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PREFACE v

Preface

This book is an undergraduate text in dynamical systems. It is aimed
at students who have taken at least one year of calculus, but not necessar-
ily any higher level mathematics courses. The book is an outgrowth of a
one-semester course taught by the author at Boston University for the past
several years. Students in the course ranged from beginning mathematics
majors to senior level science and engineering students, from English ma-
jors who take mathematics courses “because they are fun” to prospective
secondary school mathematics teachers. With the possibility of including
computer experimentation, laboratory reports, group projects, together with
some wonderfully accessible mathematics, a course in dynamical systems can
easily be tailored to such a diverse audience.

I feel that it is desirable to introduce students to this field at an early
stage in their mathematical careers. There are a number of reasons for
this. First, the study of dynamics offers mathematicians an opportunity to
expose students to contemporary ideas in mathematical research. Many of
the ideas and theorems in this book were first discovered within the students’
lifetimes; many of the pictures included herein were first viewed within the
past decade. To emphasize the contemporary nature of the field, I have
included snapshots and brief biographies of a number of individuals who
have made recent contributions to the ideas in this book.

Much of the current interest in dynamics centers around the chaotic
behavior that occurs when a simple function is iterated. In this book, the
emphasis is on the simplest possible setting in which this occurs, namely
iteration of real or complex quadratic polynomials. By dealing mainly with
this special case, the material becomes accessible to students who do not have
a background in topology or analysis. For example, with only the knowledge
of how to multiply complex numbers, students can comprehend the basic
mathematical ideas behind such topics as the Julia set or the Mandelbrot
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set.

A second pedagogical reason to introduce dynamics early in the curricu-
lum is that the course may serve as a bridge between the low-level, often
nonrigorous calculus courses and the much more demanding real analysis
courses. All too often, students see no connection between the calculus
courses that occupy their early years as an undergraduate and the more
advanced analysis courses they take later. Dynamics offers students an op-
portunity to use and build upon their knowledge of calculus and, at the same
time, to see in a very concrete setting many of the important topics from
basic analysis. I have found that students begin to appreciate the need for
abstract metric spaces when they first encounter an object like the space
of sequences in symbolic dynamics. They realize the importance of an e-é
definition of continuity when they try to analyze the shift map. Cantor sets
become natural objects to study when students see how often they arise in
dynamics. Indeed, students who have studied analysis prior to dynamics
often remark that they now know why all that abstraction is important!

To accommodate beginning students, this book is structured so that stu-
dents are gradually introduced to more and more sophisticated ideas from
analysis as the chapters unfold. It starts with only a few elementary notions
that can be explained using graphical methods or differential calculus. Proofs
are introduced slowly at first, and plenty of routine exercises are included.
Later come concepts such as dense sets and metric spaces. These concepts
arise naturally in the setting of simple dynamical systems, so they can be
introduced in a manner that is both concrete and accessible. I feel that this
approach is beneficial to those students who do not contemplate future grad-
uate study in mathematics—they see some of the principal ideas of analysis
but not in the setting of an intensive course designed for prospective PhDs.

One of the unique aspects of a dynamics course is the possibility of
including an experimental component. My students make weekly trips to
the computer lab to perform numerical experiments related to the topics
covered in class. These experiments range from observations of the rate
of convergence to attracting vs. neutral fixed points to a reenactment of
Feigenbaum’s celebrated discovery of the universality of the period-doubling
route to chaos. Students are asked to perform a detailed analysis of the
placement of the windows in the orbit diagram as well as an assessment of
the meaning of the decorations on the Mandelbrot set. They go to the lab to
gather data; they formulate hypotheses and conjectures; they write up their
findings in a lengthy lab report. Given the incredible beauty of many of the
images the students investigate as well as the open-ended nature of many of
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the investigations, this portion of the course is always great fun! Moreover,
the possibility of combining rigorous mathematics with experimental ideas
is a unique opportunity.

Included in the book are a number of sections marked “Experiment.”
These are the laboratory assignments that my students complete outside of
regular class hours. Many of these labs require two weeks to complete, so
there are many more experiments included in the text than are possible to
complete in a one-semester course. In addition, many of the later labs (espe-
cially in the chapter on the Mandelbrot set) demand access to sophisticated
computers (certainly including a numeric co-processor).

For this reason, it may be beneficial for instructors to perform some of
the labs as classroom demonstrations, asking students to react verbally to
what they observe and to discuss what unfolds on the screen. I always use
a computer in the classroom to motivate dynamical ideas and to illustrate
in “dynamic” fashion what the theorems in the course mean. Of course,
the computer does not always give the correct answer. To make students
cognizant of this fact and to make sure that they remain suspicious during
the course, the first experiments the students perform are entitled “the com-
puter may lie.” These experiments should be the first performed, or at least
witnessed, by the students.

Software and Solutions Manual

As part of my course, I make extensive use of software for Macintosh
computers developed specifically for the course with the assistance of James
Georges and Del Johnson. This software, called A First Course in Chaotic
Dynamical Systems Software, is available from Addison-Wesley and parallels
both the experiments and the problems in this book. The software runs on
any Macintosh computer with 2 Mb RAM, running System 6.0.5 or higher,
and including Color QuickDraw. Site licenses are also available {call Addison-
Wesley at 800-447-2226).

The software has been an invaluable aid as both a laboratory and demon-
stration tool. However, several caveats are in order. The software is not de-
signed as a research tool. Rather, its capabilities are limited by the scope of
the experiments and projects in the text. Second, many of the experiments
demand a significant amount of computational power or elaborate graphics
such as those found on the Macintosh II series of computers. Run times on
- computers without mathematics coprocessors may be unreasonably long.

On the other hand, the software has been designed so that no prior com-
puter experience on the part of the user is necessary. Indeed, we have segre-
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gated various labs into separate programs that progress in order of difficulty
of use. Users are not confronted by a vast array of menu items or options
that do everything but wash the dirty dishes in the sink. Rather, each lab
has a specific purpose, and the ease of use allows students to concentrate on
the mathematics during each lab, rather than the mechanics of making the
software work. This means that the students have a significant mathemat-
ical experience in the lab rather than a frustrating bout with over-powerful
software.

A privately published solutions manual compiled by Thomas R.. Scavo is
also available for $12.50 ($15.00 outside US and Canada) by writing to the
author, Robert L. Devaney, at the Mathematics Department, Boston Uni-
versity, 111 Cummington Street, Boston, MA 02215. The manual contains
detailed solutions to approximately 75% of the exercises in the text (not
including experiments).
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CHAPTER1 A MATHEMATICAL AND HISTORICAL TOUR 1

CHAPTER 1

A Mathematical and Historical Tour

Rather than jump immediately into the mathematics of dynamical sys-
tems, we will begin with a brief tour of some of the amazing computer graph-
ics images that arise in this field. One of our goals in this book is to explain
what these images mean, how they are generated on the computer, and why
they are important in mathematics. We will do none of the mathematics
here. For now, you should simply enjoy the images. We hope to convince
you, in the succeeding chapters, that the mathematics behind these images
is even prettier than the pictures. In the second part of the chapter, we will
present a brief history of some of the developments in dynamical systems
over the past century. You will see that many of the ideas in dynamics arose
fairly recently. Indeed, none of the computer graphics images from the tour
had been seen before 1980!

1.1 Images from Dynamical Systems

This book deals with some very interesting, exciting, and beautiful topics
in mathematics—topics which, in many cases, have been discovered only in
the last decade. The main subject of the book is dynamical systems, the
branch of mathematics that attempts to understand processes in motion.
Such processes occur in all branches of science. For example, the motion of
the stars and the galaxies in the heavens is a dynamical system, one that has
been studied for centuries by thousands of mathematicians and scientists.
The stock market is another system that changes in time, as is the world’s
weather. The changes chemicals undergo, the rise and fall of populations, and
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the motion of a simple pendulum are classical examples of dynamical systems
in chemistry, biology, and physics. Clearly, dynamical systems abound.

What does a scientist wish to do with a dynamical system? Well, since
the system is moving or changing in time, the scientist would like to predict
where the system is heading, where it will ultimately go. Will the stock
market go up or down? Will it be rainy or sunny tomorrow? Will these two
chemicals explode if they are mixed in a test tube?

Clearly, some dynamical systems are predictable, whereas others are not.
You know that the sun will rise tomorrow and that, when you add cream to a
cup of coffee, the resulting “chemical” reaction will not be an explosion. On
the other hand, predicting the weather a month from now or the Dow Jones
average a week from now seems impossible. You might argue that the reason
for this unpredictability is that there are simply too many variables present in
meteorological or economic systems. That is indeed true in these cases, but
this is by no means the complete answer. One of the remarkable discoveries
of twentieth-century mathematics is that very simple systems, even systems
depending on only one variable, may behave just as unpredictably as the
stock market, just as wildly as a turbulent waterfall, and just as violently
as a hurricane. The culprit, the reason for this unpredictable behavior, has
been called “chaos” by mathematicians.

Because chaos has been found to occur in the simplest of systems, sci-
entists may now begin to study unpredictability in its most basic form. It
is to be hoped that the study of these simpler systems will eventually allow
scientists to find the key to understanding the turbulent behavior of systems
involving many variables such as weather or economic systems.

In this book we discuss chaos in these simple settings. We will see that
chaos occurs in elementary mathematical objects—objects as familiar as
quadratic functions—when they are regarded as dynamical systems. You
may feel at this point that you know all there is to know about quadratic
functions—after all, they are easy to evaluate and to graph. You can differen-
tiate and integrate them. But the key words here are “dynamical systems.”
We will treat simple mathematical operations like taking the square root,
squaring, or cubing as dynamical systems by repeating the procedure over
and over, using the output of the previous operation as the input for the
next. This process is called iteration. This procedure generates a list of real
or complex numbers that are changing as we proceed—this is our dynam-
ical system. Sometimes we will find that, when we input certain numbers
into the process, the resulting behavior is completely predictable, while other
numbers yield results that are often bizarre and totally unpredictable.



Plates 1, 2, and 3. Douady’s Rabbit and several magnifications



Plate 4. Dancing rabbits

Plate 6. A dendrite

Plate 5. A dragon



Plates 7-10.
Filled Julia sets for quadratic functions may be Cantor sets.



Plate 11. The Mandelbrot set



Plates 13, 14. The period 3 bulb and a magnification



Plates 15, 16. The period 5 bulb and a magnification



The period 25 bulb and several magnifications
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Plates 17



Plates 20-22. Fine detail in the Mandelbrot set



Plate 23.
Antenna attached to the period 3 bulb in the Mandelbrot set

Plate 24.

Julia set corresponding to the junction point in Plate 23



Plates 25-27. Julia set of (.61 + .81i)sin(z) and several magnifications



Plate 28. Julia set of (1 + 0.2:) sin(2)

Plate 29. Julia set of (1 + 0.1t)sin(2)
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Plate 30. Julia set of 2iiexp(z)



Plates 31-33. Julia sets of complex exponentials
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Plate 35. Julia set of 2.96 cos(z)



Plates 36-38. The tricorn and several magnifications



Plate 39. Julia set for Newton’s method



Fig. 17.8a







Fig. 17.9b Period 5 bulb



Fig. 17.10a.
Julia set corresponding to junction point in Fig. 17.9a

Fig. 17.10Db.

Julia set corresponding to junction point in Fig. 17.9b



Fig. 18.4a. Newton’s method for f(z) = 22 +1

Fig. 18.4b. Newton’s method for f(z) = 2® -1



Fig. 18.5a

ig. 18.5b
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For the types of functions we will consider, the set of numbers that yield
chaotic or unpredictable behavior in the plane is called the Julia set after
the French mathematician Gaston Julia, who first formulated many of the
properties of these sets in the 1920’s. These Julia sets are spectacularly
complicated, even for quadratic functions. They are examples of fractals.
These are sets which, when magnified over and over again, always resemble
the original image. The closer you look at a fractal, the more you see exactly
the same object. Moreover, fractals naturally have a dimension that is not
an integer, not 1, not 2, but often somewhere in between, such as dimension
1.4176, whatever that means! We will discuss these concepts in more detail
in Chapter 14.

Here are some examples of the types of images that we will study. In Plate
1 we show the Julia set of the simple mathematical expression z% + ¢, where
both z and ¢ are complex numbers. In this particular case, ¢ = —.122+.745¢.
This image is called Douady’s rabbit, after the French mathematician Adrien
Douady whose work we will discuss in Chapter 17. The black region in this
image resembles a “fractal rabbit.” Everywhere you look, you see a pair of
ears. In Plates 2 and 3 we have magnified portions of the rabbit, revealing
more and more pairs of ears.

As we will describe later, the black points you see in these pictures are
the non-chaotic points. They are points representing values of z that, under
iteration of this quadratic function, eventually tend to cycle between three
different points in the plane. As a consequence, the dynamical behavior is
quite predictable. All of this is by no means apparent right now, but by
the time you have read Chapter 16, you will consider this example a good
friend. Points that are colored in this picture also behave predictably: They
are points that “escape,” that tend to infinity under iteration. The colors
here simply tell us how quickly a point escapes. The boundary between these
two types of behavior—the interface between the escaping and the cycling
points—is the Julia set. This is where we will encounter all of the chaotic
behavior for this dynamical system.

In Plates 4-10 we have displayed Julia sets for other quadratic functions
of the form z? + c. Each picture corresponds to a different value of c. For
example, Plate 6 is a picture of the Julia set for z2 + 1. As we see, these
Julia sets may assume a remarkable variety of shapes. Sometimes the images
contain large black regions as in the case of Douady’s rabbit. Other times
the Julia set looks like an isolated scatter of points, as in Plates 7-10. Many
of these Julia sets are Cantor sets. These are very complicated sets that
arise often in the study of dynamics. We will begin our study of Cantor sets
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in Chapter 7 when we introduce the most basic fractal of all, the Cantor
middle-thirds set.

All these Julia sets correspond to mathematical expressions that are of
the form 22 4-c. As we see, when ¢ varies, these Julia sets change considerably
in shape. How do we understand the totality of all of these shapes, the
collection of all possible Julia sets for quadratic functions? The answer is
called the Mandelbrot set. The Mandelbrot set, as we will see in Chapter 17,
is a dictionary, or picture book, of all possible quadratic Julia sets. It is a
picture in the ¢-plane that provides us with a road map of the quadratic Julia
Sets. This image, first viewed in 1980 by Benoit Mandelbrot and others, is
quite important in dynamics. It completely characterizes the Julia sets of
quadratic functions. It has been called one of the most intricate and beautiful
objects in mathematics.

Plate 11 shows the full Mandelbrot set. Note that it consists of a basic
central cardioid shape, with smaller balls or decorations attached. Plates
13, 15, and 17 are magnifications of some of these decorations. Note how
each decoration differs from the others. Buried deep in various regions of
the Mandelbrot set, we also find what appear to be small copies of the entire
set, as shown in Plates 12, 14, 16, and 18. The set possesses an amazing
amount of complexity, as illustrated by Plates 19-22. Nonetheless, each of
these small regions has a distinct dynamical meaning, as we will discuss in
Chapter 17.

In Plate 23 we have magnified a small area near the “antenna” in the
portion of the Mandelbrot set shown in Plate 14. Note that there is a junction
point where this antenna seems to branch. In Plate 24 we have displayed a
portion of the Julia set for the c-value corresponding to this junction point.
Note the remarkable similarity of these two images. This is by no means an
accident. As we will see in some of the experiments in Chapter 17, there
is an amazing resemblance between certain areas of the Mandelbrot set and
the corresponding Julia sets.

In this book we will also investigate the chaotic behavior of many other
functions. For example, in Plates 25-27 we have displayed the Julia set of
(0.61 + 0.817)sin z and several magnifications. Plates 28 and 29 give other
examples of Julia sets for functions of the form csinz. If we investigate
exponential functions, we find Julia sets that look quite different as, for
example, those in Plates 30-33. Plates 34-35 depict the Julia sets for several
cosine functions, while the images in Plates 36-38 are called the tricorn, a
very different geometric object arising in the study of quadratics. Finally, in
Plate 39, we have included a Julia set for Newton’s method. This iterative
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process, familiar from elementary calculus, surprisingly leads to considerable
chaotic behavior, as we will see in Chapter 13.

The images in this mathematical tour show quite clearly the great beauty
of mathematical dynamical systems theory. But what do these pictures mean
and why are they important? These are questions that we will answer in the
remainder of this book.

1.2 A Brief History of Dynamics

Dynamical systems has a long and distinguished history as a branch of
mathematics. Beginning with the fundamental work of Isaac Newton, differ-
ential equations became the principal mathematical technique for describing
processes that evolve continuously in time. In the eighteenth and nineteenth
centuries, mathematicians devised numerous techniques for solving differen-
tial equations explicitly. These methods included Laplace transforms, power
series solutions, variation of parameters, linear algebraic methods, and many
other techniques familiar from the basic undergraduate course in ordinary
differential equations.

There was one major flaw in this development. Virtually all of the an-
alytic techniques for solving differential equations worked mainly for linear
differential equations. Nonlinear differential equations proved much more
difficult to solve. Unfortunately, many of the most important processes in
nature are inherently nonlinear.

An example of this is provided by Newton’s original motivation for de-
veloping calculus and differential equations. Newton’s laws enable us to
write down the equations that describe the motion of the planets in the solar
system, among many other important physical phenomena. Known as the
n-body problem, these laws give us a differential equation whose solution
describes the motion of n “point masses” moving in space subject only to
their own mutual gravitational attraction. I we know the initial positions
and velocities of these masses, then all we have to do is solve Newton’s differ-
ential equation to be able to predict where and how these masses will move
in the future.

This turns out to be a formidable task. If there are only one or two
planets, then these equations may be solved explicitly, as is often done in a
freshman or sophomore calculus or physics class. For three or more masses,
the problem today remains completely unsolved, despite the efforts of-count-
less mathematicians during the past three centuries. It is true that numerical
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solutions of differential equations by computers have allowed us to approxi-
mate the behavior of the actual solutions in many cases, but there are still
regimes in the n-body problem where the solutions are so complicated or
chaotic that they defy even numerical computation.

Although the explicit solution of nonlinear ordinary differential equa-
tions has proved elusive, there have been three landmark events over the
past century that have revolutionized the way we study dynamical systems.
Perhaps the most important event occurred in 1890. King Oscar II of Sweden
announced a prize for the first mathematician who could solve the n-body
problem and thereby prove the stability of the solar system. Needless to say,
nobody solved the original problem, but the great French mathematician
Henri Poincaré came closest. In a beautiful and far-reaching paper, Poincaré
totally revamped the way we tackle nonlinear ordinary differential equations.
Instead of searching for explicit solutions of these equations, Poincaré advo-
cated working qualitatively, using topological and geometric techniques, to
uncover the global structure of all solutions. To him, a knowledge of all pos-
sible behaviors of the system under investigation was much more important
than the rather specialized study of individual solutions.

Poincaré’s prize winning paper contained a major new insight into the
behavior of solutions of differential equations. In describing these solutions,
mathematicians had previously made the tacit assumption that what we now
know as stable and unstable manifolds always match up. Poincaré questioned
this assumption. He worked long and hard to show that this was always the
case, but he could not produce a proof. He eventually concluded that the
stable and unstable manifolds might not match up and could actually cross
at an angle. When he finally admitted this possibility, Poincaré saw that this
would cause solutions to behave in a much more complicated fashion than
anyone had previously imagined. Poincaré had discovered what we now call
chaos. Years later, after many attempts to understand the chaotic behavior
of differential equations, he threw up his hands in defeat and wondered if
anyone would ever understand the complexity he was finding. Thus, “chaos
theory,” as it is now called, really dates back over 100 years to the work of
Henri Poincaré.

Poincaré’s achievements in mathematics went well beyond the field of
dynamical systems. His advocacy of topological and geometric techniques
opened up whole new subjects in mathematics. In fact, building on his
ideas, mathematicians turned their attention away from dynamical systems
and toward these related fields in the ensuing decades. Areas of mathemat-
ics such as algebraic and differential topology were born and flourished in
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the twentieth century. But nobody could handle the chaotic behavior that
Poincaré had observed, so the study of dynamics languished.

There were two notable exceptions to this. One was the work of the
French mathematicians Pierre Fatou and Gaston Julia in the 1920’s on the
dynamics of complex analytic maps. They too saw chaotic behavior, this
time on what we now call the Julia set. Indeed, they realized how tremen-
dously intricate these Julia sets could be, but they had no computer graphics
available to see these sets, and as a consequence, this work also stopped in
the 1930’s.

At the same time, the American mathematician G. D. Birkhoff adopted
Poincaré’s qualitative point of view on dynamics. He advocated the study of
iterative processes as a simpler way of understanding the dynamical behavior
of differential equations, a viewpoint that we will adopt in this book.

The second major development in dynamical systems occurred in the
1960’s. The American mathematician Stephen Smale reconsidered Poincaré’s
crossing stable and unstable manifolds from the point of view of iteration and
showed by an example that the chaotic behavior that baffled his predecessors
could indeed be understood and analyzed completely. The technique he used
to analyze this is called symbolic dynamics and will be a major tool for us in
this book. At the same time, the American meteorologist E. N. Lorenz, using
a very crude computer, discovered that very simple differential equations
could exhibit the type of chaos that Poincaré observed. Lorenz, who actually
had been a Ph.D. student of Birkhoff, went on to observe that his simple
meteorological models exhibited what is now called sensitive dependence on
initial conditions. For him, this meant that long-range weather forecasting
was all but impossible and showed that the mathematical topic of chaos was
important in other areas of science.

This led to a tremendous flurry of activity in nonlinear dynamics in the
1970’s. The ecologist Robert May found that very simple iterative processes
that arise in mathematical biology could produce incredibly complex and
chaotic behavior. The physicist Mitchell Feigenbaum, building on Smale’s
earlier work, noticed that, despite the complexity of chaotic behavior, there
was some semblance of order in the way systems became chaotic. Physi-
cists Harry Swinney and Jerry Gollub showed that these mathematical de-
velopments could actually be observed in physical applications, notably in
turbulent fluid flow. More recently, other systems, such as the motion of
the planet Pluto or the beat of the human heart, have been shown to ex-
hibit similar chaotic patterns. In mathematics, meanwhile, new techniques
.were developed to help understand chaos. John Guckenheimer and Robert
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F. Williams employed the theory of strange attractors to explain the phe-
nomenon that Lorenz had observed a decade earlier. And tools such as the
Schwarzian derivative, symbolic dynamics, and bifurcation theory—all top-
ics we will discuss in this book—were shown to play an important role in
understanding the behavior of dynamical systems.

The third and most recent major development in dynamical systems was
the availability of high-speed computing and, particularly, computer graph-
ics. Foremost among the computer-generated results was Mandelbrot’s dis-
covery in 1980 of what is now called the Mandelbrot set. This beautiful image
immediately reawakened interest in the old work of Julia and Fatou. Using
the computer images as a guide, mathematicians such as Adrien Douady,
John Hubbard, and Dennis Sullivan greatly advanced the classical theory.
Other computer graphics images such as the orbit diagram and the Lorenz
attractor generated considerable interest among mathematicians and led to
further advances.

One of the most interesting side effects of the availability of high speed
computing and computer graphics has been the development of an exper-
imental component in the study of dynamical systems. Whereas the old
masters had to rely solely on their imagination and their intellect, now math-
ematicians have an invaluable additional resource to investigate dynamics:
the computer. This tool has opened up whole new vistas for dynamicists,
some of which we will sample in this book. In a series of sections called
“Experiments,” you will have a chance to rediscover some of these wonderful
facts yourself.
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