performed by one operator (M.W., with IO years of experience in spectroscopy). 

Spectroscopy was performed during the same study as multiecho imaging. Single-voxel 

spectroscopic measurement of intrahepatic fat levels was performed according to a protocol 

previously validated at 1.5T [19]. An 8-cm³ cubic volume of interest was placed over the 

right lobe of the liver, avoiding intrahepatic blood vessels. The Q-body coil was used to 

transmit and receive. A point -resolved spectroscopy sequence [20] without water 

suppression was used for spatial localization and spectra acquisition. To correct for T2 decay, 

three consecutive spectra were acquired with echo times of 40, 60, and 135 msec. The 

repetition time was 2000 msec, and 32 signals were acquired. 

Data Analysis: Modeling of Fat and Water Phase Interference  

In tissues containing lipid and water, there will be oscillation in signal intensity as a function 

of echo time. The signal intensity of each component will also show T2* decay, The 

magnitude signal intensity (|S|) may therefore be modeled with the following equation:  
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where 𝑆! and 𝑆", are the components of the signal from water and fat, respectively, and 𝑇2		!∗  

and 𝑇2		"∗  are their respective decay constants, while t is the time after excitation and ∆% is the 

difference in frequency between fat and water. To reduce the number of degrees of freedom 

in the model, the frequency difference between fat and water was considered to be 3.4 ppm. 

The signal components from water (𝑆!) and fat (𝑆"), as well as their respective T2* decay 

constants (𝑇2		!∗  and 𝑇2		"∗ ), were modeled with an iterative curve-fitting technique by using 

the Levenberg-Marquardt algorithm (21) and software (SigmaPlot, version 10; SPSS, 

Chicago,III). For the purpose of comparison with results of MR spectroscopy, the lipid 

content was expressed as a percentage of the total signal as follows: lipid content percentage 

= 100%· [𝑆"/ (𝑆!)+ 𝑆")]. A comparison was made with fat estimation performed by using a 

conventional dual-echo method by analyzing only the first pair of in-phase and out-of-phase 

echoes with the following equation: lipid content percentage= [(𝑆&' - 𝑆())· 100%| /(2·𝑆&'), 

where 𝑆&' and 𝑆() are the signal intensities on the in-phase and out of phase images, 

respectively [6]. 
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Fig. 1 Oil and water phantom: immiscible layers of mineral oil and water were used to 

simulate a range of oil-to-water ratios. Top: An oblique MR imaging section (16/2.3; flip 

angle, 80°; frequency encoding direction, left to right) was positioned across the interface of 

the two layers, and 11 points along this gradient from 0% to 100% oil were used to position 

the regions of interest (ROIs) on the multiecho images Bottom left: Out-of-phase image 

(17/1.15; flip angle, 20°) shows position of first rectangular ROI and demonstrates signal 

cancellation in voxels containing fat and water. Bottom right: In-phase image (17 /2.3; flip 

angle, 20°) is shown for comparison. 

Image Analysis  

The raw image data were exported from the imaging unit for off-line re-construction and 

were converted to "Analyze" format by using software (Matlab, version 7.0; Mathworks, 

Natick, Mass). Analysis of multiecho imaging studies was performed by one operator 

(D.P.O., with 6 years of experience in MR imaging) with a Pentium 4 3.0-GHz computer by 

using software (ImageJ; National Institutes of Health, Bethesda, Md). The coronal TI-

weighted image of the oil and water phantom was used to identify the relative proportions of 
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fat and water along the oblique imaging section. Eleven equally spaced divisions along this 

gradient, from 0% to 100% oil, were cross-referenced to a position on the multiecho images. 

Each ROI placed on the multiecho images measured 40 x 10 pixels. On the liver images, a 

circular ROI (30 mm in diameter) was placed in the same location as the spectroscopy voxel, 

avoiding vascular structures. In each case, the mean signal intensity was measured at each 

echo time. 'The curve fitting algorithm using the biexponential model was used to derive the 

fat fraction, as well as the component T2* decays for fat and water. An automated pixel-by-

pixel analysis was performed to obtain color-coded parametric maps of liver fat and water 

percentages, also by using the Matlab software. 

 
Fig. 2 Graph shows results of fat percentage estimation across range of oil-to-water ratios in 

the oil and water phantom by using the dual-echo and multiecho sequences. The component 

with the longer T2* has been assigned to water in the multiecho analysis. The dual-echo plot 

assumes that water is the dominant component. Dotted lines=calculated fat percentage at 

50:50 oil-to-water ratio for each method. 

Reference Standard Liver Spectroscopy 

The phase-corrected spectra were analyzed in the time domain by using the AMARES 

algorithm included in the MRUI software package [22]. Resonance fitting was performed by 

M.W. to obtain signal intensities for lipid (𝑆") and water (𝑆!). Exponential regression 

analysis of the peak amplitudes at each echo time was used for T2 decay correction. Lipid 

fraction was derived from 𝑆" and 𝑆!in the same manner as that used with the multiecho 

technique. 
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Statistical Analysis  

Statistical analysis was performed by using software (SPSS, version 12, SPSS; and MedCale, 

version 9, MedCale Software, Mariakerke, Belgium). Results are presented as mean values ± 

1 standard deviation. Bland-Altman plots [23] were used to analyze the agreement between 

multiecho and MR spectroscopic estimations of liver fat content and between multiecho and 

dual-echo estimations of liver fat content, The correlation between liver fat concentration as 

determined with multiecho imaging and concentration as determined with MR spectroscopy 

was assessed by using linear least-squares regression. The means of the in vivo 𝑇2		!∗  and 

𝑇2		"∗  values were compared by using a paired-samples t test. P < .05 was considered to 

indicate a significant difference. 

 
Fig. 3 Transverse breath-hold multiecho MR imaging acquisition (17/1.15--8.05; flip angle, 

20°; field of view, 320 mm; section thickness, 10 mm) in liver with seven readouts. Images 

are alternately out of phase and in phase from left to right in each row. Image quality is 

maintained throughout the range of echo times. 

Results 

Oil and Water Phantom 

The multiecho sequence modeling derived the two signal intensity components and their 

respective T2* values throughout the range of oil-to-water ratios. The two signal intensity 

components (oil and water) had mean T2* values of 94.4 msec ± 11.6 and 5.1 msec ± 2.3 

respectively. The correct interpretation of the oil-to-water ratio at each position along the 
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phantom was obtained if the component with the longer T2* value was assumed to be water. 

The dual-echo method does not allow a determination of the dominant component, and, 

accordingly, less signal cancellation was seen at each end of the oil concentration gradient. At 

the midpoint of the phantom, with a 50:50 oil-to-water ratio, the multiecho method derived a 

fat content of 49%; the dual-echo method derived a fat content of 27% (Fig 2). 

In Vivo Multiecho Sequence and MR Spectroscopy 

MR imaging was well tolerated by all participants; there was good image quality throughout 

the range of echo times (Fig 3). Specific absorption rates were within specified limits (4.0 

W/kg), and no peripheral nerve stimulation was reported. The proton spectra demonstrated 

satisfactory line widths, with water and lipid peaks at 4.7 and 1.3ppm, respectively. The 

multiecho sequence modeling converged on a fit for 𝑆!and 𝑆" and the individual 𝑇2		!∗  and 

𝑇2		"∗  components in all subjects but one (Table). This healthy volunteer had a fat content of 

only 1.3% at multiecho imaging, and the 𝑇2		"∗ , could not be derived. In the patient group, the 

mean hepatic fat fraction determined with multiecho imaging was 17.7% ± 7.3, while the 

mean water T2* value was 16.0 msec ± 4.1 and the mean lipid T2* value was 7.4 msec ± 2.1. 

In the volunteer group, the mean hepatic fat fraction was 2.7% ± 1.4, while the mean water 

T2* value was 21.8 msec ± 11.7 and the mean lipid T2* value was 4.6 msec ± 1.8. Among all 

subjects, there was a significant difference between the mean 𝑇2		!∗ , and 𝑇2		"∗  values (P <.05), 

and the 𝑇2		!∗ value was consistently greater than the 𝑇2		"∗  value (Figs 4, 5). 

Bland-Altman analysis revealed a systematic underestimation of fat content with the dual-

echo method compared with the multiecho method, with the mean limits of agreement being -

2.6% ± 2.4 (1.96 times the standard deviation) (Fig 6). Results of least-squares analysis 
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indicated a significant correlation between multiecho and spectroscopic measurements of 

hepatic lipid (y = 0.94x + 0.63, r² = 0.99, P< .001) (Fig 7). A Bland-Altman analysis revealed 

that the mean limits of agreement of fat quantification with the multiecho method compared 

with quantification with MR spectroscopy was 0.03% ± 1.5 (1.96 times the standard 

deviation) (Fig 8). A computer simulation was used to measure the expected error in fat 

estimation with the dual-echo method in a system with biexponential decay. Representative 

values for the T2* of fat and water obtained in this group of subjects were used in the 

simulation (Fig 9). For instance, this demonstrated that at 30% fat, the dual-echo method 

would be expected to produce a 6% (uncorrected for T2*) or 4% (with global T2* correction) 

underestimation of true fat content. 

 

Note – In participants 1-4, the first out-of-phase image had higher signal intensity than the 

in-phase image for the dual-echo analysis  

 
Fig. 4 Plot of mean signal intensity in ROI in steatolic liver with the multiecho sequence 

shows the bi exponential model's convergence on a best fit curve. 

Discussion  

Our results demonstrate the feasibility of using in-phase and out-of-phase multiecho imaging 

to quantify liver fat content and T2* with one sequence. Coregistered pixel maps of liver fat 

content and T2* values may be automatically generated. The technique shows excellent 

agreement with T2-corrected single-voxel spectroscopy, and each set of images is obtained in 

a short breath hold. Multiexponential analysis of fat-water systems has been shown to be 

feasible with spin-echo sequences in phantoms [15], and gradient-echo sequences have been 

used to assess bone marrow composition at 1.5 T [16] and lower field strengths [17]. 
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However, to our knowledge, there are no published reports of the use of multiecho phase 

interference techniques to quantify liver fat content. Dual-echo imaging is in routine clinical 

use for the semiquantitative assessment of liver fat content. However, multiecho sequences 

overcome a number of limitations of conventional dual-echo techniques for fat quantification. 

First, the method allows a determination of the fat-to-water ratio that is corrected for T2* 

effects without the need for additional mapping sequences and potential image 

misregistration. This may be a substantial limitation of dual-echo imaging in patients with 

cirrhosis because of the T2*-shortening effects of iron deposition [11]. Dual-echo 

quantification also fails at low fat fractions when T effects predominate over fat-water signal 

cancellation. The multiecho technique also allows a further correction to be made for the 

differential T2* decays of fat and water, although the effect on fat estimation is expected to 

be only approximately 5% in vivo. However, the ability to distinguish between the water and 

fat signal components over comes an important limitation of dual echo fat estimation. The 

dual-echo approach requires an additional gradient echo sequence with different T1 

weighting [12] or visual inspection of results of breath-hold spectroscopy [13] to confirm 

whether fat or water is the majority component. Despite these steps, there remains ambiguity 

between 45% and 55% fat content [6], and spectroscopic results that are uncorrected for T2 

decay may have similar limitations. Our findings indicate that in the liver, the T2* of water is 

consistently longer than that of fat at 3.0 T, and this allows the signals to be correctly 

assigned if the liver fat content is a least 2%. Below this level, noise within the image 

prevents the signal contribution of fat from being modeled. In this study, the multiecho 

sequence was optimized for the quantification of tissue fat. However, as the sequence also 

inherently measures tissue T2*, it has the potential to provide coregistered information on 

hepatic iron content. Gradient multiecho techniques, with an arbitrary echo time interval, 

have been histologically validated in the assessment of hepatic iron overload at 1.5 T [24] and 

enable a reliable assessment of global tissue T2* [25-27]. However, the echo times chosen 

must allow adequate sampling of the T2* decay curve, and this will depend on the severity of 

the iron overloading being investigated. Multiecho imaging with biexponential analysis has 

the advantage over simple relaxometry of being able to model the effects of both T2* decay 

and fat-water phase interference on signal intensity. Our study had limitations. MR 

spectroscopy was chosen as a reference standard for the multiecho technique because it has 

been validated at 1.5 T [18,28-30]. Early experience in liver MR spectroscopy at 3.0 T 
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demonstrated it to be a promising technique [31,32], and it has the potential to achieve 

improved signal-to-noise characteristics and greater spectral resolution. However, these 

advantages may be offset by increased line widths due to increased field inhomogeneities and 

decreased T2 relaxation times [33]. No histologic correlation of hepatic steatosis was made in 

our study because the patients in the study group did not have an indication for liver biopsy. 

Furthermore, the measurement of lipid in histologic samples relies on semiquantitative 

methods [34,35]. The ratio calculated with the multiecho sequence reflects the molar 

concentrations of resonating hydrogen nuclei in fat and water, but this may be readily 

converted into fat content by liver weight or volume for comparison with biopsy data [19]. 

The biexponential model was not extended to include T1 decay constants for fat and water. 

To reduce the TI weighting of the sequence while maintaining an adequate signal-to-noise 

ratio, a shallow flip angle of 20°was chosen, the tissue T1 relaxation time of the liver is also 

significantly longer at 3.0 T than at 1.5 T (36), and this may also reduce the effects of T1 

contrast on fat quantification. The chemical shift was also chosen as a fixed parameter in the 

model and was used to determine the optimum echo times for maximum and minimum phase 

cancellation. A potential under-estimation of lipid concentration would be obtained if the 

actual chemical shift differed from this value, The model also assumed that there was a single 

lipid resonance and did not allow for the effects of separate methyl and methylene groups, for 

instance. The accuracy of the curve-fitting algorithm will also depend on the metric used to 

measure goodness of fit, as well as the effects of noise in the data. The oil phantom 

demonstrated the behavior of the multiecho sequence over a wide range of oil concentrations. 

Chemical shift will displace the fat and water voxels, but these errors were minimized by the 

choice of frequency encoding direction and by not including the edges of the phantom in our 

ROI measurements. The radiofrequency excitation pulse is a sine function, and the shape of 

the section profile may modulate the transition from oil to water voxels. Flip angle 

inhomogeneity and susceptibility effects at the boundary of the layers may also affect the 

linearity between the calculated and the measured oil concentration. The difference in T2* of 

the oil and water components was also greater than that seen in vivo. In conclusion, results of 

our feasibility study show that multiecho MR imaging provides a technique for quantifying 

liver fat content that is highly correlated with T2-corrected proton spectroscopy. In contrast to 

dual-echo methods, multiecho imaging overcomes the potential errors due to T2* effects and 

enables the correct assignment of the fat and water signal components in a sequence 
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performed during a single breath hold. This technique also allows the simultaneous 

acquisition of coregistered fat and T2* maps of the liver. 

 

 

 

 

 
Fig.5 Color-coded parametric maps of multiecho data in patient with hepatic steatosis. 

Coregistered images of water and fat percentage, as well as their respective T2* values (in 

milliseconds), were derived from a single multiecho acquisition. Color bars and numbers in 

top row= percentages; those in bottom row= milliseconds. 
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Fig. 6 Bland-Altman plot of agreement of liver fat assessment in vivo between dual-echo and 

multiecho MR imaging. The mean of each pair of measurements is plotted against their 

difference. Dashed lines= 95% confidence intervals, solid line = mean value, ●= healthy 

volunteers, ○= obese individuals. 

 
Fig. 7 Graph shows relationship between fat estimation in the liver performed by using 

multiecho MR imaging technique and that performed by using MR spectroscopy (MRS) (y = 

0.94x+ 0.63, r²= 0.99, P < .001). ● = Healthy volunteers, ○ = obese individuals. 

 
Fig. 8 Bland-Altman plot of agreement of liver fat assessment in vivo between MR 

spectroscopy and multiecho imaging. The mean of each pair of measurements is plotted 
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against their difference. Dashed lines= 95% confidence intervals, solid line = mean value, ● 

= healthy volunteers, ○ = obese individuals. 

 
Fig. 9 Graph shows simulation of expected differences in fat percentage calculation by using 

three methods. The bi exponential model was used to simulate in- and out-of-phase signal 

intensities throughout the entire range of fat-to-water ratios. Physiologic T2* values (𝑇2		!∗ , 

20 msec; T2*, 5 msec) estimated from in vivo data have been used in the model. For this 

comparison, T1 effects were not included in the model. The ideal correlation was assumed to 

be given by the multiecho method, which corrects for the individual T2* decays of fat and 

water. The first in-phase and out-of-phase echo times from the simulation were used for fat 

quantification with the dual-echo method, with water assumed to be the dominant component. 

These values were then corrected (corr.) for global T2* decay by using regression analysis of 

the in-phase echo times. 
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Paper 3 

Reduction of total lung capacity in obese men: comparison of total 

intrathoracic and gas volumes 

R. Watson¹, N. Pride¹, E. Louise Thomas², J. Fitzpatrick², G. Durighel², J. McCarthy², S. 

Morin², P. Ind¹, and J. Bell² 

Abstract 

Reduction of total lung capacity in obese men: comparison of total intrathoracic and gas 

volumes.  J Appl Physiol 108: 1605–1612, 2010. First published March 18, 2010; 

doi:10.1152/japplphysiol.01267.2009. - Restriction of total lung capacity (TLC) is found in 

some obese subjects, but the mechanism is unclear. Two hypotheses are as follows: 1) 

increased abdominal volume prevents full descent of the diaphragm; and 2) increased 

intrathoracic fat reduces space for full lung expansion. We have measured total intrathoracic 

volume at full inflation using magnetic resonance imaging (MRI) in 14 asymptomatic obese 

men [mean age 52 yr, body mass index (BMI) 35–45 kg/m²] and 7 control men (mean age 50 

yr, BMI 22–27 kg/m²). MRI volumes were compared with gas volumes at TLC. All 

measurements were made with subjects’ supine. Obese men had smaller functional residual 

capacity (FRC) and FRC-to-TLC ratio than control men. There was a 12% predicted difference 

in mean TLC between obese (84% predicted) and control men (96% predicted). In contrast, 

differences in total intrathoracic volume (MRI) at full inflation were only 4% predicted TLC 

(obese 116% predicted TLC, control 120% predicted TLC), because mediastinal volume was 

larger in obese than in control [heart and major vessels (obese 1.10 liter, control 0.87 liter, P 

0.016) and intrathoracic fat (obese 0.68 liter, control 0.23 liter, P < 0.0001)]. As a consequence 

of increased mediastinal volume, intrathoracic volume at FRC in obese men was considerably 

larger than indicated by the gas volume at FRC. The difference in gas volume at TLC between 

the six obese men with restriction, TLC     80% predicted (OR), and the eight obese men with 

TLC 80% predicted (ON) was 26% predicted TLC. Mediastinal volume was similar in OR 

(1.84 liter) and ON (1.73 liter), but total intrathoracic volume was 19% predicted TLC smaller 
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in OR than in ON. We conclude that the major factor restricting TLC in some obese men was 

reduced thoracic expansion at full inflation. 

Introduction 

About 50 years ago it was established that functional residual capacity (FRC) and expiratory 

reserve volume (ERV) are reduced in most seated obese subjects [14, 32]. More recently, 

reduction in total lung capacity (TLC), formerly thought only to occur in massively obese 

subjects [28], has been found in some subjects with less severe obesity [17]. Consistent with 

the development of a restrictive pattern of lung function in some obese subjects, prospective 

studies have shown that weight gain is associated with loss of vital capacity (VC) [6, 7, 34], 

while weight loss is associated with increase in VC [22, 28, 29, 31]. The mechanical factors 

reducing VC and TLC in obesity are uncertain, but it has been speculated that increased 

abdominal volume in some way reduces inspiratory descent of the diaphragm and consequent 

expansion of the thorax. Recent studies of induced ascites in dogs have shown that, at FRC, 

the lung-expanding action of the diaphragm was reduced. The mechanism was an increase in 

abdominal elastance combined with an expansion of the ring of insertion of the diaphragm to 

the lower rib cage [19, 20]. A further possible cause of reduction in TLC is an increase in 

intrathoracic fat competing for space with the lungs within the intrathoracic cavity. This 

mechanism would be analogous to that proposed for the re- strictive pattern associated with 

chronic heart failure, which is much improved after cardiac transplantation [16, 23]. 

We are not aware of studies measuring total intrathoracic volume and its major compartments 

at full inflation in either normal weight or obese subjects. Such measurements would define 

the contribution of any increase in intrathoracic fat to the restrictive pattern in obesity and also 

allow an estimate of intrathoracic volume at all other gas volumes, including FRC. 

In the present exploratory study, we have measured total intrathoracic volume at full inflation 

using magnetic resonance imaging (MRI) and compared these results with measurements of 

TLC and subdivisions in 7 control and 14 obese men. Both measurements were made in the 

supine position. These measurements were made as part of a study that also measured 

abdominal volumes and visceral and subcutaneous fat in all the subjects; these results will be 

the subject of a separate report. 
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Methods 

Subjects 

All subjects were healthy, middle-aged men without significant symptoms, in particular, no 

history of cardiac or respiratory disease, sleep disturbance, breathlessness, or reduced effort 

tolerance. Control men were normal weight or slightly overweight, with the highest body mass 

index (BMI) being 27.5 kg/m². Obese subjects were seen on a preliminary occasion to establish 

that their BMI was between 35 and 45 kg/m² (grade 2 or 3 obesity) and that spirometry showed 

no obstructive features. Written, informed consent was obtained from all subjects, and the 

protocol was approved by the Hammersmith Research Ethics Committee. 

Anthropometry 

Height without shoes and weight wearing light clothing were measured on a stadiometer. Hip 

circumference was taken at the level of the trochanters. Waist circumference (standing with 

arrested normal breathing) was measured at the midlevel between lowest rib and iliac crest. 

Four skinfold thicknesses (triceps, biceps, subscapular, suprailiac) were measured, as 

recommended by Cotes et al. [8] and Durnin and Womersley [9]. In some men with a large 

amount of subcutaneous fat, it was not possible to measure a skinfold with the skin calliper, 

which was then recorded as 45 mm. 

Lung Function  

Spirometry was measured seated using a portable Vitalograph flowhead (Vitalograph Maids 

Moreton, Bucks, UK). Subjects were asked to perform slow vital capacities (SVC) and then 

forced expirations to obtain forced expiratory volume in 1s (FEV). The best of at least three 

readings of each was taken. 

TLC and subdivisions were measured in duplicate in the supine position using the multibreath 

helium dilution (MBHe) technique (Morgan Benchmark) [4]. Subjects were positioned 

comfortably on the mouth- piece and, when relaxed and breathing regularly, were turned into the 

circuit at the end of a tidal expiration. Occasional deep inhalations were made by the subject, and 

helium equilibrium was reached in 3 min. The subject was then asked to take a full inspiration 

[inspiratory capacity (IC)] to TLC, followed by a SVC. TLC was taken as the sum of the gas volume 

at which the subject was turned into the circuit (FRC) and IC. The residual volume (RV) was 

TLC-SVC. Two repeatable measurements of FRC were obtained and averaged. European 
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reference values [27] were used for spirometry, TLC, VC, and RV. After these measurements 

and while attached to a recording spirometer and remaining supine, the subjects were trained 

to take a repeatable full inspiration followed by breath holding for 17s; this maneuver would 

be used and repeated several times during the (immediately subsequent) MRI scans. 

MRI Acquisition  

With the use of a Philips Achieva 1.5-T MRI scanner with a Q-Body Coil (Philips Medical 

System, Best, NL) a T1-weighted turbo spin echo sequence, which covered the entire thoracic 

cavity, was acquired. Subjects lay supine with arms by their side and hips and knees slightly 

flexed and were instructed to make a full inflation and then breath hold for 17s while images 

were acquired in the coronal plane. Typical parameters: field of view 530 x 300 mm; repetition 

time 400 ms; echo time 17 ms; number of slices 50/stack; slice thickness 6 mm; interslice gap 

1 mm; reconstructed voxel 1.56 x 1.56 mm; and 5 breath holds. During scanning, a marker was 

placed on the midsternum to indicate sternal displacement and monitored during the breath hold 

to ensure inspired volume was maintained. In addition, the definition of the lung border was 

checked visually to ensure that there was no motion artifact during a breath hold. Total MRI 

scan time was 20 min. 

Analysis and Identification of Fat, Lungs, Heart, and Main Vessels  

Each coronal slice was segmented into six tissue types on the basis of pixel density using 

commercial imaging software (Slicomatic 4.2; Tomovision, Montreal, Canada). Adipose tissue 

has a high signal intensity compared with most other tissues, but an experienced operator 

(VardisGroup, London, UK), who was unaware of the objectives of the study, coded tissue 

compartments using expert anatomical knowledge, as previously reported [30]. 

Calculation of Intrathoracic Volumes 
 

See Fig.1.  The intrathoracic  cavity  at  full  inflation was  well defined by the pleural border 

of the lungs over almost all of its surface. The cavity was bounded by the rib cage, anteriorly 

by the sternum, posteriorly by the vertebral column, caudally by the diaphragm, and cranially 

at the level of the lung apices. The total intrathoracic cavity volume was subdivided into three 

volumes. 1) The first is total lung volume (TLV). In addition to gas volume, TLV includes the 

volume of intrapulmonary tissue, blood, and fluid. Because the cranial boundary of TLV was at 

the apex of the lungs, air in the intrathoracic trachea was included. When comparing TLV with 
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TLC measured by MBHe, 0.07 liter was deducted from TLC to allow for the volume of air in 

the extrathoracic airway (TLC*) (24). 2) The second volume is intrathoracic fat. 3) The third 

volume is heart and major blood vessels (aorta, superior vena cava, and major hilar 

extrapulmonary vessels) and other mediastinal structures (e.g., esophagus). We refer to the sum 

of the second and third volumes as mediastinal volume. To estimate intrathoracic volume at FRC 

or RV, IC or VC was subtracted from the measured value of total intrathoracic volume at full 

inflation. The difference between gas volume and intrathoracic volume at any level of lung 

inflation then equals (mediastinal volume plus lung tissue volume). This ignores any change 

in intrathoracic blood volume (heart, major extrapulmonary vessels, intrapulmonary blood 

vessels) that may occur with lung deflation. 

All lung gas volumes and all MRI volumes were measured as liters. To allow for differences in 

height between individuals, we also expressed gas volumes (TLC and subdivisions) as a 

percentage of predicted values (%pred) (27). Because we required a height-corrected unit of 

volume to compare gas and MRI volumes, we also empirically expressed all MRI volumes as a 

percentage of predicted TLC. We are not aware of any data relating heart and/or mediastinal 

volume to height or to TLC. 

 

 

 

 
 

Fig. 1. Coronal section of magnetic resonance imaging (MRI) scan of thorax in an obese man, shaded to show 

lungs, heart, and intrathoracic fat (mainly pericardial). For clarity, this scan was acquired with the subject 

supine, but with his arms ex- tended above his head.sc, Subcutaneous 

 

Results 

Anthropometry 

See Table 1. Control and obese men were well matched for age, but control men were, on 

average, 5 cm taller than the obese men (P = 0.07). Obese men had highly significant 

increases in BMI and standard markers of obesity. 
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Lung Function Results: Spirometry 

See Table 2. The obese men had some reduction in seated FEV* and VC (both as absolute 

volumes and %pred), but FEV*/VC was normal. 

Table 1. Anthropometry of subjects 
Values are means SD; n, no. of subjects. TLC, total lung capacity; ON, obese nonrestrictive; OR, obese restrictive; waist/hip, ratio of waist 

to hip. P values: controls vs. obese. Nonsignificant (NS) P 0.2. 

Supine TLC and Subdivisions 

The most striking and consistent abnormalities in the obese men were a small FRC and FRC-

to-TLC ratio (FRC/TLC), leading to a small ERV. As a further consequence of the low 

FRC/TLC, mean IC was identical in the obese and control men. Differences in mean TLC, VC, 

RV, and FEV* between obese and control men were not statistically significant. There was no 

relation between FRC or FRC/TLC and BMI within either group. A principal objective of this 

study was to examine factors that might be responsible for a reduced TLC, so we have 

subdivided the obese men into those with a restrictive disorder (TLC < 80%pred; group OR; 

n = 6) and those with TLC 80%pred (group ON; n = 8). This arbitrary but commonly used 

subdivision (2 men in the ON  subgroup had TLC 82%pred) is used to facilitate presentation 

of the results in Tables 2 and 3. In Figs. 2–4, individual results for all 21 men that we studied 

are shown with ON and OR subgroups identified by different symbols. 

 

Comparison of Obese Men With TLC ≤ 80%pred (OR) and with TLC ≥ 80%pred (ON) 

There were no differences in mean values of any of the anthropometric features between the 

two obese subgroups (Table1). The OR subgroup with TLC < 80%pred also had smaller mean 

values of all subdivisions of TLC (VC, RV, FRC, IC; P <0.03 in all cases), except ERV (P = 

0.51). The ON subgroup had similar values of TLC, VC, RV, and FEV* as the control men 

(P values > 0.15 in all cases), but differed from the control men in having a smaller FRC 

(P = 0.036) and ERV (P = 0.014). 
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Intrathoracic Volumes at Full Inflation Measured by MRI 
 

See Table 3. Total intrathoracic volume at full inflation was, on average, 0.71 liter larger in 

control than obese men; ex- pressing total intrathoracic volume as %pred TLC, mean control 

and obese values were 120 and 116%pred TLC, respectively (Table 3). This 4% difference 

compared with a 12%difference in TLC %pred measured by MBHe dilution (Table 2). These 

mean results conceal great between-individual variability within both groups (Figs. 2–4). Each 

of the three compartments of total intrathoracic volume differed between control and obese men. 

By far, the largest compartment was TLV, which occupied, on average, 88% of the total 

intrathoracic volume in control men. Mean TLV (%pred TLC) was smaller in the obese men 

than in the control men (P = 0.016). Mean values of both mediastinal components of 

intrathoracic volume were larger in the obese men than in the control men (Fig. 2): mean heart 

and major blood vessel volume was 1.10 liter in obese vs. 0.87 liter in control men (P = 

0.016), while mean volume of intrathoracic fat (mainly pericardiac and mediastinal, but 

sometimes also extending over the adjacent pleural surface of the diaphragm, Fig. 1) was 0.68 

liter in obese and 0.23 liter in control men (P < 0.0001). Because of the increased mediastinal 

volume, the inflated lungs only occupied, on average, 78% of the total intrathoracic cavity 

volume in obese men. Thus increased mediastinal volume might contribute to re- duction in 

TLC in some of the obese men. However, mean mediastinal volume was similar in the obese 

subgroups with (OR 1.84 liter) and without (ON 1.73 liter) reduced TLC (P = 0.56). The 

relation between TLV and total intrathoracic volume in all 21 men is shown in Fig. 3. In the 

ON men, whose values of TLV overlapped those of the control men, mean total intrathoracic 

volume was actually slightly greater (124%pred TLC) than in the control group (120%pred 

TLC). In contrast, total intrathoracic volume was only 105%pred TLC in the OR subgroup. 

This 19%pred TLC difference in mean total intrathoracic volume between ON and OR (P = 

0.005) was the major factor accounting for the smaller TLC MBHe in the OR subgroup 
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Table 2. Spirometry and lung volumes 

 

 

Values are means ± SD; n, no. of subjects. FEV₁, forced expiratory volume in 1s; VC, vital capacity; RV, residual 

volume; FRC, functional residual capacity; ERV, expiratory reserve volume; IC, inspiratory capacity. *Predicted 

values are for upright TLC and subdivisions. P values: controls vs. obese. NS = P > 0.2 

Table 3. Total intrathoracic volumes at full inflation measured by magnetic resonance imaging 

Values are means ± SD; n, no. of subjects. P values: controls vs. obese. NS = P >0.2. 

 

Comparison of Lung Volume at Full Inflation Measured by MRI and MBHe Dilution 

Individual values of TLV measured by MRI were closely related to, but slightly greater than, 

TLC* measured by MBHe dilution (Fig. 4). The mean volume difference (TLV-TLC*), 

which reflects the volume of intrapulmonary tissue and fluid, was 0.74 liter in control and 

0.54 liter in obese men (difference nonsignificant, P = 0.61). 
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Fig. 2. Contributions of volumes of heart 

and major blood vessels (left) and intrathoracic fat (right) to total intrathoracic volume in control and obese 

men. Symbols distinguish control men from obese restrictive (OR) and obese nonrestrictive (ON) subgroups. 

TLC, total lung capacity. 

 
Fig. 3. Total lung volume (TLV) at full inflation plotted against total intrathoracic volume in control and obese 

men. The thick diagonal line is the line of identity, and the dashed lines indicate when the total intrathoracic 

volume is 1 or 2 liters greater than TLV. Note that many values of TLV in ON subgroup and in control men 

overlap. 
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Comparison of Gas volumes and Estimates of Intrathoracic Volumes When the Lungs 

are Deflated  

Because mediastinal volume was, on average, 0.68 liter larger in obese than control men, 

differences between control and obese men in all intrathoracic volumes were smaller than the 

difference in corresponding gas volumes. For example, while mean FRC gas volume was 

45%pred TLC in control and 30%pred TLC in obese men, mean intrathoracic volume at FRC 

was 69%pred TLC in control and 62%pred TLC in obese men (Fig. 5). 

Discussion 

In this exploratory study, in obese middle-aged men, we measured total intrathoracic volume 

and its components at full inflation to investigate the features of restrictive lung disease (TLC 

< 80%pred). A restrictive pattern was found in 6 of the 14 men and was associated with a 

smaller total intrathoracic volume. Mediastinal volume was 0.68 liter larger in obese than 

control men due to increase in volumes occupied by the heart and major blood vessels and by 

intrathoracic fat, but was similar in obese men with and without restrictive lung disease. 

Methodology 

Subjects. We chose men for this exploratory study of restrictive lung disease associated with 

obesity, because two prospective studies [6, 34] have shown that loss of VC with increase in 

weight is greater in men than in women. Possibly this is because men have a more central 

pattern of obesity than women; in our department, visceral abdominal fat measured by MRI 

averages 14.8% of total body fat in obese men and 8.9% in obese women (E. L. Thomas, 

unpublished observations). MRI scanning technique. The pleural edges of the lungs were well 

defined during breath holding, allowing an accurate measurement of TLV. Intrathoracic fat 

was also clearly visualized by its characteristic density. The heart and major blood vessels, 

including the extrapulmonary hilar vessels, were the major contributors to the remaining 

mediastinal compartment, which includes organs such as the esophagus. This nonvascular 

volume should be small and similar in control and obese men. The close correspondence 

between values of TLV and TLC (Fig. 4) in an individual supports the effectiveness of the 

“training” in breath holding at full inflation; furthermore, it suggests that helium equilibrated 

with true total gas volume in the obese men, even though they were supine with a very low 

FRC/TLC, and so probably had some airway closure during tidal breathing [15]. Frequent deep 
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inspirations were made during helium equilibration so as to allow access of helium to lung 

beyond any closed airways. TLV measured by imaging includes intrapulmonary tissue, fluid, 

and blood, as well as gas, so (TLV-TLC*) potentially estimates lung tissue and fluid volume, 

albeit with limited accuracy because of the following. 1) TLV and TLC were measured in 

separate maneuvers, during which esophageal pressure was not measured. Hence we do not 

know if a comparable lung recoil pressure was achieved in all full-inflation maneuvers, nor 

whether glottal closure occurred during breath holding. 2) These estimates depend on the 

difference between two volumes, which are 8 –10 times larger. Nevertheless, our mean 

estimate of lung tissue and fluid volume for the 21 men of 0.61 liter (0.74 liter in control men, 

0.54 liter in obese men) is similar to previous estimates in healthy subjects using gas uptake of 

0.61 liter [5], or by comparing volumes measured by chest radiographs at full inflation with 

body plethysmography of 0.72 liter [26]. We had expected lung tissue volume to be larger in 

the obese than the control men, because, in obesity, intrapulmonary blood volume is probably 

larger [2, 18, 29], particularly when supine. Differences between supine and seated gas volumes. 

There is no consistent supine change in RV, but supine values of TLC and VC in normal 

subjects are, on average, slightly lower (200 ml or less) than seated values [3, 21, 32, 33, 35], 

with the reduction being attributed to an increase in central blood volume when supine. Similar 

small reductions in supine TLC and VC have been shown in obese subjects [3, 32, 33, 35]; 

indeed, previously our laboratory found that supine TLC in obese subjects, some of whom had 

lung restriction, was, on average, only 80 ml smaller than seated values [33]. Hence we believe 

our results for TLC, VC, and RV also apply to seated subjects. This is not the case for FRC. 

Whereas in normal subjects, FRC falls by 700 – 800 ml on going from the seated to the supine 

position [3, 21, 32, 33, 35], in severely obese subjects our laboratory [33, 35] and others [3, 32] 

have shown that supine falls in FRC are much smaller and may even be absent. The difference 

in values of FRC, FRC/TLC, and ERV between control and obese subjects shown in Table 2, 

therefore, would be even larger if the subjects were seated. 
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Fig. 4. Comparison of TLC measured by multibreath helium dilution (TLC*) and TLV measured by MRI in 

control men. The diagonal line is the line of identity. In this comparison, measured TLC has been reduced by the 

estimated volume of the extrathoracic airway (see METHODS). 

 
Fig. 5. Comparison of mean gas volumes and estimates of mean intrathoracic volumes (all expressed 

as %predicted TLC) in control and obese men. LT, lung tissue volume; MV, mediastinal volume; FRC, 

functional residual capacity; RV, residual volume. Increased mediastinal volume in the obese men results in the 

differences in intrathoracic volumes between obese and control men being smaller than the corresponding 

differences in gas volumes. 

Comparison of Supine Lung Gas Volumes in Obese Men with and without Restriction 

Obese men had highly significant reductions in supine FRC, FRC/TLC, and ERV compared 

with control men. Reduction in TLC in the obese men was more variable and, when results 

were corrected for height differences between control and obese men, did not quite reach 
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statistical significance vs. control subjects. In early studies of individual patients with “morbid” 

obesity with hypercapnia (“Pickwickian”, or obesity hypoventilation syndrome), reduction in 

TLC was a prominent feature [14, 29], but was often not found in later, less selected studies of 

obesity [28]. Recently, the relation of BMI to seated TLC and subdivisions has been clarified 

by Jones and Nzekwu [17], who studied 373 men and women (their results were not 

distinguished) whose BMI ranged from 20 to 58 kg/m². Mean values of seated TLC, FRC, VC, 

ERV, and RV all declined progressively with increasing BMI, but at very different rates and 

with a wide scatter of results, especially for ERV and RV. The largest and most consistent 

reductions were in FRC and, consequently, also in ERV, which were found in mild obesity. At 

a BMI of 30 –35 kg/m². mean FRC was 75% and mean ERV 47% of values at BMI of 20 

kg/m² ; values of ERV as small as 20%pred or less were common, limiting the possibility of 

any further reduction at higher BMI. As a result, an exponential curve was fitted to these data. 

In contrast mean reductions in TLC, VC, and RV with increase in BMI were much smaller, so 

that group mean values remained within the normal range (TLC and VC both 88%pred, RV 

90%pred), even in subjects with BMI 40 kg/m². Our finding that obese men had large 

reductions in FRC, whether or not they were in the ON or the OR group, is, therefore, consistent 

with Jones and Nzekwu’s findings. Total intrathoracic volume in obesity. In control men, the 

fully inflated lungs occupied, on average, 88% of the total intrathoracic volume, but in obese 

men only 78% because of their larger mediastinal volume, which, in the obese men, averaged 

1.78 liter (25.2%pred TLC) compared with 1.10 liter (14.8%pred TLC) in the control men. We 

are not aware of earlier measurements of intrathoracic fat, but an increase in central blood 

volume was consistently noted in early studies of obesity hypoventilation syndrome, even in 

the absence of overt heart failure [18, 29], and has been confirmed more recently in obese 

subjects without any symptoms to suggest clinical heart disease [2]. The mean 10% pred TLC 

increase of mediastinal volume in the obese compared with the control men hardly contributed 

to the large difference in TLC between the ON and OR groups, because mean mediastinal 

volume was only 0.11 liter larger in the OR than in the ON subgroup. Indeed, Fig. 3 shows that, 

whereas individual values of TLV largely overlap in the ON and control groups, total 

intrathoracic volume at a given TLV tends to be larger in the ON individuals, perhaps 

suggesting the thoracic wall has “accommodated” to the larger mediastinal volume. The major 

contributor to restriction of TLC in the OR group was that, while the eight ON men had a mean 

total intrathoracic volume at full inflation slightly larger (124%pred TLC) than the control men 
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(120%pred), in the six OR men, mean total intrathoracic volume at full inflation was 105%pred 

TLC. Possibly, therefore, in some obese men, the large abdomen limits caudal movement of 

the diaphragm at full inflation. Recent experiments inducing acute ascites in dogs have shown 

that the load on the diaphragm was increased by an increase in abdominal elastance, but, in 

addition, the lung-expanding action of the diaphragm was impaired by reduction in its pressure-

generating ability [19, 20]. We are not aware of comparable studies of diaphragm function and 

load in human obesity. The immediate cause of reduction in TLC is a reduction in VC (changes 

in RV are small and inconsistent). Reductions in VC with increase in weight have been shown 

in men in three prospective studies over 5–7 yr, with mean losses of forced VC (FVC) of 26 

ml [6], 21 ml [7] and 17 ml [34] for each kg of weight gained. Two of these studies also studied 

women [6, 34] in whom losses of FVC per kg weight gain were considerably smaller. 

Conversely, rises in VC following reductions in weight were first reported in small studies 

many years ago [29, 31]. In the last decade gastric surgery has become a popular method to 

induce large and rapid reductions in weight; so far only a few studies have reported the effects 

on spirometry, but in them mean FVC has consistently increased 6 mo or more after operation 

[22]. The precise mechanism by which VC is reduced by increase in weight, why this loss of 

VC is larger in men than in women, and why reduction in TLC is very variable among obese 

men of similar age and BMI all remain uncertain. Reduction in FRC and RV. The reduction in 

FRC and ERV in healthy subjects when lying supine is attributed to a rightward displacement 

of the PV curve of the relaxed chest wall, increasing its pressure at a given gas volume, and 

reducing relaxation volume (Vr) [1]. A comparable supine decrease in Vr would be expected 

in obesity. In practice, in severe obesity when supine FRC hardly falls below seated values, 

FRC is probably maintained above Vr as a response to expiratory flow limitation [25, 35]. Our 

finding of an increase in mediastinal volume in obesity potentially alters the interaction 

between elasticity of the chest wall and of the lungs. Classically, this interaction is related to a 

common volume, defined by the volume of gas contained in the lungs. When considering the 

pleural cavities, this convention obscures the normal difference between the volume enclosed 

by the parietal pleura and intrapulmonary gas volume, which arises from the tissue and fluid 

content (including blood) within the lungs. In intrathoracic disease, the difference between total 

intrapleural volume and intrapulmonary gas volume may be increased, as originally analyzed 

by Fenn [11] for pneumothorax, or for both pleural cavities with increase in intrapulmonary 

fluid, blood, or tissue volume in conditions such as interstitial lung fibrosis [12]. FRC, TLC, 
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and RV all are partly determined by active or passive characteristics of the chest wall and 

respiratory muscles, so their values in thoracic diseases can be fully interpreted only if chest 

wall volume is known or can be inferred [13]. Previously, two papers have suggested that 

restriction of TLC may be partially reversed by heart transplantation, due to the effects of 

increased heart volume in chronic heart failure [16, 23]; one of these studies [16] estimated the 

change in heart volume following heart transplantation from chest radiographs. In the present 

study, we have measured mediastinal volume in a few healthy middle-aged men. This volume, 

when combined with lung tissue and fluid volume, is responsible for the “normal” difference 

between total intrathoracic volume and total gas volume. So far, despite the wide availability 

of three-dimensional imaging techniques that could measure simultaneously total intrathoracic 

volume and TLV, we have not found any published estimates of mediastinal volume to check 

against our value of 1.10 liter. The acquired increase in mediastinal volume in obesity implies 

that the difference between intrathoracic volume and the corresponding gas volume has 

increased on average by 0.68 liter in adult life. In middle-aged healthy men, chest wall 

compliance in the operating tidal range close to FRC averages 0.176 l/cmH+O seated and 0.161 

l/cmH+O supine [10]. Hence an acute increase of 0.68 liter in mediastinal volume could 

increase pressure exerted by the relaxed chest wall by as much as 4 cmH+O, which would have 

a large effect on Vr. However, with a chronic increase in mediastinal volume, the elastic 

properties of the chest wall may show partial or even complete adaptation. Increase in 

mediastinal volume may also influence the value of RV, at least in younger obese adults in 

whom RV is determined by a static balance between the maximum muscle pressure and the 

outward recoil of the passive structures of the chest wall as its volume is reduced [1]. The 

minimum gas volume of the lung at RV may be reduced if there is an increase in indistensible 

volume within the thoracic cavity. This may explain that, while gas volume at RV was smaller 

in the obese men than in the control men, intrathoracic volume at RV was slightly larger in the 

obese men than in the control men (see Fig. 5). Thus it seems possible that increase in 

mediastinal volume may influence the values of FRC and RV in obesity, even if it is not 

important in restricting TLC in obesity. In conclusion, we found that reduction in TLC in obese 

men was associated with reduced expansion of the thoracic cage. Both intrathoracic fat volume 

and the volume of heart and major blood vessels were larger in the obese than the control men, 

but these volumes did not differ between obese men with and without lung restriction. Further 
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studies are required to determine the factors impairing full expansion of the thorax in some 

obese men. 
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Paper 4 

Whole body fat: Content and distribution 

E. Thomas¹, J. Fitzpatrick¹, S. Malik², S. Taylor-Robinson³, J. Bell¹ 

Abstract 

Obesity and its co-morbidities, including type II diabetes, insulin resistance and cardiovascular 

diseases, have become one of the biggest health issues of present times. The impact of obesity 

goes well beyond the individual and is so far-reaching that, if it continues unabated, it will 

cause havoc with the economies of most countries. In order to be able to fully understand the 

relationship between increased adiposity (obesity) and its co-morbidity, it has been necessary 

to develop proper methodology to accurately and reproducibly determine both body fat content 

and distribution, including ectopic fat depots. Magnetic Resonance Imaging (MRI) and 

Spectroscopy (MRS) have recently emerged as the gold-standard for accomplishing this task. 

Here, we will review the use of different MRI techniques currently being used to determine 

body fat content and distribution. We also discuss the pros and cons of MRS to determine 

ectopic fat depots in liver, muscle, pancreas and heart and compare these to emerging MRI 

techniques currently being put forward to create ectopic fat maps. Finally, we will discuss how 

MRI/MRS techniques are helping in changing the perception of what is healthy and what is 

normal and desirable body-fat content and distribution. 

Introduction 

Obesity has become one of the major health concerns of modern times. It is estimated that 

over 700 million people across the world are currently either overweight or obese [1]. In the 

UK alone, latest studies show that over 60% of the adult population is either over weight (with 

a body mass index (BMI) between 25–30 kg/m²) or obese (with a BMI between 30–40 kg/m² ), 

while 30.3% of children (aged 2–15) are overweight or obese. This increase in body adiposity 

is closely associated with a number of non-communicable diseases, including type-2 diabetes, 

hypertension, cardiovascular disorders and some forms of cancer. Indeed, type-2 diabetes is 

today a major worldwide problem, with more than 346,000,000 diabetics across the planet 
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and these figures may double by 2030 [1]. In some countries, levels of diabetes now affect 

over 20% of the adult population. The social and economic impact of the obesity pandemic, 

and its co-morbidities, cannot be overstated, and at this rate is likely to have a severe impact 

on healthcare provision in many economies [2]. Adipose tissue (or body-fat) is a multifaceted 

and complex organ [3]. Besides functioning as a system for excess energy deposition, 

protection from the cold and everyday hazards, adipose tissue produces an assortment of 

molecular messengers (adipokines), which influence a diverse array of functions, including 

appetite, fertility, neuronal development and plasticity, inflammatory responses, and the 

action of other hormones, including insulin [4]. Yet, despite these positive functions, a close 

association between excess body adiposity and the development of non-communicable 

diseases has been reported in many epidemiological studies [5]. Moreover, these associations 

are further strengthened if age and physical activity (or the lack of it) are included in the 

paradigm. Detailed studies of adipose tissue content and distribution suggest that the latter 

plays an important part in these associations [6]. Indeed, a number of adipose-tissue related 

sub-phenotypes have now been identified, including ‘thin on the outside fat on the inside’ 

(TOFI) and ‘fat-fit’ subjects, which indicate the importance of having accurate and 

reproducible measurements of both the total body-fat and its distribution [7]. For example, in 

the case of TOFI, subjects with normal BMI (<24.9 kg/m²) but increased abdominal obesity, 

have increased risk of developing insulin resistance and type II diabetes, while the “fat-fit”, 

subjects with BMI > 30 kg/m² appear metabolically normal despite their elevated body 

adiposity [8]. In order to understand these somehow paradoxical findings, it is important to 

get a better definition of the different concepts/ words involved in many of these associations, 

including ‘adipose tissue’, ‘body-fat’ and ‘ectopic fat’. The use of the words ‘fat’ or ‘body-

fat’ has become synonymous with obesity, and in general refers to the fat found immediately 

under the skin covering substantial parts of the surface of the body. Strictly speaking, this fat 

layer is actually ‘subcutaneous adipose tissue’ and is part of a larger organ: adipose tissue, 

which makes up a significant part of our bodies. Adipose tissue can also be found surrounding 

organs such as the liver, pancreas, kidneys and the heart, to some degree. It is also found in 

muscles and other areas of the body including part of the orbital cavities. All these fat depots, 

which in many instances are not in direct physical contact with each other, appear to work in 

a coordinated manner, and are normally referred to as ‘total adipose tissue’. Besides these fat 

depots, fat can also be accumulated within certain organs and tissue, including liver, pancreas, 
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heart and muscle, and these deposits are technically known as ‘ectopic fat depots’. Some of 

these depots have recently been shown to be important independent risk factors for disease 

development and clearly deserve closer scrutiny if the underlying mechanism that underpins 

the associations between increased body adiposity is to be unravelled [9]. The need for an 

accurate and reproducible method to determine levels of different fat depots, including ectopic 

fat, has driven the scientific community to investigate the potential use of imaging 

technologies, including CT, magnetic resonance imaging and spectroscopy (MRI/MRS). Thus, 

in the last two decades MRI/MRS have become the gold-standard for such studies, especially 

as the scientific community moves into the post-genomic era and an understanding is sought 

of the gene-environment interactions that contribute to the determination of fat content and 

distribution in different subjects and their role in the reported gender and ethnic differences. 

With this in mind, we will review the use of MRI and MRS in the study of adipose tissue and 

ectopic fat and how these techniques are helping us to get a better understanding of the role 

of body fat not only in disease development, but also in the process of achieving optimal 

health.  

Indirect methods for body-fat measurements 

A number of techniques are currently available to assess body fat content. Indirect methods 

include: body-mass-index (BMI), skinfold anthropometry, bioelectrical impedance, 

underwater weighing, and body water dilution [10]. While there are pros and cons for all of 

these methodologies, the one thing they have in common is that they give little or no 

information concerning adipose tissue distribution. Moreover, most of these techniques are 

based on indirect measurements of either body water or body volume and necessitate 

equations to convert these into total fat measurements. While these methodologies do provide 

valuable information, particularly at a population level, they are not always applicable to all 

ethnic groups or to subjects with extremes of body types. This is mainly due to the fact that 

they were derived from specific populations, generally Caucasian. More importantly, they say 

nothing about intra-abdominal (also known as ‘visceral fat’) or ectopic fat levels, two crucial 

factors in the association between body adiposity and disease development. We will therefore 

not discuss these methods further. 
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Direct Methods for body fat measurements  

CT and MRI to measure adipose tissue content and distribution  

The fact that different fat depots within the body appear to contribute, to a differing extent, to 

the risk of developing non-communicable diseases, has made it clear that measuring total body 

fat content alone was not sufficient. This has necessitated the development and implementation 

of new techniques that could accurately measure body fat content and distribution and which 

could be applicable to all populations and body types. The first technique used which appeared 

to meet all of these criteria was CT scanning. Total adipose tissue content could be measured 

as well as individual adipose tissue depots, particularly intra-abdominal adipose tissue depot 

[11–14]. However, a major drawback of CT scanning is the radiation dose it delivers, which 

greatly limits its application, particularly for longitudinal studies and in paediatric populations. 

With the advent of in vivo magnetic resonance techniques, MRI was seen as an ideal alternative. 

The first studies applying MRI to measure adipose tissue content and distribution in humans 

were published in the mid-1980s [15– 17]. MRI has since been fully validated against both 

animal and human post-mortem dissection studies [18–21], showing that this technique gives 

extremely accurate and reproducible measurements of adipose tissue content and distribution. 

Since then, this area of research has grown beyond recognition. Fig.1 shows a graphical 

representation of papers published in the last 30 years using MRI techniques to measure 

adipose tissue content and distribution and in particular, visceral fat. It is likely that this graph 

underestimates the number of papers in this area, particularly those published in recent years. 

Initially, the use of MRI for adipose tissue assessment was driven mainly by research groups 

based in radiology departments or MR research units, with the development of MR 

methodologies being the primary 

focus of the research. However, 

since then, MRI has become the 

gold-standard for overall clinical 

phenotyping, and is now routinely 

used by many research groups. As 

such, MRI is often not included as a 

keyword in many papers and 

therefore cannot be readily found in 

Medline searches. 
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Fig. 1 Number of publications between 1989 and 2012 found on Pubmed using MRI adipose tissue content. 

distribution and visceral adipose tissue in various combinations as key word searches. 

 

Development and application of different MRI sequences to assess adipose tissue 

A number of MRI sequences have been developed and applied in order to measure body fat 

content and distribution in humans and animals. In one of the first reports on the potential use 

of MRI to measure adipose tissue, the group from Aberdeen, working at 0.08T, tested a variety 

of sequences to differentiate between fat and lean tissue, including proton density, T*-weighted, 

inversion recovery and saturation recovery sequences [15]. They found the greatest degree of 

tissue contrast with the inversion recovery (IR) pulse sequence (TR 370 ms, interval of 170 

ms), which they employed in subsequent publications [22]. An inversion recovery sequence, 

with transverse images, was also used in the seminal paper by Seidell et al. working at 1.5T 

(TR 820 ms, TE 20 ms, interval of 300 ms) [14]. This IR sequence has now been largely 

replaced by the more robust T* -weighted spin-echo sequence (Table 1). A typical image 

example obtained with this sequence is shown in Fig.2, with fat appearing as high signal (white), 

showing good differentiation from muscle, fluid, bone and internal organs (grey). However, 

this technique is not without problems, since it is relatively slow and is susceptible to 

respiratory motions, factors that can be important when dealing with older population or 

newborn babies. Variations of this sequence have been proposed, including a gradient-echo 

sequence, which produces very similar looking images, but allows faster acquisition time, since 

it only requires a single radiofrequency pulse, and fast-switching gradients. There are some 

disadvantages to this approach, however, including loss of signal from static magnetic field 

inhomogeneity. This can result in gradient-echo acquisitions being more affected by magnetic 

susceptibility artefacts compared with spin-echo sequences. There have been many attempts to 
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produce dedicated MRI sequences which allow more rapid acquisition, overcome 

breathing/motion induced artefacts, and enable faster and automated image analysis, (a major 

bottleneck in most studies using MRI or CT to measure adipose tissue content and distribution) 

(Table 1). One technique that appears to be gaining great favour with researchers is the use of 

water-suppressed sequences to produce fat and water only images. (For a typical example of 

this technique refer to Fig.9, Section 3.1.2). Although this sequence is an attractive alternative 

to T*-weighted spin-echo sequences, it does not come without problems. It is far more sensitive 

to motion/respiratory artefacts and highly susceptible to misidentification of non-adipose tissue 

fat (e.g. bowel fat) 

 

Whole body versus regional body assessment 

As well as different MRI sequences for data acquisition, researchers have used a variety of 

approaches to the number of images they acquire and at which anatomical location. The initial 

impetus to accurately measure and map total and regional adipose tissue necessitated protocols 

in which images were obtained throughout the body (whole-body imaging). Subsequently 

single-slice and region-specific multi-slice protocols were developed (Fig. 3). Table 1 

illustrates the variety of MR approaches to measuring whole body or abdominal adipose tissue 

used by different research groups around the world. It is not possible to make this list fully 

comprehensive, given the sheer number of different groups now applying these techniques. 

Groups where a predominantly single-slice acquisition approach is used have not been included 

for reasons of space 
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Fig. 2. Spin-echo image acquired in the abdomen at the level of the umbilicus, showing high signal arising from 

adipose tissue. 

 

Whole body versus regional body assessment 
For a detailed quantitative map of adipose tissue content and distribution, whole-body scanning 

is the most accurate and reproducible protocol available to researchers. However, this 

technique is also the most time-consuming, both in terms of MRI data acquisition (between 5 

and 10 min) and image analysis (between 3 and 12 h). This protocol was originally published 

by Ross and colleagues and involved the acquisition of ca. 41 transverse slices (10 mm thick, 

with 40 mm gaps in-between), from the head to toe of subjects lying, with their arms extended 

above their head, in a prone position in the magnet [62]. Others, including Thomas et al. and 

Machann et al. have used a similar protocol, but with a smaller inter-slice gap of 10 mm, which 

results in a larger dataset (>110 slices), but better delineation of the intra-abdominal fat depots 

and internal organs [31,25]. Shen and colleagues suggested accuracy could be further improved 

by further reducing the slice thickness and obtaining contiguous data, particularly in datasets 

from infants and children [63]. In adults this is generally not very practical, particularly if a 

manual or semi-automatic approach is used to analyse the resulting datasets. Interestingly, Shen 

et al. also studies the effect of slice thickness on the volume of adipose tissue measured; 

providing the slice gap was less than 40 mm the difference between the measured and the true 

volumes is within 5% [64]. Furthermore Thomas et al. showed the coefficient of variation for 

measurement of abdominal adipose tissue increased in relation to the size of the interslice gap 

at a rate of 1.16%/cm [31]. A typical whole-body dataset obtained from a healthy volunteer, 

containing 113 transverse T*-weighted images, is shown in Fig. 4. The images start in the toes 
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and end in the fingertips. While adipose tissue is clearly visible and can be quantified 

throughout the body, it should be noted that a significant degree of anatomy can also be 

observed. Hence, with the use of whole-body phenotyping, incidental findings of unexpected 

pathology can become a significant issue, particularly in older and more overweight 

populations [65]. Indeed, we and others have reported that up to 25% of volunteers from the 

general population, none of whom had any known medical conditions, were found to show 

abnormalities in their images, including hepatic and kidney cysts, missing kidneys and other 

relatively benign conditions. However, up to 5% of volunteers had clinically significant 

findings, many requiring some sort of clinical intervention. Thus, the possibility of incidental 

findings is something that must be considered in whole body MRI research, since dealing with 

unexpected pathology has ethical and financial implications as procedures have to be in place 

to ensure suitable follow-up for volunteers in whom abnormalities have been detected during 

the course of imaging studies. Despite its ability to give the most accurate quantitative 

measurements of adipose tissue, whole-body imaging approaches are currently used by a 

relatively small minority of groups world-wide. One of the main reasons for this is scanner 

design. Many MRI scanners do not currently have full computer-controlled table movement, 

which normally enables a subject to be moved through the magnet for a head-to-foot whole-

body imaging; others may not have multiple coil-array systems for full body coverage. These 

factors are particularly important for obese subjects; the bore size (tunnel) of most clinical MR 

scanners is relatively small, making it difficult to accommodate very obese subjects. This 

problem is illustrated in Fig. 5. In this case, despite the patient fitting within the bore, at the 

maximum field-of-view (c.a. 530 mm, which is close to the maximum field-of-view that most 

clinical scanners allow) there is insufficient coverage to image the entire width of this subject’s 

abdomen. Furthermore, despite some manufacturers producing MRI scanners with a 

sufficiently large bore (and even some open-side magnets) to accommodate very obese patients, 

the usable field-of-view is sometimes small relative to overall bore size, making adipose tissue 

measurement extremely challenging. For scanners without computer-controlled full table 

movement (or whole-body coil arrays), alternative approaches have been developed, including 

scanning subjects in two halves. First, subjects are scanned from head-to-abdomen and then 

repositioned to cover the lower part of the body. However, considerable care is required to 

ensure that the images from both halves of the body are correctly combined; otherwise 

undersampling or oversampling of the adjoining areas can occur. This is an important issue 



   
 

 

 

 

79 

since this area corresponds to the abdomen, the very anatomical point with the highest impact 

on health and disease. Regardless of the protocol used to obtain whole-body fat images, this 

scanning approach allows researchers to obtain quantitative information from at least 11 

adipose tissue depots (including total adipose tissue content). These are summarised in Fig. 6. 

Clearly, imaging only part of the body, such as the abdomen as some researchers have proposed, 

would make it impossible to measure some of these fat depots, in particular inter-muscular 

adipose tissue, which is thought to be an independent risk factor for cardiovascular disease 

[66,67]. Moreover, whole-body imaging has other potential benefits; depending on sequence 

of choice and number of slices acquired, it may also be possible to measure other tissues and 

organ volumes including skeletal muscle, liver, kidney, heart, pancreas and bone marrow 

volumes [43,68–70]. Whole-body imaging approaches are also extremely useful in the study 

of patient groups where changes in overall fat distribution need to be assessed, as for example 

subjects with lipodystrophy (acquired or congenital), and patients with genetic mutations 

known to affect fat distribution. In these cases, coronal images (Fig. 7) are a valuable adjunct 

to the standard transverse images [71]. 

 
Fig. 3. Various imaging strategies for imaging adipose tissue. (a) T1-weighted whole body coronal image, for 

visual purposes this image has been segmented into (b) showing all major organs separately coded, allowing the 

volume of each organ to be measured. (c) The same image is segmented into subcutaneous (green) and internal 

(red) adipose tissue. Using a multi-slice approach the abdomen only is scanned, in (d) from the femoral heads to 

the slice containing the top of the liver/bottom of the lungs, approximate slice positions shown. This is also the 

area used to define visceral and abdominal subcutaneous adipose tissue in many whole body data sets [31]. (e), 

a more limited multi-slice acquisition, with images centred on vertebral bodies. Finally the single slice approach 

where just one image is obtained from a fixed point in the abdomen showing the (f) black&white and (g) segmented 
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images. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

 
Fig. 4. Whole body MRI dataset from a healthy volunteer obtained at 1.5T. Fat appears as high intensity signal 

(white). 
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Fig. 5. Abdominal MR image from a volunteer too large to be fully imaged with a maximum available field-of-

view of a standard 1.5T clinical scanner. 

Abdominal MRI scanning  

Several alternatives to whole-body imaging have been proposed, either to overcome the 

technical short-comings of scanners and/or to shorten examination/analysis time. These 

methodologies centred on acquiring images from the abdominal region of the body, which 

contains some of the main risk-factors associated with excess body adiposity, principally 

visceral adipose tissue and hepatic ectopic fat. As can be seen from Table 1, there is significant 

disparity in both the number of slices and the total abdominal area covered by these protocols. 

However, one can broadly group these protocols into two main approaches, multi-slice and 

single-slice acquisitions (Fig. 3). 

 
Fig. 6. Schematic showing adipose tissue measurements that can be made from a whole body MRI dataset. 
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Fig. 7. Coronal images allowing a qualitative assessment of adipose tissue deposition 

Multi-slice abdominal MRI scanning  

As the name points out, multi-slice protocols, applying similar MRI sequences to those utilised 

in whole-body scanning, aim to map part or the whole of the abdominal cavity. In general, 

these protocols use a variable number of slices, either contiguous or with fixed gaps, covering 

from the top of the liver down to the top of the head of the femoral bone (Fig. 3). These 

protocols are currently in use at many research centers as they have the advantage of being less 

time-consuming than whole-body imaging, requiring less time for scanning and data analysis, 

while still giving full information about abdominal adiposity. Recently, the multi-slice 

protocols have become the method of choice for large population studies, including biobanks. 

Often biobank phenotyping protocols require a large battery of detailed imaging procedures, 

including brain and cardiac anatomical and functional assessment, in addition to measures of 

abdominal and ectopic fat (usually liver); hence there is pressure to reduce scanning time, 

which abdominal imaging readily provides. 
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Single-slice MRI abdominal scanning 

A number of studies have shown that there is a strong correlation between visceral adipose 

tissue measurements obtained from a single abdominal slice and total adipose tissue volume. 

This has led some groups to propose single-slice imaging as an alternative to both multi-slice 

and whole-body scanning for assessing abdominal adiposity. Several factors drive this trend, 

including cost of both scanner and analysis time. For example, it is possible to scan at least five 

volunteers with a single-slice protocol in the time it would take to obtain a whole-body dataset 

from a single individual. Moreover, given that image analysis can be extremely time consuming, 

a single slice reduces this to a bare minimum. However, this methodology is not without 

problems, not least the choice of anatomical landmark from which to acquire the single-slice 

image. This is not a minor issue as whole-body studies have shown that the distribution of 

adipose tissue within the abdominal cavity is highly heterogeneous [72,73]. The simplest 

proposed solution to this dilemma has been the use of the umbilicus, as this anatomical 

landmark can be easily located during patient positioning on the MR bed, without the need for 

pilot scans in coronal or sagittal planes. The main drawback with this approach is the fact that 

the relative position of the umbilicus differs considerably between subjects, especially in 

overweight and obese volunteers. More robust solutions have been investigated, including 

acquiring single-slice images at various vertebral landmarks, most notably at L4–L5, L3–L4, 

L2–L3, or at known distances away from these landmarks and comparing these with whole 

volume acquisitions [37,73–81]. The most commonly reported anatomical landmark for single-

slice imaging tends to be at the level of L4–L5. However, while no complete consensus exists 

at present, and some authors state that a single slice at L4–L5 is a good predictor of the entire 

visceral adipose tissue depot [74,82], the majority of literature agrees that a slice 5–10 cm 

higher than L4–L5, close to L2–L3, is a preferable site [37,75,79–81]. However, the ability to 

predict total adipose tissue from a single-slice appears to vary, depending on gender and overall 

body adiposity, with different findings reported in lean and obese men and women [37,73,75]. 

Moreover, reliance on single-slice imaging can, in many circumstances, lead to an over- or 

underestimation of the true levels of visceral adipose tissue. This is of particular importance in 

weight loss/gain interventional studies, where adipose tissue reduction is known to be 

differentially affected across the abdominal cavity. For instance Thomas and colleagues 

showed a greater reduction in visceral adipose tissue at L2–L3 compared with L4–L5 in a 

cohort of overweight women following an exercise intervention [73]. Indeed, recent studies 
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have shown that changes in visceral adipose tissue cannot be predicted accurately using single-

slice MRI, suggesting that multiple-slice protocols may be essential to detect such changes 

accurately [78,76]. Furthermore, using a multiple slice protocol in interventional studies over 

a single-slice approach significantly reduces the number of participants necessary to detect 

small changes [78] 

Image Analysis                                                                                                                    

Image analysis is an important consideration when using MR techniques to assess body fat 

content and distribution. Indeed, in many cases it can become the bottleneck for large studies. 

From Table 1, it can see that there is considerable variation in not only the type of data obtained 

to measure adipose tissue content, but also in the way in which it is analysed. Whilst there are 

several commercially available packages, including Analyze (Mayo Clinic, Rochester, MN, 

USA), slice-O-matic™ (Tomovision, Montreal, Canada) NIH Image and ImageJ (National 

Institutes of Health, Bethesda, MD, USA), Hippo Fat™, and Matlab (The Mathworks, Inc.), 

many investigators use in-house written software, reflecting the growing need for a robust and 

reproducible automated method for adipose tissue analysis, particularly for large whole body 

datasets. Currently, the most used dedicated program is SliceOmatic (Tomovision, Montreal, 

Canada). The majority of analysis programmes work in two stages; the first step, a threshold, 

is determined manually or automatically based on the image intensity differences between 

adipose and lean tissues. Following this, the areas of SAT and VAT are delineated. More semi-

automatic packages have additional refinements to assist the identification of adipose tissue 

including boundary enhancement, histogram-based region growing, clustering or mathematical 

morphology to define regions or pixels as fat or non-fat. There are also fully automated 

approaches [83,84] which have used a variety of methods incorporating various algorithms and 

masks. Some of these methods contain prior anatomical knowledge, but many of these still lack 

the ability to accurately differentiate between adipose tissue compartments, and to 

comprehensively exclude high signal from bone marrow, as well as motion-induced artefacts 

arising from peristalsis, respiration, and flow in lean and obese subjects [85–87]. Indeed, 

Bonekamp et al. identified approximately 16 different software packages, of which only five 

were available for testing since the others were either written in-house, discontinued, or part of 

the scanning software [87]. Since that paper was written there have been many publications 

reporting new automated methods, but in general these are not commercial and therefore not 
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readily available for testing. One of the main considerations when analysing adipose tissue 

images, particularly those from the chest or abdomen, is accurate identification of visceral fat. 

Fatty intestinal content, bone marrow, and artefact arising from motion will all produce pixels 

with a similar intensity to adipose tissue. Separating these out is essential, particularly in very 

lean individuals where they may contribute to a significant proportion of overall adipose tissue. 

The manual editing required for this form of process can introduce errors, unless the operator 

has sufficient expertise to identify and remove non-adipose signals. Some of these issues have 

led to the development and implementation of scanning protocols which attempt to minimise 

these factors, such as breath-hold, cardiac/respiratory gating, ultra-fast scanning of the 

abdomen and chest and/or scanning subjects in a prone position to minimise respiratory motion. 

An alternative approach is to obtain fat-only-images, which in theory should improve analysis 

accuracy. However, this can introduce its own uncertainty, due to lack of anatomical detail on 

images; hence a second anatomical dataset is sometimes included as an analysis reference. 

Application of MRI measurement of adipose tissue  

Since its initial development, the applications of MRI to measurements of adipose tissue 

content and distribution in relation to health and disease have been numerous. Whilst MRI is 

accepted as a gold standard methodology for measuring adipose tissue, its limitation as a field-

based method for population studies and its relative cost precludes many investigators from 

using it in their research. Consequently, it often applied to validate and improve cheaper 

portable field methods of measuring body composition [88–92]. MRI has been used extensively 

to map unusual distributions of adipose tissue - this has been applied to populations of patients 

with HIV-related lipodystrophies [93], and acquired/congenital generalised and partial 

lipodystrophies [34,71]. It has been used to show reduced visceral adiposity in patients with 

Prader Willi Syndrome [94], and elevated visceral adiposity in women with Turner’s syndrome 

[95,96], PCOS [32,97] and Cushing’s disease [47]. Increased visceral adipose tissue has also 

been shown in adults and children with growth hormone deficiency; this has also been shown 

to reduce following therapy with growth hormone [30,95]. Several gene mutations and 

polymorphisms have been investigated, with some showing significant effects on adipose 

tissue distribution, and with others having little effect [98,99]. Other factors which have been 

shown to alter adipose tissue distribution include preterm birth. MRI has been applied to this 

population; it was found that the increased levels of visceral adipose tissue observed in infancy 
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persist into adulthood [100,101]. Numerous cross-sectional studies have used MRI to measure 

adipose tissue, reporting differences in both content and distribution as a result of age, gender, 

and ethnicity [31,102,103]. There have also been extensive studies measuring differences in 

adiposity between lean, overweight and obese populations. Changes in adipose tissue 

distribution have been described as a result of the menopause, which is thought to result in a 

preferential accumulation of visceral fat [104]. There have also been many interventional 

studies performed using MRI (for reviews see [104–106]), quantifying the impact of diet 

(restriction, overfeeding, composition modulation and supple mentation) and exercise [107–

109]. Both long [110] and short term calorie restriction have been shown to result in loss of 

visceral adipose tissue [111], and overfeeding conversely causes an increase in this fat depot 

[112]. Changes in response to aerobic and resistance exercise have been compared, as well as 

gender differences in the response to an exercise programme, with men being shown to lose 

more visceral adipose tissue, but less subcutaneous adipose tissue in response to exercise than 

women [113]. Other interventions have been investigated; these include the effect of weight 

loss induced by drugs including orlistat, metformin, rosiglitazone, pioglitazone, and 

dexfenfluramine [114–117], as well as following obesity surgery [118]. Of particular interest 

is the trajectory of adipose tissue changes during weight gain or loss. Indeed, studies 

monitoring weight regain in women following anorexia nervosa show an interesting pattern of 

body fat redistribution with an initial increase in visceral adipose tissue, which does normalise 

with time [119]. There have also been extensive studies mapping depot-specific differences 

such as visceral compared to subcutaneous adipose tissues. Visceral fat is now recognised as a 

stronger and independent predictor of the metabolic syndrome compared with subcutaneous 

adipose tissue [120]. Similarly MRI has been used to unravel the inter-relationship between 

‘deep’ and ‘superficial’ subcutaneous adipose tissue, gluteal and femoral subcutaneous adipose 

tissue, as well as regional differences within the visceral fat depot [121–127]. More recently, 

enhanced phenotyping methods have used MRI to classify subjects according to their adipose 

tissue distribution, and these have been shown to identify a number of sub-phenotypes in the 

general population whose metabolic risk factors are not proportionate with their overall size 

and adiposity (Fig. 8). There is mounting evidence to support the notion of ‘metabolically 

normal obesity’, in which subjects are metabolically healthy despite their substantially elevated 

body adiposity [128,129]. A similar phenotype is found in obese individuals described as ‘fat-

fit’ [130]. In both of these groups MRI has been used to show that the metabolic ‘health’ is 
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related to fat distribution, in particular reduced visceral adipose tissue [7,7,120,128]. 

Conversely a phenotype has also been reported, in which normal-weight subjects have an 

elevated risk of metabolic disease, at odds with their apparently normal body size. This is 

commonly referred to as ‘metabolically obese but normal-weight’ [131]. Again this phenotype 

has been further refined using MRI to show a disproportionate accumulation of visceral fat in 

these individuals, now commonly referred to as TOFI (Thin Outside, Fat Inside) [7,120,132]. 

Potential future areas of interest in MRI adipose tissue research  

There are several topics that are receiving increasing attention within the research community, 

including the role of hypoxia and blood supply in adipose tissue function, detection of 
macrophage infiltration within adipose tissue, assessment of regional differences in fatty acid 

composition and mobilisation (fatty acid uptake and storage) and the development of fibrosis 

within adipose tissue. Whether there is the potential for MRI to inform these areas of research 

remains to be seen. 

 
Fig. 8. Phenotypic variation in adipose tissue distribution. 

Ectopic Fat 

There is increasing interest in the potential role of ectopic fat in the development and impact 

of non-communicable disease. Ectopic, from Greek ektopos meaning out of position, refers 

to the storage of fat in non-adipose tissue depots such as skeletal muscle, liver, pancreas and 
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heart. The mechanisms by which ectopic fat accumulates are not fully understood, but one 

theory, the so called ‘overflow hypothesis’, suggests that under some circumstances 

adipocytes may lose their ability to expand to store excess energy, leading to an ‘overspill’ of 

triglycerides into other organs [133]. The implications of ectopic fat accumulation are 

considerable; ectopic fats are closely linked with the development of insulin resistance and 

the metabolic syndrome [134]. Until the advent of MR techniques, research into ectopic fat 

was somewhat limited by the need to obtain tissue biopsies, and although muscle (and 

sometime the liver) biopsies could be obtained for research purposes, research into ectopic fat 

accumulation in the heart and pancreas was clearly impractical. The development and 

application of MRI and MRS has resulted therefore in a significant increase in our 

understanding of the relationship between adipose tissue and various ectopic fat depots. 

Techniques to measure ectopic fat  

¹H MR spectropy-based methods 
In vivo proton magnetic resonance spectroscopy (¹H MRS) is now routinely used to detect and 

quantify ectopic fat deposition in skeletal muscle (in the form of intra- and extra-myocellular 

lipids – IMCL and EMCL, respectively) [135–137] and liver (known as intra-hepatocellular 

lipid – IHCL) [138,139]. It is also used to measure both cardiac [140] and pancreatic [141] fat 

deposition. However, measurement of ectopic fat in these organs is more technically 

demanding, due to motion in the case of the heart, and its size and location in the case of the 

pancreas. As such, there are fewer publications regarding the non-invasive measurement of 

ectopic fat in these organs. Indeed, pancreatic fat assessment by MRS, although feasible, has 

been in part replaced by the use of MRI-based techniques, as these are less susceptible to 

contamination from surrounding adipose tissue signals. In most published studies of ectopic 

fat, the MRS localisation technique of choice appears to be the PRESS sequence (point-

resolved-spectroscopy) developed in the early 1980s [142]. Some groups use a STEAM 

sequence (stimulated echo acquisition mode) instead, but this does tend to be more susceptible 

to motion, diffusion, and quantum effects (such as homonuclear coupling, which can result in 

difficulty in phasing and baseline correcting the spectra) and possibly a lower SNR [143]. An 

alternative MRS sequence used mainly in the liver is Chemical Shift Imaging (CSI) [144]. 

This allows spectra from across a 2D or 3D plane to be acquired in a single acquisition. In this 

sequence, the spatial location is phase-encoded with a spectrum recorded at each phase 
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encoding step. Multiple spectra from across the liver are collected, providing measurements of 

potential regional differences in ectopic fat deposition. Thus, as in vivo MRS allows for 

accurate and reproducible acquisition of metabolic data, in a localised and region specific 

manner, from almost any organ of the body, it has become the gold-standard for ectopic 

measurements in skeletal muscle, liver and heart. 

MRI-based methods 

An alternative to in vivo MRS for assessing ectopic fat is the use of MRI-based techniques. 

Recently, there have been an increasing number of publications, describing a variety of MRI–

based sequences to measure liver fat deposition, exploiting the natural chemical shift 

differences between fat and water [145–149]. While the MRS-based techniques limit 

themselves mainly to single voxel [150] these methods allow for very high resolution 

assessment of regional variations of fat content. However, it should be mentioned that these 

techniques do involve the use of breath-holds during the scan, which may not be appropriate 

for many patient groups. It remains to be seen whether in future these techniques will be equally 

or more prevalently used than MRS. MRI-based techniques to assess ectopic fat fall broadly 

into two categories: those based on differences in the signal phase of fat and water, and those 

that make use of the chemical shift differences between the fat and water resonances, allowing 

for selective saturation of resonances. The former tend to be based on the so-called ‘‘DIXON’’ 

sequences, which are sequences designed to generate images containing only fat or water [151]. 

To achieve this separation, images are acquired in which the signals from fat and water are 

both ‘‘in phase’’ and ‘‘out of phase’’, subtracted and summed, resulting in water- and fat-only 

images. In this way fat content of any tissue can be readily measured. Typical water-only and 

fat-only images obtained with a DIXON-based technique can be seen in Fig. 9. The original 

sequence, referred to as a ‘two-point DIXON’, has since evolved to include a third echo, which 

helps to overcome some of the problems associated with field inhomogeneities [152,153]. The 

term ‘DIXON’ is now commonly used to encompass all chemical-shift based sequences to 

obtain separate water and fat images. These methods are today used both for obtaining fat-only 

images to quantify adipose tissue, as well as for detecting ectopic fat accumulation, principally 

in the liver. A further refinement of the DIXON technique is the so-called ‘3D IDEAL’ 

(Iterative Decomposition with Echo Asymmetry and Least squares estimation) imaging and 

reconstruction method [153]. The advantage of this method is the fact that the data is obtained 
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as a volume, and is therefore more representative of the organ under investigation. It has also 

been reported to result in improved fat-to-water ratios, by correcting for transverse relaxation, 

as well as intravoxel dephasing, and can overcome field inhomogeneity problems. Its 

measurement of liver fat content has been reported to be comparable with ¹H MRS. However, 

it does requires prior knowledge of the chemical-shift spectral frequency and amplitude, which 

are measured in subcutaneous adipose tissue and then applied to the measurement of ectopic 

organ fat [147]. Significant differences in the fatty acid composition between different fat 

depots could therefore be a potential source of error. More recently, a multi-echo (ME) MRI 

sequence has been developed and applied to measure ectopic fat, reportedly being more 

accurate and robust than the DIXON-based methods, while at the same time providing an 

accurate measurement of T		+∗  [149]. This method has been most commonly applied in the liver 

and pancreas. It has the advantage over single voxel MRS in that regional differences in ectopic 

fat distribution can be measured. Furthermore, it is often possible to obtain a single slice 

containing the liver and pancreas, allowing simultaneous measurement of fat within two 

separate organs (see Fig. 10), thereby considerably reducing scanning time. A further benefit 

of using this method is the T		+∗  value; since changes in T		+∗  are indicative of elevated iron 

content, it provides a useful and clinically relevant additional measurement [154]. Thus, from 

the many images normally obtained with the ME sequence, decay curves are generated which 

show the change in signal intensity at each of the acquired echo times. In tissues containing 

lipid and water, there will be oscillation in signal intensity as a function of echo time. At some 

echo times the fat and water signals are in phase (higher signal) and at others they are out of 

phase (lower signal), this gives rise to the oscillations in the decay curve. An organ with very 

little fat infiltration will generate a very smooth decay curve (without obvious oscillations in 

the decay), whereas one containing a higher level of fat shows significant oscillations 

throughout the decay. From these data, ‘heat-maps’ can be generated to visualise regional 

differences in fat deposition. For instance, Fig. 10 shows the heat maps from four individuals 

with varying levels of fat in their liver and pancreas. Clearly, this kind of resolution in regional 

fat distribution could not be achieved by the use of MRS sequences. In addition, the use of 

multi-slice acquisition allows researchers to map fat content across the entire liver. An example 

of this can be seen in Fig. 11, which shows the large variation in fat throughout the entire liver 

of a volunteer. 
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Fig. 9. Water (a) and fat (b) only MR images of the thigh of an overweight volunteer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. A series of multi-echo (a–d) and corresponding heat-map images (e–f) from four volunteers with varying 

levels of ectopic fat in both the liver and pancreas. A scale reflecting fat content from blue (low) to red (high) is 

also shown. Images (a) + (e) show high liver and high pancreatic fat. Images (b) + (f) show low liver and with 

fat infiltrating into the pancreas. Images (c) + (g) show high liver and low pancreatic fat. Images (d) + (h) show 
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low liver and low pancreatic fat. The heat-map values were localised to the liver, hence the lack of relationship 

between the levels of fat in the adipose tissue and its colour. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

Ectopic fat in skeletal muscle   

The relationship between elevated triglyceride within muscle cells (known as intra-

myocellular lipids or IMCL) and insulin resistance was initially established using muscle 

biopsies or ex-vivo tissue samples, in combination with electron microscopy and oil staining 

[155]. Elevated IMCL have been observed in diabetes and are inversely related to insulin 

action [156,157]. This area of research was changed completely in 1993, when Schick and 

colleagues demonstrated that it was possible to differentiate between triglycerides stored 

within muscle cells (IMCL) and the inter-muscular adipose tissue stored between muscle cells 

(referred to in the MRS community as extra-myocellular lipids or EMCL) using in vivo ¹H 

MRS [135]. A typical MRS spectrum obtained from the soleus muscle of a healthy volunteer 

can be seen in Fig. 12. Resonances arising from IMCL, EMCL, total creatine and choline-

containing groups can be readily observed. Most studies using ¹H MRS to measure IMCL use 

a PRESS sequence with a voxel size ranging from 1.8 to 8 cm³. A minority have used CSI, 

which enables simultaneous acquisition of multiple small voxels (MRSI) [158,159]. Most 

work has been published at 1.5T, but there are studies at 3T [160], 4T [161] and 7T [162]. 

Measurements are commonly made in the muscles of the lower calf – soleus, tibialis and 

occasionally, the gastrocnemius muscle. This differs from most biopsy studies where 

measurements are usually taken from the vastus lateralis located in the thigh. This is mainly 

due to practical scanning considerations rather than specific scientific reasons. However, there 

have additionally been reports of IMCL measurements by ¹H MRS in the thigh, arms [163], 

psoas [164] and paraspinal muscles [165]. As can be seen in Fig. 12, despite the fact that the 

four separate resonances arising from IMCL and EMCL can be readily observed, there is a 

significant degree of overlap between the four peaks. This can be an issue for analysis, 

necessitating the use of software with a degree of sophistication, generally requiring a degree 

of prior knowledge to accurately fit the peaks. This overlap can be more of a problem in 
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subjects with elevated EMCL, which increases as a result of aging, as well as in conditions 

including obesity, diabetes and also in patients with muscle disease such as polymyositis. 

Interestingly, it has been reported that the separation between the IMCL and EMCL 

resonances is muscle-dependent. This appears to be related to the alignment of muscle fibres, 

the greater the number of fibres in the muscle running parallel to the magnetic field, the greater 

the separation between peaks. In the tibialis, where the fibres are mostly parallel, the 

separation between IMCL and EMCL signals is greater than in the soleus muscle where the 

fibres are found in a more oblique orientation [136]. While there have been a few publications 

that measured absolute concentrations of IMCL, expressing results in mmol/kg wet weight, 

most studies present the IMCL data either as a ratio or as a percentage of the total water or 

creatine in the spectrum. The development of in vivo ¹H MRS has made it possible to study 

many different patient groups, as well as paediatric populations, and has also enabled 

longitudinal and interventional studies that would not have been possible using a biopsy 

approach. IMCL levels have been shown to vary according to muscle fibre type, with the 

highest levels found in oxidative muscles (such as the soleus muscle) and lower levels in 

glycolytic muscles (such as the tibialis muscle) [158,166]. IMCL levels have also been shown 

to be elevated in obesity [167] and reduced following weight loss [168,169]. The earlier 

observations of the relationship between IMCL and insulin resistance were confirmed [170–

172], and it was proposed that the composition, not just the overall amount of triglyceride 

present may be a factor in the development of insulin resistance [173]. However, the 

relationship between IMCL and insulin resistance is by no means clear cut. For instance there 

have been reports of populations in whom there is a disassociation between insulin sensitivity 

and IMCL levels, for example populations of South Asian origin [174] or low birth weight 

subjects [175]. Furthermore it is possible to manipulate insulin sensitivity, independent of 

changes in IMCL [176] and several groups have reported that endurance trained athletes have 

high IMCL levels, despite high insulin sensitivity [177–179]. While trained athletes rapidly 

deplete their IMCL reserves during endurance exercise [180], there is evidence to suggest that 

IMCL can be increased following moderate exercise training [181]. It is thought that the 

muscles of endurance trained athletes possess a high oxidative capacity, enabling efficient use 

of IMCL as an energy source during exercise. This apparent contradiction has necessitated a 

rethink regarding whether elevated IMCL actually causes insulin resistance, or is a secondary 

effect [182]. Further research will be needed to unravel this complex relationship. More 
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recently, diffusion weighted imaging has been proposed as a potential method to differentiate 

between IMCL and EMCL in vivo, based on the observation that EMCL has a higher apparent 

diffusion coefficient compared with IMCL. As yet these are just ex vivo and animal studies, 

but it will be interesting to see this approach find significant application in human research 

[183]. MRI has also been used to measure muscle fat infiltration. As previously mentioned, 

Gallagher et al. have measured total body IMAT (also known as EMCL) using whole body 

MRI. Multi-echo imaging has also been used to measure muscle fat content [184]. However, 

with current technology MRI is unable to fully differentiate IMCL and EMCL; as such MRS 

will continue to be regarded as the technique of choice in this area of research. 

 
Fig. 11. Heat maps generated from multi-echo images acquired at various positions throughout the liver showing 

variations in hepatic fat content. 
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Fig. 12. Calf image and resulting ¹ H MR spectrum from a 2 x 2 x 2 cm³ PRESS voxel positioned in the tibialis 

muscle. Resonances from choline (Cho), total Creatine (comprising both creatine and phosphocreatine) (𝐶𝑟!"!), 

and the CH₂ and CH₃ parts of the triglyceride for both EMCL and IMCL can be identified. IMCL content is 

calculated as the ratio of IMCL to Cr. 

 

 

 

Ectopic fat in the liver 

The study of fat deposition in the liver has a considerably long history, and indeed even some 

of Leonardo Da Vinci’s drawings depict fatty liver. Many studies in the past have demonstrated 

that fat accumulates in the liver following excessive alcohol intake, and as a consequence of 

obesity and diabetes [185–187]. Ectopic fat deposited within the liver is commonly referred to 

as non-alcoholic fatty liver disease (NAFLD) or non-alcoholic steatohepatitis [188]. However, 

despite its long clinical history, NAFLD was, until relatively recently, considered as a relatively 

benign condition. It is now understood that excess fat deposited in the liver can cause hepatic 

inflammation, which in some individuals leads to fibrosis, which may in turn slowly progress 

to cirrhosis and may ultimately result in hepatocellular carcinoma [189,190]. Moreover ectopic 

liver fat has been, more recently, closely and independently associated with insulin resistance 

[191,192], a key stage in the subsequent development of type II diabetes. Thus, understanding 

the mechanism by which hepatic fat accumulates, and developing effective strategies to reduce 

it, is critically important, given that NAFLD prevalence is estimated at 30–40% in the US 

population, for example [139]. In addition to needle-biopsy which had been regularly used in 
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a clinical setting, there are a wide variety of non-invasive techniques to detect and quantify fat 

infiltration in the liver, including ultrasound, CT and MRI [193,194]. Ultrasound is perhaps the 

most frequently used, particularly in a clinical setting as it is cheap and widely available. 

However, it tends not to be quantitative and levels of fat infiltration are somewhat subjectively 

classified as absent, mild, moderate or severe [194]. CT indirectly assess liver fat content by 

measuring the ratio of liver density to that of the spleen, but the associated radiation somewhat 

limits its longitudinal application and use in paediatric studies. In the research setting, ¹H MRS 

measurement of hepatic fat content is becoming increasingly routine and widespread. 

Quantitative MRI measurement of hepatic fat is also becoming more common, with a wide 

variety of sequences available; for reviews of the different available methods see [145–148]. 

The practical details for the ¹H MRS of liver are quite similar to those discussed previously for 

muscle. Again, the vast majority of studies have been performed at 1.5T using a PRESS 

sequence, although some groups use chemical shift imaging, which allows regional changes to 

be observed across the liver, without the need to acquire repeated PRESS voxels. Fig. 13 shows 

typical spectra from subjects with low and high fat infiltration in the liver. A 2 x 2 x 2 cm³ 

voxel is carefully positioned in the liver avoiding obvious blood vessels, fatty tissue and the 

gall bladder. The resulting spectrum contains resonances arising from water at 4.7 ppm, and 

the CH₂ and CH₃ parts of the triglyceride backbone at 1.3 and 0.9 ppm respectively. Liver fat 

data obtained by ¹H MRS are normally presented as a ratio or as a percentage of the total water 

in the spectrum, although some authors present liver fat in mmol/kg, assuming a hepatic water 

content of 71.1%. There are a variety of approaches to calculating this ratio, and as a result 

levels of IHCL may vary between different papers depending on the formula used. The most 

commonly used are described below: 

 
Most researchers use one of the above methods; others do not separate the CH₂ from CH₃ signal 

and present IHCL as fat/water ratio or the (fat/water + fat) ratio. At low levels of fat deposition 

the various methods produce similar results, but at higher levels of fat infiltration there can be 

considerable differences. For instance using the three different approaches, a very low fat 

infiltration would result in IHCL values (i) 0.71%, (ii) 0.70%, (iii) 0.81%; moderate fat 
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infiltration (i) 14.28%, (ii) 12.00%, (iii) 12.82%; and finally high fat infiltration (i) 56.72%, (ii) 

32.33%, (iii) 34.77%. In essence, this is only an issue when comparing data from different 

research groups. The validation and application of ¹H MRS to assess ectopic fat in the liver has 

been extensively reviewed [120,146,195]. Liver fat has been shown to be a key risk factor for 

the development of insulin resistance and type-2 diabetes [35,196]. We now know, through 

this in vivo work, that liver fat is increased in conditions including obesity [138], type-2 

diabetes [197], polycystic ovarian syndrome (PCOS) [32], and Turner’s syndrome [96], as well 

as being modulated by age [7,198], diet [199,200], physical activity and fitness [8,199,201–

203], and gender with women having reduced levels of liver fat compared with men [7,204]. It 

also varies between different ethnic groups with individuals of Afro-Caribbean origin having 

lower levels, compared to Caucasian or Hispanic populations [205,206]. Ectopic liver fat is 

also elevated in congenital partial and generalised lipodystrophy, as well as antiretroviral 

therapy-associated lipodystrophy, found in some treated HIV patients [207,208]. Furthermore, 

leptin replacement has been shown to reduce liver fat content in subjects with lipodystrophy 

[209,210]. Preterm birth has been shown to result in elevated liver fat in infancy, which persists 

into adulthood [211,100]. Elevated liver fat has consistently been shown to be effectively 

reduced following lifestyle interventions, which generally involve moderate calorie restriction 

and increased physical activity [169,212,213]. Liver fat has also been shown to be reduced 

using ¹H MRS following treatment with rosiglitazone [214], pioglitazone [215], metformin 

[216] and orlistat [116], as well as following weight loss induced by bariatric surgery [217]. 

While the development of ¹H MRS and its application to the study of liver fat has greatly 

increased the knowledge of the relationship between liver fat and other adipose tissue depots, 

and how levels can be modulated by various interventions, our understanding of this depot is 

still far from complete. Further technical development and applications are essential, 

particularly if we are to be able to differentiate non-invasively between those with ‘benign’ 

fatty infiltration and those with fatty infiltration that progresses to irreversible liver disease and 

established cirrhosis 
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Fig. 13. Transverse image showing location of a 2 x 2 x 2 cm³ PRESS voxel positioned within the liver and 

corresponding ¹H MR spectra from volunteers with (a) low and (b) high levels of fat infiltration. Resonances can 

be seen arising from water, and the CH₂ and CH₃ parts of the triglyceride for hepatic fat. IHCL content is 

calculated as the ratio of CH₂ to water. 

Ectopic fat in the pancreas 

The pancreas has a dual function being both an endocrine and exocrine organ. Digestive 

enzymes are secreted into the small intestine by the exocrine portion to aid digestion. The 

endocrine portion of the pancreas is made up of clusters of cells called islets of Langerhans, 

distributed throughout the pancreas. There are four main types, classified by their secretions. 

The β cells are of particular interest, since they secrete insulin and are intimately involved 

with glucose homeostasis. It has been suggested that ectopic accumulation of triglycerides in 

pancreatic islets causes β-cell dysfunction, leading to pancreatic lipotoxicity [218–220], 

although it is unclear whether this is a direct consequence of triglyceride accumulation or a 

consequence of high levels of circulating lipids. These unresolved questions have driven the 

development of non-invasive techniques to study the pancreas. Until relatively recently, most 

studies have required ex-vivo tissue, cell cultures or rodent models, mainly due to the difficulty 

in assessing pancreatic fat in vivo. Needle biopsies are not practical due to the associated risk 

of developing pancreatitis. Ultrasound and CT have been applied to detect the presence of 

pancreatic steatosis, but as in the liver, this tends to be non-quantitative and is often regarded 

as a subjective measurement. Pancreatic fat was first measured non-invasively using ¹H MRS 
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by Tushuizen and colleagues in 2007; they showed that pancreatic fat content was elevated in 

subjects with type-2 diabetes, and that it was inversely associated with β-cell function [220]. 

Lingvay et al. comprehensively validated the use of ¹H MRS to quantify pancreatic 

triglyceride against biochemical measurements in rodents [141]. Furthermore, they 

demonstrated the reproducibility of the method in humans and showed in a relatively large 

cohort of subjects that pancreatic steatosis increases with BMI and impaired glycaemia. In a 

relatively short period of time, several other groups published studies using ¹H MRS to 

measure pancreatic fat content and were able to demonstrate that pancreatic fat content is 

related to both insulin resistance and liver fat content [203,221]. However, ¹H MRS of the 

pancreas is far more challenging, compared to ¹H MRS of the liver, due to the size, shape and 

location of the former. In some individuals, the pancreas has a smooth and well-defined shape, 

allowing relatively easy positioning of the voxel within the organ. However, in others, the 

pancreas has a more fragmented appearance, with the surrounding adipose tissue appearing 

to infiltrate the organ (Fig. 14). Positioning even a small voxel within the pancreas with this 

presentation is problematic, since the resulting spectra carry a risk of contamination from the 

surrounding adipose tissue. This has been one of the main factors that have driven 

development of MRI to quantitate pancreatic steatosis. Schwenzer and colleagues have 

extensively compared in/out-of phase sequences with spectral-spatial excitation imaging 

sequences [222], finding that both provided reliable estimates of pancreatic fat content, though 

it was more likely that fat-selective spectral-spatial methods would be utilised clinically, since 

they required fewer additional corrections to quantify fat content. In our own experience, we 

find excellent correlation between ¹H MRS and multi-echo imaging techniques, but since 

multi-echo avoids contamination from surrounding visceral adipose tissue, we find that it 

leads to a more successful examination in many cases. A further advantage of quantitative 

imaging methods is that regional variation in fat deposition throughout the pancreas can be 

measured using a single sequence. This appears to be particularly important in the pancreas 

since some studies have reported the pancreatic head contains less fat than the body and tail 

[222]. However, other studies have reported no regional variation [223]. Indeed, many of the 

recent papers measuring pancreatic fat content have used MRI-based methods [150,224–229]. 

Interestingly, in some publications liver fat is often measured using ¹H MRS, despite 

pancreatic fat being measured by MRI [224]. These studies have shown that pancreatic fat 

content increases with age [222,226] and can be predicted by visceral adipose tissue content 
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[226,228]. It has also been shown that there are ethnic differences in pancreatic fat content, 

with higher levels reported in Hispanic compared with African American subjects [226]. 

Furthermore, it has been shown that pancreatic fat can be reduced following a period of dietary 

restriction, which also resulted in normalisation of β -cell function [225]. Some studies have 

reported a significant correlation between hepatic and pancreatic fat content [226,227], while 

others have found no relationship between ectopic fat in these two organs [222,229]. 

Compared to other organs, non-invasive measurement of ectopic fat in the pancreas is very 

much in its infancy. However, this is a very rapidly expanding area of research, and it is likely 

that our understanding of fat in the pancreas and its consequences will increase substantially. 

 

 

 

 

 
Fig. 14. Images through the abdomen showing the appearance of the pancreas in two individuals. Subject (a) 

has a well defined pancreas, as can be clearly seen in the expanded image with well-d4efined boundaries, in 

whom pancreatic spectra showing a low level of fat infiltration can be reproducibly obtained. Subjects (b) has 

an extremely irregularly shaped pancreas, making voxel placement difficult, the resulting spectrum has a high 

level fat as seen by the larger CH₂ resonance. It is difficult to be certain whether all or only some of this fat 

arises from ectopic fat within the pancreas. 

Ectopic fat in the heart 

Fat can be deposited and stored in several locations in and around the heart as intramyocardial, 

pericardial, epicardial, and paracardial adipose tissue (also referred to as mediastinal adipose 

tissue]. Adipose tissue in this location is essentially found on the epicardial surface, where it is 

in direct contact with the myocardium and vessels and serves as a source of energy. There is, 
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however, some degree of debate regarding the exact classification of each of these depots which 

seems in part to relate to the methodology used to measure these fat depots. Some authors 

describe pericardial and epicardial adipose tissue as distinctly different depots, with differences 

in adipocyte size and metabolism [230]. Others suggest that pericardial adipose tissue is the 

sum of both the epicardial and paracardial fat depots [231]. The different types of fat 

accumulation within the heart were described in detail by Richard Quain in an extensive article 

in 1850 [232]. Initial studies were conducted post-mortem, but the advent of fluoroscopy, 

which employs X-rays to obtain real-time moving images of the heart, enabled non-invasive 

studies to be conducted allowing the pericardial fat pad to be studied in living subjects 

[233,234]. More recently, echocardiography and CT and MRI have been used to measure this 

depot. The adipose tissue deposited around the heart has been shown to increase with age and 

level of obesity, in particular visceral adipose tissue content [235]. It is also increased in 

patients with diabetes and obstructive coronary artery disease. Fat is also found in other areas 

of the heart. Indeed, there are two different patterns of myocardial triglyceride deposition: the 

first involves infiltration of adipocytes, usually in the right ventricle interspersed between 

myocardial fibres, similar to the EMCL in skeletal muscle. Triglycerides also accumulate 

within the cytosol of cardiac myocytes. Here, their presence is referred to as ‘cardiac steatosis’. 

Until the advent of ¹H MRS, this was only measurable at post-mortem or from biopsy samples. 

¹H MRS has been used by several research groups to measure this steatosis [140,236–240]. ¹H 

MRS of the heart is technically more challenging than a similar acquisition in the liver or 

skeletal muscle, due to cardiac and respiratory motion, both of which have a significant impact 

on both shimming and water suppression. Spectral quality may be further compounded by the 

presence of epicardial fat which can cause spectral contamination. However, these difficulties 

may be overcome using cardiac and respiration triggering and gating [140,236]. Indeed, 

Felblinger et al. compared the effects of breath-hold vs combined ECG and respiratory gating, 

and they found spectral quality and reproducibility to be significantly improved using cardiac 

triggering [238]. More recent studies have combined ECG triggering with respiratory navigator 

echo–based motion compensation, which have been reported to reduce spectral linewidth, 

thereby improving spectral resolution and reproducibility [240]. ¹H MR spectra are generally 

obtained using a PRESS sequence with the voxel positioned within the septum of the heart (Fig. 

15). Using ¹H MRS to measure myocardial fat, it has been shown that triglycerides can be 

detected within the cardiac myocytes of even very lean individuals, and in overweight subjects 
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in whom cardiac triglyceride levels are elevated. This fat depot is closely related to increased 

left ventricular mass [140]. Kankaanpää et al. have shown that cardiac triglycerides are elevated 

in obese compared with lean men [239,240]. However, the functional relevance of cardiac 

triglyceride accumulation is still unclear, in part due to the small number of papers published 

in this area. While cardiac triglycerides appear to be elevated in obesity, particularly in relation 

to visceral adipose tissue, no significant relationship between cardiac triglycerides and BMI or 

percentage body fat has been observed [235,242,243]. Furthermore, Gaborit et al. recently 

showed that while both cardiac triglycerides and epicardial adipose tissue were elevated in 

obese subjects, only epicardial adipose tissue was elevated in obese diabetic subjects, compared 

to obese non-diabetic subjects [241]. Furthermore, these authors also found that only the 

presence of epicardial adipose tissue was related to glucose tolerance, but they did find that 

cardiac triglycerides were independently associated with ventricular stroke volume, suggesting 

a specific interaction between cardiac steatosis and cardiac function [241]. There have been 

several interventional studies looking at the effect of dietary restriction, exercise, bariatric 

surgery and drugs on cardiac triglyceride content with conflicting results. Several papers have 

shown that cardiac triglyceride content can be reduced following a very low calorie diet [244] 

or exercise training in healthy overweight subjects [245]. Interestingly, the same group found 

that a similar exercise program did not reduce cardiac triglyceride content in patients with type-

2 diabetes, despite improvements in cardiac function [246]. However, treatment with 

pioglitazone, which has been shown to reduce hepatic fat, did not affect cardiac steatosis [247]. 

Similarly, starvation studies have been shown to reduce hepatic steatosis while increasing 

cardiac steatosis [248]. Furthermore, weight loss following bariatric surgery has been shown 

to significantly decrease adiposity, particularly visceral adipose tissue and epicardial adipose 

tissue as well as hepatic fat content whilst having no effect on cardiac triglyceride content [249]. 

While there appear to be some contradictions in the published literature, overall these findings 

do indicate that the regulation of ectopic fat depots is organ-specific and that further studies 

are required to increase our understanding of the relevance of cardiac triglycerides and their 

relationship to adiposity. 

Bone marrow 

In addition to adipose tissue and ectopic fat, a significant quantity of fat is stored in the body 

in the form of bone marrow. The body contains two types of bone marrow: red bone marrow 
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consisting of hematopoietic cells, responsible for production of blood cells (this tends to be 

found in ‘flat’ bones such as the pelvis, sternum, ribs, and vertebrae); and yellow bone marrow, 

found mainly in the middle of long bones, and composed primarily of adipocytes. At birth, all 

bone marrow is red; the fat content of bone marrow progressively increases with age [250] and 

is considered to be a normal part of skeletal maturation and ageing. By adulthood almost 50% 

of bone marrow will have become yellow bone marrow. MRI and MRS have both been applied 

to measure the content, composition and distribution of bone marrow. Most studies have 

obtained PRESS spectra from the hematopoietic bone marrow located in the vertebral bodies. 

MRS has been proposed as a method of monitoring changes in response to treatment, as well 

as an aid to diagnosis in conditions including leukaemia, lymphoma, and plasmocytoma [251–

253]. Changes in both the relative ratios of the lipid and water resonances, as well as the peak 

lineshapes and relaxation properties have been reported using ¹H MRS, following treatment for 

leukaemia and bone marrow transplant. Furthermore, age-related changes in bone marrow have 

been confirmed non-invasively using ¹H MRS [254–256]. Gender differences have also been 

reported with males having a higher bone marrow fat content compared with female subjects 

[255,256]; however this difference is reversed in older subjects (>60 years age) [257]. Bone 

marrow fat content has also been shown to increase with decreasing bone mineral density, 

making bone marrow fat content a potentially useful marker of osteoporosis [255,258–260]. 

Interestingly, Baum et al. have shown regional variation with bone mineral density decrease 

from L1 to L3, accompanied by a corresponding increase in bone marrow fat content [261] The 

composition of the fatty acids within the bone marrow may also be important; subjects with 

type-2 diabetes appear to have lower levels of unsaturated fatty acids within their vertebral 

bone marrow, compared to healthy controls [261]. The fat content of bone marrow has also 

been related to other adipose tissue depots, particularly visceral adipose tissue. Several authors 

have reported that subjects with a greater proportion of fat in their bone marrow have higher 

levels of visceral adipose tissue [258]. This may be an important finding, since previous studies 

have found a negative association between visceral adipose tissue and bone mineral density 

[262]. As well as measuring the fat content of bone marrow by MRS, the whole-body bone 

marrow volume has been measured using MRI. From these studies, it has been estimated that 

bone marrow comprises up to 7% of total adipose tissue [262]. However, these studies found 

no relationship between bone marrow volume and overall adiposity. Indeed, there are several 

indications that bone marrow does not function as a typical adipose tissue depot, one of which 
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being the paradoxical increase in bone marrow fat content following a period of starvation and 

also in anorexia [263]. 

 
Fig. 15. Image of the heart showing voxel positioned within the ventricular septum of the myocardium. The 

spectrum was collected using PRESS sequence on a Siemens Verio 3T system with PACE for breathing motion 

compensation in concert with near end of systole of the heart cycle. (Tr = 4s, Te = 40 ms, NA = 32, voxel = 8 * 

18 * 26 mm). (Figure kindly supplied by Dr. L. Szczepaniak, Biomedical Imaging Research Institute of Cedars-

Sinai Medical Centre. 

Conclusion  

In conclusion, MRI and MRS have become the gold-standards for assessing body fat content 

and distribution. A variety of MRI sequences and scanning protocols are currently in use to 

determine the total and regional quantities of adipose tissue in human volunteers. The results 

from these studies point to the importance of abdominal adiposity in the development of non-

transmittable diseases, including insulin resistance and type II diabetes. Ectopic fat, especially 

in liver and pancreas, appears to be another important independent risk factor for these 

disorders [264]. With the advent of in vivo MRS and fat-specific MRI sequences, this field of 

research is rapidly progressing as it no longer requires the use of needle biopsies to determine 

levels of fat infiltration in these and other organs. The use of MR-based techniques to measure 

adiposity is becoming increasingly common and is being utilised to assess body fat content 

and distribution in utero, at birth, during childhood as well as in the later stages of life, helping 

us to transform the way we view the function of this complex, yet essential, organ, adipose 

tissue. 
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Paper 5 

Validation of a fast method for quantification of intra-abdominal 

and subcutaneous adipose tissue for large-scale human studies 

Magnus Borga¹²³, E Louise Thomas⁴, Thobias Romu¹², Johannes Rosander³, Julie 

Fitzpatrick⁴, Olof Dahlqvist Leinhard³⁵ and Jimmy Bell⁴ 

Abstract 

Central obesity is the hallmark of a number of non-inheritable disorders. The advent of 

imaging techniques such as MRI has allowed for a fast and accurate assessment of body fat 

content and distribution. However, image analysis continues to be one of the major obstacles 

to the use of MRI in large-scale studies. In this study we assess the validity of the recently 

proposed fat–muscle quantitation system (AMRA™ Profiler) for the quantification of intra-

abdominal adipose tissue (IAAT) and abdominal subcutaneous adipose tissue (ASAT) from 

abdominal MR images. Abdominal MR images were acquired from 23 volunteers with a 

broad range of BMIs and analysed using sliceOmatic, the current gold-standard, and the 

AMRA™ Profiler based on a non-rigid image registration of a library of segmented atlases. 

The results show that there was a highly significant correlation between the fat volumes 

generated by the two analysis methods, (Pearson correlation r = 0.97, p < 0.001), with the 

AMRA™ Profiler analysis being significantly faster (~3 min) than the conventional 

sliceOmatic approach (~40 min). There was also excellent agreement between the methods 

for the quantification of IAAT (AMRA 4.73 ± 1.99 versus sliceOmatic 4.73 ± 1.75 l, p = 

0.97). For the AMRA™ Profiler analysis, the intra-observer coefficient of variation was 1.6% 

for IAAT and 1.1% for ASAT, the inter-observer coefficient of variation was 1.4% for IAAT 

and 1.2% for ASAT, the intra-observer correlation was 0.998 for IAAT and 0.999 for ASAT, 

and the inter-observer correlation was 0.999 for both IAAT and ASAT. These results indicate 

that precise and accurate measures of body fat content and distribution can be obtained in a 

fast and reliable form by the AMRA™ Profiler, opening up the possibility of large-scale 

human phenotypic studies. Copyright © 2015 John Wiley & Sons, Ltd 
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Introduction 

Today, it is generally recognized that central obesity is a key risk factor for the development 

of a number of metabolic disorders [1,2]. It has also been shown that indirect measures such 

as body-mass index (BMI), waist circumference, and bioimpedance are poor predictors of 

regional body fat distribution on an individual level [3–5]. The advent of tomographic 

imaging modalities such as computer tomography (CT) and MRI has greatly facilitated our 

ability to directly measure body fat content and distribution in an accurate and reproducible 

manner [6,7]. Currently, it is possible to obtain a whole-body MRI scan of an individual in 

less than 5 min, allowing total and regional fat depots to be measured in detail. However, 

scan costs and image analysis are still substantial obstacles for large population studies. 

Indeed, MRI measures of whole-body regional body fat distribution have up to now been 

limited to research studies in relatively small cohorts of subjects, for example 80 subjects in 

Reference 7 and fewer than 500 in Reference 5. In studies with larger cohorts such as the 

Dallas Heart Study [8], the Framingham Heart Study [9], and the Multi-Ethnic Study of 

Atherosclerosis (MESA) [10], very limited abdominal MR/CT imaging was carried out, with 

some studies using a single slice to define abdominal adiposity. This clearly puts considerable 

limitations on the total information available to researchers [11]. Furthermore, although cost 

per scan has reduced considerably in recent years, the time required to analyse these datasets 

continues to be a major limiting factor, mainly due to the lack of fast, reliable, and 

reproducible methodologies [12] 

In the last few years, an increasing number of genome-wide association studies, using ever-

larger cohorts, have been carried out in order to identify common genetic variants associated 

with complex diseases including obesity, diabetes, heart disease, and cancer [13]. In many of 

these studies, phenotyping of subjects was limited to either weight or BMI, with some using 

also waist circumference.  More recently a number of large population studies have been 

initiated where more  in-depth phenotyping is sought, including the use of MRI and dual-

energy X-ray absorptiometry  methodologies, for the  purpose of measuring body-fat 

distribution. One example is the UK Biobank, where up to 100 000 individuals will be 

scanned using MRI, while in the German Cohort Biobank it is envisaged that 30 000 

volunteers will be scanned, many of whom will be followed longitudinally. Besides the 

obvious demand for efficient scanning protocols, the resulting millions of images need to be 

analysed in a fast and reproducible manner and at a minimum cost. Although existing manual 
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and semi-automated systems can be used to analyse images from small cohorts (<100 

subjects), they are not feasible for use in large population studies. 

The aim of this study is to evaluate the performance of a rapid semi-automated tool for 

quantification of body fat, including intra-abdominal adipose tissue (IAAT) and abdominal 

subcutaneous adipose tissue (ASAT) volumes from MR images. Recently, a number of such 

methods have been proposed [14–20]. Most of these methods [14–19] rely on binary 

classification of adipose tissue, making them sensitive to partial volume effects [21], a 

problem that increases with lower spatial resolution. In contrast to these methods, a new 

method has been proposed,  AMRA™ Profiler, based on quantitative fat imaging where the 

entire fat signal  within  a  certain  compartment is taken into account [22,23]. In addition to 

reducing the sensitivity to partial volume effects, this makes the method less sensitive to 

segmentation errors. Also in [19], a similar approach was used where fat fraction was 

integrated within the segmented regions. In the work of Würslin et al. [20] a fuzzy 

segmentation of T*-weighted spin- echo images was used to alleviate the problem of partial 

volume effects. In both these approaches, however, the segmentation was based on a two-

dimensional (2D) slice-by-slice analysis. The method used in this study is based on a true 

three- dimensional (3D) analysis using atlas-based segmentation. 

The qualities of the proposed method make it an ideal tool for potential large-scale human 

studies. However, this tool has not been fully validated against the current gold-standard 

technique for fat quantitation of MR images. Here, the AMRA™ Profiler is assessed against 

the tool of choice for fat quantitation, the commercially available sliceOmatic. The results 

show excellent agreement between the methods across a range of BMI, with analysis using 

the AMRA™ Profiler taking up to 10 times less time than sliceOmatic. The speed and 

robustness of the AMRA™ Profiler make it the ideal tool for small- and large-scale human 

phenotypic studies. 

Materials and Methods 

Image Acquisition 

Written, informed consent was obtained from all volunteers. Ethical permission for this study 

was obtained from the research ethics committee of Hammersmith and Queen Charlotte’s and 

Chelsea Hospital, London (REC: 07Q04011/19). In total, 23 volunteers (12 male, 11 female) 

were recruited via advertisements in newspapers, websites, and academic newsletters, 
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inviting male and female volunteers from the general public. No age constraints were placed 

on recruitment in order to generate cross-sectional data. Average BMI was 31.7 ± 5.1 kg/m² 

(range 22–46 kg/m²); age 36–66 years. Each subject was scanned with two different protocols 

on a 1.5T multinuclear scanner (Achieva, Philips Medical Systems, Best, The Netherlands). 

Scanning Protocol 

Two different MRI acquisition protocol were used in this study in order to maximize the 

capabilities of each analysis tool. 

Established 𝑻𝟏-weighted acquisition protocol for sliceOmatic 

The first scan was obtained using a rapid T*-weighted protocol as previously described [6]. 

Briefly, a whole-body axial T*-weighted spin echo sequence was acquired using a body coil 

and no respiratory gating (typical parameters: repetition time 560 ms, echo time 18 ms, slice 

thickness 10 mm, inter-slice gap 10 mm, flip angle 90°, number of excitations 1). Images 

were acquired as nine equal stacks of 12 slices at the isocentre of the magnet with the 

subjects in prone position 

3D Dixon acquisition for AMRATM profiler. 

The second scan was carried out using a phase-sensitive multipoint 3D Dixon acquisition 

[24] with coverage from the neck to the knees using the integrated quadrature body coil. In 

this scan, the subjects were in a supine position. Seven image stacks were acquired, of which 

Stacks 2–5, covering the abdomen, were acquired during breath hold (17s). Parameters for 

the image acquisition were as follows: repetition time 5.86 ms (8.16 ms for Stacks 3 and 4 

covering the liver), echo time n × 1.15 ms, n = 1–4 (n = 1–6 for Stacks 3 and 4), matrix size 

172 × 158, slice thickness 4.2 mm (5 mm for stack 7 covering lower part of thigh), and flip 

angle 13°. Given that each acquisition protocol resulted in slightly different anatomical 

coverage, for a robust comparison it was therefore decided to extract the same area from both 

datasets, using the previously published definition of the abdominal area: ‘from the image 

containing the femoral heads, to the slice containing the top of the liver/bottom of the lungs’ 

[6]. 
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Image Analysis  

Reference Method  

SliceOmatic 

The 𝑇*-weighted images were analysed as previously described using the semi-automated 

software sliceOmatic (TomoVision, Montreal, Quebec, Canada), which has become the 

leading tool for analysis of body fat in clinical and pre-clinical research [8]. Briefly, total and 

regional volumes were recorded in litres (l), comprising ASAT and IAAT [25]. As previously 

stated, the abdominal region was defined as the image slices from the slice containing the 

femoral heads to the slice containing the top of the liver/bottom of the lungs [6]; therefore, 

the measurement of IAAT contains a mixture of visceral, perirenal, and retroperitoneal 

adipose tissue. In order to gauge abdominal adiposity as a whole, ‘trunk fat’ (TF) was derived 

from the sum of IAAT and ASAT: TF = IAAT + ASAT. The total time for the abdominal 

segmentation was approximately 40–60 min per dataset. The sliceOmatic analysis of the 𝑇*-

weighted images was performed by an independent observer (Vardis Group, London, UK). 

AMRA™ Profiler Image Analysis  

Image analysis was performed using AMRA™ Profiler (Advanced MR Analytics, Linköping, 

Sweden) as previously described [22,23], with some modifications. Water and fat images 

were calculated using a two-step process. First, an initial set of water and fat images was 

calculated using the first set of opposite phase (𝑇-= 2.3 ms) and in-phase (𝑇- = 4.6 ms) 

images, using the inverse gradient method [26,27]. In order to correct for 𝑅+ ∗ effects and the 

fat signal spectrum, a final set of water–fat images was then calculated using all echoes with 

an in-house implementation of the IDEAL reconstruction [28,29]. To obtain quantitative fat 

images, the water and fat image pairs were calibrated using the method described in 

References 20 and 30. In summary, a quantitative fat image is computed based on pure 

adipose tissue as an internal signal reference. Hence, the signal intensity level in a given fat 

image voxel is related to the intensity in pure adipose tissue, which is given the value 1, 

corresponding to 100% adipose tissue. The IAAT and ASAT compartments were 

automatically segmented using non-rigid image registration of a library of manually 

segmented atlases as described in Reference 22. A library of 10 atlases representing a range 

of body shapes with manually segmented labels for IAAT, arms, and internal non-visceral 
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adipose tissue was used. A combination of atlas-based segmentation and morphological 

operations was used to remove the arms. In order to limit variability due to breathing, 

AMRA™ Profiler uses the top of the femoral head and the top of vertebra T9 as lower and 

upper limits of the abdominal region in the segmentation of ASAT. In order to further 

improve the segmentation performance for a larger variation of body shapes, the result from 

the atlas-based registrations was interpreted as a probability map [31] for each fat 

compartment, where 1 means that all atlases agree on the classification of adipose tissue and 

0 means that no atlas agrees. The final definition of each fat compartment was obtained by 

applying a threshold value to the probability map of each compartment label. A quick visual 

inspection of the segmentation of each compartment was performed. In this step, the operator 

can observe the automated segmentation suggested by the computer and, if necessary, locally 

adjust the default threshold of the probability map in order to interactively change the final 

segmentation. To assess inter- and intra-operator variability, the manual interaction was 

performed three times by three different operators. All operators were employees at AMRA 

and trained to perform this task. To enable a direct comparison with the conventional 

sliceOmatic analysis, the volumes were manually cropped at approximately the same levels 

as the uppermost and lowest slices used to define the abdominal region in the sliceOmatic 

analysis. Finally, the calibrated fat signal was integrated within each segmented 

compartment. A scaling with the voxel volume then gave the total volume of adipose tissue 

within each compartment. 

Statistical Analysis  

All data are presented as means ± SD. Statistical analysis was performed in Microsoft Excel 

2011 (v. 14.2.4) and SPSS (v. 22) for the inter- and intra-observer variability intra-class 

correlation coefficient (ICC). The Shapiro–Wilk test was performed to test normal 

distribution of the difference between the two methods. Agreement between techniques was 

tested with the method of Bland and Altman. The significance of the difference was 

determined by a two-tailed paired Student t-test. The inter- and intra-observer variability 

were assessed using the coefficient of variation (CoV) and the ICC using a two-way mixed, 

absolute agreement model and single measures. Inter-observer CoV was computed for each 

observer as the quotient between the standard deviation of the three observations and the 

mean observation and then averaged over all 23 subjects. The intra-observer CoV was 

computed as the standard deviation of the three observers’ mean observations divided by the 
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total mean and then averaged over all 23 subjects. The intra-observer ICC was computed for 

each operator separately. The inter-observer ICC was computed between the mean values of 

each operator. 

 

Results 

Typical MR images and their respective image analysis results from one of the volunteers can 

be seen in Fig. 1. Quantitative measurements of IAAT, ASAT, and total TF were extracted 

from such images, using the standard sliceOmatic and the AMRA™ Profiler (Table 1). On 

average it took over 40 min for the abdominal region from the whole-body dataset to be fully 

analysed by sliceOmatic, necessitating continuous manual input from an expert operator. The 

AMRA™ Profiler required less than 3 min of manual intervention. The automated intensity 

inhomogeneity correction and calibration of the fat image volume took approximately 10 min 

and the atlas-based segmentation took approximately 7 min per atlas on a standard PC. The 

Shapiro–Wilk test showed no significant deviation from a normal distribution for the 

differences in IAAT, ASAT, and TF measurements (p = 0.077, p = 0.147, and p = 0.159 

respectively). There was no significant difference in the amount of IAAT measured using 

AMRATM Profiler compared with the conventional sliceOmatic analysis (AMRA™ Profiler 

4.73 ± 1.99 versus sliceOmatic 4.73 ± 1.75 l, p = 0.97). The difference in quantification of 

ASAT was 10.39 ± 5.38 (AMRATM Profiler) versus 9.78 ± 5.36 l (sliceOmatic), p < 0.001, 

and for TF 15.12 ± 5.74 (AMRA™ Profiler ) versus 14.50 ± 5.50 l (sliceOmatic), p = 0.005. 

Excellent agreement between the two methods was observed for all fat depots (Fig. 2). For 

IAAT the 95% limits of agreement were -1.06 to 1.07 (Fig. 2a). Similar findings were 

observed with ASAT, where the 95% limits of agreement were -0.36 to 1.60 (Fig. 2b). For 

TF, the linear regression coefficient was 1.03 with an offset of 0.19 l and the 95% limits of 

agreements were -1.26 to 2.50 l (Fig. 2c). However, on average the AMRA rapid semi-

automated system volume estimates of ASAT and TF were numerically larger, though not 

significantly, than the sliceOmatic analysis (6.3% for ASAT and 4.3% for TF). The 

measurement of IAAT was very similar between the two methods (0.1% for IAAT). A linear 

regression analysis of the Bland–Altman plots showed a significant linear regression 

coefficient of 0.134 (p = 0.029) for IAAT. For ASAT and TF, there was no significant linear 

regression (p = 0.834 and p = 0.248 respectively). Neither of the errors in IAAT or ASAT 
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showed any significant correlation to the amount of TF (p = 0.248 and p = 0.335 

respectively). The intra-observer CoV was 0.9%, 1.5%, and 2.4% for Operators 1–3 

respectively (average 1.6%) for IAAT and 0.6%, 1.1%, and 1.6% respectively (average 1.1%) 

for ASAT (Table 2). The intra-observer ICC was 1.000, 0.999, and 0.996 for Operators 1–3 

respectively (average 0.998) for IAAT and 1.000, 0.999, and 0.998 for Operators 1–3 

respectively (average 0.999) for ASAT. The inter-observer CoV was 1.4% for IAAT and 

1.2% for ASAT. The inter-observer ICC was 0.999 for both IAAT and ASAT. 

 
Fig 1. MR images from typical volunteer. (a) The calibrated fat image with intra-abdominal 

and subcutaneous segmentations made by the AMRA™ Profiler overlaid in red and green 

respectively. (b) The approximately corresponding transverse slice from the same subject 

analysed by sliceOmatic. In this example both images were acquired with the volunteer 

positioned in a supine position to make the images more readily comparable 
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Discussion 

Rapid scanning protocols are well as automated image analysis are essential in large 

population studies where in vivo imaging modalities are becoming the norm. This study 

shows that quantification of central obesity, including IAAT (‘visceral fat’) and ASAT, can 

be done using a rapid semi-automated quantification method of MR images acquired with a 

very rapid multi-point Dixon protocol. Furthermore, the correlation to the current gold-

standard semi-automated segmentation program (sliceOmatic) was extremely high for all fat 

depots. The agreement between the two methods of quantification was also extremely high. 

The design of the study was such that not only differences in analysis method were a factor, 

but also the MRI acquisition protocol. Whilst it might seem counter-intuitive to both acquire 

the data using different MRI sequences (𝑇* versus 3D-Dixon) and have the patient in a 

different position (prone versus supine), it was decided that a true test of the standard versus 

the AMRA™ Profiler must ensure that the optimal and validated protocol should be used in 

each instance, so as to minimize potential bias for any given method. Given the variation in 
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acquisition and analysis, it is perhaps more impressive that the agreement in measurement 

particular of IAAT is so high. Indeed, the strong linear correlation and excellent agreement 

between the sliceOmatic and AMRA™ Profiler results indicates that the latter can be reliably 

used for quantification of IAAT, ASAT, and total TF. Moreover, given that the standard 

segmentation technique takes more than 40 min per subject for a trained operator, making it 

unfeasible for large population studies, the short analysis time of the AMRA™ Profiler, less 

than 3 min per subject, opens a realistic possibility for the analysis of MRI data sets from 

large cohort studies. The computation time for the automated processing, of course, depends 

on implementation and hardware. Parallel computing, e.g. using a GPU implementation or 

multi-core CPU, could of course reduce the current computation time. The linear regression 

coefficient was close to unity for both compartments, though the AMRA™ Profiler volume 

estimates were numerically larger for ASAT, though not significantly, than for sliceOmatic 

analysis. The differences between techniques were independent of the BMI and/or the total 

body fat content of the volunteers. Therefore, it is possible that the methods of defining 

which slices from the whole-body dataset to equate to the abdominal compartment generally 

used (the top of the liver to top of femoral head) could account for this difference rather than 

a difference between the analysis methods per se. There was, however, a positive linear 

correlation between the differences in IAAT measures and the IAAT volume, indicating that 

for subjects with more IAAT the AMRA™ Profiler tends to give smaller IAAT estimates 

than the reference method. The different acquisition approaches necessitated identifying the 

selecting matching top and bottom slices from an axial acquisition with relatively thick slices 

and inter-slice gaps and from a 3D dataset. A small mismatch, particularly in the lower slices 

containing the femoral heads, could have a significant impact of the amount of subcutaneous 

adipose tissue included (but not internal adipose tissue), since this covers the area where 

anatomically a small change in position can result in a substantial difference in subcutaneous 

fat content. A limitation with the AMRA™ Profiler is that it requires fat– water separated or 

complex-valued Dixon images, and cannot therefore be used for analysing already existing 

data acquired with, for example, a more traditional T*-weighted protocol. However, the 

proposed rapid Dixon protocol has several advantages compared with the more traditional T*-

weighted protocol used as reference in this study. First of all, the close to isotropic image 

resolution, in combination with the breath-hold technique, gives a complete 3D data volume 

rather than a stack of more or less independent 2D image slices. This significantly simplifies 
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the use of 3D image processing, which also facilitates volumetric measurements of other 

anatomical structures and organs. Second, the calibrated fat image is specifically sensitive to 

fat, which is not the case for T*-weighted images. A calibrated fat image also enables 

quantification of diffuse fat infiltration, e.g. in muscles and internal organs. It should also be 

stressed that the AMRA™ Profiler gives an objective, user-independent quantification of the 

fat signal. Only the anatomical definition of the compartment of interest is subject to 

segmentation as well as inspection and manual interaction. This is important, e.g., in the 

visceral compartment, where intestinal content easily can be mistaken for adipose tissue. The 

excellent inter- and intra-observer ICC and the very low interand intra-observer variability 

shown in this study confirm this. The CoV for the intra-observer comparison of 1.6% for 

IAAT and 1.1% for ASAT can be compared with values reported in an earlier study [32], 

where the investigated method (Hippo Fat) had a CoV of 7.25% for IAAT and 1.77% for 

ASAT and the sliceOmatic analysis had a CoV of 4.53% for IAAT and 1.85% for ASAT. 

The use of a quantitative fat image also means that, as opposed to methods based on 

classification of individual voxels into adipose or non-adipose tissue as in References 14–16, 

the method used here is much less affected by partial volume effects [21], since the fat in 

voxels containing a mix of adipose and nonadipose tissue will also be included. Estimation 

errors caused by partial volume effects increase with lower resolution, which is a 

consequence of rapid whole-body acquisition. Furthermore, the AMRA™ Profiler used in 

this study has also been used for compartmental muscle volume measurements [33], which is 

also a relevant factor in metabolic studies. 
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Fig 2. Bland–Altman plots describing agreement between fat volumes measured using 

sliceOmatic and the AMRA™ Profiler method for (a) IAAT, (b) ASAT, and (c) total trunk 

adipose tissue. 
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Paper 6 

Changes in Liver Volume in Patients with Chronic Hepatitis C 

Undergoing Antiviral Therapy 

Julie Fitzpatrick, Jin Kim, Jeremy Cobbold, Mark McPhail, Mary Crossey, Aluel Bak-Bol, 

Ashraf Zaky, Simon Taylor-Robinson¹ 

Abstract 

Liver volumetric analysis has not been used to detect hepatic remodelling during antiviral 

therapy before. We measured liver volume (LV) changes on volumetric magnetic resonance 

imaging during hepatitis C antiviral therapy. Methods: 22 biopsy-staged patients (median 

[range] age 45*./01 years; 9F, 13M) with chronic hepatitis C virus infection were studied. LV 

was measured at the beginning, end of treatment and 6 months post-treatment using 3D T1-

weighted acquisition, normalised to patient weight. Liver outlines were drawn manually on 4 

mm thick image slices and LV calculated. Inter-observer agreement was analysed. Patients 

were also assessed longitudinally using biochemical parameters and liver stiffness using 

Fibroscan™. Results: Sustained viral response (SVR) was achieved in 13 patients with a mean 

baseline LV/kg of 0.022 (SD 0.004) L/kg. At the end of treatment, the mean LV/kg was 0.025 

(SD 0.004, P = 0.024 cf baseline LV/kg) and 0.026 (SD 0.004, P = 0.008 cf baseline LV/kg) 6 

months post-treatment (P = 0.030 cf baseline, P = 0.004). Body weight-corrected end of 

treatment LV change was significantly higher in patients with SVR compared to patients not 

attaining SVR (P = 0.050). End of treatment LV change was correlated to initial ALT (R² = 

0.479, P = 0.037), but not APRI, AST, viral load or liver stiffness measurements. There was a 

correlation of 0.89 between observers for measured slice thickness. Conclusions: LV increased 

during anti-viral treatment, while the body weight-corrected LV increase persisted post-

antiviral therapy and was larger in patients with SVR. (J Clin Exp Hepatol 2016;6:15–20) 

Introduction 

Hepatitis C virus (HCV) is a blood-borne hepatotrophic RNA virus of significant worldwide 

public health concern [1]. Currently estimates indicate that there are 270–300 million people 
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infected worldwide with the incidence of HCV expecting to peak in the next 10–20 years [1]. 

Treatment of HCV aims to improve outcome by slowing or halting progression to cirrhosis and 

hepatocellular carcinoma (HCC), but serial biopsy during or following treatment is not 

considered necessary or ethical at present. Non-invasive methods of assessing pathological 

changes in the liver are being assessed, but are often expensive, conceptually difficult or require 

specialist equipment [2]. At present, there is no accepted physiological description of any 

remodelling changes occurring during antiviral therapy, nor is there an accepted proxy to 

virological measurement to assess response to treatment. Patients with chronic liver disease 

(CLD) frequently undergo imaging studies using magnetic resonance imaging (MRI) scanning 

primarily for the assessment of focal lesions. Volumetric analysis of the liver by MRI [3,4] is 

applicable to many clinical settings [5-7]. In operative planning particularly for partial 

hepatectomy prior to surgery [3] for malignancy and for live-related liver donation, liver 

volume (LV) is useful in assessing the risk of inducing liver failure in the resection candidate 

[8] or ‘‘small-for-size’’ syndrome in the graft recipient [9]. Smaller LVs are seen in more 

advanced cases of fibrosis and in increasing Child–Pugh class of cirrhosis [10]. In patients with 

cirrhosis and portal hypertension, a LV of 75% can be expected, compared to age-matched 

controls. LV may also be related to pre-fibrotic metabolic processes such as steatosis or 

hepatitis B [11]. Patients with non-alcoholic fatty liver disease (NAFLD) have increased LV 

which has been shown to decrease on intensive weight loss programs [12]. Furthermore, 

NAFLD is associated with faster disease progression in HCV and may contribute to the 

baseline LV prior to treatment. Some authors have suggested that it is useful to assess changes 

in volume over time as an indicator of therapeutic effectiveness and or disease progression [13]. 

MRI is well established as an accurate means to measure LV [4, 14]. Unlike computed 

tomography (CT) scanning, MRI avoids the subject being exposed to ionising radiation, and 

the use of nephrotoxic contrast media is not necessary for volumetric analysis. CT volumetry 

has been employed in LV estimation in patients with acute liver failure [5, 15], although this 

is likely due to a pragmatic choice of rapid scanning modality in these critically ill patients. 

Longitudinal measurement of LV during treatment for chronic HCV infection has never been 

performed previously, and MR would be a preferred platform to perform this readily 

understood and exportable potential longitudinal marker. The purpose of this study was to 

measure and observe any changes in LV accurately in a cohort of patients undergoing therapy 

for chronic hepatitis C infection with pegylated interferon-alpha and ribavirin and assess the 
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correlation of volumetric change with biochemical, virological and ultrasound transient 

elastography (Fibroscan™, Echosens, Paris, France) indices of treatment response to help 

understand putative hepatic remodelling processes during successful viral eradication. 

Methods 

Patient Selection  

Twenty-two patients with chronic hepatitis C (CHC) were prospectively recruited over a 2-

year period from Imperial College Healthcare Trust with prior informed, written consent 

obtained from each subject. Ethical approval was obtained from the regional ethics committee 

in accordance with the 1975 Declaration of Helsinki, (ethics reference no. 06/Q041/10). 

Patients were studied at the beginning and 6 months after stopping treatment with pegylated 

interferon alpha 2a and ribavirin, the treatment time being genotype dependent with 24 weeks 

treatment given for genotypes 2 and 3, while genotypes 1 and 4 received 48 weeks treatment. 

Patients were included if they were aged 18–65 years, had evidence of replicating HCV 

infection on HCV RNA testing (Abbott Realtime HCV assay, Abbott Diagnostics, Illinois, 

USA), and had been referred for percutaneous liver biopsy for clinical indications. Patients 

were excluded if they consumed >20 g of alcohol per day; were obese (with a body mass 

index >30 kg/m²) or diabetic; if they were taking antiviral therapy; were co-infected with HIV 

or hepatitis B; were currently taking intravenous drugs, antihypertensive or lipidlowering 

medications; had ongoing illness or had evidence of hepatic decompensation. Histological 

grading was performed by an experienced histopathologist using standardised scoring criteria. 

Sustained virological response (SVR) was defined as no detectable virus on quantitative RNA 

testing 6 months post-treatment. Length of treatment was decided by genotype as per European 

Association for the Study of the Liver (EASL) guidelines [16]. All patients completed the study. 

MRI 

Patients were scanned using a Philips 1.5 T Achieva™ MRI (Philips Medical Systems, Best, 

Netherlands). Scans were performed at baseline, 3 months, end of treatment and 6 months post-

treatment. Using a SENSE surface body coil, TFE 3D T* -weighted DRIVe Equilibrium 

sequence were performed in a single breath-hold following hyperventilation. The parameters 

were FOV 375 260, TR 7, TE 3.4, FA 15, 50 slices 8 mm/4 mm, thus resulting in 4 mm slice 

thickness. All the data were sent to one workstation (Viewforum version R4.2V1L2 [Philips 
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Medical Systems, Best, The Netherlands]. The edge of the liver contour was manually drawn 

using the curser by an observer with 14 years’ experience in MR imaging (JAF). This process 

was repeated for each slice; approximately 50 per examination, a total of 3500 contours were 

drawn in total (Figure 1). The ViewForum gives an area in mm [2], which was then multiplied 

by 4 to obtain a volume for the slice. These values were summed and divided by 1,000,000 to 

obtain a volume in litres. The LV was normalised to patient weight given the expected change 

in weight during antiviral therapy. An exercise in reproducibility was also undertaken for LV. 

Two observers (one experienced radiographer (JAF) and one hepatologist (AZ) analysed 46 

randomised slices five times, over a disparate timeframe resulting in 230 liver areas being 

analysed. Further comparison was made by measuring and comparing the two observers 

drawing contours five times around five slices. 

Non-invasive Markers of Liver Fibrosis 

On the same day as MRI volume studies, all patients had serial standard blood liver 

biochemistry and both serum Enhanced Liver Fibrosis test (ELF™) (Siemens Healthcare 

Global, Erlangen, Germany) and hepatic liver stiffness measurements using Fibroscan™ 

(Echosens, Paris, France) as non-invasive markers of liver fibrosis. 

Statistical Methods 

Variables pre- and post-treatment were compared using paired t-testing and repeated measures 

ANOVA and % change in these variables was also assessed using oneway ANOVA. 

Coefficients of variability among measurements for the same patient were estimated and 

variability among observers was assessed using the intra-class correlation coefficient (ICC). 

Statistical significance was defined at the 95% level and all P-values calculated were two-tailed. 

Normality was assessed using the D’Agostino-Pearson test. Statistical analysis was performed 

using SPSS v 15 (SPSS, Chicago, USA) and MedCalc v 11.1 (MedCalc, Mariakerke, Belgium). 
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Fig 1. An example of liver contour drawing of 4 slices of a magnetic resonance imaging study 

 

Results 

Twenty-two patients (12M:10F) of median age 47 (19–65) years made up the study cohort. 

Eleven patients were current smokers and 7 patients were current alcohol users. The mean BMI 

was 25 (3.4) kg/m². The median fibrosis score on biopsy was 3 (1–6) and necroinflammatory 

(NI) score 4 (1–6) from biopsies of median length 26 (4–48) mm. Of these, only two patients 

had established cirrhosis and were well compensated with normal albumin levels and 

prothrombin times (Child grade A). The other 20 patients had pre-cirrhotic liver disease with 

good hepatic synthetic function. Twelve patients were genotype 1, two genotype 2, six 

genotype 3 and two genotype 4 with a median baseline viral load of 130417 (1404-3455391 

copies/mL). The other baseline clinical and biochemical parameters are shown in Table 1 with 

their change during therapy 

Volumetry 

Thirteen of the participants achieved sustained viral response (SVR), 6 months after finishing 

treatment. The mean LV/kg at the start of treatment for all participants was 0.022 (SD 0.004) 

L/kg. Including all participants, the LV at the end of treatment was 0.025 (SD 0.004) L/kg 

(mean difference %, P = 0.024, Paired t test compared to baseline LV shown in Figure 2) and 



   
 

 

 

 

154 

further increased to 0.026 (0.004) L/kg 6 months after the conclusion of treatment (P = 0.008 

compared to baseline, P = 0.034, repeat measures ANOVA, linear trend). The change in LV 

was more pronounced in those patients who achieved SVR (MD + 0.004, P = 0.008, one way 

ANOVA). Volume change was not related to treatment duration or genotype (P = 0.543, 

repeated measures ANOVA) and body-weight corrected LV change was dependent on 

virological response (P = 0.050, repeated measures ANOVA). Baseline LV was correlated to 

waist circumference (R = 0.496, P = 0.016). However, no further correlations were found with 

ALT, AST, APRI score, viral load, indices of necroinflammation or fibrosis, Fibroscan-

measured liver stiffness or body mass index (BMI). However, the end of treatment LV was 

correlated to initial ALT (R = 0.479, P = 0.037), but not to initial APRI, AST or viral load. LV 

change was not dependent on the presence of cirrhosis at the start of therapy. There was no 

significant change in liver stiffness as measured by ultrasound transient elastography using 

Fibroscan™ over the course of therapy (10 (8) kPa to 11 (2) kPa, P = 0.778 Paired t test) and 

no correlation between Fibroscan™ change and LV change (R = 0.196, P = 0.487). However, 

significant change was noted with ELF™ serum testing (10 (1) to 10 (2), P = 0.0467, paired t 

test). 
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Fig 2. Comparison of liver volume in participants at baseline before the treatment and after 6 months of 

therapy. (A) Participants who did not achieve sustained viral response (P = 0.438); (B) Participants who 

achieved sustained viral response (P = 0.020). 

Reproducibility 

Comparison of LV measurements between the two observers showed a mean difference of 1% 

which is not statistically significant. The mean standard error/% slice area for the second 

observer was 2–1.5. The mean (SD) area/slice measurement was 9256 (116) mm³ with the 

standard error over all the analysed slices 53 mm³. Thus, the % standard error/slice 

measurement was measured at 1.02 (±0.18) % with only four slices having a % standard error 

greater than 2%. The intra-class correlation coefficient between observer 1 and 2 was 0.707 

(95% CI: 0.331–0.867), suggesting good agreement. However, Passing and Bablock regression 

while demonstrating an intercept not significantly different from zero (8225 (-2492–12392)) 

did show a deviation from linearity in the slope (0.574 (0.363–1.1101)), suggesting there may 

be errors in agreement dependent on slice area. 

Discussion 

In this study, we have aimed to accurately measure and observe any variations in LV in a cohort 

of patients undergoing therapy for chronic hepatitis C infection with pegylated alpha interferon 

and ribavirin and assess the correlation of volumetric change with standard and novel indices 

of treatment response. For the first time, we have demonstrated that the LV rises during 

antiviral treatment and is more pronounced when measured over a 12-month period in patients, 

who achieve SVR. Volume increase could be interpreted as an indication of liver regeneration 

and/or recovery and this may be related to reduction in fibrotic load of the liver. Hepatic 
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fibrogenesis is dominantly orchestrated by hepatic stellate cell activation, which describes the 

conversion of the normally quiescent vitamin A storage cells to ‘myofibroblasts’, which 

contribute to both structural and dynamic hepatic fibrosis. Resolution of myofibroblast activity 

is regarded as an important step in the reversal of inflammatory damage, initiated by the 

expression of extracellular remodelling signals, which contribute to fibrotic load [17]. While 

the liver stiffness on Fibroscan™ did not decrease, this is not necessarily the best test to 

determine very small changes in fibrosis given that there are a number of false positives related 

to an abnormal Fibroscan™ including changes in liver perfusion [18]. Furthermore, changes in 

fibrotic load, as they require the reversal of myofibroblastic activation, are likely to resolve 

over a longer time frame than during the study period, so the Fibroscan technique may not 

detect any small reduction in fibrotic load of the liver in the face of any hepatic 

perfusion/inflammatory changes [2]. We observed a small, but significant increase in LV with 

SVR. This change is not related to baseline histological severity, suggesting that this is an effect 

of viral clearance. Furthermore, no positive correlation can be found in this study between the 

observed changes and Fibroscan™ or ELF score. Further studies assessing the changes in LV 

with MR-measured perfusion techniques are required. MRI is an expensive imaging modality 

and although commonplace in the developed world, demand on this particular resource is high. 

However, abdominal and liver studies are commonly performed on MRI due to its superior 

tissue contrast and lesion detection [19]. Therefore, the addition of another fast breath-hold 

sequence assessing LV in a larger population could be considered, particularly given the 

difficulty in performing serial liver biopsies in this population. Both performing and post-

processing of MR images involve highly trained personnel, while manually defining liver 

contours is time consuming, and we have shown that bias can be introduced when non-imaging 

trained staff perform contour analysis. It would be advantageous to develop automated 

techniques to define LV both currently and prospectively on acquired data sets. Novel 

registration techniques [20] are currently in development and automated methods may soon be 

available, when the limitations of breath-hold acquisitions are overcome. Furthermore, we did 

not assess functional LV in this study, which is possible using SPECT-CT [21]. However, this 

is unlikely to be a source of bias, as no patients in this study had significant vascular 

abnormalities. A particular strength of our study was the reproducibility of MRI LV assessment. 

We would recommend that this assessment is done by trained staff, given the findings from 

Passing and Bablock regression. This is in agreement with previous studies [14], which 
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demonstrated that using MRI is a robust method for measuring LV and has the advantage of 

avoiding contrast media use and exposure of ionising radiation to participants. While multiple 

other modalities were employed to determine a potential mechanism of hepatic remodelling 

via non-invasive imaging our results were not conclusive in this regard. In future studies, it 

would be useful to measure LV changes during disease therapy, which in conjunction with the 

other imaging modalities discussed here, could further elucidate which mechanisms are 

involved hepatic remodelling of long-term fibro-inflammatory diseases. 
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Paper 7 

Psoas Major Crosssectional Area: A Potential Marker of 

Cardiorespiratory Fitness 

Julie Fitzpatrick, Edward S Chambers¹, James R C Parkinson, Gary Frost¹, Jimmy D Bell, E 

Louise Thomas 

Abstract 

Cardiorespiratory fitness is an important marker for overall health that significantly correlates 

with obesity-associated morbidities and mortality. Maximal oxygen uptake (VO+234) recorded 

during an incremental exercise test is the gold standard assessment for aerobic fitness. However, 

its cost, chronic illness, and frailty often preclude its application. The cross-sectional area (CSA) 

of the abdominal psoas major muscle is a predictor of sarcopenia and surgery outcomes and 

represents a promising biomarker for cardiorespiratory health. Therefore, in the present study, 

we have planned to assess the relationship between psoas major CSA, anthropometry, and body 

composition in a UK-based cohort of 210 men and women. Methods: Body mass (kg), height 

(cm), waist circumference (cm), VO+234, and blood pressure were measured in each participant. 

The CSA of psoas major, rectus abdominus, and another abdominal muscle of the core muscle 

group were assessed. Results: Following adjustment for height, psoas major CSA was found 

to be a significant predictor of percentage body fat (P = 0.02) in men, and body mass index 

(BMI) in both men (P = 0.015) and women (P = 0.004). We found psoas major CSA correlated 

more strongly with VO2max (r = 0.74, P < 0.01) than any other study outcome, including age 

and BMI. Conclusion: Psoas major muscle CSA represents an accurate, reproducible, and 

time-efficient surrogate for cardiorespiratory fitness and body composition. 

Introduction 

Physical inactivity significantly contributes to both morbidity and mortality, with public health 

organizations now increasingly promoting habitual exercise to reduce the negative impact of a 

sedentary lifestyle [1,2]. Improvements in cardiorespiratory fitness are a key target for 

intervention, with maximal oxygen uptake (VO+234) recorded during an incremental exercise 
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test to exhaustion, being considered the gold standard [3,4]. Cardiorespiratory fitness is 

inversely related to fat mass [3], type 2 diabetes prevalence [5], and a more reliable predictor 

of mortality than other established markers, such as blood pressure or circulating cholesterol 

[6]. However, the time commitment and cost of performing these tests often make them 

impractical, and chronic illness or frailty in elderly patients precludes their application. 

Consequently, there is a need for accurate and reproducible biomarkers for use as surrogates 

of cardiorespiratory fitness. Morphometric analysis of core muscle cross-sectional area (CSA) 

is emerging as a strong indicator of health outcomes [7], with an increase in muscle fiber CSA 

as the main functional adaptation arising from aerobic and strength training.[8] The psoas 

major is a large muscle of the abdomen, forming part of the core muscle group, assisting lateral 

rotation and abduction of the hip joint.[9] Psoas major CSA has been used in a number of 

studies to predict the total body lean muscle mass[10], sarcopenia [11], and surgical outcomes 

in elderly patients [12,13]. It therefore represents a potential marker for cardiorespiratory 

fitness. In the present study, we would like to characterize how the CSA of psoas major and 

the rectus abdominus (RA), another Morphometric analysis of core muscle cross-sectional area 

(CSA) is emerging as a strong indicator of health outcomes [7], with an increase in muscle 

fiber CSA as the main functional adaptation arising from aerobic and strength training [8]. The 

psoas major is a large muscle of the abdomen, forming part of the core muscle group, assisting 

lateral rotation and abduction of the hip joint [9]. Psoas major CSA has been used in a number 

of studies to predict the total body lean muscle mass [10], sarcopenia [11], and surgical 

outcomes in elderly patients [12,13]. It therefore represents a potential marker for 

cardiorespiratory fitness. In the present study, we would like to characterize how the CSA of 

psoas major and the rectus abdominus (RA), another abdominal muscle of the core muscle 

group, vary with age, gender, and BMI in a cross-sectional population. Second, in a subset of 

our cohort, we have assessed the relationship between these muscles CSA and VO+234 to gauge 

their potential as a surrogate marker for overall physical health. 

Materials and Methods 

Ethical Approval  

Written informed consent was acquired from all volunteers. Ethical approval for this study was 

obtained from the Brent National Research Ethics Committee (Rec: 12/LO/0139). All studies 

were carried out in accordance with the Declaration of Helsinki. In total, 210 participants were 
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recruited through advertisements in newspapers, websites, academic newsletters, and inviting 

male and female volunteers of Caucasian ethnicity from the general public. Participants 

presented with no history of chronic disease or excess alcohol intake were included in the study. 

Individuals on prescribed medication and pregnant women were excluded from the study. 

Anthropometry, blood pressure, and clinical biochemistry 

Body mass (kg), height (cm), and waist circumference (cm) were measured in each participant 

by a single experienced observer. Fasting glucose, total cholesterol, triglycerides, high-density 

lipoprotein, low-density lipoprotein, and insulin were measured by standard methods by the 

Department of Chemical Pathology, Imperial College Healthcare National Health Service 

Trust. Blood pressure of the participants was measured by trained clinician using an automatic 

sphygmomanometer after 5 min of rest in supine position. 

Scanning 

Individuals underwent magnetic resonance imaging (MRI) at 1.5T (Archiva, Philips Medical 

Systems, The Netherlands) following an overnight fast. Participants were in prone position, 

and T1-weighted axial images of the whole body were obtained as described previously [14]. 

During the same scanning session, ¹H MR spectra were also acquired at 1.5T. Using a surface 

coil, intrahepatocellular lipid (IHCL) was measured relative to liver water content [15]. 

Psoas major and rectus abdominus 

Using the open source image processing program Image-J (NIH, USA), the CSA of the psoas 

major was manually isolated at lumbar point L3/L4. The CSA of the rectus abdominis (RA), 

which can also be clearly observed within the same axial slice, was measured from the same 

MRI images to provide a comparison core muscle. The CSA values for each muscle group in 

this study correspond to the sum of the CSA of the right- and left-hand sides [Supplementary 

Figure 1]. Due to the strong correlation between psoas major muscle and height, values are also 

presented as CSA/height² (mm² /m²) [16]. 

Reproducibility 

To test the reproducibility of the manual analysis of psoas major and RA CSA, two separate 

exercises were undertaken. In test 1, left and right muscle CSA [Supplementary Figure 1] were 

assessed three times in a row by the same observer; psoas: (Average [standard deviation [SD]) 

4165.1 ± 24.37 mm², coefficient of variation (CoV): 0.59%; RA: 1826.0 ± 9.2 mm², and CoV: 



   
 

 

 

 

163 

0.50%. In test 2, the same axial slice was measured on three separate occasions, at 1 week 

intervals; average (SD): 4117.3 ± 61.92 mm² and CoV: 1.5%. In test 2, the analysis was 

repeated three times on a single, randomly chosen image, 1 week apart by the same observer; 

psoas CoV: 2.9% and RA: 3.7%. 

𝐕𝐎𝟐𝐦𝐚𝐱 Assessment  

An incremental cycling test to exhaustion [4] was carried out on the same study day as the MRI 

scan to obtain VO+234 in a subset of the cohort (99 individuals [67 male, 32 female]). 

Statistical Analysis 

Student’s t-test and Spearman’s rank correlations were performed on variables; psoas major 

CSA, RA CSA, and VO+234. Linear regression was performed in GraphPad Prism version 6.0 

(GraphPad Software, USA). IHCL values were log transformed after adding + 1 to their values 

due to the nonnormally distributed nature of the outcome [14]. Correlation was performed in 

SPSS 23 (IBM SPSS Statistics for Windows, USA) and linear regression in GraphPad Prism. 

P < 0.05 was considered significant. All data were presented as mean ± SD. 

Results 

A total of 210 participants (97F, 113M) took part in the initial study to characterize psoas major 

and RA muscles, both raw and adjusted for height, are summarized in Table 1. Average psoas 

CSA/height² and RA CSA/height² measurements for the entire cohort were 942 + 93 and 436 

± 141, respectively. Women presented with significantly smaller psoas and RA when compared 

to men (psoas CSA/height²: female 741+167 mm² /m², male 1114 + 266 mm² /h², P < 0.001; 

RA CSA/height²: female 324 ± 73 mm² /h², male 491 ± 134 mm² /h², P < 0.001). 
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Data presented as mean ± SD. WHR: Waist to hip ratio, BMI: Body mass index, CSA: Cross-sectional area, RA: 

Rectus abdominis, S-IMCL: Soleus intramyocellular lipid, T-IMCL: Tibialis intramyocellular lipid, IHCL: 

Intrahepatocellular lipid, SD: Standard deviation 
Figure 1 shows how muscle CSA, adjusted for height, varied by gender, age, BMI, and 

percentage body fat. Linear regression analysis revealed a significant inverse relationship 

between psoas CSA/height2 and age in men [r = 0.13; P = 0.016, Figure 1a] with no effect in 

women [Figure 1b]. Both psoas major CSA/height² (r = 0.28; P = 0.004) and RA CSA/height² 

(r = 0.46; P < 0.001) were significant predictors of BMI in women [Figure 1d], while only 

psoas major CSA/height² predicted BMI in men (r = 0.22, P = 0.015). Lastly, psoas major 

CSA/height² was a significant inverse predictor of body fat percentage in men [r = 0.22; P = 

0.02, Figure 1e]. Examination of the relationship between psoas and RA with metabolically 

adverse fat depots, visceral fat and IHCL, can be found in Figure 2. Psoas major CSA/height² 

inversely predicted visceral fat in men [r = 0.20; P = 0.02, Figure 2a], while RA CSA/height² 

was a significant predictor of IHCL in women [r = 0.22; P = 0.02, Figure 2b]. A comparison 

of how psoas major and RA muscles (after adjustment for height) correlate with study 

outcomes is shown in Supplementary Figure 2. Both psoas major CSA/height² and RA/height² 

were inversely correlated with age (r = −0.49, P < 0.01, r = −0.50, P < 0.01). RA/height2 was 

significantly associated with visceral (r = 0.28, P < 0.01) and nonvisceral adipose tissue (r = 

0.20, P < 0.05) with no correlation observed with psoas major CSA/height² (P = NS). 
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Fig 1: Gender-specific distribution of psoas and rectus abdominus muscle cross-sectional area/height² with age, 

body mass index, and percentage body fat. Cross-sectional area adjusted for height (cross-sectional area/height² ) 

of psoas major (white square/circle) and rectus abdominus (black square/circle) muscles in men (a, c and e) and 

women (b, d, and f) by age (a and b), body mass index (c and d), and percentage body fat (e and f). Linear 

regression performed in GraphPad Prism with corresponding r² and P values. □: Male psoas; Δ: Female psoas; 

■: Male rectus abdominus; ▲: Female rectus abdominus 

Further investigation in a smaller, older subset of the cohort for which VO+234 was available 

(n = 105 (72M), age 54.5 ± 8.5 years) was carried out to assess the validity of psoas major and 

RA muscle CSA as a marker for cardiorespiratory fitness. Baseline characteristics for this 

cohort are shown in Supplementary Figure 3. Average VO+234 was 2523 ± 1091 ml/min, with 

female VO+234 lower (1520 ± 332 ml/min) than male (3002 ± 998 ml/min). After correction 

for weight, male VO+234 was 32.2 ± 12.1 ml/kg/min, while female was 19.9 ± 4.3 ml/kg/min. 

Correlation analysis between VO+234 (adjusted for weight) and study outcomes is shown in 

Table 2. Psoas major muscle CSA/height2 (mm² /m²) correlated strongly with VO+234 



   
 

 

 

 

166 

(ml/kg/min) (r = 0.56, P < 0.01), with no association observed with RA CSA/height² (r = 0.17, 

P = NS). Both age (r = -0.64) and height (r = 0.49) correlated strongly with VO+234 to a similar 

degree of significance (P < 0.01). Gender-specific analysis revealed a significant correlation 

between psoas major CSA/height2 and VO+234 (ml/kg/min) (r = 0.33, P < 0.01) in males. In 

female volunteers, VO+234  (ml/kg/min) correlated strongly with individual adipose 

compartments but no associations were observed with anthropometric or core muscle group 

measurements [Table 2]. Gender-specific distribution of psoas major and RA CSA/height² with 

VO+234 (ml/kg/min) is shown in Figure 3. Linear regression revealed psoas major CSA/height² 

which were significant predictors of VO+234 in male participants [P < 0.001, Figure 3a], with 

no effect in women [Figure 3b]. RA muscle was not found to be a significant predictor of 

VO+234 in either men or women [Figure 3]. 

Discussion 

In the present study, we characterize how the CSA of psoas major and RA muscles varies with 

age, gender, and BMI in a cross-sectional population. The CSA of the psoas major strongly 

correlated with and was a significant predictor of VO+234 in a male subset of our cohort, with 

no such relationship observed with RA. Physical inactivity is a leading cause of most chronic 

illness and practical methods to determine fitness levels are needed to enable effective 

assessment of lifestyle interventions and public health planning [17,18]. The use of MRI and 

computerized tomography (CT) scans to measure the content and distribution of body fat is 

increasingly common in both research and clinical fields, with cross-sectional abdominal 

imaging a common procedure in a diagnostic setting. Postprocessing of abdominal region scans 

enables an in-depth investigation of tissue morphology, including the CSA of different muscles. 

Muscle size represents a quantitative index, reflecting general health and intervention risk [19]. 

While obtaining whole-body images can be time-consuming and expensive, studies have 

shown that the CSA of abdominal skeletal muscle provides a reliable surrogate of whole body 

muscle mass [10]. Within this region lies the psoas major muscle, a component of the core 

muscle group and a surrogate marker for sarcopenia and surgical outcomes [9,12,20]. The RA 

muscle, often referred to as the abdominals, is another component of the core muscle group 

that lies within the L4 region and was included in our analysis as a comparator. The psoas 

major is easily identified on axial images in both MRI and CT scan, and analysis of muscle 

CSA can be easily translated into any research institute where cross-sectional imaging of the 
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abdominal region is available using this simple and straightforward method. Our data indicate 

psoas major CSA predicts VO+234, albeit in men only, with no such effect observed with RA. 

Correlation analyses of RA and psoas major CSA adjusted for height revealed comparable 

degrees of association for the majority of study outcomes. There was however a significant 

inverse correlation between psoas major CSA and age, a relationship not observed with RA. In 

addition, while the psoas was negatively correlated with total, subcutaneous, and subcutaneous 

abdominal fat, RA also showed a positive correlation with metabolically adverse visceral and 

internal fat stores [21]. Cardiorespiratory fitness is known to be a significant predictor of fat 

mass and together these data indicate that of the two core muscles, the psoas major is the more 

viable marker for metabolic and cardiovascular health. Ethnic differences exist regarding 

muscle mass distribution [22] and to avoid these potentially confounding effects, study 

recruitment was limited to Caucasians. Further research is therefore warranted to determine the 

influence of broader participant demographics on the positive associations between psoas 

major CSA, cardiorespiratory fitness, adiposity, and fat-free mass. As expected, the CSA of 

both psoas major and RA muscles was significantly smaller in women compared to men, 

necessitating gender-specific analysis. The inverse relationship observed between psoas and 

age in men was expected and reflects an established association [22]. However, in women, we 

failed to see a reduction in either psoas major or RA size as age increased, or indeed any 

correlation between VO+234  and other outcomes. Indeed, it is clear that the significant 

associations we did observe between VO+234  and study outcomes were driven by the 

relationship in men. Several factors may have contributed to this; first, the number of women 

for which VO2max data were available was considerably smaller (n = 33) compared to men (n 

= 72). Second, the range of VO+234 values was more limited in women (511–1175 ml/min) 

than men (663–2312 ml/min), perhaps reflecting the reduced levels of reported physical 

activity in women who participated; 24% reported “fit” (corresponding to >5 h exercise per 

week), compared to 42% of the men. Interventional studies which employ exercise and 

subsequently measure the effects on VO+234 and core muscle size will be required to eliminate 

the confounding effects of age and determine the efficacy of psoas as a marker of metabolic 

fitness. 

Limitations of the Study 

Sample size in the present study was less. 
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Conclusion 

Our findings indicate that psoas major CSA measured at L4 is strongly associated with 

cardiorespiratory fitness, adiposity, and fat-free mass. Hence, psoas major is a potential marker 

of cardiorespiratory fitness. Additional work in a larger, racially diverse population with a more 

expansive range of fitness levels will be required to confirm its utility. 
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Paper 8 

Advancing Pancreas Segmentation in Multi-protocol MRI 

Volumes using Hausdorff-Sine Loss Function 

Hykoush Asaturyan¹, E. Louise Thomas, Julie Fitzpatrick², Jimmy Bell², and Barbara 

Villarini¹ 

Abstract 

Computing pancreatic morphology in 3D radiological scans could provide significant insight 

about a medical condition. However, segmenting the pancreas in magnetic resonance imaging 

(MRI) remains challenging due to high inter-patient variability. Also, the resolution and speed 

of MRI scanning present artefacts that blur the pancreas boundaries between overlapping 

anatomical structures. This paper proposes a dual-stage automatic segmentation method: 1) a 

deep neural network is trained to address the problem of vague organ boundaries in high class-

imbalanced data. This network integrates a novel loss function to rigorously optimise boundary 

delineation using the modified Hausdorff metric and a sinusoidal component; 2) Given a test 

MRI volume, the output of the trained network predicts a sequence of targeted 2D pancreas 

classes that are reconstructed as a volumetric binary mask. An energy-minimisation approach 

fuses a learned digital contrast model to suppress the intensities of non-pancreas classes, which, 

combined with the binary volume performs a refined segmentation in 3D while revealing dense 

boundary detail. Experiments are performed on two diverse MRI datasets containing 180 and 

120 scans, in which the proposed approach achieves a mean Dice score of 84.1 ± 4.6% and 

85.7 ± 2.3%, respectively. This approach is statistically stable and outperforms state-of-the-art 

methods on MRI. 

Introduction 

Segmenting the pancreas in 3D radiological scans (e.g. an MRI volume) could provide 

significant insight into the severity or progression of type 2 diabetes [1] and ductal 

adenocarcinoma [2]. However, pancreas segmentation presents several challenges due to high 

structural and inter-patient variability in size and location. The greyscale intensity of the 
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pancreas can be very similar to neighbouring tissue, and the boundary contrast can vary 

depending on the level of surrounding visceral fat. Differing from computer tomography (CT), 

the low resolution and slower imaging speed of MRI presents edge-based artefacts that blur the 

imaging boundaries between the pancreas and surrounding organs [3]. In existing research 

literature, pancreas segmentation tasks have been driven by two major methodologies: multi-

atlas based [4, 5] coupled with statistical shape modeling [6], and in more recent years, 

convolutional neural networks (CNNs) or deep learning [7, 3, 8]. While CNNs have achieved 

higher quantitative accuracy scores in 2D medical image segmentation, such methods can 

exhibit discontinuity in predicting pancreatic regions between consecutive slices for an input 

volume. This paper presents a novel approach for automatic pancreas segmentation in MRI. As 

illustrated in Figure 1, the proposed method consists of two successive stages. First, a CNN 

specialising in blurred boundary detection is trained to predict targeted pixel-wise pancreas 

tissue. This deep learning stage firstly identifies the main pancreas region (ROI) in a dataset of 

MRI volumes [8] by training a random forest on extracted texture and probability-wise features 

on image patches of 25 × 25 pixels. Next, inspired by the encoder-decoder architecture of 

SegNet [9] a new model termed Hausdorff Sine SegNet (HSSN) is developed using the ROI 

data. A novel loss function incorporates the modified Hausdorff distance metric and a 

sinusoidal component to capture local boundary information, enforce edge detection and thus 

raise the true pancreas prediction rate on a 2D (slice-by-slice) basis. The testing stage consists 

of two phases. First, the output of the trained HSSN for a given test MRI volume encodes 

spatial information to classify every pixel in each slice, thus forming a volumetric binary mask 

(VBM). The second phase generates dense contouring by further tackling the low dissimilarity 

between organ boundaries: a digital contrast enhancement model is utilised to improve the 

greyscale variation between surrounding background classes within close proximity to the 

pancreas. A 3D energy-minimising algorithm performs refined segmentation on the enhanced 

pancreas that is fused with the VBM, producing greater consistency in spatial smoothness and 

prediction among successive slices. The proposed method, which is evaluated on two MRI 

datasets with varying noise, outperforms the state-of-the-art approaches [8, 10–12], and 

moreover, surpasses the performance of readily employed deep learning-based loss functions. 

Although this approach has been tested on pancreas segmentation, the methodology is 

reproducible, scalable and generalisable to other organ segmentation tasks. The 

implementation is available at https://github.com/med-seg/p. 

https://github.com/med-seg/p
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Materials and methods 

Training the HSSN 

The proposed HSSN model has an encoder-decoder topology, as illustrated in Figure 2. The 

decoder network uses max-pooling indices to upsample low-resolution feature maps, 

consequently retaining high-frequency details to improve pancreatic boundary delineation, and 

reducing the total number of trainable parameters in the decoders. Unlike other models that 

have been fine-tuned from pre-trained CNNs using a large number of natural images [3, 13], 

this network is trained from scratch using exclusively pancreas datasets. Since this organ 

accounts for ∼1% in a scan, there is a need to weight the loss differently based on the true class: 

Median frequency balancing [14] is utilised, in which the weight assigned to a class in the loss 

function is the ratio of the median of class frequencies computed on the entire training set 

divided by the class frequency. The HSSN also employs data augmentation of random 

reflections and translations to reduce overfitting [15], and further address problems caused by 

high shape variability. 

 
Fig. 1. Overview of proposed approach. (1) develop the HSSN deep learning model using training MRI; and (2) 

apply the test MRI to generate segmented pancreas volume. 

 
Fig. 2: Overview of HSSN model. An encoder stage (5 blocks of HSSN-E) downsamples the MRI input through 

convolution, batch normalisation and ReLU. A decoder stage (5 blocks of HSSN-D) upsamples its input using the 

transferred pooling indices from its corresponding encoder to generate sparse feature maps. From here, 

convolution is performed with a trainable filter of weights to density the feature map. Resulting decoder output 
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feature maps are fed to soft-max classifier for 2-channel pixel-wise classification of the input image as “pancreas” 

or “non-pancreas”. 

Integrated Hausdorff-Sine Loss Function 

A novel loss function is proposed for training the segmentation neural network. The 

optimisation of the modified Hausdorff distance and a sinusoidal functionality serves to reduce 

the boundary matching error and “enhance” a resulting pixel-wise pancreas prediction. Let T9 

and Y9 represent the ground-truth and network boundary predictions respectively, where T9, 

Y9 ⊂  ℝ: such that |T9|, |Y9 | < ∞. Furthermore, t; and y;	∈ {0, 1} are indexed pixel values in 

T9 ,  and Y9  respectively, and can be viewed as boundary points. The Euclidean distance 

between a point t;  and set of points, Y9  is s (t; , Y9 ) = 
min

y; ∈ Y9	At;	- 	y;A , and the distance 

between a point y; and set of points, T9, is s(y;, T9,) = 
min

t; ∈ T9	Ay;	-	t;A. If ε< = *
|>#|

 	
Σ

y; ∈ Y9  

s(t;, Y9) and ε? = *
|@#|

 
Σ

t; ∈ T9  s(y;, T9), the modified Hausdorff distance loss, LABC is: 

LABC = MAX {ε#,ε%}                                               (1) 

Thus, computing the gradient yields:  
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An additional sinusoidal component increases non-linearity during network training and 

empirically evaluated, raises the true positive predictions. If T and Y represent the ground-truth 

and network predictions, the loss LGH:I is defined: 

     LGH:I = - *|F|  
𝑛𝐶
Σ

𝑖 = 1
sin (TH) log+ (YH)                                            (3) 

where nC = 2 is the number of classes (e.g.,	Y*,  refers to “pancreas” and Y+ refers to “non-

pancreas”). From here, computing the gradient yields: 

                         				!"!"#$	
!$"

 = - %|$| 
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                            (4) 

The model is updated via the combined gradients of LGH:I and LABC. 
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Testing Stage  

(A) Targeted Pancreas Binary Mask 

The trained HSSN model performs pixel-wise prediction on each slice in a test MRI volume to 

generate a resulting volumetric binary mask (VBM). Columns (a) and (b) in Figure 3 displays 

three sample input slices in three different image volumes, and the corresponding positive 

pancreas region (white mask) as predicted by the HSSN model. The red contouring in each 

image in column (b) is the ground-truth. 

 
Fig. 3: Visualising proposed approach. 

(B) Achieve Dense Contouring 

The test MRI volume undergoes non-local means for denoising, after which a learned intensity 

model incorporates a sigmoid function to exhaustively differentiate pancreatic tissue against 

background classes. Every 𝑆H-th slice transforms to C(𝑠H) = 1/(1 + exp [g(c−𝑠H)]), where g 

controls the actual contrast, and c is the cut-off value representing the (normalised) greyscale 

value about which g is changed [12, 16]. The VBM is applied to the enhanced image volume 

and processed through a 3D unsupervised energy minimisation method via continuous max-

flow [17], revealing detailed contouring as highlighted in Figure 3, column (c). The accurate 

HSSN predictions reduce the level of non-pancreatic tissue carried into the max-flow 

segmentation stage, as shown in Figure 3, column (d), eliminating the need for post-processing. 

Experimental Results and Analysis 

Datasets and Evaluation 

Two expert-led annotated pancreas datasets are utilised. MRI-A and MRI-B contain 180 and 

120 abdominal MRI scans (T2-weighted, fat suppressed), which have been obtained using a 

Philips Intera 1.5T and a Siemens Trio 3T scanner, respectively. Every MRI-A scan has 50 

slices, each of size 384 × 384 with spacing 2mm, and 0.9766mm pixel interval in the axial and 

sagittal direction. Every MRI-B scan has 80 slices, each of size 320 × 260 with 1.6mm spacing, 
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and 1.1875mm pixel interval in the axial and sagittal direction. The proposed approach is 

evaluated using the Dice Similarity Coefficient (DSC), precision (PC), recall (RC) and the 

Hausdorff distance (HSD) representing the maximum boundary deviation between the 

segmentation and ground-truth. 

 
Fig. 4: Segmentation results in six different MRI scans (volumes). Every column corresponds to a single MRI 

volume. From left, first row displays sample MRI axial slices with segmentation outcome (green) against ground-

truth (red), and computed DSC. Second row displays 3D reconstruction of entire pancreas with computed DSC. 

Network Implementation 

The training and testing data are randomly split into 160 and 20 (MRI-A) and 100 and 20 (MRI-

B). The HSSN model employs stochastic gradient descent with parameters momentum (0.9), 

initial learning rate (0.001), maximum epochs (300) and mini-batch size (10). The mean time 

for model training is ∼11 hours and the testing phase is ∼7.5 minutes per MRI volume using 

an i7-59-30k-CPU at 3.50 Ghz. Future work can potentially reduce these run-times by a factor 

of 10 via multiple GeForce Titan X GPUs. 

 
Fig. 5: Box plots of DSC and JI. 

Analysis of Proposed Approach  

Figure 4 displays the final segmentation results in six MRI scans, equally split between MRI-

A and MRI-B. Columns (a, b, c) are part of MRI-A, yet there is high variation between intensity 

and contrast in the original axial MRI slices. Columns (d, e, f) corresponds to exemplars from 

MRI-B. As reflected in Figure 5, 85% of MRI-A compared to 95% in MRI-B segmentations 

score above 80% in DSC, demonstrating the robust performance of the approach with respect 

to poor image quality, intensity distribution and spatial dimensions. 
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Fig. 6: DSC across threshold ranges [0.05, 0.95] via multiple loss functions: 

 
Fig. 7: Averaged ROC curves via multiple loss functions. 

 

Hausdorff-Sine Loss 

Figure 6 compares the segmentation results (in DSC) using Hausdorff-Sine and the loss 

functions, Hausdorff, Cross-entropy, Dice [18] and Jaccard [19] in the probability range 

[0.05,0.95]. The cross-entropy penalises true positive predictions, forcing the “optimum” 

probability to approximately 0.5. Although the Dice loss minimises the class distribution 

distance, squaring the weights in the backpropagation stage causes instability and a higher rate 

of false negative predictions. Similarly, the Jaccard loss suffers from low true positive 

predictions. Empirically tested, the Hausdorff loss minimises the maximum deviation between 

a prediction and desired outcome; however, the addition of a sinusoidal component increases 

non-linearity during training, and thus Hausdorff-Sine achieves improved true positive 

predictions across differing thresholds while delivering strong discrimination of true negatives. 

The ROC curves in Figure 7 highlight the inferior performance of other loss functions in the 
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extremely unbalanced segmentation, whereas Hausdorff-Sine generally improves the true 

positive accuracy results. 

Phase B of Testing Stage  

Integrating the second phase (B) produces contextual boundary information that is essential for 

accurate segmentation in biomedical imaging. Figure 3, column (b) and column (e) visibly 

highlights the differences in segmentation boundary delineation against the ground-truth before 

and after this phase. Thus, the mean HSD metric confirms less deviation from the ground-truth 

(see Table 1 and 2) by approximately 1 mm, and furthermore, the mean DSC raises by 

approximately 4% in both MRI-A and MRI-B. 
Table 1: Deep learning model performance using state-of-the-art loss functions versus the integrated novel 

Hausdorff and Hausdorff-Sine loss. Datasets MRI-A and MRI-B are evaluated in 9-fold and 6-fold cross-

validation (FCV), respectively. DSC, PC, RC and HSD are presented as mean ± standard deviation. 

 
Table 2: DSC, PC, RC and HSD as mean ± standard deviation [lowest, highest] for automatic segmentation 

methods. Datasets MRI-A and MRI-B are evaluated in 9-fold and 6-fold cross-validation (FCV), respectively. 

 

Comparison with the State-of-the-art 

Table 2 highlights the proposed approach outperforming state-of-the-art methods [8, 10–12] in 

terms of accuracy and statistical stability despite employing non-organ optimised protocol data. 
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Conclusion 

This paper presents a novel approach for automatic pancreas segmentation in MRI volumes 

generated from different scanner protocols. Combined with the proposed Hausdorff-Sine loss, 

an encoder-decoder network reinforces pancreatic boundary detection in MRI slices, 

outperforming the rate of true positive predictions compared to multiple loss functions. In the 

later stage, a 3D hybrid energy-minimisation algorithm addresses the intensity consistency 

problem that is often the case when segmenting image volumes on a 2D basis. The proposed 

approach generates quantitative accuracy results that surpass reported state-of-the-art methods, 

and moreover, preserve detailed contouring. 
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Largescale analysis of iliopsoas muscle volumes in the UK 

Biobank 

Julie Fitzpatrick¹³, Nicolas Basty¹³*, Madeleine Cule², Yi Liu², Jimmy Bell¹, E. Louise 

Thomas¹ & Brandon Whitcher¹. 

Abstract  

Psoas muscle measurements are frequently used as markers of sarcopenia and predictors of 

health. Manually measured cross-sectional areas are most commonly used, but there is a lack 

of consistency regarding the position of the measurement and manual annotations are not 

practical for large population studies. We have developed a fully automated method to measure 

iliopsoas muscle volume (comprised of the psoas and iliacus muscles) using a convolutional 

neural network. Magnetic resonance images were obtained from the UK Biobank for 5000 

participants, balanced for age, gender and BMI. Ninety manual annotations were available for 

model training and validation. The model showed excellent performance against out-of-sample 

data (average dice score coefcient of 0.9046 ± 0.0058 for six-fold cross-validation). Iliopsoas 

muscle volumes were successfully measured in all 5000 participants. Iliopsoas volume was 

greater in male compared with female subjects. There was a small but signifcant asymmetry 

between left and right iliopsoas muscle volumes. We also found that iliopsoas volume was 

signifcantly related to height, BMI and age, and that there was an acceleration in muscle 

volume decrease in men with age. Our method provides a robust technique for measuring 

iliopsoas muscle volume that can be applied to large cohorts. 

Introduction 

The iliopsoas muscles, predominantly made up of slow-twitch fibers, are a composite of the 

psoas major and iliacus muscles; they are anatomically separate in the abdomen and pelvis but 

are merged together in the thigh. The iliopsoas is engaged during most day to day activities, 

including posture, walking and running. Together these muscles serve as the chief flexor of the 

hip and a dynamic stabilizer of the lumbar spine [1] , with the psoas uniquely having role in 
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the movement of both the trunk and lower extremities [2]. Given the key involvement of the 

iliopsoas muscles in daily activities, there is increasing interest in its potential as a health 

biomarker. This has most commonly taken the form of a cross-sectional area (CSA) through 

one (generally the right) or both iliopsoas muscles, with the most common measurement taken 

through the psoas muscle. This CSA can be used either as an independent measurement or as 

a ratio to vertebral body size [3,4] or in the form of the psoas muscle index, calculated as the 

psoas muscle major CSA divided by the height squared [5]. Indeed, psoas CSA has been 

suggested as a predictor of sarcopenia [6] , surgical outcome and length of hospital stay post 

surgery [7–9] , poor prognosis in response to cancer treatment [10], morbidity following 

trauma4 , a surrogate marker of whole body lean muscle mass [11], cardiovascular fitness [12], 

changes in cardiometabolic risk variables following lifestyle intervention [13] and even risk of 

mortality [14,15]. Measurements of the psoas major muscle are most commonly made from 

CSA of axial MRI or CT images [7,12], with most studies generally relying on manual 

annotation of a single slice, through the abdomen, these tend to be retrospectively repurposed 

from clinical scans rather than a specific acquisition [16–18]. However, the CSA of the psoas 

muscle varies considerably along its length [2] therefore small differences in measurement 

position can potentially have a significant effect on its overall measured size. Moreover, there 

is a lack of consistency within the literature regarding the precise location at which 

measurement of the psoas CSA should be made, with researchers using a variety of approaches 

including: the level of the third lumbar vertebrae (L3) [6,9,10,17,18], L4 [3,4,14,16], between 

L4-L5 [11,13], as well at level of the umbilicus [7,8,19] the precise position of which is known 

to vary with obesity/ascites. There is further discrepancy between studies regarding whether 

the measurements should comprise of one single [10] or both psoas muscles [17], with the 

majority of publications combining the areas of both muscles. This lack of consistency together 

with the relatively low attention given to robustness and reproducibility of its measurement, 

and the reliance on images from retrospective clinical scans have led many to question its 

validity as a biomarker [20]. A more objective proposition may be to measure total psoas 

muscle volume [21–25], from dedicated images. A variety of approaches have been used thus 

far: inclusion of muscle between L2-L5 [21], psoas muscle volume from L3 and approximately 

the level of the iliopectineal arch (end point estimated from images in publications) [22,23], 

from the origin of the psoas at lumbar vertebrae (unspecified) to its insertion in the lesser 

trochanter [24], or with no anatomical information provided at all [25]. Whilst all of these 
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approaches include substantially more muscle than is included in simple CSA measurements, 

these are still incomplete volume measurements. Moreover, measuring the entire psoas muscle 

volume as a single entity is challenging, since even with 3D volumetric scans it is difficult to 

differentiate between composite iliacus and psoas muscles once they merge at the level of the 

inguinal ligament. Therefore, to measure psoas volume as an independent muscle it is necessary 

to either assign an arbitrary cutoff and not include a considerable proportion of the psoas 

muscle (estimated to be approximately 50% in some studies [22]) or simply include the iliacus 

muscle and measure the iliopsoas muscle volume in its entirety Convolutional Neural Networks 

(CNNs) have become a strong tool for automated image segmentation, especially architectures 

such as the U-Net [26] for two-dimensional (2D) data or the V-Net [27] for three-dimensional 

(3D) data. These techniques owe their popularity to the modest amount of training data required, 

robustness and fast execution speed. CNNs have been applied for automated muscle 

segmentation in computed tomography [28–30], specifically for 2D segmentation of the psoas 

major muscle [29], as well as MRI31, [32]. The increasing use of whole body imaging [33] in 

large cohort studies such as the UK Biobank (UKBB), which plans to acquire MRI scans from 

the neck to the knee in 100,000 individuals [34], requires different approaches to image 

analysis. Manual image segmentation is time consuming and infeasible in a cohort as large as 

the UKBB. However, this dataset provides a unique opportunity to measure iliopsoas muscles 

volume in a large cross-sectional population. Therefore, development of a robust and reliable 

automated method is essential. In this paper, we present an automated method to segment 

iliopsoas muscle volume using a CNN and discuss results arising from 5000 participants from 

the UKBB imaging cohort, balanced for BMI, age, and gender. 
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Table 1. Demographics of the subjects (n = 5000). Reported values are counts with percentage (%) for categorical 

variables and average ± standard deviation (SD) for continuous variables. 

Materials and methods 

Data  

A total of 5000 subjects were randomly selected for this study, while controlling for BMI, age, 

and gender from the UKBB imaging cohort. Age was discretised into four groups: 44–53, 54–

63, 63–72 and 73–82 years. The eight strata were defined to cover both age and gender. 

Weights were used to maintain the proportion of subjects within each age group to match that 

of the larger UKBB population. Demographics for the study population (Table 1) were 

balanced for gender (female: male ratio of 49.9:50.1). The average age of the male subjects 

was 63.3 ± 8.4 years and the female subjects was 63.3 ± 8.3 years. The average BMI of the 

male subjects was 27.0 ± 3.9 kg/m² (range 17.6–50.9 kg/m²) and for female subjects 26.2 ± 4.7 

kg/m² (range 16.1–55.2 kg/m²), with the mean for both groups being categorised as overweight. 

The self-reported ethnicity was predominantly White European (96.76%). As per the whole 

UKBB population, the sub-cohort in the current study was significantly healthier than the UK 

general population. The most common ailment were related to arthropathies, with smaller 

proportion reporting a variety of neoplasms, ranging from skin melanomas to benign neoplasms 

(Supplementary Table S1). Participant data from the UKBB cohort was obtained as previously 

described [34] through UKBB Access Application number 23889. The UKBB has approval 

from the North West Multi-Centre Research Ethics Committee (REC reference: 11/NW/0382). 

All methods were performed in accordance with the relevant guidelines and regulations, and 

informed consent was obtained from all participants. Researchers may apply to use the UKBB 

data resource by submitting a health-related research proposal that is in the public interest. 

More information may be found on the UKBB researchers and resource catalogue pages 

(https://www.ukbiobank.ac.uk/). Raw MR images were obtained from the UKBB Abdominal 

Protocol [35] and preprocessed as previously reported [36,37]. The data were acquired on the 

same model, a Siemens Aera 1.5 T scanner (Syngo MR D13) (Siemens, Erlangen, Germany), 

across three sites (Stockport, Newcastle, Reading, UK). Te Dixon sequence involved six 

overlapping series that were acquired using a common set of parameters: TR = 6.67 ms, TE = 

2.39/4.77 ms, in-plane voxel size 2.232 × 2.232 mm, FA = 10° and bandwidth = 440 Hz. The 

first series, over the neck, consisted of 64 slices, slice thickness 3.0 mm and 224 × 168 matrix; 
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series two to four (covering the chest, abdomen and pelvis) were acquired during 17 second 

expiration breath holds with 44 slices, slice thickness 4.5 mm and 224 × 174 matrix; series five, 

covering the upper thighs, consisted of 72 slices, slice thickness 3.5 mm and 224 × 162 matrix; 

series six, covering the lower thighs and knees, consisted of 64 slices, slice thickness 4 mm and 

224 × 156 matrix. During preprocessing the data were resampled to voxel size 2.232 × 2.232 

× 3.0 mm. 

 
Fig 1. Iliopsoas muscle manual annotations: (a) axial, (b) sagittal, and (c) coronal views, (d–f) showing of the 

segmentation (red) overlaid on the anatomical reference data, and (g) 3D rendering of manual segmentation. 

 

Manual Annotation 

A single expert radiographer manually annotated both iliopsoas muscles for 90 subjects using 

the open-source software MITK [38]. Each axial slice of the water images was examined, the 

iliopsoas identified, and the borders of the psoas and iliopsoas manually drawn for 90 subjects. 

On average, manual annotation of both muscles took five to seven hours per subject. The 

annotated data covered a broad range of age and BMI from male and female UKBB participants. 

A typical Dixon abdominal dataset, centered on the iliopsoas muscles, is shown in Fig. 1, 

manual iliopsoas muscle annotations are overlaid on the anatomical reference volume in red 

and a 3D rendering of the manual annotation. 

Model 

We trained a model able to predict both muscles individually. The preprocessing steps for the 

training data, where the cropping is also needed for applying the model to unseen data, are as 

follows. Two arrays of size 96 × 96 × 192 were cropped around the hip landmarks [36], to 
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approximate the location of the muscles in order to perform the segmentation (an example of 

the cropped regions may be found in Supplementary Fig. S1). After cropping, each volume was 

normalised such that the signal intensities lie between zero and one, where the 99th percentile 

was used instead of the maximum to avoid possible spikes in signal intensity. That is, all signal 

intensities above the 99th percentile were mapped to one. Two sets of 16 training samples were 

generated for every subject by separating the right and the left muscles, introducing reflections 

exploiting the symmetry of the structures. Further data augmentation included seven random 

transformations consisting of translations by up to six voxels in-plane, up to 24 voxels out-of-

plane, and random scaling ranging from −50 to +50% out-of-plane and from −25 to +25% in-

plane, in addition to the original data. We chose larger factors for out-of-plane transformations 

to account for the skewed variability in shape and position of the muscles, reflecting the fact 

that there is more variation in height than width in the population. After data augmentation, 

2880 training samples were produced from the original 90 manually annotated pairs of 

iliopsoas muscles. The model used for 3D iliopsoas muscle segmentation closely follows a 

similar architecture to the U-Net [26] and the V-Net [27], with a contracting path and an 

expansive path connected by skip connections at each resolution level. These network 

architectures have been established as the gold standard for image segmentation over the last 

few years, as they require modest amounts of training data as a consequence of operating at 

multiple resolution levels while providing excellent results within seconds. Several 

convolution blocks are used in our model architecture. An initial block (I) contains a 5 × 5 × 5 

convolution with eight filters followed by a 2 × 2 × 2 convolution with 16 filters and stride two. 

The down-sampling blocks in the contraction (𝐷H,A ) consist of i successive 5 × 5 × 5 

convolutions with m filters followed by a 2 × 2 × 2 convolution of stride with stride two, used 

to decrease the resolution. In the expansion, the up-sampling blocks (𝑈K,:) mirror the ones in 

the contraction where there are transpose convolutions instead of stride two convolutions. The 

block (L) at the lowest resolution level of the architecture consist of three successive 5 × 5 × 5 

convolutions with 128 filters followed by a 2 × 2 × 2 transpose convolution of stride two and 

64 filters. The final block (F) contains a 5 × 5 × 5 convolution with 16 filters followed by a 

single 1 × 1 × 1 convolution and a final sigmoid activation classification layer. All blocks 

incorporate skip connections between their input and output, resulting in residual layers. The 

architecture follows: I → 𝐷+,L+ → 𝐷L,0M → 𝐷L,*+N → L → 𝑈L,*+N → 𝑈L,0M →𝑈L,L+ → F with 

skip connections between blocks at equivalent resolution levels. Padding is used for the 
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convolutions throughout the network and a stride of one, unless otherwise specified, when 

moving between the resolution levels. Other than the final sigmoid activation, scaled 

exponential linear units (SELU) are used throughout the network. The SELU activation 

function has recently been proposed [39], where the self-normalising properties allow it to 

bypass batch normalisation layers enabling higher learning rates that lead to more robust and 

faster training. The model was trained minimising the Dice score coefficient (DSC) loss [27] 

with a batch size of three using the Adam optimiser and a learning rate of 1e−4 until 

convergence at 100 epochs. The learning rate was determined through a parameter sweep (1e−1 

to 1e−6). We performed all of the CNN development, learning, and predictions using Keras 

(TensorFlow backend) [40] on a NVIDIA Titan V 12 GB GPU. We limited the batch size to 

three due to the GPU memory. 

 
Fig 2. Bland–Altman plot (a) of iliopsoas muscle volumes determined with CNN-based and manual segmentations 

(n = 90), using a six-fold cross-validation experiment. Dotted lines represent the average bias (−0.2%) and the 

95% limits of agreement. Overlays of the CNN-based and manual segmentations for two subjects (b, c), where 

the manual annotation is red, the CNN segmentation is green and the overlap is yellow. 

 

Validation  

A common metric used to evaluate segmentation performance is the DSC, also known as the 

F1 score. It is defined as twice the intersection of the labels divided by the total number of 

elements. Intersection of labels can also be seen as a True Positive (TP) outcome. The total 

number of elements can also be seen as the sum of all False Positives (FP), False Negatives 

(FN) and twice the number of TPs. 
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For validation of the model, we performed a six-fold cross-validation experiment, where in a 

single iteration 75 of the manually annotated images (approximately 83%) were used to train 

the model and the performance was evaluated on the remaining 15 out-of-sample images 

(approximately 17%). 

Statistical Analysis  

All summary statistics, hypothesis tests and figures have been performed using the R software 

environment for statistical computing and graphics [41]. Variables were tested for normality 

using the Shapiro–Wilk’s test, the null hypothesis was rejected in all cases. Spearman’s rank 

correlation coefficient (ρ) was used to assess monotonic trends between variables. The 

Wilcoxon rank-sum test was used to compare means between groups, and the Wilcoxon signed-

rank test with paired observations. Methods for segmenting the iliopsoas muscle volume were 

compared using the Bland-Altman plot. Given the exploratory nature of the research, p-values 

< 0.05 were judged to be statistically significant. 

Results  

Validation  

A summary of the cross-validation experiment may be found in Supplementary Table S2. The 

average bias was −0.2% with upper and lower limits of agreement being 13.3% and −13.7%, 

respectively (Fig. 2). The overlap between the CNN-based and manual segmentations for two 

subjects is also provided in Fig. 2, where the DSCs are 0.85 (left) and 0.90 (right) for (b) and 

0.96 in both for (c). With consistent DSCs from the cross validation experiment showing a 

robust model performance on both muscles, we trained a final model using the entire 90 

available manual annotations. Example segmentations from our method are provided in Fig. 3, 

displaying a sample of 12 subjects covering a variety of body sizes and habitus. The first three 

subjects (a–c) have some of the smallest iliopsoas muscles (total volume ≈ 346 ml), the next 

three subjects (d–f) have typical iliopsoas muscles (total volume ≈ 800 ml) and the third set of 

three subjects (g–i) have some of the largest iliopsoas muscles (total volume ≈ 1300 ml). The 

final set of three subjects represent subjects whose left and right iliopsoas muscles differ in 
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volume (difference in volume ≈ 93 ml for j and k, difference in volume = 182 ml for l). We can 

see that the model performs well for all of them, with additional details regarding model 

validation provided in Supplementary Fig. S2. 

 

Fig 3. CNN segmentations of the left and right iliopsoas muscles overlaid in purple (right) and blue (left) 

from a range of body types and iliopsoas muscle volumes: (a–c) small, (d–f) average, (g–i) large and (j–l) 

asymmetric. The top row for each subject displays the signal intensities without the segmentation result, 

the bottom row includes the iliopsoas muscle segmentations. 

 

 

 
Fig 4. Difference in volume (ml) between the left and right iliopsoas muscles, separated by gender. Negative 

values indicate the right iliopsoas muscle is larger than the left. 
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Iliopsoas muscle volume 

In each gender there was a small (approximately 2%) yet statistically signifcant asymmetry 

between lef and right iliopsoas muscles (Wilcoxon signed-rank test; male: d = −7.3 ml; female: 

d = −6.5 ml; both p < 10/*1) (Fig. 4). These differences were not significantly associated with 

the handedness of the participants. Significantly larger iliopsoas muscle volumes were 

measured in male compared with female subjects (Table 2). 

 

 
Table 2. Iliopsoas muscle volumes (n = 5000). Significance refers to the p-value for a Wilcoxon rank-sums test, 

where the null hypothesis is the medians between the two groups (male and female subjects) being equal. 

 
Fig 5. Scatterplot of total iliopsoas muscle volume (ml) by height (cm), separated by gender. 

 

Relationship between iliopsoas muscle volume and physical characteristics 

Significant correlations were observed between the total iliopsoas muscle volume and height 

in both genders (male: ρ = 0.51; female: ρ = 0.54, both p < 10/*1) (Fig. 5). To account for the 
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potential confounding efect of height on iliopsoas muscle volume, an iliopsoas muscle index 

(IMI) was defined 

 
with units ml/m². Significant correlations were observed between the IMI and BMI in both 

genders (male: ρ = 0.48; female: ρ = 0.47, both p <	10/*1) (Fig. 6). A significant negative 

correlation was observed between IMI and age in both genders (male: ρ = −0.31, p < 10−15; 

female: ρ = −0.11, p < 10/O). However, the relationship could not be easily explained by a 

simple linear method (Fig. 7). In fact the decrease in IMI as a function of age accelerates for 

men, starting in their early 60s, while for women it remains relatively constant 

Discussion 

There is considerable interest in measuring psoas muscle size, primarily related to its potential 

as a sarcopenic marker, thereby making it an indirect predictor of conditions influenced by 

sarcopenia and frailty, including health outcomes such as morbidity, and mortality [4,6–

10,14,15]. The complexity in measuring total muscle directly, particularly in a frail population 

has necessitated the reliance on easily measured surrogates and the psoas muscle CSA is 

increasingly used for this purpose. However there is little consistency in the field regarding 

how the psoas muscle is measured, with considerable variation between publications. An 

automated approach to analysis will reduce the need for manual annotation, allowing more of 

the muscle to be measured and enable much larger cohorts to be studied, this is particularly 

important as large population based biobanks are becoming more common. In this paper we 

have described a CNN-based method to automatically extract and quantify iliopsoas muscle 

volume from MRI scans for 5000 participants from the UKBB. Excellent agreement was 

obtained between automated measurements and the manual annotation undertaken by a trained 

radiographer as demonstrated by the extremely high DSC with testing data. CNNs have been 

established as the gold standard in automated image segmentation. Te results, which can be 

produced with a modest amount of manual annotations as training data and smart data 

augmentation, are highly accurate, fast, and reproducible. Manual annotations become a 

bottleneck for large-scale population studies, when the number of participants exceeds many 

thousand such as with the UKBB. Applying automated methods to vast amounts of data 
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requires a thorough set of quality-control procedures beyond just out-of-sample testing data, 

which is often used to validate new methods in machine learning studies. Large-scale quality 

control can be done by steps such as looking at maximum and minimum values, asymmetric 

values (for symmetric structures such as the iliopsoas muscles), outliers, and overall behavior 

of the results. The vast majority of previous studies investigating psoas muscle size have relied 

on CSA measurements primarily because of data availability and time constraints [3,4,6–

11,13,14,16–19]. Analysis of CSA is considerably less labour intensive than manually 

measuring tissue volumes, furthermore, many studies have repurposed clinical CT or MRI 

scans [16–18] which typically will not have been acquired in a manner to enable volume 

measurements. This has led to psoas muscle CSA being measured at a variety of positions 

relating to lumbar landmarks including L3, L4 and between L4-5, as well as more unreliable 

soft tissue landmarks such as the umbilicus, with the CSA measurements used alone, relative 

to lumbar area, height, height squared or total abdominal muscle within the image at the 

selected level. While lumber landmarks should provide a relatively consistent CSA in 

longitudinal studies, comparison between studies and cohorts becomes almost impossible. This 

is further compounded by studies that have shown considerable variation in psoas CSA along 

its length [2,42], and that regional differences in psoas CSA have been observed in athletes 

[43], following exercise training or inactivity [44]. This appears to suggest that CSA at a fixed 

position may not accurately reflect changes in the psoas size elsewhere in response to health 

related processes. It is clear that to overcome these confounding factors, it is essential to 

measure total psoas volume. In this study, we have trained a CNN to segment iliopsoas muscles, 

applied it to 5000 UKBB subjects and measured their total volume. Tis measurement includes 

the psoas major and iliacus muscles, and as mentioned in the proceeding section, the psoas 

minor muscle (if present). This reflects the practical difficulties of isolating the entire psoas 

muscle in images in a consistent and robust manner. The merging of the iliacus and psoas 

muscles below the inguinal ligament makes their separation not only impractical, but 

unachievable with standard imaging protocols. Similarly, it is not possible to separate the psoas 

major and minor muscles under these conditions, even if CSA measurements were to be made. 

Therefore, a standard operating procedure was required, either measure a partial psoas volume, 

selecting an anatomical cut-of before the junction with the iliacus muscle, or to include the 

iliacus and measure the iliopsoas muscle volume in its entirety. In this study we have opted for 

the latter, as selecting an arbitrary set point would clearly introduce a significant confounding 
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factor with unforeseeable impact on the subsequent results. Tus, we have measured the entire 

iliopsoas muscle, and although literature comparisons are limited, as there is a paucity of 

comparable volumetric studies within the general population, our average reported values for 

male subjects (407.2 ± 62.7 ml) were within the range 351.1–579.5 ml in a cohort which 

included male athletes and controls [43] Furthermore, our CNN-based method performs very 

well, with a small but systematic underestimation of −0.2% when compared with manual 

annotations. Incremental improvement of the model is possible using straightforward 

techniques, such as increasing the number and variety of training data or expanding the breadth 

of data augmentation [45]. These are currently under investigation. We observed a small 

(approximately 2%) but significant asymmetry in iliopsoas muscle volume, with the right 

muscle being larger in both male and female subjects. Previous studies have looked at the 

muscle asymmetry in tennis players, and found that the iliopsoas muscle was 13% smaller on 

the non-dominant compared with the dominant side of the body, whereas inactive controls the 

dominant size was 4% larger than the non-dominant [43]. Similarly footballers players have 

significantly larger psoas CSA on their dominant kicking side [46]. The best equivalent to this 

within the UKBB phenotyping data was handedness, which we found not to be related to left 

right differences in iliopsoas volume in the current study. An additional factor which may 

contribute towards iliopsoas asymmetry relates to the presence or absence of the psoas minor 

muscle, a long slim muscle typically found in front of the psoas major. Tis muscle can often 

fail to develop during embryonic growth [2] and there can be considerable differences in the 

incidence of agenesis which can be unilateral or bilateral with ethnicity thought to be a factor 

[47]. Further work is required to understand whether this contributes to the left-right 

asymmetry observed in the present study, since it is not possible to resolve this muscle on 

standard MRI images. In line with previous studies of psoas CSA, male subjects had 

significantly larger iliopsoas muscles compared to females [6]. This is unsurprising since 

gender differences in both total muscle and regional muscle volumes are well established 

[48,49]. Indeed some studies have suggested using gender specific cut-offs of either psoas CSA 

alone or psoas muscle index to identify patients at risk of poorer health outcomes [10]. 

Furthermore, some studies have suggested that the magnitude of gender differences in trunk 

muscle CSA vary depending where are measured. This adds weight to the argument that 

volumetric measurements are perhaps more robust than CSA measures for this comparison [50]. 

It has been proposed that the gender differences in psoas volume could in part relate to the 
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impact of height on psoas volume [12]. Indeed, we found a significant correlation between 

iliopsoas muscle volume and height similar to those previously reported by earlier studies [49]. 

However, the gender differences observed in our study were still present when correcting for 

height. Interestingly, it has been reported that the relationship between muscle volume and 

body weight is curvilinear, since increases in body weight often reflect gain in fat, as well as 

muscle mass. In the present study we observe a significant correlation between IMI and BMI. 

This is in agreement with previous studies of psoas CSA which have also shown a significant 

correlation with BMI [6], indeed some studies combined both metrics as a prognostic marker 

[17]. We also found a significant correlation between IMI and age. It is widely reported that 

muscle mass declines with age, particularly beyond the fifth decade, a fundamental 

characteristic of sarcopenia [51]. The magnitude of this decline was relatively small, but this 

may arise by the limited age range within the UKBB data set (44–82 years), compared to other 

studies that have investigated the impact of age on muscle volume across the entire adult age 

span (18–88 years), which usually tend to reveal a more dramatic decline in muscle volume 

[49]. In conclusion, we have developed a robust and reliable model using a CNN to 

automatically segment iliopsoas muscles and demonstrated the applicability of this 

methodology in a large cohort, which will enable future population-wide studies of the utility 

of iliopsoas muscle as a predictor of health outcomes. 

 
Fig 6. Scatterplot of iliopsoas muscle index (ml/m²) by BMI (kg/m²), separated by gender. 
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Figure 7. Scatterplot of iliopsoas muscle index (ml/m2²) by age at recruitment (years), separated by gender. The 

curves are ft to the data using a generalised additive model with cubic splines. 

 

Code availability 

Model weights and instructions for use are available at 

https://github.com/recoh/iliopsoas_muscle. 
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Evaluation of Papers 

Paper 1 (P1): Cardiac T2* and lipid measurement at 3.0 T-initial 

experience  

Cardiac T2* and lipid measurement at 3.0 T-initial experience published in 2008 in European 

Radiology, journal of the European Society of Radiology (ESR). Founded in 1991, European 

Radiology is one of the leading European journals in the field of medical imaging, owned by 

the European Society of Radiology. European Radiology (ER) continuously updates 

scientific knowledge in radiology by publication of strong original articles and state-of-the-

art reviews written by leading radiologists. A well-balanced combination of review articles, 

original papers, short communications from European radiological congresses and 

information on society matters makes ER an indispensable source for current information in 

this field. The journal is subscribed to by a regular audience of several thousands of readers 

worldwide (+ 100.000), making it one of the most widely disseminated journals in 

Radiology. (European Radiology, 2023) 

https://www-springer-com.salford.idm.oclc.org/journal/330/  

ISSN-Electronic 1432-1084 

Influence 

Paper 1 have been cited 19 times in the literature with Meloni et al. (2014) supporting the 

feasibility of performing this technique at a field strength of 3T. Further citations publish 

their own T2* values which agree with those published in Paper 1 (Cobb & Paschal, 2009; 

Heinrichs et al., 2009; Hezel et al., 2012; Manka et al., 2010; Meloni et al., 2012; Niendorf et 

al., 2016; Yamamura et al., 2010).  

Thus, initial normative values for cardiac T2* were presented in P1 and subsequently 

confirmed by other researcher groups has subsequently been published in peer reviewed 

journals. This works is now part of the seminal research that established the use of T2* values 

in clinical research. 

 

https://www-springer-com.salford.idm.oclc.org/journal/330/


   
 

 

 

 

202 

Personal Contribution  

• All the MR imaging of the complex and demanding procedure that is CMR, including 

patient preparation.    

• Ensuring compliance with the project's governance and ethics. 

• Compliance, documentation, and record-keeping to maintain good clinical practice 

along with ensuring that exposure times were not exceeded, the protocol to which the 

subject has consented to was followed precisely. 

• Ensure that aquired data was fully QC so that T2* values obtained were robust and 

reliable. 
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Paper 2 (P2)  

Liver fat content and T2*: Simultaneous measurement by using 

breath-hold multiecho MR imaging at 3.0 T – Feasibility  

Published in the Radiology in 2008  

Produced by the Radiological Society of North America (RSNA), Radiology has long been 

recognised as the authoritative reference for the most current, clinically relevant, and highest 

quality research in the field of radiology. Radiology is published 12 times a year, online and 

in print, and it is one of the top-cited journals in the field. (European Radiology, 2023) 

https://pubs.rsna.org/journal/radiology   

ISSN: 0033-8419 (print); 1527-1315 (online)   

Influence  

Paper 2 has been cited 119 times most notably by esteemed researchers in the same field 

including Scott Reeder (Reeder et al., 2011a, 2011b, 2012; Reeder & Sirlin, 2010) Harry Hu 

(H. Hu et al., 2011; H. H. Hu et al., 2010), Claude B. Sirlin (Sirlin & Reeder, 2010) and Mark 

Bydder (Bydder et al., 2010) 

In addition, Paper 2 is cited by researchers who have used data from the large cohort study 

DIRECT(DIRECT - DIabetes REsearch on Patient StraTification, 2022). DIRECT included 

the ME sequence originating in P2 and adapted into the imaging protocol for this study. 

Findings have included the discovery of glycaemic deterioration biomarkers(Koivula et al., 

2019) and the role of physical activity in type 2 diabetes(Koivula et al., 2020). 

This paper also served as the basis for the subsequent MRI protocol established by the 

Imaging Working Group of the UK Biobank, where over 68,000 participants have already. 

The Uk Biobak aims to scan a total of 100,000 participant in its first phase, a further 60,000 

will be re-scanned as part of the second longitudinal phase. 

https://pubs.rsna.org/journal/radiology
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Personal Contribution  

• My role in P2 was like P1 was to ensure that examination was fully compliant with 

the overall objectives of the protocol and that the MR images were of sufficient 

quality and reproducibility to ensure best outcome.  

 
• P2 included MRS which meant additional sequences and working alongside 

additional team members.  

• The inclusion of patients required the input of a radiographer to ensure patient care 

was forthcoming.  

• The person-centred care provided ensured high quality and consistent data collection 

along with a methodical approach to data management. 
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Paper 3 (P3)  

Reduction of total lung capacity in obese men: Comparison of 

total intrathoracic and gas volume  

Published in the Journal of Applied Physiology in 2010   

The Journal of Applied Physiology publishes the highest quality original research and 

reviews that examine novel adaptive and integrative physiological mechanisms in humans 

and animals that advance the field. (REF website)  

https://journals-physiology-org.salford.idm.oclc.org/journal/jappl   

ISSN: 8750-7587 (print); 1522-1601 (online)   

Influence 

After being published in the Journal of Applied Physiology in 2010 Paper 3 established that 

there was a reduced lung capacity in obese men. The authors followed this in 2012 with the 

publication ‘Relation between trunk fat volume and reduction of total lung capacity in obese 

men’ (Watson et al., 2012). Using the whole-body imaging acquired at the same time as the 

thorax volumes they attempted to explain the differences comparing the abdominal fat 

volumes. No relationship was found but Paper 3 is cited in the methods section to convey 

how the MRI was performed and the images acquired.  

After publication Paper 3 is cited in many literature reviews on topics such as asthma and 

obesity, ventilating obese patients and mechanical ventilation in obese patients(Guenette et 

al., 2010; Littleton, 2012; Ortiz et al., 2015; Peters, Dixon, et al., 2018; Peters, Suratt, et al., 

2018; Ruppel, 2012; Silva et al., 2012; Spelta et al., 2018). 

More recently however, Paper 3 has been cited more frequently due to the COVID-19 

pandemic. It was established that overweight and obese men had a higher rate of death from 

the infection (Chawla et al., 2020; Hamer et al., 2020) and studies have cited Paper 3 as an 

explanation for this (Halvatsiotis et al., 2020; Khalili et al., 2021; Pérez-Cruz et al., 2021; 

Raeisi et al., 2022; Redwood-Brown et al., 2021; J. Wang et al., 2020; Wicaksana et al., 

2021) 
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• First approached as adviser regarding if the imaging component was achievable and 

the requirements.  

• Designed the MRI sequences, built them, and tested them on the scanner. 

• Engaged in discussion into how to screen the patients who would not fit into the 

scanner.  

• I then modified two hula hoops to be the same circumference as the scanner interior. 

• I performed all the imaging, quality control and archiving. 

• Coached the lead authors on MR image contrast and anatomy recognition and image 

analysis. 
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Whole body fat: Content and distribution  

Published in Progress in Nuclear Magnetic Resonance Spectroscopy in 2013  

Progress in Nuclear Magnetic Resonance Spectroscopy publishes review papers describing 

research related to the theory and application of NMR spectroscopy. This technique is widely 

applied in chemistry, physics, biochemistry, and materials science, and also in many areas of 

biology and medicine. The journal publishes review articles covering applications in all of 

these and in related subjects, as well as in-depth treatments of the fundamental theory of and 

instrumental developments in NMR spectroscopy.  

https://www-sciencedirect-com.salford.idm.oclc.org/journal/progress-in-nuclear-magnetic-

resonance-spectroscopy  

ISSN: 0079-6565 (print) 1873-3301 (on-line)  

  

Influence  

Paper 4 has been cited frequently including in other literature searches (Borga, 2018; Borga 

et al., 2018; Bray et al., 2018; H. H. Hu et al., 2016; Kersten, 2023; Lim & Meigs, 2013; 

Ponti et al., 2019) and book chapters (Heymsfield et al., 2014; Thomas & Bell, 2015)  

Most relevant is research which cites Paper 4 in the methods to describe the techniques to 

acquire data in DIRECT and the UK Biobank, the latter being the largest human cohort in the 

world and from where more than 8,000 paper have been already published in peer-reviewed 

journals. These include rational and descriptions in DIRECT (Koivula et al., 2014, 2019) 

along with other publications using the DIRECT data (Atabaki-Pasdar et al., 2020) and 
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Erikson (2020) who introduce new insight into nutrition and metabolic risk.    
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Using UK Biobank data Linge et al. (2018) describe body profiling but further references 

have used P4 to describe how the UK Biobank was set up (Littlejohns et al., 2020). 

Other publications which use Paper 4 to describe their methods include studies into exercise 

training in NAFLD (Shojaee-Moradie et al., 2016), changes in renal sinus fat (Zelicha et al., 

2018), genetic risk of adiposity (Monnereau et al., 2018). 
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Published in NMR in Biomedicine in 2015  

NMR in Biomedicine is a journal devoted to the publication of original full-length papers, 

rapid communications and review articles describing the development of magnetic resonance 

spectroscopy or imaging methods or their use to investigate physiological, biochemical, 

biophysical, or medical problems.  

https://analyticalsciencejournals-onlinelibrary-wiley-

com.salford.idm.oclc.org/journal/10991492  

ISSN: 0952-3480 (print); 1099-1492 (online)   

  

Influence  

Paper 5 has been cited 48 times including test re-test reliability which was published by 

Newman et al. (2016) referencing the methods section of P5 and performing the protocol on a 

wide bore 3T scanner. The feasibility of using the protocol presented in P5 for large scale 

studies was published in PLoS ONE in 2016 after 3000 UKBB participants were analysed 

(West et al., 2016). Further evidence of the Profilers use in large scale population studies was 

published in Magneton FLASH magazine, a Siemens publication presenting MRI articles, 

application tips and technical information (Forsgren & West, 2017). Interestingly, the Profiler 

software has expanded beyond abdominal fat segmentation to breast fat volume analysis 

published in 2017 where the methods from paper 5 are cited (Petridou et al., 2017). Petridou 

et al. (2017) gave new insight into breast density and a robust method of measurement of 

fibro glandular tissue without the use of ionising radiation.   

The AMRA Profiler has become part of the UK Biobank body imaging protocol and Paper 5 

has been cited frequently in the methods sections of papers which have used data from the 

UK Biobank. Most notably was Linge et al. (Linge et al., 2018) where the first analysis of 

6000 participants drawing attention to how “Different diseases were linked to different body 

composition profiles (BCP), which could not be described by a single fat compartment alone” 

https://analyticalsciencejournals-onlinelibrary-wiley-com.salford.idm.oclc.org/journal/10991492
https://analyticalsciencejournals-onlinelibrary-wiley-com.salford.idm.oclc.org/journal/10991492
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and that “more targeted and effective disease treatments could be developed”. More recently 

the same author published further findings regarding defining sarcopenia in aging and 

Obesity (Linge, Heymsfield, et al., 2020) and adverse muscle composition in NAFLD which 

also cite Paper 5 in the methods (Linge, Ekstedt, et al., 2020). In addition, UKBB body data 

has been included in a publication looking at cardiovascular outcomes along with data from 

the Dallas Heart Study (Tejani et al., 2022).  

In similar fashion other publications cite Paper 5 as their methods when using the AMRA 

protocol, Profiler software and slice-O-Matic software. These include a variety of findings 

including an investigation into the FTO gene and appetite (Reistenbach Goltz et al., 2019), 

comparisons between DXA and CT (Coletta et al., 2019), the use of Empagliflozin Treatment 

in Obesity (M. H. Lee et al., 2022; Neeland et al., 2021) and my own publication 

investigating Large-scale analysis of iliopsoas muscle volumes in the UK Biobank which is 

submitted for consideration within this PhD (J. A. Fitzpatrick et al., 2020).  

Personal Contribution  

• Perform all protocol set up as well as actual imaging including patient preparation. 

• QC, curation and archiving of data. 

• Oversaw QC of image analysis, provide feedback to inventors at every stage of analysis 

and publication.  
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Authors Borga, Magnus 
Thomas, E. Louise 
Romu, Thobias 
Rosander, Johannes 
Fitzpatrick, Julie 
Dahlqvist Leinhard, Olof 
Bell, Jimmy D. 

 

Title Validation of a fast method for quantification of intra-abdominal 

and subcutaneous adipose tissue for large-scale human studies 

Publication Details NMR in Biomedicine 

2015 

Candidate 

Contribution 

• Set up and tested acquisition protocol. Performed all the 
imaging acquisition and assessed quality and consistency. 

• Provided feedback and writing of publication 
• Reviewed the final manuscript. 

 

 

Co-Author Confirmation 

By signing the Statement of Authorship, author confirms that: 

The candidate’s stated contribution to the publication is accurate. 

Name Professor J. D. Bell 

Comments Julie actively participated in the designed of the study, its 

performance, analysis and writing of this seminal paper, which 

became the basis for a larger multi-centre and Biobank studies 

 

Signed 

 

Date 15th of April 2021 
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Paper 6 (P6)  

Changes in Liver Volume in Patients with Chronic Hepatitis C 

Undergoing Antiviral Therapy  

Published in Journal of Clinical and Experimental Hepatology 2016.  

Journal of Clinical and Experimental Hepatology (JCEH) is an international peer-reviewed 

journal of hepatology and publishes six issues in a year. JCEH publishes outstanding basic 

and clinical papers on all aspects of liver diseases, including both human and animal studies.  

https://www.jcehepatology.com/  

ISSN: 0973-6883 (print); 2213-3453 (online)   

  

Influence 

Paper 6 has been cited five times by other studies who have recognized the findings but 

interesting Wake et al. (2020) did not see the same increase in liver volume in their study 

though did record improved liver function tests with sustained viral response.  

In their study ‘Building Large-Scale Quantitative Imaging Databases with Multi-Scale Deep 

Reinforcement Learning: Initial Experience with Whole-Body Organ Volumetric Analyses’ 

which cites Paper 6, Winkle et al. (2021) draw attention to how useful organ volume 

measurements is and that manual techniques are not realistic due to time and resources and 

call for the annotation process to be automated. 

 

Personal Contribution  

• Performed the MR imaging when joining the study after it commenced. 

• Curating previously acquired data.  

• Identified a method to measure the liver and completed the analysis. 

•  Organising and performing an exercise in repeatability with a co-author. 

• Wrote the first draft of the manuscript and reviewed the final draft after sharing with 

the co-authors. 

https://www.jcehepatology.com/
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Paper 7 (P7)  

Psoas major cross-sectional area: A potential marker of 

cardiorespiratory fitness  

Published in International Journal of Clinical and Experimental Physiology March 2017  

The aim of the International Journal of Clinical and Experimental Physiology (IJCEP) is to 

publish peer reviewed quality research papers in Physiology that have clinical application in 

medicine or papers with experimental evidence having a future perspective of application in 

medicine.  

https://www.ijcep.org/index.php/ijcep  

ISSN: 2348-8832 (print); 2348-8093 (online)   

  

Influence 

Paper 7 has been cited six times with Byun et al. (2019) agreeing that the psoas CSA is a 

predictor of mortality after hip fracture. Hawkins et al. (2018) also cited P7 in their study 

which used the PM size to predict outcomes after aortic valve replacement. 

Having established a link between PM CSA and CV Fitness this encouraged further work in 

this area and exploring the possibility of automating the process of segmentation. The original 

manual annotation and analysis of the MR images served as “ground-truth” for a subsequent 

AI-based algorithm that allow for automated analysis of abdominal images. This has now been 

applied to <60,000 participant in the UK Biobank and will serve as the basis for a follow up 

paper in this area. 

 

Personal Contribution  

• Conceived the study after a period of observation and discussion with the group head. 

https://www.ijcep.org/index.php/ijcep
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• A method for extracting the images was identified along with methods to measure 

physical activity.  

• Persuaded a co-author to join me who had expertise in measuring V02 Max and 

statistics. 

• I performed all the imaging, curation, analysis, and extraction of data. 

• Created original “ground-truth” for subsequent AI training. 

• Participate in writing of first draft.   

• Presented poster at international conference. 
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Paper 8 (P8)  

Advancing Pancreas Segmentation in Multi-protocol MRI 

Volumes using Hausdorff-Sine Loss Function  

Conference paper presented at 10th International Workshop on Machine Learning in Medical 

Imaging (MLMI 2019) in conjunction with The Medical Image Computing and Computer 

Assisted Intervention Society (MICCAI) 2019 Shenzhen, China. Oct 2019  

Published in book section Machine Learning in Medical Imaging. Part of the Lecture Notes 

in Computer Science book series (LNIP, vol. 11861). 

https://link.springer.com/bookseries/558  

  

Influence 

P8 has been cited nine times including similar work by other groups in abdominal organ 

segmentation (Bakasa & Viriri, 2023; Chen et al., 2019; Sakai, 2021; Sánchez-Peralta et al., 

2020; R. Wang et al., 2021). 

First and last author of P8 presented follow up work for organ segmentation from multiple 

modalities and scanner protocols citing the work in P8 (Villarini et al., 2021).  

Another group using UK Biobank data have cited P8 when presenting their automated 

pipeline for pancreas volume and shape characterization (Triay Bagur et al., 2020). While my 

colleagues on P9 have included P8 as a citation in measuring pancreas fat and iron content 

(Basty et al., 2020a). 

Personal Contribution  

• Provided in-depth pancreatic anatomical input to co-authors for acquisition and 

subsequent AI development 

• Perform all segmentation for AI training data. 

• Assessment and grading of all output during training of AI-based algorithm. 

• QC final output from automated system prior to final data analysis and publication 

 

https://link.springer.com/bookseries/558
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Authors Asaturyan, Hykoush 
Thomas, E.L. Louise 
Fitzpatrick, Julie 
Bell, Jimmy D. J.D. 
Villarini, Barbara 
Louise Thomas, E 
Fitzpatrick, Julie 
Bell, Jimmy D. J.D. 
Villarini, Barbara 

Title Advancing Pancreas Segmentation in Multi-protocol MRI 

Volumes using Hausdorff-Sine Loss Function 

Publication Details Machine Learning in Medical Imaging 
2019 

Candidate 

Contribution 

• Anatomical expert who provided all the ground truth 
which the computer programmer used for developing 
learning model.  

• Assessed the outcomes and graded how well the computer 
model had segmented the pancreatic tissue  

• Participated in writing and review the final manuscript. 
 

 

Co-Author Confirmation 

By signing the Statement of Authorship, author confirms that: 

The candidate’s stated contribution to the publication is accurate. 

Name Professor J.D. Bell 

Comments Julie provided expert input in the designed and implementation 
for this project. Created all the necessary ground-truth for the 
machine-learning models, reviewed results and elaborated upon 
way to improve the outputs. She help in the writing of the 
manuscript and reviewed the final version 

Signed 

 

Date 15th of April 2021 
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Paper 9 (P9)  

Large-scale analysis of iliopsoas muscle volumes in the UK 

Biobank  

Published in Nature Scientific Reports in 2020  

Scientific Reports is an online peer-reviewed open access scientific journal published by 

Nature Portfolio, covering all areas of the natural sciences Scientific Reports is the 6th most-

cited journal in the world (Scientific Reports, 2023).  

  

https://www-nature-com.salford.idm.oclc.org/srep/  

ISSN: 2045-2322 (print); 2045-2322 (online)   

  

Impact and Reach  

Thus far, P9 has been cited thirteen  times including in an examination of treating psoas 

muscle dysfunction(Shi & Han, 2022). Other researchers have also used UKBB data  to 

measure body composition using deep regression to automate body composition analysis 

(Langner et al., 2020, 2021) citing both P5 and P11. Citing P11, Weber et al (2021) also used 

convolutional neural networks to investigate fatty infiltration into the cervical muscles. 

However, they used both the in and out of phase images to measure the fat content where P11 

used only the derived water images.   

The psoas muscle is easy to identify and conspicuous on several imaging modalities. Van 

Erck et al. (2022) used CT images to measure the total volume of the psoas muscle again 

using deep learning. Citing P11 they acknowledge that whole muscle volume is useful but go 

on to correlate it to clinical outcomes, concluding that fully automated whole muscle psoas 

assessment is a tool with great opportunities in large scale studies and clinical applications.   

P11 uses a technique which is prone to artifacts and up to 10% of data can be discarded due 

to water-fat swaps. This can be improved by using deep learning to fix these swaps and thus 

salvaging this data. My colleagues Basty et al (2021)have developed this citing P11 in the 

methods and P4 in the introduction. 

https://www-nature-com.salford.idm.oclc.org/srep/
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Personal Contribution  

• Conceived the study. 

• Set up original acquisition protocol at the UK Biobank sites and QC all images. 

• Generated ground truth for training data. 

• Collaborated in the writing of initial draft of paper, including MR imaging methods 

and ground-truth validation. 

• Reviewed and edited final draft.  
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Aims 

Aim 1: to identify the processes required to enable quantification of MRI based parameters 

through optimised acquisition and analysis. 

 

Aim 2: identify how these processes were undertaken in papers presented in this thesis. 

 

Aim 3:to identify how the different processes apply from application to big data, and future 

technology such as AI and crowd sourcing. 

 

Aim 4: identify areas of optimisation in terms of pipelines and resource limitations (staff) 

for future uses of AI. 

 

Objectives  

In the collation and analysis of this thesis, the following themes were identified: -  

 

The thesis will be broken down into these chapters and sub-sections to demonstrate how this 

meets the aims of the research.  
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Feasibility and Acquisition  

Medical images are created using many modalities and techniques. The information collected 

must be validated, relevant and achievable.   

• Introduction 

• Field Strength 

• Ethics and Safety 

• Cardiac MRI (CMRI) 

• Liver MRI 

• Patient experience 

• Data 

• DIRECT and UKBB 

Optimisation  

A process of optimisation is appropriate to fine tune imaging parameters to ensure efficient 

and effective use of resources. Limited availability of resources is considered along with the 

patient experience.  

• Introduction 

• Lung Volume 

• Translate Muti-Echo to Pancreas 

• Pancreas Volume 

• Fast Whole Body Protocol Validation 

Analysis  

Information needs to be drawn out from the collected data to reach conclusions. Again, 

limited resources demand a straightforward and efficient method.  

• Introduction 

• In-House Software 
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• Open-Source Software 

• Viewing Conditions 

• Reliability 

• Measuring Psoas 

Quality Control  

Methods to maintain and monitor quality are essential to ensure the data is fit for purpose.   

• Introduction 

• Pancreas Segmentation 

• Machine Learning 

• Quality in Large Scale Studies 

• Dissemination of Imaging Protocol 

• Fat Phantom 

Translate  

Scaling up to a large-scale study must be standardised when put into practice.    

• Introduction 

• Large Scale Studies- Patient Perspective 

• Upscaling Body Composition Protocol 

• QA in Large Scale Studies 

• Psoas Muscle in Large Scale Studies 
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Critical Appraisal  
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Chapter 1   

Feasibility and Acquisition  

Introduction 

The Scientific Method underpins the development of science, and one of the steps is to test a 

hypothesis through experimentation (Britanica, 2022). There are many different methods to 

use when conducting an experiment, and the collected data can be categorized as qualitative, 

non-numerical or quantitative, where the data has a unique numerical value. All methods 

involve collecting data for analysis to support or disprove a hypothesis. As such, the quality 

of acquired data must be high, and the collection method should be detailed, reproducible and 

free of bias. Whether gathering new data, using legacy, sharing, exchanging, or purchasing 

data, the manner of acquisition often remains unseen.   

Papers 1, 2 and Poster Presentation A was performed at a field strength of 3 Tesla (3T). 

Clinical scanners of this field strength were only just starting to become available and 

experience at this time was described as anecdotal and unpublished (J. W. K. Lee & Shannon, 

2007; Mosher, 2006) The scanner installed by the Medical Research Council imaging facility 

at the Hammersmith Hospital in 2003, where this research was conducted was one of the first 

in the UK.    

Field Strength 

Utilising 3T is logical because field strength has the potential to double the SNR and thus 

allow greater temporal and spatial resolution. In addition, there is a possibility of improved 

sensitivity to lower iron concentrations which may not be measurable at lower field strengths. 

P1 included healthy volunteers who were not expected to have abnormally high levels of iron 

in their livers, but it was still beneficial for obtaining accurate measurements. However, the 

disadvantages of 3T imaging are the increased susceptibility artefact and poor shimming, 

both of which are mentioned in P1. The issue of poor shimming at higher field strengths, such 

as 3T is addressed in P1. The use of higher-order shimming was applied routinely, as 

additional shimming along more directions improves homogeneity in the region under 

examination. Higher-order shimming reduces intravoxel dephasing and signal dropout, thus, 
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the images have a more uniform signal with less distortion (Zhang et al., 2009). During 

CMRI B0 inhomogeneity is exasperated by cardiac motion, flowing blood, and air/tissue 

interfaces, therefore the use of higher-order shimming was essential during the acquisition of 

P2. More recently, further developments have been introduced with specifically tailored and 

customized shimming methods, resulting in more efficient shim times and accurate spatial 

encoding  (Juchem., et al., 2013; Matter et al., 2016). 

Ethics and Safety  

In keeping with Good Clinical Practice (GCP), all the papers included in this work were 

approved by the relevant ethics committees. However, utilising the higher field strength 

brings added safety considerations as, at the time, implanted devices had not been 

investigated for safety as thoroughly as at 1.5T, and Specific Absorption Rates (SAR) are 

higher. This meant that our study limited the research participants to those with no metallic 

implants. This severely restricted recruitment but was believed to be prudent at the time. 

Since its publication, the use of 3T scanners has proliferated worldwide and has become the 

field strength of choice for some applications, such as musculoskeletal (MSK) (Khodarahmi 

& Fritz, 2021; Mosher, 2006).  The testing of implants has increased, and now more 

implanted devices have been shown to be safe or conditional at higher field strengths. Up-to-

date information is available on MRIsafety.com (Shellock, 2022).   

The higher SAR may have meant restricting imaging parameters to stay within MHRA 

guidelines, and P1 includes that the SAR was recorded and remained within the safety limits 

set by the MHRA (MHRA, 2007). However, it became clear that participants felt hotter in the 

scanner when imaging the body (thorax, abdomen, and pelvis) was performed. Participants 

reported feelings of warmth during acquisition of P1 and 2 and some were clearly sweating. 

This phenomenon of heating is well documented, and the MHRA recommends maintaining 

the environment at 25C or below and ensuring that atmospheric humidity is below 60%. 

However, to counteract any adverse effects, no blankets were offered during scanning, and 

the participants were alerted to be aware of excessive warming. Additional monitoring was 

performed to obtain verbal assurance that the participants were still at a comfortable 

temperature at regular intervals throughout the examination.    

Another phenomenon that has been proven using MRI is Peripheral Nerve Stimulation 

(PNS). Rapidly changing magnetic gradients induce electrical voltage potentials in the 
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extremities and can range from mild (tingling) to severe (muscle contractions)(Ham et al., 

1997). Although not dangerous, it should be limited as PNS can be viewed as an adverse 

event causing the research participant discomfort and possible pain. Any reports or 

observations of PNS resulted in the immediate termination of the examination.    

Further caution was required when moving the participants into the bore of the magnet and 

the staff moving around the room. Physical movement in a static magnetic field can induce 

the creation of electrical potentials and the possible displacement of naturally generated 

currents within the body, which can manifest as vertigo, nausea, phosphenes and metallic 

taste (M.H.R.A., 2021). Although transient, we were encouraged not to make haste around 

the scan room and move the participants very slowly into the magnet bore. The extra time 

required to address safety concerns was required to be included in the organisation of the 

scanning time which was a further limitation to throughput. 

Since the publication of P1 and P2 3T scanners are now common and extensive evidence of 

their safety has been established, but caution is always recommended in the absence of firm 

evidence. Had the current level of robust safety information been available at the time, then 

more willing participants could have been included and shorter scanning times applied.   

Cardiac MRI (CMRI) 

Motion is a problem in CMRI because of the long scan times (Saloner et al., 2015) therefore, 

when performing CMRI, both the beating heart and respiration need to be compensated for to 

complete a successful scan. This is addressed in P2 with the use of Vector-ECG(VCG) and 

performing the scan in suspended respiration. The application of VCG involves extra 

preparation of the subject with mild skin abrasion to minimise ECG artefacts due to skin 

impedance. It is not included in P1 whether skin preparation was performed but it is said that 

‘images of diagnostic quality were obtained’. Regarding respiratory motion, P1 says that the 

multi-echo (ME) sequence was performed during a single breath-hold, but not for how long it 

was. Although there is a statement that ‘All subjects tolerated the study,’ it is worth 

considering that all participants were young (mean age 39) with no history of heart disease. A 

prolonged breath-hold may be untenable for sick patients. These details are relevant to 

replicating the study and preparing the patients and are examples of the unseen role played by 

support staff such as radiographers, which contribute to the success of any imaging 

examination.  
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Quantitative analysis was performed by the first author of P1 and P2, a cardiac radiologist 

using software customised for the task. Expertise in this area is needed to ensure valid results, 

but there are no reports of repeatability being performed to demonstrate that the results are 

reproducible and correct. This is also the case for the SNR and CNR measurements which use 

a standard method but again, no repeatability exercise is reported in the paper. Proof of 

consistency of results would have been a useful addition to this feasibility study though it is 

noted that the sample group all had exceptionally low levels of cardiac fat. It is possible that 

values could be variable at different tissue iron concentrations. Upon reflection, it would have 

been useful to explore the repeatability of the measurements by repeating the analysis under 

similar conditions and by the same expert observer and with another non-expert observer.   

P1 clearly states in the title it is a feasibility study, and the conclusion summarises that the 

results are positive and cardiac T2* is indeed feasible at this field strength. Limitations and 

difficulties are included in the discussion, along with a justification of the methods chosen. 

Paper 1 was only performed on healthy volunteers with no history of heart disease, iron 

overload or fatty infiltration of the myocardium. Therefore, the results are only relevant in 

this healthy group, and further work is required to establish normative values in patient 

groups. A mixture of sexes was included (nine males and three females) within the small 

group of young subjects. There is always the possibility of sex differences when establishing 

normal values. But it is tacit that a larger study is needed to ratify the results of normal values 

in a broader group of subjects.   

Liver MRI 

Paper 2 (P2) Liver fat content and T2*: Simultaneous measurement by using breath-hold 

multiecho MR imaging at 3.0 T – Feasibility was also published in 2008 in Radiology.    

P2 expanded the work of P1 translating the measurement of T2*, iron and lipid quantification 

into the liver at the novel field strength of 3T. However, P2 includes measurements on a lipid 

phantom as well as normal controls and a patient group of obese individuals with 

hyperlipidaemia or diabetes. Thus, a broader spectrum of subjects is included, which is a 

strength, however the numbers are still relatively small.   

Methods are well documented in P2, including all imaging parameters, which mean that the 

study can be easily reproduced by other groups. A detailed explanation of the construction of 

the lipid phantom is beneficial as it includes the exact dose of copper sulphate used to dope 
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the water. Using a phantom means that measurements can be verified as the exact content is 

known. The use of high-order shimming is referred to again, which as mentioned before, is 

beneficial at higher field strengths where there could be increased inhomogeneity.    

In contrast to P1, Magnetic Resonance Spectroscopy (MRS) is acquired at the same time as 

the ME sequences in P2. MRS has had been validated at 1.5T but not at 3T at the time of 

publishing, there was also no histology correlation available from the patient group as this is 

not indicated. The lack of histology is not necessarily a serious weakness as pathology 

sample assessment is semi-quantitative (Boyd et al., 2020). The results included in P2 show 

good agreement between ME and MRS with excellent statistical significance. The results of 

ME liver fat analysis have an advantage over dual echo (DE) as the DE assumes that the 

dominant signal is from water. This results in the underestimation of fat if it is over 50% of 

the sampled tissue.   

Once again, Paper 2 includes that all participants tolerated the imaging well and successfully 

completed the examination with all the spectra demonstrating satisfactory line widths. It also 

includes a breakdown of each author’s contribution, but again no repeatability is included. As 

with P1, additional time could have been assigned to perform both inter and intra operator 

repeatability and thus evidence if the analysis was operator dependant.  

The authors acknowledge this is also a feasibility study with no other studies published at the 

time to quantify fat in the liver using ME and the results are impressive. This indicates that 

this method is promising and has the advantage of being able to correct for T2* decay 

without the requirement for additional sequences to be included in the imaging protocol. 

Thus, shorter scanning times are advantageous for patients and improve the efficient use of 

valuable scanner time.  Value in MRI has different definitions in differing scenarios but 

where healthcare and research costs are escalating to unsustainable levels, increased patient 

throughput is favourable (van Beek et al., 2019). 

Patient Experience 

MRI is often poorly tolerated, with patients feeling anxiety, fear, claustrophobia, and poor 

endurance of the acoustic noise generated by an MRI scanner. Simple acts of presenting a 

hygienically clean, tidy, and organised environment have been  demonstrated to lessen 

anxiety in subjects undergoing MRI (Törnqvist et al., 2006) 
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Another facet which is often not reported is any additional preparation and tutoring of the 

research participant when acquiring new data, which is dependent on the protocol. Paper 3 

(P3) and 5 (P5) are both examples of enhanced patient preparation tailored to the 

requirements of the study.    

P3 published a study measuring the lung volume of obese men which meant that not all 

willing participants could fit into the MRI. A modified hula hoop was given to the recruiters 

which was the same size as the scanner bore. This was used to check if the participant could 

fit in the scanner by placing it over their head and lowered over the whole body to the floor. 

In keeping with the principles of Good Clinical Practice (ICH Official Web Site : ICH, 2023), 

everyone was keen to protect our study participants from the embarrassment and discomfort 

of not being able to fit in the scanner so this was proposed as it could be performed discreetly 

in the lung function department before consent was finalised. Another aspect of enhanced 

preparation for the participants in P3 was the respiratory tutoring participants went through 

with the physiologists before the imaging, which primed them to achieve full inspiration and 

maintain it for the required scan time. P5 involved an extended scan time and suspension of 

respiration, so additional time was incorporated to explain this to the participants before 

imaging. If required by the participant, breath-holding was also practised in the scanner until 

it was deemed that a full understanding of the procedure was accomplished.  It was agreed 

that additional time for practice and preparation was of great benefit to the successful 

acquisition of quality imaging.  

A recent review and meta-analysis by Sukuki et al (2022) demonstrated that the use of mock 

MRI scanning and preparation programmes improved the success rate of scanning in 

children. While Nakarada-Nordic et al. (2020) used a mock scanner and virtual reality (VR) 

to successfully reduce anxiety in adult clinical patients. The use of VR could also be extended 

to research participants before giving consent and to other healthcare professionals so they 

could form a better understanding of the procedure and participant experience. The use of 

modern technology and mock scanners is clearly of use, but the role of the radiographer is 

still an important factor whether collecting research data or performing clinical scans. 

Carlsson et al. (2013) described the most crucial factor for reducing stress and anxiety as 

interactions with staff and how ‘interaction with the radiographers helped me through’. 
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Data 

Thus far, the acquisition of new research data has been the focus, but legacy data can be re-

examined and used in further studies. Papers 6 (P6) and 7 (P7) included pre-existing imaging. 

One advantage of this is that vast amounts of time, effort and resources can be saved, as any 

study using legacy data can exclude the acquisition process. However, there is always a 

possibility that the available data may not completely fulfil the requirements of a new study. 

During the analysis of P6, some of the images were excluded as complete coverage of the 

liver was not captured, or motion artefacts were present. Obviously, there is no way to repeat 

or re-acquire the poor data, so it is unusable. Further complications were encountered with 

the curation of the data set. Duplicate data and erroneous naming were discovered which 

further reduced the number of suitable sequences to segment. Robust quality control 

procedures are therefore required at the point of acquisition and during curation of the legacy 

data to minimise curation debt (Butters et al., 2020) 

P7 imaging data were of high quality as it was performed and curated by an experienced 

radiographer. No data was excluded, but it had not been acquired with the CSA measurement 

of the psoas in mind. This, therefore, required a new method to identify the most suitable 

images to be included, and this is discussed later in the ‘Analysis’ chapter.  This work served 

as testing of protocol for the production of ground-truth for subsequent large-scale AI-based 

analysis.  

Another method to acquire quantitative research data is purchasing; however, there are 

limited repositories of medical images. Restrictions around consent and privacy also restrict 

the availability of suitable data. Researchers simply may not have the finances to buy data or 

have the time to chase funding sources.   

Large-scale population studies have emerged in recent years, including the UK biobank, 

Dallas Heart Study, German National Cohort and 45 and Up Study. These rich resources 

contain sizable amounts of lifestyle, imaging, and epidemiology data from large groups of the 

population. Researchers are free to do research rather than collecting data, securing resources 

etc, as the data is available to all on the condition that it is for the public good. P5 includes 

the methods for the body composition protocol, which was used in the UK Biobank and 

Paper 4 (P4) includes the methods for the acquisition of ME imaging in the liver and pancreas 

which was incorporated in the DIRECT studies and the UK Biobank protocol.    
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DIRECT and UKBB 

Two large scale studies have used the MRI techniques developed in the submitted portfolio. 

DIRECT, an acronym for DIabetes REsearCh on patient straTification is a pan-European 

consortium engaged in research on diabetes. Initially funded by the European Union’s 

Innovative Medicines Initiative (IMI), diabetes experts from 20 academic research 

institutions and five pharmaceutical research organizations launched the DIRECT project in 

February 2012.  

The overarching aims of the DIRECT consortium were to identify potential biomarkers that 

will help identify patients whose disease may progress more rapidly or who have a different 

response to diabetes treatments. Thus, developing a personalized or ’stratified’ medical 

approach for the treatment of type 2 diabetes (T2D) using either existing or novel therapies. 

To date, 50 scientific papers related to DIRECT have been published (Publications to Date, 

2023) 

The UK Biobank (UKBB) is a large-scale biomedical database and research resource that 

contains in-depth genetic and health information from half a million participants. The 

imaging project aims to capture MRI data from the brain, heart, and abdomen, together with 

bone density and ultrasound scans of the carotid arteries of up to 100,000 participants. By 

capturing a vast number of images of the human body during both good and ill health and 

combining it with the genetic and lifestyle data already held on half a million participants, the 

study will improve understanding of why one person develops a life-altering disease when 

others do not. 

P5 was optimised for a Siemens 1.5T scanner as the decision to purchase that manufacturer 

had already been made for the UKBB imaging centres. In contrast, the whole body and ME 

sequences included in P4 had to be used on a variety of manufacturer scanners and at field 

strengths of 1.5T and 3T. Thus, the echo times had to be adjusted, and each sequence, 

including the body composition sequences, was built from scratch on each scanner. Several 

visits to each imaging centre were required to ensure all were aligned, staff were trained, and 

all were producing comparable images. Thus, the initial set up of the DIRECT trial was 

arduous and burdensome, requiring expertise in MR imaging and people skills. There was a 

great deal of resistance to positioning the participants prone, for example, and this had to be 

explained and justified to others' satisfaction. Another cause of debate was the use of the 

maximum number of echoes attainable in the ME sequence. Most information is collected in 
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the initial echoes, so there was much disdain for using more, as it was deemed unnecessary. 

However, more data points will produce more accurate decay curves, and the total breath 

hold was not unmanageable for participants.  

In this chapter, the acquisition of data for medical imaging research has been investigated 

with reference to the papers submitted for consideration. Reflections were explored in more 

detail than is usually included in the final papers with the role of the radiographer advocated 

as an essential part of the acquisition process.  
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Chapter 2  

Optimisation   

Introduction 

In the previous chapter, it was highlighted that the speed of acquisition is beneficial for 

improving the subjects’ experiences and maximise efficient use of valuable scanner time. 

Scanner manufacturers provide a library of sequences that is suitable for most imaging 

scenarios. Most of these have an adequate balance of SNR, CNR, resolution and reasonable 

acquisition time. As outlined in previous chapters, many parameters can be manipulated to 

tailor the sequence to provide diagnostic images but always with compromise.  In 1988 

McVeigh et al. (1988) reported that most sequences provided SNR far in excess of the 

minimum required, so attention can turn to increasing the specificity of the tissue under 

investigation. However, McRobbie et al.(2006) have described the signal as finite and that 

contrast is the most important aspect when considering image quality. Therefore, some level 

of optimisation must be undertaken by the operator to fine-tune the existing sequences or 

create new ones specifically for a clearly defined purpose.   

Lung Volume 

Paper 3(P3) Reduction of total lung capacity in obese men: Comparison of total intrathoracic 

and gas volumes (Watson et al., 2010) was conceived by two specialist physiologists. With 

no knowledge or understanding of imaging, they approached with a request to measure the 

physical volume of the thorax of obese men. Accurate measurements of a body cavity were 

required at full inspiration in a group of asymptomatic obese men to understand the 

mechanism of lung capacity restriction, which at the time was poorly understood  (R. L. Jones 

& Nzekwu, 2006). 

The subjects underwent the whole-body protocol described by Thomas et al. (2005). Initially 

it was hoped that routine whole-body images could be used for to determine thoracic 

volumes. However, these were acquired prone while the subject was free breathing so there 

would be variation in lung volumes throughout the acquisition. In addition, with subjects in 

the prone position, this was not comparable with the position of the subjects during lung 



   
 

 

 

 

237 

function measurements performed immediately prior to the MRI. The prone position is often 

used to minimise respiratory artefacts as it suppresses chest movement (Bright, Anne, 2011) 

and a slice thickness of 10mm and gap of 10mm are too coarse for the measurements to be 

reliable as combined with free breathing; this would easily lead to partial volume effects.   

A new sequence was created to be run before the whole-body acquisition. The requirements 

were that the subject was in full respiration and that the fatty and lean tissues could be clearly 

and easily distinguished. A T1 weighted image would provide the required image contrast 

and could be performed while the subject held their breath. Fat is hypointense on T1 images, 

however, so is protein, haemorrhage, melanin, and gadolinium. Nevertheless, because these 

other tissues were not expected or required detection, T1 weighting was settled on as there 

would be good contrast between tissues. A gradient echo sequence would no doubt be a faster 

acquisition, there was concern about the possibility of Moiré fringe field artefacts that are 

only apparent in this type of pulse sequence (Murphy & Ballinger, 2020).   

The imaging plane was changed to coronal to cover the entire thorax using the maximum 

FOV of 530mm. This produced an image that provided the greatest amount of coverage in the 

shortest time and included all participants. Scanning in a more conventional axial plane 

would require more slices and take much longer to acquire to produce the same amount of 

coverage.   

Often, the built-in body coil of the scanner would be adequate for this acquisition, however, 

to maximize the SNR a surface coil was used. This increase in SNR provided more flexibility 

when other parameters, such as matrix were altered.   

As stated in the methods of P3 each subject made five breath holds that included the survey 

sequences. The images used for the analysis were performed in two breath holds and a small 

maker was attached to the chest wall to monitor whether full inspiration was maintained. In 

addition, visual inspection of the images for motion artifact after the acquisition was 

performed.   

It was not ideal to not be able to include the whole thorax in one acquisition as this meant to 

possibility that there could be variations in position between two acquisitions. However, a 

balance between coverage and time within a single breath hold was not achievable while 

maintaining the minimum resolution acceptable in these circumstances. To curtail this, 

participant underwent thorough training with the physiologists before the imaging, which 

prepared them to achieve full inspiration, maintain it and repeat in the required scan time.    
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This meant that some willing participants were excluded as they could not fulfil these 

requirements. In addition, performing a study on obese subjects meant that not all participants 

could fit into the MRI. A modified hula hoop was given to the recruiters, which was the same 

size as that of the scanner bore. This was used to check if the participant could fit in the 

scanner by placing it over their head and lowered over the whole body to the floor. In keeping 

with the principles of GCP (Good Clinical Practice, 2020), everyone was keen to protect our 

study participants from the embarrassment and discomfort of not being able to fit in the 

scanner, so this was proposed as it could be performed discreetly in the lung function 

department before consent was finalised.   

MRI technology has advanced since P3 was published in 2010. At that time, there was no 

ability to use parallel imaging to accelerate the scans. If this study be repeated, the use of up-

to-date acceleration techniques, which are now widely available, would allow complete 

coverage of the thorax in one acquisition. Thus, one breath hold could be performed covering 

the entire thorax. This was also touched upon in chapter 1, where the potential for parallel 

imaging could be used to improve temporal resolution.   

   
Figure 5: Example of Coronal T1 weighted image of the thorax 

Inspection of the image shows that there is motion artefact from the heart contractions in the 

phase-encoding direction. Although conspicuous, it does not interfere with the ability to 

accurately segment tissues and supports the exclusion of cardiac gating. It is also noteworthy 

that there are few details of the lung parenchyma. MRI can produce images of exquisite detail 

but requires dedicated sequences tailored to specific clinical applications (Biederer et al., 

2012). In this instance, resolution of small detail is sacrificed to save time.   
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Translate Multi-Echo to Pancreas   

Paper 4 (P4) Whole Body Fat: Content and Distribution is a review carried out after being 

invited to submit to the journal NMR in Bioscience. This involved extensive searches of all 

major research sources (PubMed etc.) and collating the relevant papers. Also included were 

the descriptions of ectopic fat measurement using MRI, which were developed from P1 and 

P2.   

The successful use of ME sequences at 3T field strength published in P1and P2 sparked 

interest in the technique from the molecular imaging group and to translate it into their 

imaging protocol. Ectopic fat in the pancreas has been linked to organ dysfunction, including 

type 2 diabetes (Gaborit et al., 2015). The current procedure for accurate measurement of fat 

content at the time-MRS-in the pancreas challenging. Indeed, it was described as ‘impossible’ 

by Sijens et al. (2010). MRS sequences are long, and respiratory motion is inevitable when 

imaging the upper abdomen if not compensated for. Thus, part of the acquisition could be 

measuring outside the pancreas in the surrounding visceral fat. Using respiratory 

compensation resulted in an acquisition time that was twenty minutes, unacceptably long in 

this scenario. This was supported by Lingvay et al. (2009) who performed a dedicated 

examination of the pancreas using MRS, which took 30 minutes. In addition, Sijens et al 

(2010) stated in their publication that ‘additional MRS examination of pancreas made the 

total MRI examination times ‘too lengthy’. This is in comparison with MRS in the liver which 

can be acquired while the participant is left to free breath. Accurate placement of the voxel 

within the right lobe, away from the hilum, and obvious vessels results in the voxel always 

measuring liver tissue despite any small respiratory motion.  

Multi Echo imaging is field strength specific, and the echo times (TE) of the transferred 

sequences were not appropriate for the lower field strength of 1.5 Tesla (Elster, 2021). 

Therefore, the initial action was to update the echo times. Afterwards, a period of work-up 

ensued, testing the sequences on a phantom and healthy volunteer, and learning the post-

processing techniques to produce quantitative results and colour maps.     

As validation of ME in the pancreas is still required, MRS subsequently was denoted as the 

gold standard (H. H. Hu et al., 2010) and continued to be acquired despite the aforementioned 

limitations. To improve the likelihood of successful MRS of the pancreas being acquired the 

voxel shape was altered. In the liver where voxel placement is more straightforward, a cube is 

conventionally used. However, to better fit within the pancreas, the voxel shape was 
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elongated to include the same volume, but in a cuboid shape, which can be viewed in P4.  

The updated shape of the voxel along with instructions to continue shallow breathing 

provided evidence indicating good correlation between the MRS and ME of the pancreas. 

The first results were presented as a poster at the 11th International Congress on Obesity in 

Stockholm, Sweden (J. Fitzpatrick, Thomas, Durighel, O’regan, et al., 2010) Supporting 

Evidence ii. The poster conferred that ectopic pancreas fat increases with body mass index 

(BMI) and is closely related to internal adipose depots than subcutaneous stores.   

As the procedure resulted in valid results and was easily integrated into the existing imaging 

protocol, the ME imaging of the pancreas and liver became part of the protocol in two large-

scale imaging studies. The DIRECT project (DIRECT - DIabetes REsearch on Patient 

StraTification, 2022), a pan-European study identify biomarkers in type 2 diabetes and the 

UK Biobank (About UK Biobank | UK Biobank, 2022). The justification was that ME 

sequence could be performed on all MRI scanners regardless of manufacturer, allowing for 

reliable measures of ectopic fat in the liver and pancreas to be collected in these population 

studies. The work to optimise ME single slice pancreas, accurate acquisition, coherent 

analysis, and presentation of results made it an appealing technique which could be adopted 

in large-scale studies.   

Pancreas Volume 

However, large-scale studies would involve many imaging centres and different scanner 

operators of different capabilities. Thus, fast 3D T1 with fat saturation sequence, which 

would cover the pancreas, was included (Morana et al., 2017). The rationale was to allow 

easier positioning of the pancreas ME. However, The Principal Investigator talked about 

pancreatic volume with the group head since there is evidence that it is reduced in T2D. 

Neither felt it would be viable so was not initially included in the protocol. However, during 

the work-up, an interpolated sequence which was extremely fast acted as a localiser for the 

ME sequence. This would also cover the entire organ and using a fat saturation pulse resulted 

in the pancreas being easy to identify for scanner operators and allowed accurate placement 

of the single slice ME sequence. In addition, complete coverage of the pancreas was 

achieved, and therefore, the possibility of whole pancreas segmentation was 

accomplished. This type of sequence had been used in previous research to measure 

pancreatic volume in T1D and shown to be a reliable method (Williams et al., 2007). 
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Fast Whole-Body Protocol Validation  

Validation of a fast Method for quantification of intra-abdominal and subcutaneous adipose 

tissue for large scale human studies (Borga et al., 2015) was published in 2015 following 

collaboration with the private company AMRA Medical (2023). Time is a crucial factor in 

MRI and the opportunity to validate a new faster sequence which could be automatically 

segmented was explored in Paper 5 (P5). The superior soft tissue contrast provided by MRI is 

a reliable way to segment lean and non-lean tissues in the body, both human and animal. In 

addition, the lack of ionising radiation means that MRI is more suited to research studies. 

However, the method described previously (Thomas et al., 2005) was too time consuming 

and required manual segmentation performed by trained individuals. To explore the 

possibility of an alternative, faster method for obtaining the same measurements meant doing 

a direct comparison between the two methods. Therefore, a single operator was to acquire the 

imaging to ensure unvarying acquisition to provide consistent, comparable, and quantifiable 

data.   

As acknowledged in P5, the two imaging techniques were quite different, including different 

patient positions, supine, as opposed to the usual prone position. Thus, comparing the two 

techniques was not comparing like with like. This is mentioned in the discussion section 

along with the need for accurate positioning and identification of the anatomy.    

Another difference between the two protocols was that the AMRA Profiler did not cover the 

entire body. In contrast to the ‘whole body’ sequence which covered from fingertips to toes 

the Profiler covered from ‘neck to knees. This was deemed acceptable as the extremities did 

not contribute as much information regarding health in body composition in a large 

population study. However, the differing amounts of coverage of the two methods required 

accurate anatomical points to identify where the body cavities began and ended. An 

agreement was easily reached for the thorax, as the diaphragm is a clear border with the 

abdomen. Visceral fat in the abdomen is linked to health outcomes (Fox et al., 2007) 

however, identifying an anatomical landmark of where the abdomen transitions into the 

pelvis and the pelvis ends, was more challenging. Various points in the bony pelvis were 

discussed including the iliac crests and pubic symphysis but neither agreed upon. The 

possibility of excluding relevant tissues and how well the pubic symphysis could be defined 

on imaging made these unsuitable landmarks. Eventually, after examining some of the 
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images, it was agreed that the acetabulum of each hip joint would be the cut-off point thus 

including all the pelvis contents in the analysis.   

In this section, optimisation of MRI for human research has been considered. Different 

scenarios have been presented and the importance of tailoring the sequence to the 

requirements of the study examined. The work undertaken in the submitted papers is that 

demonstrates there is no ‘one size fits all’ and optimisation is a requirement when 

undertaking research using MRI.    
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Chapter 3  

Analysis  

Introduction 

An analysis is a detailed examination of the elements or structure of something.  In 

quantitative research, the collected data can undergo some type of analysis to draw out 

information. However, according to Albers (2017), the analysis begins with the formulation 

of the research question where the type of data to be collected is considered and how it will 

be analysed. Thus, an understanding of the data, the relationships within it, and connecting 

them to understand and clarify the research question is the basis of analysis.   

Previously P1 and 2 referred to a single observer; a radiologist performed all the analysis and 

having a single operator strengthened the reliability of data collection. It was also mentioned 

that there are weaknesses in having a single person do things in isolation and the absence of 

repeatability was touched upon. However, as P1 and 2 were both feasibility studies, this 

approach can expedite results, publications and boost the dissemination of knowledge. 

Leading the way for others to reproduce a study and share their findings.    

In-House Software 

The use of in-house software was mentioned in P 1, 2, and 4 to perform the analysis which 

means that a specific programme was created to carry out a predesignated task. Expertise in 

this area is required which may be available in a large research institution but may not be 

accessible to a smaller group or an independent researcher. The fact that in-house software 

for a specific task is used also means that any others, wishing to reproduce the research will 

not necessarily have the software available to them. There is also a risk that in-house software 

has not been tested thoroughly, could contain bugs, and may not be suitable for the task.     

The Open Science Movement encourages the sharing of research output. In 2011, Woelfle et 

al. (2011) proposed that an ‘open-source’ approach can accelerate new scientific discoveries. 

There are many ways to share research with arguments for and against, but there now exist 

repositories where computer code can be shared; thus replication, re-analysis and validation 

of work can be performed with other researchers able to reference the original code.   
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Segmentation of an organ has already been introduced in P3, where lung volume was 

measured and shown to be reduced in obese men. Paper 6 (P6) presents the results of liver 

volume measurements in patients undergoing therapy for Hepatitis C infection. 

Commercially available equipment was used to draw contours around the borders of the 

whole liver on T1 weighted MR images. An image processing workstation (Philips View 

Forum), purchased at the same time as the scanner was freely accessible and had the required 

software package to perform volumetric measurements. This meant that no further financial 

outlay was required to purchase equipment and no specialised knowledge was required to 

create task-specific software. The View Forum is user-friendly and uses the international 

standard DICOM format; as such, it is used by many researchers for post-processing and 

analysis. However, the View Forum is tethered to Philips imaging equipment and therefore 

its use is limited to one physical location.   

Open-Source Software 

Open-source software is another option used in Paper 7 (P7) to measure the psoas muscle 

cross-sectional area. Software for many tasks can be downloaded for free which has been 

developed by experts and shown to be robust by its use in peer-reviewed journals. Image J 

(National Institutes of Health, 2023) was chosen as recommended by a trusted colleague and 

could be installed on a laptop making it portable. The advantage was that, unlike the View 

Forum, an analysis could be performed at any location where a laptop computer could be 

used. Thus, measurements were performed in a variety of settings which accelerated the 

turnaround, producing results in a favourable timeframe. 

Papers 7,8 and 9 (P7, P8 and P9) used open-source software, The Medical Imaging 

Interaction Toolkit (MITK) (The Medical Imaging Interaction Toolkit (MITK) - Mitk.Org, 

2022), to segment the pancreas and psoas muscle. MITK is a powerful tool for image 

processing with a high degree of interaction and specialised medical imaging algorithms such 

as segmentation. Of particular use is MITK builds a 3D rendition of the segmented structure. 

This image could be inspected in all imaging planes and fine-tuning was performed 

simultaneously. Collaboration with imaging scientists was uncomplicated and effortless, as 

they already used the application, and with their experience and in-depth understanding of the 

software its use was quickly mastered. The seamless way MITK constructed 3D images 

meant that it was possible to measure the volume of the psoas muscle and served as an initial 
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experience for all subsequent production of ground-truth for all the research programs 

undertake by the team at the University of Westminster. Examples of which are included in 

appendix D.   

3D rendering was very useful as being able to appreciate the shape of an organ was a bonus. 

P4 includes a description of the pancreas where ectopic fat has infiltrated, and the organ 

outline appears irregular when compared to a pancreas without fatty infiltration. Observing 

this in 3D had a greater impact and encouraged more exploration into larger-scale organ 

segmentation and morphology (Thanaj et al., 2022, 2023).   

Viewing Conditions 

Having the flexibility to perform analysis on a laptop was a great advantage, but this meant 

that the viewing conditions were variable. Background lighting was changeable as the task 

was performed in a variety of situations, including while travelling, bright natural light, and 

at night. Perceived contrast depends on retinal adaptation to local conditions (Arenson et al., 

2003)  and no account was taken to measure or standardise this during the analysis of any of 

the publications. It would be interesting to investigate whether the results were affected by 

the local viewing environment. In the same vein, no attempt was made to harmonise the 

display of the laptop. Different computer laptops were used for P 6,7,8 and 9 and physical 

parameters such as screen luminance, resolution, and refresh rate were not recorded. Again, 

another line of investigation would be to explore different displays and any impact this has on 

the observer performance and results.   

Reliability 

Previously it was documented that the exclusion of repeatability was a possible weakness of 

P1 and 2. In contrast, repeatability was included in P6 and 7 and poster B. This is an 

important exercise as it measures the reliability of any measurement and there are various 

ways to estimate it. P6 and Poster B examined inter-rater/observer reliability to test whether 

the two different observers are consistent. P6 used an experienced radiographer, and a 

radiologist and the results were excellent with good agreement. In contrast, the agreement 

between observers in Poster B was poor where an expert and non-expert were compared. This 

finding supports the need for experts to perform radiological organ segmentation.    
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Another test of reliability, the test-retest was also performed during the analysis of P6 where 

both observers repeated five slices, five times. Test-retest was also included in P7 with 

favourable results and supports the possibility that radiographers can play a larger role in organ 

segmentation or other medical imaging-related tasks.   Once again, much of this work was key 

to the subsequent protocol developed by the team at the University of Westminster to create 

ground-truth data set for the different projects. 

Measuring Psoas  

The introduction to this section discusses that analysis begins with the formulation of the 

research question which was necessary when developing the methods for P7 and supporting 

evidence iv. The project was conceived following observation of whole-body images and 

collection of questionnaires from research participants. It appeared that reported levels of 

activity did not reflect with muscle mass on MRI and there is evidence in the literature that 

people overestimate their physical activity (Westerterp, 2009). Furthermore, direct 

measurements of activity are known to be more accurate but are expensive and require time, 

specialised training, and equipment (Martins et al., 2017) thus they are not practical or easily 

accessible. At the time there was some suggestion that the total muscle mass could be 

estimated from a single abdominal image (Shen et al., 2004) but still required trained imaging 

personnel to perform the segmentation. As the psoas major muscle (PM) is easy to recognise 

on abdominal imaging and is engaged during multiple movements in an ambulant person the 

notion that it could be used as a marker of activity was proposed and developed during 

discussions with colleagues.    

The method for measuring the psoas major was deliberated and the possibility of measuring a 

simple diameter was initially considered. The PM can have an irregular shape so there is not 

always an obvious diameter to measure. The largest measurement was considered but this 

would be anterior-posterior on some but more oblique on others. Therefore, a cross-sectional 

area was settled upon which was also used by Jones et al (2015), Lee (2011) and Stewart 

(2010). The literature indicates that the psoas is largest at the level of L4/5 (Jorgensen et al., 

2003; Kim et al., 2013; Stewart et al., 2010) therefore this vertebral level was selected as 

most suited to the measurement of CSA. Although one study did measure all lumbar vertebral 

levels (Ranson et al., 2006).   
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The PM was not measured in isolation as it could be theorised that any muscle in the human 

body reflects physical activity. The rectus abdominus (RA) CSA was also measured at the 

same level and was not correlated with V02 max or fat mass. Although there is evidence that 

PM CSA is a useful marker of health this has been called a ‘flawed premise’ by Baracos 

(2017). In this article, it is argued that no single muscle can be used to represent anything 

other than its specific function and that the psoas should not be chosen because it is ‘simple 

and easy’ to locate. In addition, localised psoas atrophy is associated with spinal 

diseases/pathology which are common in older adults who are typically the subjects of this 

area of research. Thus, this argument appears to strengthen the need for whole-body muscle 

measurements, which would require automation to achieve. 

One confounding factor in measuring  PM CSA is the possible presence or absence of a psoas 

minor muscle which is significantly different in ethnic groups and can be unilateral (Hanson 

et al., 1999). The presence of a psoas minor muscle could potentially artificially increase 

CSA and impact the results. Interestingly, no evidence of an additional structure was noted 

during any of the analysis. This may be because the resolution of the images was insufficient 

to allow differentiation of psoas minor. Another reason could be that the psoas minor is not 

present in  50-67% of the population (Rosse et al., 1997; Sinnatamby, 2011), and the sample 

may not be representative and include any. 

An interesting study to investigate the PM further would be to use MRS to measure fatty 

infiltration. The quality of the muscle could then be examined along with the size.   

Several mentions have been made of a single operator, trained, and experienced in medical 

imaging performing manual segmentation. This is time-consuming are there simply may not 

be adequate resources available for this task so it is reasonable to explore other options. 

During the latter part of the analysis of the ME pancreas presented in P4 and supporting 

evidence 11 and 111 a PhD student joined the project. With no experience in anatomy or 

imaging, they were required to learn the entire process of recognising the pancreas and 

performing the analysis. 176 subjects were analysed by two users, and which was presented 

as a poster at the ISMRM Scientific Meeting in Long Beach, California 2012 alongside the 

MRS data (supporting evidence iii). Here we demonstrated that ME compared well with 

MRS, but ME was more robust. A point of interest was how many pancreases each observer 

could identify. The experienced user could analyse 93.2% of the data, while observer 2, with 

no background in imaging, could only identify 71.7%. The 26% difference in pancreases 
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identified between the observers is unambiguous evidence that a trained observer with a 

background in imaging should be undertaking this type of analysis of medical images.  As 

this was an international meeting of water/fat MRI techniques, most of the experts in this 

field were present including Dixon, Reeder, Sirlin, Hu, Szczepaniak and Hamilton amongst 

others. The poster (supporting evidence iii) was well-received and opened a conversation 

about the use and effectiveness of acquiring a single slice. This discussion led to the 

suggestion that several slices could be used to cover the whole organ. Although a valid 

suggestion, the time available negated additional time being allocated to cover the whole 

organ. This had already been considered, and it was hypothesized that at least eight slices 

would be required for full coverage owing to the variable size and position of the pancreas. 

This would result in another two minutes of scan time, and with added rest time between BH 

would be much longer. Measuring ectopic fat in the pancreas was already added to the body 

composition protocol and thus needed to be as short as possible while still producing useful 

results.    

In this section, the analysis of research data has been discussed. Rather than being one of the 

final steps, analyses need to be considered at every stage of the experiment to effectively 

demonstrate any relationships within the acquired data.   
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Chapter 4  

Quality Control  

Introduction 

The term quality assurance (QA) and quality control (QC) are clearly defined in reference to 

acceptance testing and monitoring of scanner performance in authoritative documents from 

the Institute of Physics and Engineering in Medicine (IPEM), The American Association of 

Physicists in Medicine (AAPM) and Medicines & Healthcare products 

Regulatory Agency (MHRA). In the UK the MHRA guidelines for the safe use of MRI 

equipment recommends “monitoring of both signal and geometric parameters. MR units 

should not rely solely on the manufacturer’s daily quality assurance (QA) programme” 

(MHRA, 2021). A comprehensive QA programme should be regularly fulfilled in accordance 

with the local MR safety officer, so that the scanner functions within accepted tolerance 

levels and to anticipate any variations before becoming apparent in the imaging quality.    

Distinct from these terms, QA and QC are data quality (DQ) or information quality (IQ), 

which refers to whether the data/information is fit for purpose (Fadahunsi et al., 2021) 

although this will differ depending on the end user. For example, a patient may judge the 

quality of a service as how compassionate the caregiver is while a manager may use a 

different metric such as throughput.  

The previous section highlighted that some of the imaging was not inspected for quality and 

curated well as such some data was not used in P6. Researchers have an ethical obligation to 

acquire quality data that can be trusted and archived meticulously so that it can be easily 

accessible (WMA Declaration of Taipei on Ethical Considerations Regarding Health 

Databases and Biobanks – WMA – The World Medical Association, 2016).    

Ongoing quality checks are required to trust the data. This was the case with P5 where the 

newer technique was compared side by side to the established technique. The quality of the 

data was assured by a suitably qualified personnel-a dedicated research radiographer- 

preparing, acquiring, visually inspecting, curating the data, and providing feedback to the 

manufacturers. Consistency of the data was also assured by this method of one person doing 

multiple tasks, so variations were minimised. However, relying on dedicated staff to perform 
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tasks consistently will only work in small-scale studies where numbers are limited, or the 

time scale is short. As mentioned previously in the section ‘Acquisition’ there are weaknesses 

though as mistakes can be easily overlooked and bias introduced without the benefit of 

another observer. In the real world it is simply not possible to have a single operator 

performing all the imaging-related tasks. Staff take leave, may be rostered to another area, 

and can change jobs so it is inconceivable to have that level of continuity when undertaking 

larger studies over longer periods of time. Variations in the personnel are inevitable and this 

must be considered when undertaking larger studies.   

Pancreas Segmentation 

Paper 8 (P8) depended on the expert input of a single research radiographer to provide the 

ground truth training data and evaluation in the development and testing of an automated 

organ segmentation task. UK trained Radiographers are knowledgeable about anatomy and 

can identify the pancreas which will be only 1% of an abdominal MRI scan (Asaturyan et al., 

2019a). Providing accurate ground truth for training data was a labour-intensive and time-

consuming task which is acknowledged as a reason for the lack of quality data for machine 

learning applications. Being able to dedicate time and effort exclusively to the task of 

pancreas segmentation was invaluable but also somewhat unusual. It has been established 

that there are not enough resources and skilled people to perform this task and it is a 

limitation of the expansion of machine learning (Willemink et al., 2020). It is assumed that 

radiologists are required for accurate organ segmentation but here is an example where a 

radiographer was classified as the expert and was able to fulfil the required task with speed 

and accuracy. P8 mentions the boundary contrast of the pancreas is similar to the surrounding 

tissue and thus confidently identifying the border is challenging; a radiographer experienced 

in abdominal MRI is suitable to perform this task.   

In addition to segmenting the images to produce the ground truth, the outputs were evaluated 

and marked on an accuracy scale. That is, the same radiographer viewed the outputs and 

graded the accuracy of the segmentation results to provide feedback on how the software 

performed. Once again, a task usually performed by a radiologist was comfortably performed 

by an experienced radiographer. The development of machine learning can be accelerated 

with the input of the radiographer workforce taking a more active role.   
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Machine Learning  

Machine learning is a sub-field of artificial intelligence and can be defined as “the field of 

study that gives computers the ability to learn without explicitly being 

programmed.”(Samuel, 2000). The process begins with training data which the computer 

uses to train itself to find patterns. This is tested on another set of training data to which the 

computer has not been exposed. The results are articulated as the Sorensen-Dice Coefficient 

show how accurate the computer is and whether the resulting algorithm can be used with 

different data.  

The provision of training data is a bottleneck in the application to medical imaging and 

requires an 'expert' to appraise and annotate images in preparation for training the computer. 

This expert is usually a radiologist but there seems to be no reason why radiographers cannot 

perform this role. Radiographers are experts in imaging and anatomy and are now performing 

tasks previously done only by a Radiologist. Examples are reporting, administering contrast 

medium, and performing some interventional studies autonomously. Therefore, it seems 

logical that radiographers could play a more active role in producing training data sets. A 

further advantage would be to contribute to job satisfaction by being recognised as capable of 

doing this task and adding further prestige to the role of the radiographer (Chevalier et al. 

2022). 

P8 successfully presents a novel approach to generate accurate pancreas segmentation and 

can be translated to other organs. Mentioned in the conclusion is the fact that the outputs 

were generated from two different scanners with differing protocols. The variation in MRI 

scanners is significant and protocols can be variable across manufacturers. Differences in 

field strength, gradient strength, shimming, and coils can produce subtle but important 

variations in images. P8 drew attention to the differences in parameters of the training data 

from two different scanners in the results section and how the approach coped well despite 

this.  Using the Dice Similarity Coefficient, a score above 80% demonstrated the robust 

performance of the proposed approach.   

Quality in Large Scale Studies 

A visual review by a suitably qualified person has so far been emphasised to assess DQ and 

this is an important step in the production of images. However, when scaling up research 

studies to larger cohorts there may be differences in the competence across geographical 
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regions along with different scanners. P4 and supporting evidence ii and iii document the 

development of the ME sequence and how it can be used to measure fat in internal organs 

and this technique became part of the protocol for the DIRECT project, where several 

imaging centres across Europe were involved. It was not possible for a single person to 

undertake all the imaging, but a single person could oversee and train the imaging personnel. 

In this way, standardisation could be accomplished which contributed to DQ by 

communicating the imaging requirements and having a single point of contact to advise and 

troubleshoot for all the centres. Standardisation activity at the beginning of a multi-centre 

imaging study will reduce variance which could impact the analysis and there is good 

evidence that robust data can be acquired in neurological studies in these circumstances 

(Glover et al., 2012).    

In 2011, the paper ‘Evaluating the role of the diagnostic research radiographer’ was 

published in Radiography where Reid and Edwards (2011) advocate the role of the research 

radiographer with one of the advantages being ‘consistency of application’. In large-scale 

studies, it is not always possible to be at all imaging centres, but it is possible to delegate the 

role to specified people. Although done informally, staff who were keen to be involved were 

identified during site visits and networks were formed thus strengthening team working and 

communication. This evolved during the protocol dissemination phase where protocols were 

shared between the same manufacturer scanners and troubleshooting was completed. In 

addition, a directory of staff names and contact details was distributed to encourage 

communication and introduce a little healthy competition too.    

Dissemination of Imaging Protocol 

To meet the expectations of all staff a visual presentation was given along with a written 

protocol. Both visual and written protocols of the imaging requirements were distributed to 

all the centres, included in appendix B in hard and electronic formats. Furthermore, all 

centres were required to provide a healthy volunteer to scan during site visits. This allowed a 

demonstration of the required protocol and a way to assess site understanding and 

compliance. Finally, when the first patient was recruited at each centre their imaging was 

overseen to guarantee understanding, compliance and quality before being given the go ahead 

to unsupervised imaging. All these initiatives were designed to deliver effective, efficient, 
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and consistent imaging of the study participants. It would be advantageous to document 

‘start-up’ activities to provide formal records and templates for further studies to follow.    

It is believed that all MRI machines are the same and produce identical outputs. Although 

working on the same principle the advice to perform QA and QC demonstrates that regular 

care is required to maintain the minimum standards. Performed on test objects referred to as 

phantoms, the evaluations prescribed by authoritative bodies mentioned earlier measure the 

technical specifications. All centres in the DIRECT project undertook the recommended QC 

programme and these were inspected at the time of site visits. With hindsight it would have 

been prudent to formalise this and make a record that observation had occurred and even 

centralised copies of the QC outcomes. Although the QA programmes were followed at all 

centres differences were observed which required variations to tailor the protocols at some 

centres. The largest field of view (FOV) acquired by each scanner was most apparent and 

varied from 380mm to 530mm. A visual example is included for reference. 

 
Figure 6 FOV in different MRI equipment 

This was not anticipated by the sponsors of the study, who recruited the imaging sites on the 

basis that they had an MRI scanner. The input from a medical imaging professional at this 
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stage would have anticipated the extra work required to standardise the imaging with a wide 

variety of scanner capabilities.  

Fat Phantom 

The inclusion of the ME sequence to the protocol was a concern as not all scanners had the 

capability to perform MRS; thus, no quantitative comparisons could be undertaken to ensure 

consistent measures of fat were being acquired. Fat phantoms do exist but are very expensive 

and no budget was available, so this was ruled out. Discussions about the possibility of a food 

source, such as mayonnaise being used were also ruled out as even an unopened jar would 

change over time and eventually spoil thus not stable enough. Additionally, travelling across 

international borders with foodstuffs may have encountered difficulties. The lipid emulsion 

known by its commercial name Intralipid was next investigated as it is stable, could remain 

sealed, and is supplied in predefined fat concentrations. This was tested on two scanners, but 

the water content of Intralipid was too high to use the ME analysis software for accurate 

measurements. Since the T1 of water is four seconds and the T2 is 2 seconds (Elster, 2023) 

insufficient decay could occur during the acquisition to measure the oscillation in the signal 

due to fat content.  

While attending the ISMRM fat/water separation meeting (supporting evidence iii) one of the 

delegates presented a ‘home-made’ fat phantom which could be easily constructed from 

common and cheap ingredients and would be stable for at least a year. Using Catherine Hines 

recipe (Hines et al., 2009) a chemist colleague helped to construct the phantom at 10% lipid 

with no iron content. The phantom travelled to all imaging centres during the start-up phase 

with ME outputs being collected along with MRS where possible. The results were 

satisfactory and verified that fat measurements were standardised and consistent. 

Interestingly, the fat phantom lasted more than a year and was used regularly in other studies 

and experiments. This was surprising, as it was sealed in the normal atmosphere and so was 

predicted to decay more rapidly. A better strategy would have been to seal it in an 

atmosphere of nitrogen to avoid oxygen related decay, but this option was not available at the 

time. Fat phantom measurements were performed on all scanners during the initial start-up 

phase of the DIRECT trial, and it would have been useful to repeat the measurements at 

regular intervals. The scanner performance regarding fat measurements using ME could then 

have been monitored over time and any changes noted before impacting the study. Further 
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investigation into repeatability would have been useful to perform at this time too. However, 

a commercial phantom guaranteeing consistent performance would have been required and 

additional travel time and expenses necessary. Alternatively, a phantom could be given to 

each imaging centre which would stay and become part of their regular quality control 

programme with the responsible person at each centre recording and responding to any 

diversity. Again though, additional expense would be incurred.    

In this section it has been demonstrated that quality is a broad term and must be seen as 

specific to any task. In a similar fashion to other sections the procedures must begin early in 

the process of setting up any research study to be effective.    
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Chapter 5  

Translate  

Introduction 

Providing determents of health has been the motivation behind the increase in large cohort-

based studies. Increasing sample size increases statistical power (Desmond & Glover, 2002; 

Turner, 2014) so that the underlying links between clinical conditions and lifestyle can be 

better understood. Some large cohort studies include imaging data, and this work has so far 

included the cultivation of quantitative methods of organ segmentation to measure organ 

volume and ME imaging to measure ectopic fat in the pancreas and liver. These techniques 

have been included in two large-scale studies so far, the DIRECT consortium and the UKBB, 

both of which have resulted in new disease insights and will continue to do so as the acquired 

data continues to be investigated. A letter acknowledging the contribution to UKBB is 

included in Appendix C. 

Large Scale Studies-Patient Perspective 

From an imaging perspective, the biggest difference, and most challenging was standardising 

the imaging protocols as DIRECT used MRI scanners from different manufacturers. Fine-

tuning of the protocols was required to compensate for different scanner capabilities. 

Something that was avoided in the UKBB, as all the imaging centres used the same scanner 

manufacturer who installed identical models. The imaging protocols incorporated established 

techniques were demonstrated to be robust and reliable. The body composition technique 

outlined in P4 was used in DIRECT, whereas the automated technique from P5 was selected 

in the UKBB. The feedback from participants indicated that the P5 technique was the most 

popular, as it required them to lie supine. The prone position included in P4 was 

uncomfortable for many, and the staff and patients found it more burdensome to accurately 

position.  

Nevertheless, being able to continue breathing quietly was welcomed by many. In contrast, 

P5 technique required consecutive breath-holds, which some found tiresome and challenging 
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to manage. Taking a little extra time during preparation and practising the breathing 

technique made it more manageable, but time was limited in the UKBB.    

Upscaling Body Composition Protocol 

P5 demonstrated that accurate and reproducible body composition imaging was possible and 

well tolerated by study participants at smaller scale imaging. However, as the number of 

datasets increases, it may take time to maintain accurate acquisition and analysis. When the 

technique described in P5 was adopted int the UKBB, it was slightly modified. No localiser 

was performed; landmarking was positioned over the clavicles, and technical quality was 

assessed afterwards. This acquisition method allowed the maximum throughput, and the 

UKBB achieved the goal of imaging 126 participants per week at week 16. Although this 

method maximised throughput, it ran the risk of variations in positioning and substandard 

quality imaging being included. In 2016 West et al. (2016) published their investigation 

‘Feasibility of MR-Based Body Composition Analysis in Large Scale Population Studies’, 

citing P5. The first 3000 participants in the UKBB who underwent the protocol from P5 were 

included in the study. One aim of the study was to investigate the feasibility of the protocol 

being translated into large-scale studies. 99% of scans were analysable by the AMRA profiler 

used in P5 with each dataset assessed on a per-subject basis. The study concluded that 

participants tolerated the MR body protocol very well, robust analysis was achieved and that 

‘the method can be readily applied in population-wide studies.’    

QA in Large Scale Studies 

Translating to large-scale imaging includes sustaining the quality of imaging which would 

usually involve visual inspection directly after acquisition by the operator. In the UKBB, 

strict time constraints and a high-throughput acquisition protocol limit the visual inspection 

of images. However, there is still a need to identify suboptimal images and ensure the 

integrity of results. Automated methods have been proposed for the task of QC MR images. 

Tarroni et al. (2020) have published their fully automated QC pipeline for UKBB cardiac 

images and Alfaro-Almagro et al. (2018) have published their image processing and QC for 

the first 10,00 brain images. Indeed, as part of West et al. (2016) publication a QC criterion 

was defined for the acceptance/rejection of datasets, but visual inspection of the images was 

still required. In 2020 P9 co-authors Basty et al. (2020b) published ‘Image processing and 
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Quality Control for Abdominal Magnetic Resonance Imaging in the UK Biobank’ where a 

fully automated analysis and pipeline for the UKBB abdominal protocol is presented. The 

pipeline includes the detection of water/fat swaps and the simultaneous estimation of PDFF 

and R2* from the single slice ME sequences. This is unlike West et al. (2016) who only 

presented the outcome of the analysis of the body composition portion of the protocol. Thus 

far, the pipeline has been used on the first 38,971 participants of the UKBB who have 

undergone the abdominal imaging protocol, with plans to include all 100,000 when that 

number is achieved. Outcomes are anticipated to boost investigations into body composition, 

organ volume and organ morphology and the associated diseases using the UKBB body 

protocol and some rudimentary images are included in Appendix D. 

Psoas Muscle in Large Scale Studies 

Previously P7 demonstrated a link between PM cross-section and cardiovascular fitness, and 

there is evidence that this muscle is indicative of sarcopenia and general frailty (Balsam, 

2018). Continuing the work of P7 is Paper 9 (P9). Published in Scientific Reports 2020 

presented the outcome of an investigation into the large-scale analysis of psoas volume in 

5000 UKBB participants. Earlier it was discussed that Baracos (2017) questioned whether the 

PM is a sentinel muscle and whether the cross-sectional area of any one muscle can be used 

to predict anything with certainty.  In 2019 Waduud et al (2019) published an article that 

concluded that the total volume of the psoas is represented by single-slice cross-sectional 

volumes at the level of L3 thus suggesting that future studies could reliably measure the CSA 

at L3. However, this was criticised by Flaris and Konstantinidis (2021). They pointed out that 

they used a non-validated linear model and questioned the validity of the claims in the 

Waduud paper. Subsequently, Otaki et al.(2020)  published an article in which the total psoas 

muscle volume was measured in prostate cancer patients. 3D images of the PM were 

automatically generated using Synapse Vincent by Fujifilm® software. Although the authors 

describe the whole PM volume, it appears that the included anatomy ends at the pelvis, and 

the distal part of the PM is excluded. This was also the case with Davico et al. (2022), where 

the proximal portion of the PM was excluded due to it being ‘difficult to identify’, and the 

images, collected retrospectively, were not all found to cover the entire muscle. In contrast, 

P9 included the entire muscle, due to the imaging protocol outlined in P5, which was used for 

the body composition portion of the UKBB imaging protocol. 3D images were acquired from 
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‘neck to knees’, with a slice gap of 0mm; full uninterrupted coverage of the PM was available 

for analysis.     

Although manual segmentation remains the gold standard for muscle segmentation, it is not 

feasible to use this method for large-scale studies because the human resources required do 

not exist. Therefore, for P9 an automated method was devised using artificial intelligence. 

Nonetheless, manual segmentation was still required for the training data, and 90 subjects 

were segmented using the open-source software MITK. It is mentioned that these were 

performed by an expert radiographer in the methods section of P9 and the annotation of both 

muscles took between five to seven hours. Hence evidence that it is not realistic to undertake 

this on a large scale where many thousands of imaging datasets are collected. The automated 

method outlined in P9 indicates that it is possible to measure whole PM volume accurately 

and dispenses with the lack of consistency in how the muscle is measured in other 

publications. However, van Erck et al. (2022) has recently published their findings when 

using an automated method to measure PM at L3 using computerised tomography (CT). 

Citing and acknowledging that P9 has correctly measured the PM volume, this study 

questions if whole volume measurements are predictive of clinical outcomes.  

The success of automated methods relies on the fact that the training data/ground truth is 

correct and accurate. Recently, Davico et al. (2022) published their work testing for 

intraoperative repeatability of manual segmentation of the hip muscles, including the PM 

citing P9. Their findings were encouraging, measurements being highly repeatable though 

acknowledging that great care should be taken as errors could be magnified during 

interpolation.  

Following the successful implementation of the UKBB abdominal protocol, the co-authors of 

P9 went on to publish ‘Genetic architecture of 11 organ traits derived from abdominal MRI 

using deep learning’ (Liu et al., 2021). Citing P9 the paper presents the quantification of 

abdominal organ volume, fat and iron content based on the analysis of 38.000 abdominal 

scans from the UKBB.    

The ground-truth training data for organ volume was performed by a team of radiographers 

using MITK, who underwent training based on a standard operating procedure created by the 

author. Bearing in mind the significant bottleneck, already mentioned in producing high-

quality training data for machine learning, radiographers who understand anatomy and image 

contrast can support this role. With its increased use, machine learning has the potential to 
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become a part of routine clinical care, and radiographers are ideal for supporting this 

progression in imaging technology.   

With the publication of P9 and ‘Genetic architecture of 11 organ traits derived from 

abdominal MRI using deep learning’ which cites P9 there is evidence that MRI markers of 

health, including organ volume, ectopic fat, and iron, have been cultivated and successfully 

translated into large-scale studies.  

  

Future Work  

So far, this work has included appropriately trained and qualified personnel, such as 

radiographers, medics, and physicists. Several mentions are included that there needs to be 

more high-quality training data and suitable people to produce it. However, this will not 

change in the current climate, so alternative resources require further investigation. 

Crowdsourcing: 'the practice of obtaining information or input into a task or project by 

enlisting the services of a large number of people, either paid or unpaid, typically via the 

internet' (OED Online, 2022) is a resource that could be an alternative to expert annotation. 

In 2015, Gurari et al.(2015) presented their findings evaluating the performance of experts, 

crowdsourced non-experts and algorithms. Both experts and crowdsourced non-experts 

performed consistently well, outperforming all algorithms, and so may become a valuable 

resource in medical imaging segmentation.  

Work in crowdsourcing organ segmentation has already begun, with twenty non-experts 

recruited to segment the uterus using T1 weighted images from the UKBB. All participants 

underwent training via YouTube videos to download data and MITK, upload data to MITK, 

perform the segmentation, save it, and upload it to a shared folder (J. Fitzpatrick, 2021). This 

work will be written up after the conclusion of this thesis.  

The use of crowdsourced non-experts could solve the bottleneck in producing high-quality 

training data. Nevertheless, several factors must be considered. Crowdsourcing can rely on 

altruism which could be limiting, and thus payment may be offered. However, offering 

money may not motivate crowd participants to produce high-quality work, as quantity will be 

more lucrative than quality. The source of any financing must also be considered and whether 

this will introduce bias. The quality of the initial data, assessment of segmentation and correct 

data filing are factors that need to be considered.  
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Career Aspirations 

Having completed my PhD, I am eager to explore opportunities within industry and academic 

or clinical settings. My primary focus is on continuing research endeavours to contribute to 

advancing the radiography field. To achieve this, I plan to maintain academic connections 

with the University of Westminster and Salford, considering grant applications to support 

future research endeavours.  

Additionally, I aim to broaden the impact of the 'continued professional development' group I 

initiated at my workplace by incorporating all European radiographers and imaging 

technologists within the company. With a commitment to fostering lifelong learning in the 

profession, I will be readily available to mentor colleagues interested in pursuing further 

education. 
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Conclusion 

This thesis has been submitted to fulfil the requirements for PhD by publications. Nine peer-

reviewed published papers were included, along with supporting evidence, accompanied by a 

critical appraisal of the papers and an overview of their impact. This PhD has focused on 

cultivating quantitative methods for MRI, with the goal of translating them into large-scale 

studies. This work describes a journey from entering a research environment to culminating 

in the generation of original and novel work that has endured peer review and has been 

translated into large-scale imaging studies.  

Upon reflection on the submitted work, themes were identified that characterised the 

requirements when undertaking quantitative research. Rather than documenting the 

parameters, an entire itinerary must be identified and appropriately assigned immediately 

after the conception of a research project. 

Four aims were identified to demonstrate how the overarching objective of the work was 

achieved. 

A discussion is included as to how the processes are effectively undertaken. Included is how 

a safe and welcoming environment contributes to the acquisition of quality data, how the 

protocol should be achievable, relevant, and reproducible and how this is achieved through 

optimisation. The role of a dedicated research radiographer is also included. Choices when 

selecting tools for analysis are discussed as how the analysis should be part of the initial 

considerations when any study is conceived; in addition, giving and receiving feedback via 

discussion and the process of publishing and how this can contribute to the process of 

optimisation. 

Translating the imaging methods to large-scale studies is identified as how the upscaling 

process differs from routine diagnostics and the requirements regarding consistency of 

acquisition, managing QC processes and analysis of big data. 

Finally, a means to automate some of the processes required for large-scale studies are 

proposed to effectively generate meaningful outcomes and relevant information regarding 

health markers in realistic time frames. 

The feasibility of using MRI to measure critical physiological parameters such as ectopic fat 

content and organ volume accurately and precisely, in various tissues has been demonstrated. 

These methods have then been shown to translate into large-scale studies. By continuing to 
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refine and validate these methods, we can help to pave the way for a new era of how imaging 

is used to influence which treatments and interventions are helpful and represents a 

significant step forward in our understanding of quantitative MRI methods and their potential 

applications in large-scale studies. 
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Appendix 
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A. Supporting Evidence-Poster Presentations 

Ai. Quantifying hepatic lipid content and T2* decay using breath-

hold mutiecho imaging at 3.0 tesla (O’Regan et al., 2007) 

Presented at the 16th meeting and Exhibition of the International Society for Magnetic 

Resonance in Medicine: Berlin, German y 19-25th May 2007
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Aii. Measurement of Pancreatic Fat Using Muti Echo MRI           
(J. Fitzpatrick, Thomas, Durighel, O’Regan, et al., 2010) 

Presented at the 11th International Congress on Obesity: Stockholm, Sweden July 2010 
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Aiii. Comparing Multi Echo and MRS to Measure Pancreatic Fat  

(J. Fitzpatrick et al., 2012) 

Presented at ISMRM SCIENTIFIC WORKSHOP ~ Fat-Water Separation: Insights, 

Applications & Progress in MRI: Long Beach, California, USA. February 2012 
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Aiv. Psoas Muscle Cross Sectional Area: A Novel Marker of 
Physical Fitness (J. A. Fitzpatrick et al., 2013) 
Presented at European Congress on Obesity: Liverpool, U.K. May 2013 
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B. DIRECT Training Presentation 
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C. Biobank Letter 
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D. Current/Future Work 
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