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PREFACE v 

Preface 

This book is an undergraduate text i n dynamical systems. I t is a imed 
at students who have taken at least one year o f calculus, bu t not necessar-
i l y any higher level mathematics courses. The book is an o u t g r o w t h of a 
one-semester course taught by the author at Boston Univers i ty for the past 
several years. Students i n the course ranged f rom beginning mathematics 
majors to senior level science and engineering students, f rom English ma-
jors who take mathematics courses "because they are fun" to prospective 
secondary school mathematics teachers. W i t h the possibi l i ty of inc lud ing 
computer exper imentat ion, labora tory reports, group projects, together w i t h 
some wonderful ly accessible mathematics, a course i n dynamica l systems can 
easily be ta i lored to such a diverse audience. 

I feel tha t i t is desirable to int roduce students to this field at an early 
stage i n their mathemat ica l careers. There are a number of reasons for 
this . F i r s t , the s tudy of dynamics offers mathematicians an o p p o r t u n i t y to 
expose students to contemporary ideas i n mathemat ica l research. M a n y of 
the ideas and theorems i n this book were first discovered w i t h i n the students ' 
lifetimes; many of the pictures included herein were first viewed w i t h i n the 
past decade. To emphasize the contemporary nature of the field, I have 
included snapshots and br ief biographies of a number of indiv iduals who 
have made recent contr ibut ions to the ideas i n this book. 

M u c h of the current interest i n dynamics centers a round the chaotic 
behavior tha t occurs when a simple funct ion is i terated. I n this book, the 
emphasis is on the simplest possible set t ing i n which this occurs, namely 
i t e ra t ion of real or complex quadratic polynomials . B y dealing ma in ly w i t h 
this special case, the mater ia l becomes accessible to students who do not have 
a background i n topology or analysis. For example, w i t h only the knowledge 
of how to m u l t i p l y complex numbers, students can comprehend the basic 
mathemat ica l ideas behind such topics as the Ju l ia set or the Mande lbro t 
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set. 

A second pedagogical reason to introduce dynamics early i n the curr icu-
l u m is tha t the course may serve as a bridge between the low- leve l , often 
nonrigorous calculus courses and the much more demanding real analysis 
courses. A l l too often, students see no connection between the calculus 
courses tha t occupy their early years as an undergraduate and the more 
advanced analysis courses they take later. Dynamics offers students an op-
p o r t u n i t y to use and b u i l d upon their knowledge of calculus and, at the same 
t ime, to see i n a very concrete sett ing many of the i m p o r t a n t topics f rom 
basic analysis. I have found tha t students begin to appreciate the need for 
abstract metr ic spaces when they first encounter an object l ike the space 
of sequences i n symbolic dynamics. They realize the impor tance of an e-S 
defini t ion of con t inu i ty when they t r y to analyze the shift map. Cantor sets 
become na tu ra l objects to study when students see how often they arise i n 
dynamics. Indeed, students who have studied analysis p r io r to dynamics 
often remark tha t they now know why a l l tha t abstract ion is impor t an t ! 

To accommodate beginning students, this book is s t ruc tured so tha t stu-
dents are gradual ly in t roduced to more and more sophisticated ideas f rom 
analysis as the chapters unfold. I t starts w i t h only a few elementary notions 
tha t can be explained using graphical methods or differential calculus. Proofs 
are in t roduced slowly at f irst , and plenty of rout ine exercises are included. 
Later come concepts such as dense sets and metr ic spaces. These concepts 
arise na tu ra l ly i n the sett ing of simple dynamical systems, so they can be 
in t roduced i n a manner that is b o t h concrete and accessible. I feel tha t this 
approach is beneficial to those students who do not contemplate future grad-
uate s tudy i n mathematics—they see some of the p r inc ipa l ideas of analysis 
bu t not i n the set t ing of an intensive course designed for prospective PhDs. 

One of the unique aspects of a dynamics course is the possibi l i ty of 
inc lud ing an experimental component. M y students make weekly t r ips to 
the computer lab to perform numerical experiments related to the topics 
covered i n class. These experiments range f rom observations of the rate 
of convergence to a t t r ac t ing vs. neut ra l fixed points to a reenactment of 
Feigenbaum's celebrated discovery of the universal i ty of the pe r iod -doub l ing 
route to chaos. Students are asked to perform a detailed analysis of the 
placement of the windows i n the orb i t d iagram as wel l as an assessment of 
the meaning of the decorations on the Mande lbro t set. They go to the lab to 
gather data; they formulate hypotheses and conjectures; they w r i t e up their 
findings i n a lengthy lab report . Given the incredible beauty of many of the 
images the students investigate as well as the open-ended nature of many of 
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the investigations, this po r t i on of the course is always great fun! Moreover, 
the possibi l i ty of combin ing rigorous mathematics w i t h exper imental ideas 
is a unique oppor tun i ty . 

Included i n the book are a number of sections marked "Exper iment ." 
These are the labora tory assignments tha t m y students complete outside of 
regular class hours. M a n y of these labs require two weeks to complete, so 
there axe many more experiments included i n the text t han are possible to 
complete i n a one-semester course. I n add i t ion , many of the later labs (espe-
cial ly i n the chapter on the Mandelbro t set) demand access to sophisticated 
computers (cer ta inly inc lud ing a numeric co-processor). 

For this reason, i t may be beneficial for instructors to per form some of 
the labs as classroom demonstrations, asking students to react verbal ly to 
what they observe and to discuss what unfolds on the screen. I always use 
a computer i n the classroom to mot ivate dynamical ideas and to i l lus t ra te 
i n "dynamic" fashion what the theorems i n the course mean. O f course, 
the computer does not always give the correct answer. To make students 
cognizant o f this fact and to make sure tha t they remain suspicious du r ing 
the course, the first experiments the students per form are ent i t led "the com-
puter may l ie . " These experiments should be the first performed, or at least 
witnessed, by the students. 

Software and Solutions Manual 

As par t of m y course, I make extensive use of software for Macin tosh 
computers developed specifically for the course w i t h the assistance of James 
Georges and Del Johnson. This software, called A First Course in Chaotic 
Dynamical Systems Software, is available f rom Addison-Wesley and parallels 
b o t h the experiments and the problems i n this book. The software runs on 
any Macin tosh computer w i t h 2 M b R A M , runn ing System 6.0.5 or higher, 
and inc lud ing Color QuickDraw. Site licenses are also available (cal l Addison-
Wesley at 800-447-2226). 

The software has been an invaluable a id as b o t h a labora tory and demon-
s t ra t ion too l . However, several caveats are i n order. The software is not de-
signed as a research too l . Rather, i ts capabilities are l i m i t e d by the scope of 
the experiments and projects i n the text . Second, many of the experiments 
demand a significant amount of computa t iona l power or elaborate graphics 
such as those found on the Macintosh I I series of computers. R u n times on 
computers w i t h o u t mathematics coprocessors may be unreasonably long. 

O n the other hand, the software has been designed so tha t no p r io r com-
puter experience on the par t of the user is necessary. Indeed, we have segre-
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gated various labs i n to separate programs tha t progress i n order o f diff icul ty 
of use. Users are not confronted by a vast array of menu i tems or options 
tha t do everything bu t wash the d i r t y dishes i n the sink. Rather, each lab 
has a specific purpose, and the ease of use allows students to concentrate on 
the mathematics du r ing each lab, ra ther than the mechanics of mak ing the 
software work . Th i s means tha t the students have a significant mathemat-
ical experience i n the lab rather than a f rus t ra t ing bout w i t h over-powerful 
software. 

A pr ivate ly published solutions manual compiled by Thomas R. Scavo is 
also available for $12.50 ($15.00 outside US and Canada) by w r i t i n g to the 
author, Robert L . Devaney, at the Mathematics Depar tment , Boston U n i -
versity, 111 C u m m i n g t o n Street, Boston, M A 02215. The manua l contains 
detailed solutions to approximately 75% of the exercises i n the text (not 
inc lud ing experiments) . 
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CHAPTER 1 A MATHEMATICAL AND HISTORICAL TOUR 1 

C H A P T E R 1 

A Mathematical and Historical Tour 

Rather t han j u m p immedia te ly i n to the mathematics of dynamica l sys-
tems, we w i l l begin w i t h a br ief tour of some of the amazing computer graph-
ics images tha t arise i n this field. One of our goals i n this book is to expla in 
wha t these images mean, how they are generated on the computer , and w h y 
they are i m p o r t a n t i n mathematics . We w i l l do none of the mathematics 
here. For now, you should s imply enjoy the images. We hope to convince 
you , i n the succeeding chapters, tha t the mathematics behind these images 
is even pret t ier t han the pictures. I n the second par t of the chapter, we w i l l 
present a br ie f h is tory of some of the developments i n dynamica l systems 
over the past century. Y o u w i l l see tha t many of the ideas i n dynamics arose 
fa i r ly recently. Indeed, none of the computer graphics images f rom the tour 
had been seen before 1980! 

1.1 Images from Dynamical Systems 

This book deals w i t h some very interest ing, exci t ing , and beaut i ful topics 
i n mathematics—topics which , i n many cases, have been discovered only i n 
the last decade, The m a i n subject of the book is dynamical systems, the 
branch of mathematics tha t a t tempts to unders tand processes i n m o t i o n . 
Such processes occur i n a l l branches of science. For example, the m o t i o n of 
the stars and the galaxies i n the heavens is a dynamica l system, one tha t has 
been studied for centuries by thousands of mathematicians and scientists. 
The stock market is another system tha t changes i n t ime , as is the world ' s 
weather. The changes chemicals undergo, the rise and fal l of populat ions , and 
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the m o t i o n of a simple pendulum are classical examples of dynamica l systems 
i n chemistry, biology, and physics. Clearly, dynamical systems abound. 

W h a t does a scientist wish to do w i t h a dynamical system? Wel l , since 
the system is mov ing or changing i n t ime , the scientist w o u l d l ike to predict 
where the system is heading, where i t w i l l u l t ima te ly go. W i l l the stock 
market go up or down? W i l l i t be ra iny or sunny tomorrow? W i l l these two 
chemicals explode i f they are mixed i n a test tube? 

Clearly, some dynamical systems are predictable, whereas others are not . 
You know tha t the sun w i l l rise tomor row and tha t , when you add cream to a 
cup of coffee, the resul t ing "chemical" reaction w i l l not be an explosion. O n 
the other hand, predic t ing the weather a m o n t h f rom now or the Dow Jones 
average a week f rom now seems impossible. You migh t argue tha t the reason 
for this unpred ic tab i l i ty is tha t there are s imply too many variables present i n 
meteorological or economic systems. T h a t is indeed t rue i n these cases, bu t 
this is by no means the complete answer. One of the remarkable discoveries 
of twent ie th-century mathematics is tha t very simple systems, even systems 
depending on only one variable, may behave jus t as unpredic tably as the 
stock market , j u s t as w i l d l y as a tu rbulen t waterfal l , and jus t as v iolent ly 
as a hurricane. T h e cu lp r i t , the reason for this unpredictable behavior, has 
been called "chaos" by mathematicians. 

Because chaos has been found to occur i n the simplest of systems, sci-
entists may now begin to s tudy unpred ic tab i l i ty i n i ts most basic fo rm. I t 
is to be hoped tha t the study of these simpler systems w i l l eventually allow 
scientists to find the key to understanding the tu rbulen t behavior of systems 
invo lv ing many variables such as weather or economic systems. 

I n this book we discuss chaos i n these simple settings. We w i l l see tha t 
chaos occurs i n elementary mathemat ica l objects—objects as famil iar as 
quadrat ic functions—when they are regarded as dynamica l systems. Y o u 
may feel at this po in t that you know al l there is to know about quadrat ic 
functions—after a l l , they are easy to evaluate and to graph. Y o u can differen-
t iate and integrate them. B u t the key words here are "dynamical systems." 
We w i l l t reat s imple mathemat ical operations l ike t ak ing the square root , 
squaring, or cubing as dynamical systems by repeating the procedure over 
and over, using the ou tpu t of the previous operat ion as the i n p u t for the 
next. T h i s process is called iteration. Th i s procedure generates a l ist of real 
or complex numbers tha t axe changing as we proceed—this is our dynam-
ical system. Sometimes we w i l l find tha t , when we i npu t certain numbers 
in to the process, the resul t ing behavior is completely predictable, whi le other 
numbers y ie ld results tha t are often bizarre and to t a l l y unpredictable. 
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For the types of functions we w i l l consider, the set o f numbers tha t y ie ld 
chaotic or unpredictable behavior i n the plane is called the Julia set after 
the French mathemat ic ian Gaston Jul ia , who first formula ted many of the 
properties of these sets i n the 1920's. These Ju l ia sets are spectacularly 
complicated, even for quadratic functions. They are examples of fractals. 
These are sets which , when magnified over and over again, always resemble 
the or ig ina l image. The closer you look at a fractal , the more you see exactly 
the same object. Moreover, fractals na tu ra l ly have a dimension tha t is not 
an integer, not 1, not 2, bu t often somewhere i n between, such as dimension 
1.4176, whatever tha t means! We w i l l discuss these concepts i n more detai l 
i n Chapter 14. 

Here are some examples of the types of images tha t we w i l l study. I n Plate 
1 we show the Ju l ia set o f the simple mathemat ica l expression z2 + c, where 
b o t h z and c are complex numbers. I n this par t icular case, c = —.122 + .745i. 
Th i s image is called Douady's rabbity after the French mathemat ic ian A d r i e n 
Douady whose work we w i l l discuss i n Chapter 17. The black region i n this 
image resembles a "fractal rabb i t . " Everywhere you look, you see a pair of 
ears. I n Plates 2 and 3 we have magnified port ions of the rabb i t , revealing 
more and more pairs o f ears. 

As we w i l l describe later, the black points you see i n these pictures are 
the non-chaotic points . They are points representing values of z tha t , under 
i t e ra t ion of this quadrat ic funct ion, eventually tend to cycle between three 
different points i n the plane. As a consequence, the dynamica l behavior is 
qui te predictable. A l l o f this is by no means apparent r igh t now, bu t by 
the t ime you have read Chapter 16, you w i l l consider this example a good 
fr iend. Points tha t are colored i n this p ic ture also behave predictably: They 
are points tha t "escape," that tend to in f in i ty under i t e ra t ion . The colors 
here s imply t e l l us how quickly a po in t escapes. The boundary between these 
two types of behavior—the interface between the escaping and the cycling 
points—is the Ju l ia set. This is where we w i l l encounter a l l o f the chaotic 
behavior for this dynamica l system. 

I n Plates 4-10 we have displayed Ju l ia sets for other quadrat ic functions 
of the f o r m z2 + c. Each picture corresponds to a different value of c. For 
example, Plate 6 is a p ic ture of the Ju l i a set for z2 + i. As we see, these 
Ju l ia sets may assume a remarkable variety of shapes. Sometimes the images 
contain large black regions as i n the case of Douady's rabb i t . Other times 
the Ju l ia set looks like an isolated scatter o f points , as i n Plates 7-10. M a n y 
of these Ju l ia sets are Cantor sets. These are very complicated sets that 
arise often i n the s tudy of dynamics. We w i l l begin our s tudy of Cantor sets 
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i n Chapter 7 when we introduce the most basic fractal of a l l , the Cantor 
middle-thirds set. 

A l l these Ju l ia sets correspond to mathemat ical expressions tha t are of 
the f o r m z2+c. As we see, when c varies, these Ju l ia sets change considerably 
i n shape. How do we understand the to ta l i ty of a l l of these shapes, the 
collection of a l l possible Ju l ia sets for quadratic functions? The answer is 
called the Mandelbrot set. The Mande lbro t set, as we w i l l see i n Chapter 17, 
is a dict ionary, or pic ture book, of a l l possible quadrat ic Ju l ia sets. I t is a 
p ic ture i n the c-plane tha t provides us w i t h a road map of the quadrat ic Ju l i a 
Sets. Th i s image, first viewed i n 1980 by Benoit Mande lbro t and others, is 
quite impor t an t i n dynamics. I t completely characterizes the Ju l ia sets of 
quadratic functions. I t has been called one of the most in t r ica te and beaut iful 
objects i n mathematics . 

Plate 11 shows the fu l l Mande lbro t set. Note tha t i t consists of a basic 
central cardioid shape, w i t h smaller balls or decorations attached. Plates 
13, 15, and 17 are magnifications of some of these decorations. Note how 
each decoration differs f rom the others. Bur ied deep i n various regions of 
the Mande lbro t set, we also find what appear to be small copies of the entire 
set, as shown i n Plates 12, 14, 16, and 18. The set possesses an amazing 
amount of complexity, as i l lus t ra ted by Plates 19-22. Nonetheless, each of 
these small regions has a dis t inct dynamical meaning, as we w i l l discuss i n 
Chapter 17. 

I n Plate 23 we have magnified a small area near the "antenna" i n the 
p o r t i o n of the Mande lbro t set shown i n Plate 14. Note tha t there is a j u n c t i o n 
point where this antenna seems to branch. I n Plate 24 we have displayed a 
po r t i on of the Ju l i a set for the c-value corresponding to this j u n c t i o n po in t . 
Note the remarkable s imi la r i ty of these two images. Th i s is by no means an 
accident. As we w i l l see i n some of the experiments i n Chapter 17, there 
is an amazing resemblance between certain areas of the Mande lbro t set and 
the corresponding Ju l ia sets. 

I n this book we w i l l also investigate the chaotic behavior of many other 
functions. For example, i n Plates 25-27 we have displayed the Ju l ia set of 
(0.61 + 0 .81 i ) s inz and several magnifications. Plates 28 and 29 give other 
examples of Ju l i a sets for functions of the fo rm c s i n z . I f we investigate 
exponential functions, we find Ju l ia sets tha t look quite different as, for 
example, those i n Plates 30-33. Plates 34-35 depict the Ju l ia sets for several 
cosine functions, whi le the images i n Plates 36-38 are called the tricorn, a 
very different geometric object arising i n the s tudy of quadratics. Final ly , i n 
Plate 39, we have included a Ju l ia set for Newton's method . Th i s i terat ive 
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process, famil iar f rom elementary calculus, surprisingly leads to considerable 
chaotic behavior, as we w i l l see i n Chapter 13. 

The images i n this mathemat ical tou r show quite clearly the great beauty 
of mathemat ica l dynamica l systems theory. B u t what do these pictures mean 
and why are they impor tan t? These are questions tha t we w i l l answer i n the 
remainder of this book. 

1.2 A Brief History of Dynamics 

Dynamica l systems has a long and dist inguished h is tory as a branch of 
mathematics. Beginning w i t h the fundamental work of Isaac Newton , differ-
ent ia l equations became the pr inc ipa l mathemat ica l technique for describing 
processes tha t evolve continuously i n t ime . I n the eighteenth and nineteenth 
centuries, mathematicians devised numerous techniques for solving differen-
t i a l equations expl ic i t ly . These methods included Laplace transforms, power 
series solutions, var ia t ion of parameters, l inear algebraic methods, and many 
other techniques fami l iar f rom the basic undergraduate course i n o rd inary 
differential equations. 

There was one major flaw i n this development. V i r t u a l l y a l l of the an-
alyt ic techniques for solving differential equations worked m a i n l y for linear 
differential equations. Nonlinear differential equations proved much more 
difficult to solve. Unfortunately, many of the most i m p o r t a n t processes i n 
nature are inherent ly nonlinear. 

A n example of this is provided by Newton's or ig ina l mo t iva t ion for de-
veloping calculus and differential equations. Newton's laws enable us to 
w r i t e down the equations tha t describe the m o t i o n of the planets i n the solar 
system, among many other impor t an t physical phenomena. K n o w n as the 
n-body problem, these laws give us a differential equation whose solut ion 
describes the m o t i o n of n "point masses" moving i n space subject only to 
the i r own m u t u a l gravi ta t iona l a t t rac t ion . I f we know the i n i t i a l positions 
and velocities o f these masses, then a l l we have to do is solve Newton 's differ-
ent ia l equation to be able to predict where and how these masses w i l l move 
i n the future. 

Th i s turns out to be a formidable task. I f there are on ly one or two 
planets, then these equations may be solved expl ic i t ly , as is often done i n a 
freshman or sophomore calculus or physics class. For three or more masses, 
the prob lem today remains completely unsolved, despite the efforts of count-
less mathematicians d u r i n g the past three centuries. I t is t rue tha t numerical 
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solutions of differential equations by computers have allowed us to approxi-
mate the behavior of the actual solutions i n many cases, bu t there are s t i l l 
regimes i n the n-body problem where the solutions are so complicated or 
chaotic tha t they defy even numerica l computa t ion . 

A l t h o u g h the explici t solut ion of nonlinear o rd inary differential equa-
tions has proved elusive, there have been three l andmark events over the 
past century tha t have revolutionized the way we s tudy dynamica l systems. 
Perhaps the most impor t an t event occurred i n 1890. K i n g Oscar I I of Sweden 
announced a prize for the first mathemat ic ian who could solve the n-body 
problem and thereby prove the s tab i l i ty of the solar system. Needless to say, 
nobody solved the or ig ina l problem, bu t the great French mathemat ic ian 
Henr i Poincare came closest. I n a beaut iful and far-reaching paper, Poincare 
to ta l ly revamped the way we tackle nonlinear ord inary differential equations. 
Instead of searching for expl ici t solutions of these equations, Poincare advo-
cated work ing qual i ta t ively, using topological and geometric techniques, to 
uncover the global s t ructure of a l l solutions. To h i m , a knowledge of a l l pos-
sible behaviors of the system under invest igat ion was much more impor t an t 
than the rather specialized s tudy of i n d i v i d u a l solutions. 

Poincare's prize w i n n i n g paper contained a major new insight in to the 
behavior of solutions of differential equations. I n describing these solutions, 
mathematicians had previously made the taci t assumption tha t wha t we now 
know as stable and unstable manifolds always match up . Poincare questioned 
this assumption. He worked long and ha rd to show tha t this was always the 
case, b u t he could not produce a proof. He eventually concluded tha t the 
stable and unstable manifolds migh t not ma tch up and could actual ly cross 
at an angle. W h e n he f inal ly admi t t ed this possibil i ty, Poincare saw tha t this 
wou ld cause solutions to behave i n a much more complicated fashion than 
anyone had previously imagined. Poincare had discovered what we now call 
chaos. Years later, after many at tempts to understand the chaotic behavior 
of differential equations, he th rew up his hands i n defeat and wondered i f 
anyone w o u l d ever understand the complexi ty he was f inding . Thus , "chaos 
theory," as i t is now called, really dates back over 100 years to the work of 
Henr i Poincare. 

Poincare's achievements i n mathematics went wel l beyond the field of 
dynamica l systems. His advocacy of topological and geometric techniques 
opened up whole new subjects i n mathematics . I n fact, bu i l d ing on his 
ideas, mathematicians tu rned their a t ten t ion away f rom dynamica l systems 
and t oward these related fields i n the ensuing decades. Areas of mathemat-
ics such as algebraic and differential topology were b o r n and flourished i n 
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the twent ie th century. B u t nobody could handle the chaotic behavior tha t 
Poincare had observed, so the s tudy o f dynamics languished. 

There were two notable exceptions to th is . One was the work of the 
French mathematicians Pierre Fatou and Gaston Ju l ia i n the 1920's on the 
dynamics of complex analytic maps. They too saw chaotic behavior, this 
t ime on wha t we now call the Julia set. Indeed, they realized how tremen-
dously in t r ica te these Ju l i a sets could be, bu t they had no computer graphics 
available to see these sets, and as a consequence, this work also stopped i n 
the 1930's. 

A t the same t ime, the Amer ican mathemat ic ian G. D . B i r k h o f f adopted 
Poincare's qual i ta t ive po in t of view on dynamics. He advocated the s tudy of 
i terat ive processes as a simpler way of understanding the dynamica l behavior 
of differential equations, a v iewpoint tha t we w i l l adopt i n this book. 

The second major development i n dynamica l systems occurred i n the 
1960's. The Amer ican mathemat ic ian Stephen Smale reconsidered Poincare's 
crossing stable and unstable manifolds f rom the po in t of view of i t e ra t ion and 
showed by an example tha t the chaotic behavior tha t baffled his predecessors 
could indeed be understood and analyzed completely. T h e technique he used 
to analyze this is called symbolic dynamics and w i l l be a major t oo l for us i n 
this book. A t the same t ime, the Amer ican meteorologist E . N . Lorenz, using 
a very crude computer , discovered tha t very simple differential equations 
could exhib i t the type o f chaos tha t Poincare observed. Lorenz, who actual ly 
had been a P h . D . student of Birkhoff , went on to observe tha t his simple 
meteorological models exhibi ted wha t is now called sensitive dependence on 
initial conditions. For h i m , this meant tha t long-range weather forecasting 
was a l l b u t impossible and showed tha t the mathemat ica l topic of chaos was 
i m p o r t a n t i n other areas of science. 

Th i s led to a tremendous flurry of ac t iv i ty i n nonlinear dynamics i n the 
1970's. T h e ecologist Robert M a y found tha t very simple i terat ive processes 
tha t arise i n mathemat ica l biology could produce incredib ly complex and 
chaotic behavior. The physicist M i t c h e l l Feigenbaum, b u i l d i n g on Smale's 
earlier work , noticed tha t , despite the complexi ty of chaotic behavior, there 
was some semblance of order i n the way systems became chaotic. Physi-
cists H a r r y Swinney and Jerry Gol lub showed tha t these mathemat ica l de-
velopments could actual ly be observed i n physical applications, no tab ly i n 
tu rbu len t fluid flow. More recently, other systems, such as the m o t i o n of 
the planet P lu to or the beat of the human heart, have been shown to ex-
h i b i t s imilar chaotic patterns. I n mathematics , meanwhile, new techniques 

.were developed to help understand chaos. John Guckenheimer and Robert 
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F . W i l l i a m s employed the theory of strange at tractors to expla in the phe-
nomenon tha t Lorenz had observed a decade earlier. A n d tools such as the 
Schwarzian derivative, symbolic dynamics, and bi furcat ion theory—al l top-
ics we w i l l discuss i n this book—were shown to play an i m p o r t a n t role i n 
understanding the behavior of dynamica l systems. 

The t h i r d and most recent major development i n dynamical systems was 
the avai labi l i ty of high-speed comput ing and, par t icular ly , computer graph-
ics. Foremost among the computer-generated results was Mandelbro t ' s dis-
covery i n 1980 of wha t is now called the Mandelbrot set. Th i s beaut i ful image 
immediate ly reawakened interest i n the o ld work of Ju l ia and Fatou. Using 
the computer images as a guide, mathematicians such as A d r i e n Douady, 
John Hubbard , and Dennis Sull ivan great ly advanced the classical theory. 
Other computer graphics images such as the o rb i t d iagram and the Lorenz 
a t t ractor generated considerable interest among mathematicians and led to 
further advances. 

One of the most interesting side effects of the avai labi l i ty of h igh speed 
comput ing and computer graphics has been the development of an exper-
imenta l component i n the s tudy of dynamical systems. Whereas the o ld 
masters had to rely solely on thei r imagina t ion and their intel lect , now m a t h -
ematicians have an invaluable addi t iona l resource to investigate dynamics: 
the computer. Th i s too l has opened up whole new vistas for dynamicists , 
some of wh ich we w i l l sample i n this book. I n a series of sections called 
"Experiments," y o u w i l l have a chance to rediscover some of these wonderful 
facts yourself. 
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