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Abstract: This article addresses the problem of the optimal selection of conductors in asymmetric
three-phase distribution networks from a combinatorial optimization perspective, where the problem
is represented by a mixed-integer nonlinear programming (MINLP) model that is solved using a
master-slave (MS) optimization strategy. In the master stage, an optimization model known as the
generalized normal distribution optimization (GNDO) algorithm is proposed with an improvement
stage based on the vortex search algorithm (VSA). Both algorithms work with discrete-continuous
coding that allows us to represent the locations and gauges of the different conductors in the electrical
distribution system. For the slave stage, the backward/forward sweep (BFS) algorithm is adopted.
The numerical results obtained in the IEEE 8- and 27-bus systems demonstrate the applicability,
efficiency, and robustness of this optimization methodology, which, in comparison with current
methodologies such as the Newton metaheuristic algorithm, shows significant improvements in the
values of the objective function regarding the balanced demand scenario for the 8- and 27-bus test
systems (i.e., 10.30% and 1.40% respectively). On the other hand, for the unbalanced demand scenario,
a reduction of 1.43% was obtained in the 27-bus system, whereas no improvement was obtained
in the 8-bus grid. An additional simulation scenario associated with the three-phase version of the
IEEE33-bus grid under unbalanced operating conditions is analyzed considering three possible load
profiles. The first load profile corresponds to the yearly operation under the peak load conduction,
the second case is associated with a daily demand profile, and the third operation case discretizes the
demand profile in three periods with lengths of 1000 h, 6760 h, and 1000 h with demands of 100%, 60%
and 30% of the peak load case. Numerical results show the strong influence of the expected demand
behavior on the plan’s total costs, with variations upper than USD/year 260,000.00 between different
cases of analysis. All implementations were developed in the MATLAB® programming environment.

Keywords: combinatorial optimization; distribution systems; conductor selection; energy losses;
power flow

1. Introduction

The network operator of the Local Distribution System depends fundamentally on
the physical assets of the National Interconnected System to be able to transport electrical
energy from the generation plants to the final consumer, with the distribution networks
being the greatest asset that the power system represents [1]. The constant growth of
societies brings with it the need to expand and repower networks. In addition, the high
energy demand, the use of new technologies and the transition to e-mobility systems are
factors that accelerate the thermal limits being reached in conductors [2]. All of the above
entails new challenges for the network operator, who seeks to ensure the quality, reliability
and safety in the provision of public service, developing an adequate and efficient planning
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of its emerging electric power systems [1]. Solving problems associated with the loadability
in transmission lines has marked the trend in smart electrical systems, and factors such
as environmental awareness have led to the promotion of new plans for the effective and
efficient expansion of distribution networks [2,3].

However, there is a risk implied in the improper selection of conductors for the
electrical distribution networks, which can compromise the correct operation of the network
if the conductors selected do not meet the electricity demand of all the users, making the
system unreliable and inefficient, or by oversizing them which would be detrimental to the
investment in addition to being an unnecessary expense of material [4]. Properly planning
the electrical system better secures its good health in economic and technical terms; since
energy loss is minimized, voltage profiles are optimized, and reliability and quality in
service provision are improved [3]. In this sense, applying new methods that will guide
the appropriate planning and expansion of electrical distribution networks will not only
ensure that the system is operating correctly but will also reduce the costs associated with
its implementation and development [5]. An efficient network distribution expansion plan
must ensure the economic viability of the distribution company in compliance with the
quality standards required by the regulatory entities [3]. The optimal conductor selection
problem is a classic subproblem in the efficient expansion of the electrical distribution
system [6] and can be approached through different optimization methodologies, among
which heuristic algorithms and exact methods stand out. In this way, carrying out arbitrary
expansions in the electrical system can lead to the detriment of the general economy of
the system, which is why an adequate management and design is necessary. Thus, based
on mixed-integer programming and heuristic algorithms, an efficient tool can be obtained
which allows solving these types of problems [7–9], reducing costs thanks to their ability to
analyze the solution space and correctly assign the elements to be installed in the electrical
distribution system [10]. Linear and nonlinear approximations also allow for an adequate
formulation of this type of problem since these models are solved through exact techniques
available in commercial optimization packages. Implementing heuristic algorithms allows
evaluating the solution space with the objective of maximizing the savings associated with
investment and operating costs [11,12]. This does not involve enormous computational
efforts and contributes greatly to the development of electrical networks. By improving
efficiency in this type of project, investment is encouraged, bringing with it more job
opportunities, greater development and technology in this sector, in addition to being able
to make this type of business a market opportunity.

The following in this document is organized as follows: Section 2 presents the literature
review and contributions of this. Section 3 presents the general mathematical formulation
for the problem of optimal selection of conductors in asymmetric three-phase distribution
networks. Section 4 presents the methodology proposed in the master stage based on
the GNDO metaheuristic algorithm with an improvement stage based on hybridizing the
discrete version of the vortex search algorithm (VSA) that is integrated with the slave stage
based on the three-phase matricial iterative sweep power flow method. Section 5 presents
information on all the test systems used, as well as the different simulation cases. Section 6
presents the information related to the computational validation of the proposed method.
Section 7 presents all the numerical results of the proposed GNDO method in the test
systems presented. Section 8 presents the conclusions obtained from the work presented
and proposes future studies.

2. Literature Review and Contributions

Some studies, reported in the scientific literature, consider the objective function eco-
nomically in the problem of optimal selection of conductors in asymmetric three-phase
distribution systems. For example, in 1982 the authors of [13] developed a procedure
for grading the cross section of conductors in radial distribution feeders and minimizing
costs. They represented the problem using multistage dynamic programming, formulating
models to represent the costs associated with the feeder, energy losses and voltage reg-
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ulation as a function of conductor cross section. For the planning of optimal expansion
of medium voltage power grids in [5] they proposed the improved Tabu Search/Particle
Swarm algorithm (TS/IPSO), being a hybrid algorithm that proved to have better perfor-
mance compared to other algorithms (such as Simulated Annealing (SA), Tabu Search (TS),
Improved Genetic Algorithm (IGA), (SA/TS) Y (TS/IGA)) in high dimensional grids. The
authors of [14] proposed a heuristic method where they incorporate biologically inspired
structures and operators, such as recombination, mutation and fitness-based selection,
the Evolutionary Strategy (ES) proves to be successful in the 8-bus system, composed
of a substation and 7 radial feeders.The authors of [15] implemented an algorithm with
evolutionary approaches (GA) and iterative sweep as a method to calculate power flows,
voltage magnitudes and power losses, the results demonstrated the effectiveness of the
proposed approach on a 69-bus radial network. For optimal driver selection, the authors
of [16] proposed to solve the problem using the Harmony Search with a Differential Op-
erator algorithm (HSDE), whose objective function was modeled to minimize the costs
associated to capital investment and energy losses. The model was implemented on 16-bus
and 85-bus systems, the results show better performances compared to the metaheuristic
algorithm of Population Search (HSA) and Evolutionary Programming (EP).The authors
of [17] implemented the Particle Swarm optimization technique for optimal single-wire
ground return (SWER) conductor selection in rural distribution networks, the method
was implemented on the 13-bus IEEE system describing the real 13-bus network extracted
from the Namibian SWER system, the results show the effectiveness of the algorithm in
terms of cost effectiveness compared to the base case, reducing the active power losses by
90.12% and improving the network voltage profiles. In 2016, the authors of [18] used the
discrete particle swarm optimization algorithm (DPSO), minimizing the energy benefit cost,
reducing energy losses and minimizing depreciation. This algorithm was implemented
on a 26-bus and 32-bus system, with five different conductors types, the results showed
that the algorithm is feasible and efficient as it improves the performance compared to
the GA. The authors of [19] proposed a modified differential evolution (MDE) algorithm
for conductor selection and implemented a direct approximation load flow. The objective
function takes into account capital investment, active power loss and that classical technical
constraints are satisfied, they considered variables such as load growth. The method was
implemented on a 32-bus system, the results of which reduce the active power losses by
60% with respect to the base case by improving the voltage profiles.The authors of [20]
proposed the metaheuristic crow search algorithm (CSA), taking into account the objec-
tive function and classical technical constraints. The above is implemented in a 16-bus
and 85-bus system, and the results obtained show significant reductions in energy losses
compared to the original network of 33.32% and 19.563%, respectively. The authors of [21]
implemented the sine-cosine optimization algorithm (SCA) in the networks of the Egyptian
distribution system for the optimal selection of conductors, considering the annual growth
rate of the load over a period of ten years and maintaining the voltage and ampacity
constraints, using a catalog of twenty conductors. Their results are satisfactory in terms
of the result and the computational processing time.The authors of [22] implemented the
metaheuristic salp swarm optimization algorithm to solve the optimal conductor selection
in a real radial distribution system in Egypt, the results showed the effectiveness of the
algorithm in satisfying the objective function and constraints, however it highlights the
importance of considering feeder reinforcement to improve system hosting capacity (HC)
levels, giving the possibility to connect distributed generator (DG) units.The authors of [23]
implemented the Bifurcation Minimization Technique (BWMT) for optimal conductors
selection, it is highlighted that the method takes into account the environmental effects
on the branches resistance in addition to the load sensitivity to weathering in a 16-bus
system, thus allowing a more accurate calculation of power losses in the system, the re-
sults are shown to be satisfactory when compared with the original network.The authors
of [24] implemented the Whale Optimization Algorithm (WOA) to solve the optimal radial
distribution network conductor selection problem, where techno-economic aspects such
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as high annual load growth and payback period were considered. The objective function
minimizes the cost associated with the investment and energy losses, taking into account
the basic constraints, the model is implemented in a system of 16 and 85 buses obtaining
favorable results compared to literature results, maximizing the overall savings and main-
taining the constraints for a period of five years.The authors of [25] did simulations where
customer losses were evaluated before and after implementing the model, whose objective
is to achieve the best selection of conductors for the distribution system, implementing
the optimization technique based on the Teaching-Learning algorithm in a 16-bus system,
simulating heavy load during the Indian agricultural season; the results were satisfactory,
reducing losses and improving voltage profiles.

Given the nature of the electrical power system, new methods for calculating the three-
phase flow for both balanced and unbalanced loads are sought, continually improving the
accuracy of proposed models, as in [26], where the authors propose the optimal selection
of conductors in three-phase distribution networks through a discrete version of the meta-
heuristic vortex search method using two systems structured with 8- and 27-buses under
three different maximum load scenarios for 8670 hours, three percentages of consumption
and a real daily load curve.

As described in the previous review of state of the art, regardless of the technique
or methodology of solution used, the main objective is to reduce, as much as possible,
the costs associated with planning electrical distribution networks, keeping the technical
parameters within the allowable values according to the current territorial regulation,
seeking to improve the quality of service received by end users and to generate a profitable
environment for the companies providing the service.

Considering the literature review presented in the previous section, this paper makes
the following contribution: An improvement stage is added to the master stage of the
Generalized Gaussian Normal Distribution (GNDO) based metaheuristic algorithm, which
combines its evolution rules with the discrete version of the Vortex Search Algorithm
(VSA) to obtain a new hybrid optimizer. The main advantage of this proposed method is
that it guarantees to reach a optimal local solution with the minimum standard deviation,
obtaining the convergence of the objective function in a single evaluation, which allows to
have a higher performance in the computational processing times.

Table 1 summarizes the studies consulted in developing state of the art, presenting the
numerical method applied, the objective function under analysis, the year of publication
and the corresponding citation.

The main advantages of the proposed GNDO to deal with the problem in electrical
distribution network are as follows:

i. The proposed solution methodology can be implemented for any three-phase bal-
anced and unbalanced distribution system with radial topology regardless of the load
connections or the number of buses.

ii. It’s exploration and exploitation stages make the proposed GNDO a robust and effi-
cient solution methodology, in which with the help vortex search algorithm could ob-
tain an optimal solution in a single evaluation besides using shorter processing times.

iii. Implementation and adaptation of complementary software such as Microsoft Power
BI® allowed us to rigorously examine both technically and economically, the analysis
of the algorithm proposed.
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Table 1. Summary of the methodologies used in the literature for the problem of optimal conductor
selection in distribution networks.

Sol. Methodology Objetive Function Operation Scenario Refs. Year

Evolutionary strategy Minimize network investment costs Maximum load on 7-bus system [14] 2006

Genetic Algorithms Minimizing active power losses and maximizing
conductor material savings

Maximum load on 13-bus system [27] 2011

Harmony search Minimize the sum of capital investment and en-
ergy losses

Heavy load, simulating the agri-
cultural season in a 16 and
85-bus system.

[16] 2011

Particle swarm optimization Minimize capital investment depreciation, energy
loss costs and maximum current capacity

Maximum load for 26- and
32-bus system

[17,18] 2012
2016

Modified Differential Evolution Minimize fixed costs associated with network in-
vestment and variable costs associated with oper-
ation.

Two scenarios projecting annual
load growth

[19] 2014

Differential evolution Savings in conductive material costs and energy
losses.

Maximum load, implemented in
an unbalanced three-phase sys-
tem of 19 and 34 buses.

[28] 2016

Crow search algorithm Minimize capital cost and energy losses scenario with peak demand in 16-
and 85-buses system

[20] 2017

Sine cosine algorithm Minimizing the annual cost of energy losses and
capital investment

Peak demand, projecting 10 con-
secutive years of load growth in
a 22-buses system.

[21] 2017

Salp swarm optimizer Minimize energy losses and investment cost of
conductors

Three scenarios at 50, 100 and
150% of nominal load and differ-
ent levels of distributed genera-
tion

[22] 2018

Improved tabu search algorithm Minimize investment cost and energy loss Maximum load on 23-, 48- and
71-buses system

[5] 2019

Heuristic search method Driver depression cost and annual energy losses. Maximum load on 69- and
85-buses system

[23,29] 2016
2019

Whale optimization algorithm Minimize the cost of energy loss and investment
of conductors

Peak power in 16- and 85-buses
system

[24] 2019

Teaching—learning Minimize investment and the annual cost of
losses

Peak demand scenario in
16-buses system

[25] 2020

Vortex search algorithm Minimization of conductor investment costs and
network technical losses

Balanced and unbalanced load
under three scenarios, at 100%
of the maximum load, 50%, and
44% of the nominal load.

[26] 2021

Newton-based metaheuristic op-
timizer

minimize annual energy losses and investment
in conductors

Balanced and unbalanced load
scenarios

[30] 2022

It‘s important to mention that in this study’s scope only covers applying a new efficient
optimization technique to select conductors in three-phase asymmetric networks with radial
topologies, uncertainties regarding demand behavior are not considered. However, to
present the effectiveness of the proposed GNDO, a simulation scenario with three different
anual demand cases was exposed. In future works derived from this study, uncertainty in
demand curves can be studied since, as evidenced in Table 1, the studied problem continues
to be relevant and essential for academics and distribution companies, implying that more
research is required. Additionally, we present the effectiveness of the proposed GNDO
in the 8-bus grid with five different combinatorial optimization methods. The best three
approaches are select for comparison in the 27-bus grid. However, for the 33-bus grid,
based on the results of the 27-bus grid, we only present numerical results with the proposed
GNDO because no literature reports exist for the IEEE 33-bus grid in its three-phase version.
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3. Mathematical Formulation

The problem of the optimal selection of conductors in balanced (single-phase represen-
tation) and unbalanced (three-phase representation) local distribution systems (LDS) can
be mathematically modeled through mixed integer nonlinear programming (MINLP) [1]
where the binary (or integer) variables are related to the selection of the conductor gauge in
each network section. In contrast, the continuous variables are associated with the voltages,
currents and powers. The product between the trigonometric functions and the voltage
causes the power balance equations to have a non-convex and non-linear behavior, making
this the most significant problem in the model when it comes to determining the optimal
set of conductors [10]. The mathematical model that describes the optimization problem
studied in this research is presented below:

3.1. Objective Function

The objective function considers an operational evaluation horizon of one year, which
seeks to minimize the costs associated with the investment in the conductor sizes and the an-
nual energy losses. In (1)–(4), the general structure of the objective function is represented.

Closs = Cp ∑
h∈Ωh

∑
p∈Ωp

∑
q∈Ωp

∑
i∈Ωb

∑
j∈Ωb

Vp
h,iV

q
h,jY

pq
ij

(
λc

ij

)
cos

(
φ

p
h,i − φ

q
h,j − φ

pq
h,ij

(
λc

ij

))
∆h, (1)

Cinv = ∑
c∈ΩC

∑
km∈ΩL

Cc
kmLkmλc

km, (2)

Cpen = ∑
c∈Ωc

∑
km∈ΩL

Pλc
km, (3)

Z = min
(
Closs + Cinv + Cpen

)
, (4)

In (1) the variable Closs represents the operating costs associated with energy losses for
the evaluation period, Cp refers to the average cost of energy; ∆h is the magnitude in hours
of the evaluated period, Ypq

ij and Φpq
h,ij represent the magnitude and angle of the admittance

formed between the buses i and j of the phases p and q respectively, these are nonlinear
functions of the binary variable λc

ij, this variable defines the “c” gauges for the conductor

that joins the buses i and j; for a period of time h, Vp
h,i and Vp

h,j are the variables that define

the voltage magnitudes, while Φp
h,i and Φp

h,j define the angles of the voltages at buses i and
j of phase p respectively.

In (2), Cinv represents the cost of the investment, according to the selected gauge of
the conductors belonging to the three-phase distribution system networks, where Cc

km
associates the cost of the “c” type conductor along a kilometer in length, the variable Lkm
refers to the network section in kilometers formed by the buses k and m; λc

km is the binary
decision variable that defines the installation of the type “c” conductor in the network
fragment formed by the buses k and m.

In (3), Cpen represents the penalty cost, where P is a fixed-integer monetary value
established by the violation of the Ic

max according to the conductor used for each network
section, as described in (8). This penalty cost P was arbitrarily determined to be one
million dollars.

In (4), Z is the value of the objective function, which corresponds to the sum of energy
loss costs in the period of one year (Closs), costs associated with the investment of conductors
(Cinv) and penalties (Cpen) derived from violating the constraints of the distribution system,
such as the thermal limit in conductors.

3.2. Set of Constraints

The optimal selection of conductors in three-phase distribution networks is subject
to a set of constraints associated with the balance of active and reactive power, operating
limits of the conductors, voltage regulation at buses and the binary decision variables.
From (5)–(12), the set of constraints mentioned above is presented.



Energies 2023, 16, 1311 7 of 35

Pp
gi,h − Pp

di,h
= ∑

p∈Ωh

∑
q∈Ωp

∑
i∈Ωb

∑
j∈Ωb

Vp
h,iV

q
h,jΥ

pq
ij

(
λc

ij

)
cos
(

φ
p
h,i − φ

q
h,j − φ

pq
h,ij

(
λc

ij

))
,

 ∀i ∈ Ωb
∀h ∈ Ωh
∀p ∈ Ωp

, (5)

Qp
gi,h −Qp

di,h
= ∑

p∈Ωh

∑
q∈Ωp

∑
i∈Ωb

∑
j∈Ωb

Vp
h,iV

q
h,jΥ

pq
ij

(
λc

ij

)
sen
(

φ
p
h,i − φ

q
h,j − φ

pq
h,ij

(
λc

ij

))
,

 ∀i ∈ Ωb
∀h ∈ Ωh
∀p ∈ Ωp

, (6)

Ip
km,h = f

(
Vp

h,k, Vp
h,m, φ

p
h,k, φ

p
h,m, λc

km, Rc
km, Xc

km

)
,

∀{k m} ∈ ΩL
∀h ∈ Ωh
∀p ∈ Ωp

, (7)

[
Ip
km,h

]
≤ ∑

C∈Ω
λc

km Imax
c ,

∀{k m} ∈ ΩL
∀h ∈ Ωh
∀p ∈ Ωp

, (8)

Vmin
i ≤ Vp

i,h ≤ Vmax
i ,

 ∀i ∈ Ωb
∀h ∈ Ωh
∀p ∈ Ωp

, (9)

∑
c∈Ωc

λc
km = 1[∀{km} ∈ ΩL], (10)

∑
km∈ΩL

∑
c∈Ωc

λc
km = n− 1, (11)

λc
km ∈ {0, 1} [∀ {km} ∈ ΩL, ∀c ∈ Ωc], (12)

From the previous equations, ΩL contains the set of network sections of the distribution
system, Ωb establishes all the buses belonging to the system, Ωh defines the periods of load
duration and the set Ωp contains the phases of the system.

In (5) and (6), the active and reactive power balance is defined for each bus, phase and
time period, where Pp

gi,h and Pp
di,h

represent active power generation and demand; similarly,

Qp
gi,h and Qp

di,h
represent reactive power generation and demand, respectively. In (7), the

current is calculated that flows in the network section formed by the buses k and m, of
phase p, in a period of time h, where Ip

km,h is a function of the magnitude of the voltages,
angles, gauge of the conductor and its resistance (Rc

km) and reactance (Xc
km) parameters.

The inequality constraint presented in (8) guarantees that the current flow in the network
section formed by the buses k and m of the phase p, in a period of time h, does not exceed
the thermal limit of the gauge selected for the network section, i.e., Imax

c . Constraint (9)
ensures that for each bus i of phase p in a period of time h, the system voltage is within the
regulatory range defined by the limit greater than or equal to the minimum voltage Vmin

i
and the limit less than or equal to the maximum voltage Vmax

i . Equation (10) guarantees
that for the network section formed by the buses k and m, only one “c” type conductor is
selected; Additionally, in (11), it is guaranteed that the total number of conductors selected
is equal to the number of buses in the system n minus 1. Finally, in (12), the discrete binary
nature of the decision variable is defined with respect to the “c” type gauge for the section
of network formed between the buses k and m.

The MINLP mathematical model defined in (1)–(12) represents the general formulation
of the problem of optimal selection of conductors in three-phase systems with both balanced
and unbalanced structures [30]. According to the analyzed case study, the dimension of
the solution space can be as large as desired, due to its dependence on the number of
network sections “l” and the number of candidate gauges “c”, with cl as solution space.
This represents one of the biggest complications for this type of problem [31].

As an example of the above, considering a radial configuration of the distribution
system, which is made up of 20 network sections (l = 20), and additionally, there are 5
candidate gauges (c = 5), the solution space will be 520, which is a size equivalent to 95, 367,
431, 640, 625, with approximately 95 billion possible solutions, so evaluating each of these
possible solutions becomes a cumbersome and inefficient task. To face this difficulty and to
obtain an optimal solution in reasonable computation times, a master-slave optimization
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approach is proposed to solve the MINLP mathematical model based on the generalized
normal distribution optimization algorithm GNDO and the three-phase matricial iterative
sweep algorithm as a power flow method.

4. Solution Methodology

This document proposes the implementation of the metaheuristic algorithm GNDO [32]
in the master stage and three-phase matricial formulation of the iterative sweep method
for calculating power flow at the slave stage. The master stage will be responsible for the
optimal selection of gauges for all branches using integer coding [26] and in the slave stage,
each set of conductors will be evaluated to determine the value of the objective function
(total costs of energy losses) for a given planning period. Similar to most metaheuristic opti-
mization algorithms, the GNDO works with an initial population xt

i that has the following
structure (13):

xt
i = [3, 5, . . . , g, . . . , 4], (13)

where t is the iteration counter of the GNDO and “g” refers to a gauge available in the set
of conductors. It is important to note that the dimension of the matrix associated with the
initial population xt

i is of the form Ni × d, where Ni is the number of individuals in the
initial population and d is the dimension of the problem corresponding to the number of
lines in the distribution system. In the following subsections, the most important aspects of
the master and slave stages are presented.

4.1. Slave Stage: Three-Phase Power Flow

Distribution networks have a radial or tree-like structure. It is common in the analysis
of the calculation of the power flow in this type of electrical network to find methods based
on graph theory, where with the help of the incidence matrix, it is possible to represent the
topological structure of the distribution network relating the buses with the branches of the
system; in this way, if there is a branch between two buses of a graph, both buses will be
connected [32]. The matricial formulation of the iterative sweep method is an approach
for calculating power flow based on graph theory, in which Kirchhoff’s laws are used to
calculate the currents of the system buses, starting from the terminal buses toward the
slack bus (backward sweep), as well as the voltage drops in the different segments of the
network, starting from the slack bus toward the terminal buses (forward sweep) [33]. This
solution method is commonly known as the backward/forward sweep method.

To illustrate the structure of the incidence matrix, consider the distribution system
shown in Figure 1. This radial network is made up of 4 branches and 5 buses.

Figure 1. Single-line diagram of the proposed example.

To represent the topology of the electrical network, the relationship between the buses
and the phases of the branches of the system is established by the three-phase incidence
matrix Λ, where the positive direction of the branch current is defined so that it always
flows out of the bus, as shown in (14).
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Λix,jz =



+1 i f line i is connected to bus j and the current
o f phase x leaves the bus.

−1 i f line i is connected to bus j and the current
o f phase x enters the bus.

0 i f phase x o f branch i is not connected to phase
z o f bus j

(14)

where i corresponds to the branches of the system, x to the phases of the branches, j to the
buses of the system and z to the phases of the buses; in this way, the bus connections and
the three-phase incidence matrix Λ are shown in Table 2 and in (15), respectively.

Λix,jz =



1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1



(15)

Table 2. Bus connections for the example shown in Figure 1.

Nomenclature of Branch i From Bus j To Bus k

a 1 2
b 2 3
c 2 4
d 1 5

This three-phase incidence matrix is divided into two submatrices, which are related
with respect to generation (this is possible because the slack bus is located on bus 1) and
demand, as shown in (16).

Λix,jz ↔ Λ3φ =
[
Λs3φ Λd3φ

]
, (16)

where Λs3Φ corresponds to the first three columns of Λ3Φ (slack bus) and Λd3Φ corresponds
to the rest of the columns of Λ3Φ (demand buses).

Now, we proceed to define the voltage drops per phase for each of the branches of the
system. These voltage drops are defined as the difference between the node voltages per
phase that connect each of the branches; in this way, we get:

Er3φ = Λs3φ Vs3φ + Λd3φVd3φ, (17)

where Er3Φ is a matrix that includes all voltage drops, in which Vs3Φ = V{1−3}3Φ and Vd3Φ
is a matrix that includes all the voltages in the demand buses. On the other hand, it is
possible to define the bus currents (In3Φ) as

In3φ =
[
Is3φ Id3φ

]T , (18)

where Is3Φ and Id3Φ are the generation and demand currents per phase, respectively. In the
same way, the generation and demand currents can be deduced as shown below:

Is3φ = ΛT
s3φJr3φ, (19)

Id3φ = ΛT
d3φJr3φ, (20)
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In contrast, the voltage drops per phase in each of the branches can be defined through
the three-phase impedance matrix for distribution lines, which contains information of
each three-phase line impedance and the currents flowing around each one of the branches,
as expressed in matrix form in (21).



EaA
EaB
EaC
EbA
EbB
EbC
EcA
EcB
EcC
EdA
EdB
EdC


=



ZaAA ZaAB ZaAC 0 0 0 0 0 0 0 0 0
ZaBA ZaBB ZaBC 0 0 0 0 0 0 0 0 0
ZaCA ZaCB ZaCC 0 0 0 0 0 0 0 0 0

0 0 0 ZbAA ZbAB ZbAC 0 0 0 0 0 0
0 0 0 ZbBA ZbBB ZbBC 0 0 0 0 0 0
0 0 0 ZbCA ZbCB ZbCC 0 0 0 0 0 0
0 0 0 0 0 0 ZcAA ZcAB ZcAC 0 0 0
0 0 0 0 0 0 ZcBA ZcBB ZcBC 0 0 0
0 0 0 0 0 0 ZcCA ZcCB ZcCC 0 0 0
0 0 0 0 0 0 0 0 0 ZdAA ZdAB ZdAC
0 0 0 0 0 0 0 0 0 ZdBA ZdBB ZdBC
0 0 0 0 0 0 0 0 0 ZdCA ZdCB ZdCC





JaA
JaB
JaC
JbA
JbB
JbC
JcA
JcB
JcC
JdA
JdB
JdC


(21)

From (21) the following can be obtained:

Er3φ = Zr3φJr3φ , (22)

Thus, from (22) Jr3Φ can be found and replaced in (20) as follows:

Id3φ = ΛT
d3φZ−1

r3φEr3φ, (23)

Replacing (16) in (23) obtains:

Id3φ = ΛT
d3φZ−1

r3φ(Λs3φ Vs3φ + Λd3φVd3φ) , (24)

Id3φ = ΛT
d3φZ−1

r3φΛs3φ Vs3φ+ΛT
d3φZ−1

r3φΛd3φVd3φ , (25)

Taking into account that:

Ydg3φ = ΛT
d3φZ−1

r3φΛs3φ, (26)

Ydd3φ = ΛT
d3φZ−1

r3φΛd3φ , (27)

Equations (26) and (27) can be replaced in (25)

Id3φ = Ydg3φVs3φ + Ydd3φ Vd3φ, (28)

The main objective is to find a function of the form Vd3Φ = f (Id3Φ) in which the
three-phase demand voltages are related to the three-phase demand currents, clearing Vd3Φ
from (28), the expression (29) is obtained

Vd3φ = −Y−1
dd3φ(Id3φ + Ydg3φVs3φ) (29)

However, in (29) Id3Φ is still an unknown variable. This three-phase demand current
will depend on the type of load that will be connected, i.e., Star connection (Y) or in Delta
(∆). Therefore, in the case in which the loads that are connected to the electrical system
have a star connection, we get (30)–(32).

IkA =

(
SkA
VkA

)∗
, (30)

IkB =

(
SkB
VkB

)∗
, (31)

Ikc =

(
SkC
VkC

)∗
, (32)
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On the other hand, in the case that the connection of the loads is given by Delta
connections, we obtain (33)–(35).

IkA =

(
SkA

VkA −VkB

)∗
−
(

SkC
VkC −VkA

)∗
, (33)

IkB =

(
SkB

VkB −VkC

)∗
−
(

SkA
VkA −VkB

)∗
, (34)

IkC =

(
SkC

VkC −VkA

)∗
−
(

SkB
VkB −VkC

)∗
, (35)

for ∀k ∈ Ωb where k refers to the bus number. Thus, rewriting Equation (29) in terms of the
following iteration, we get (36).

Vt+1
d3φ = −Y−1

dd3φ(Id3φ + Ydg3φVs3φ), (36)

where t is the iteration counter. It is common for the power flow analysis to handle
a representation per unit of all the electrical variables, which implies that the voltage
of the substation can be defined with a positive sequence, as shown below: Vs3Φ =[
1∠0, 1∠− 120, 1∠120

]T . In the same way, for expression (36) to be valid, it must meet
the expression defined in (37). ∣∣∣Vt+1

d3φ −Vt
d3φ

∣∣∣ ≤ ε, (37)

where ε is the maximum acceptable error value, with a recommended value of 1× 10−10.
To determine the three-phase power losses, expression (38) is used, which describes the
Joule effect.

Ploss3φ = Re(sum(Et+1
r3φ )

T
(Jt+1

3φ )
∗
), (38)

Finally, to represent the matricial reformulation of the three-phase iterative sweep, the
flow diagram is presented in Figure 2.

Observation 1. Once the power losses are found for the proposed time period h, with
the help of Equation (38), the value of the objective function associated with the costs of
energy losses expressed in (1) is obtained, which can be found according to the following
expression:

Closs = CpPloss3φ∆h, (39)

4.2. Master Stage: GNDO Metaheuristic Algorithm

The GNDO is a metaheuristic method also known as generalized normal distribution
optimization, which is based on the Gaussian distribution model, where each individual
makes use of this curve to improve their position. The most important characteristic of the
GNDO is that it does not need any type of special control parameter, but on the contrary, it
only requires the initial population and assigning the terminal condition before running
the algorithm. The general model of Gaussian distribution is represented in (40), where x is
a random variable that corresponds to the distribution probability, which has a location
parameter µ and scale parameter δ [32].

f (x) =
1√
2πδ

exp

(
(x− µ)2

2δ2

)
, (40)

According to (39), the most important variables in the normal distribution are the
location parameter (µ) and the scale parameter (δ), both used to express the mean value
and standard variance of random variables, respectively [32].
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Start: Three-phase BFS power flow

Enter the parameters and char-
acteristics of the test systems

Build the incidence
matrix of the form

Λ3φ =
[
Λs3φ Λd3φ

]
Build the impedence matrix Z3φ

Initialize the phase voltages

Vs3φ =

 1∠0
1∠120
1∠240


Calculate It

d3φ according to the
load connection, i.e, Y or ∆

Yields Vt+1
d3φ =

−Y−1
dd3φ(Id3φ + Ydg3φVs3φ)

Meets
|Vt+1

d3φ −Vt
d3φ| ≤ ε

Calculate Ploss3φ =

R(sum(Et+1
r3φ )

T(Jt+1
r3φ ))

Increase the itera-
tive counter t by 1

Assign Vt
d3φ = Vt+1

d3φ

End: Analyse results

NO

YES

Figure 2. Flowchart used for the BFS method.
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4.2.1. Local Exploitation

In this stage of exploitation, a broad search is carried out to find the best solution
found thus far to verify whether there are better solutions in an attempt to accelerate the
speed of convergence [34]. The process of local exploitation involves finding better optimal
solutions around the current positions of all the individuals in the solution [32]. Therefore,
taking as a reference the relationship between all the individuals of the solution in the
current population and the normal distribution, in addition to seeking to accelerate the
speed of convergence, we seek to maintain the quality of the solutions found [34], thus
obtaining the following model:

vt
i = µi + δiη, i = 1, 2, ..., Ni.. (41)

In (41), i represents the ith individual solution, n corresponds to a penalty factor, δi
represents the generalized standard variation, µi represents the generalized mean position,
and vt

i corresponds to a vector of the current solution, it is important to note that Ni
corresponds to the total number of individuals in the population. The terms µi, δi and η
can be obtained as follows:

µi =
1
3
(

xt
i + xt

best + M
)
, (42)

δi =
1√
3
((xt

i − µi)
2 + (xt

best − µi)
2 + (M− µi)

2)
1
2 , (43)

η =

{
(− log (λ1))

1
2 cos (2πλ2), i f a ≤ b

(− log (λ1))
1
2 cos (2πλ2 + π), i f a > b

, (44)

where λ1, λ2, a and b correspond to random numbers between 0 and 1, with a uniform
distribution; xt

best corresponds to a vector containing the best solution found so far; and
M represents a vector containing the average position of the current individuals of the
population t, as defined in (45).

M =
1
Ni

Ni

∑
i=1

xt
i , (45)

4.2.2. Global Exploration

The purpose of this exploration stage is to determine and locate promising new regions
of the large solution space [32]. This is because µi may end up being a local minimum, as
the case may be, so performing the search around this parameter may not be sufficient
to improve the quality of the solutions. In this way, exploring the search space as much
as possible will avoid being trapped in local minima [34]. The global exploration in the
GNDO can be defined as follows:

vt
i = xt

i + β ∗ (|λ3|. ∗ v1) + (1− β) ∗ (|λ4|. ∗ v2), (46)

where λ3 and λ4 are two random numbers subject to the standard normal distribution, β
represents the adjustment parameter, which is randomly selected between 0 and 1, and
both v1 and v2 are two vectors defined as observed in (47) and (48).

v1 =

{
xt

i − xt
j , i f A f (xt

i ) < A f (xt
j)

xt
j − xt

i , Otherwise
, (47)

v2 =

{
xt

k − xt
m, i f A f (xt

k) < A f (xt
m)

xt
m − xt

k, Otherwise
, (48)

In (47) and (48), j, k, and m are three random integers, whose values range between 1
and the total number of individuals in the population. It is important to verify that these
values are different from each other, as well as from the current individual i for iteration t.
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On the other hand, A f (xt
i,j,k,m) represents the value of the objective function for the vectors

i, j, ks and m of the current population t. To ensure the viability of each generation in the
solution space, (49) is used.

vt
i,l =

{
vt

i,l , i f xmin
l ≤ vt

i,l ≤ xmax
l

xt
best,l , Otherwise

, (49)

where xmin
l and xmax

l are the integer values corresponding to the minimum and maximum
values of the set of conductors available for installation in the distribution grid under study,
which are evaluated from the first position to position d of the vector vt

i,l with the help
of the decision variable l. It is important to clarify that d represents the dimension of the
problem studied. vt

i,l represents the gauge value of the ith individual solution for a given
position in the vector according to the decision variable l. On the other hand, xt

best,l refers
to the value of the decision variable l for the best current solution found so far.

To maintain the best solution within the next generation of the population, the follow-
ing expression is used:

xt+1
i =

{
vt

i , i f A f (vt
i) ≤ A f (xt

i )
xt

i , Otherwise
, (50)

4.3. Improvement of the Exploration and Exploitation of the Solution Space

In order to obtain better results in the exploration and exploitation of the solution
space, a modified version of the GNDO base algorithm with the vortex search algorithm is
proposed [26]. The vortex search algorithm (VSA) is inspired by the vortex pattern created
by the vortex flow of agitated fluids, making it a fairly simple algorithm in addition to being
computationally efficient, so it is a good candidate for the solution of real-life optimization
problems [35]. The VSA works with continuous variables [33]. Therefore, a discrete version
will be used to determine the correct assignment of gauges to be installed in the branches
of the different distribution systems. Thus, the initial center of the hyper-ellipse is defined
in (51).

µ0 =
xmin + xmax

2
, (51)

where xmin ∈ Ndx1 and xmax ∈ Ndx1 are vectors that contain integers and have a size
determined by the dimension of the solution space d (d = n−1), where n is the number of
buses. It is important to clarify that µ0 must be rounded up to the nearest integer value.
On the other hand, the generation of candidate solutions is obtained with the help of the
Gaussian normal distribution as seen in (52).

vt
i = p

(
ςt

i, µt, Σ
)
=

1√
2πd|Σ|

exp
{
−1

2
(
ςt

i − µt
)τΣ−1(ςt

i − µt
)}

, (52)

where ζt
i ∈ Rdx1 is a vector with dimension d full of random values, µt ∈ Rdx1 which

represents the center of the hyper-ellipse for each iteration t, and ∑ ∈ Rdx1 is the covariance
matrix. This covariance matrix is worked as shown in [26], where it is described as a matrix
that has identical values in its diagonal and null values outside it, as (53) shows.

Σ = σ0I, (53)

where σ0 is the variance of the Gaussian distribution and I is the identity matrix with the
appropriate dimensions. In the same way, the value σ0 is found as follows:

σ0 =
max{xmax} −min

{
xmin}

2
, (54)
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Here, σ0 can be considered the initial radius (i.e., r0). Because an adequate exploration
of the solution space is required in the initial phases. r0 is chosen to be a large value [36]
(note that max{xmax} obtains the maximum value of the vector xmax and max

{
xmin}

obtains the minimum value xmax, respectively). The use the incomplete gamma function
(see [33]) allows finding the optimal solution during the search process the optimal solution
can be found. This, because the radius progressively decreases until it reaches zero, which
can be seen in (55).

Υ(x, a) =
∫ x

0
e−tta−1dt, (55)

In (55), a is a shape parameter greater than zero, and x is a random parameter greater
than or equal to zero. Thus, in order to determine the adaptive size of the radius for each
iteration, the incomplete gamma function is used, as presented in [33] and (56)

rt = σ0Υ−1(x, at), (56)

where at is a parameter obtained as shown in (57)

at =
tmax − t

tmax
, (57)

where tmax corresponds to the total number of iterations (tmax = 1000); in the same way
as in (55), the parameter x is selected as 0.1, as reported in [33]. To advance the process
of the exploration and exploitation search, it is necessary to update the new center of the
hyper-ellipse (µt+1), which will be selected as the best individual solution contained in
vt

i , where the minimum value of the objective function will be presented, which in turn is
known as xt

best.
It is important to mention that there is the possibility of having a candidate solution

outside the limits established by the solution space, so it is necessary and essential to review
the values of the minimum and maximum limits, as shown in (49).

Finally, to represent the general improved implementation of the GNDO based on
ellipses of variable radius, the flow diagrama is presented in Figure 3.

Improved Implementation of the GNDO Based on Ellipses of Variable Radius

The improved implementation of the GNDO based on ellipses of variable radius is
presented in Algorithm 1.
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Start

Define Ni, tmax; further
obtain µ0 and σ0 based on
(51) and (54) respectively

Generate the initial
population as shown
in (13) and evalue it
using the slave stage

Obtain xt
best and M,

further create two ran-
dom numbers θ and ρ

Meets
θ ≤ 1

2

Meets
ρ ≤ 1

2

Obtain vt
i from global

exploration process
as shown in (46)

Obtain vt
i from local

exploration process
as shown in (41)

Obtain the radius value
(rt) as shown in (56)

Generate the candidate
solution (vt

i ) using
the gaussian distri-

bution based on (52)

Adjust and evalue vt
i in

the slave stage, besides
select next generation

xt+1
i based on (50)

Meets
t < tmax

End: Report xt
best as

an optimal solution

Make t = t + 1

YES

NO

YES

NO

NO

YES

Figure 3. Flowchart used for the improved GNDO.
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Algorithm 1. Improved implementation of the GNDO based on the VSA.

Data: Select the AC electrical network under study;
Find the equivalent electrical network in values per unit;
Assign the population size (Ni), the maximum iterations (tmax) and t = 0;
Find the initial center (µ0) and the standard desviation (σ0) as shown in (51) and (54), respectively;
Generate the initial population according to (13);
Establish the best adaptive initial function as A f (xt

best) = ∞ ;
for t ≤ tmax do

Obtain the value of the objective function for each of the individuals belonging to the initial
population xt

i with the help of the slave stage;
Select the individual xt

best as the one that obtains the minimum value in the objective function
according to the results found in A f (xt

i );
for i = 1 : Ni do

Generate two random numbers ϑ and $ between 0 and 1;
Enter the value of the vector M as described in (45);
if ϑ < 1

2 then
Generate three random numbers j, k and m with each of them different from each other
and different from i;
Find the value of v1 and v2 as described in (47) and (48), respectively;
if ρ ≤ 1

2 then
Calculate the value of µi as described in (42);
Obtain the value of δi as described in (43);
Find the penalty factor η according to (44);
Obtain vt

i as described in (41);
Else

Perform the global exploration process as explained in (46);
End
Verify and adjust the values of vt

i according to the limits established in (49);
Evaluate vt

i in the slave stage in order to obtain the value of the objective function
A f (vt

i );
Select next generation xt+1

i as explained in (50);
Else

Obtain the radius rt as expressed in (56);
Generate the candidate solutions using the Gaussian distribution with center at µt
based on (52);
Verify and adjust the values of vt

i according to the limits established in (49);
Evaluate vt

i in the slave stage in order to obtain the value of the objective function
A f (vt

i );
Select next generation xt+1

i as explained in (50);
End

End
End

5. Characteristics of the Test Systems

In this section, two different radial distribution systems composed of 8 and 27 buses
are presented. The test systems will be analyzed under two study scenarios. The first case
corresponds to the analysis of the test systems operating under balanced loads, while the
second case corresponds to the analysis of the test systems operating under unbalanced
loads [26]. For both radial distribution systems, Star connections are used for all loads. The
general operating parameters for both test systems are listed in Table 3.

Table 3. General simulation parameters.

Parameter Value Unit

Energy cost 0.1390 (US$/kWh)
Iterations 1000 -

Population size 30 -
Tolerance 1× 10−10 -

5.1. First Test System

This first test system is a three-phase electrical distribution network consisting of
7 lines and 8 buses operating at an average nominal voltage of 13.8 kV between phase and
neutral with a unity power factor. Due to its radial topology, the slack bus corresponds to
bus 1 [26]. The electrical network is presented in Figure 4.
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Figure 4. Single-line diagram for the 8-bus test system.

Table 4 shows the corresponding information for the case of operating under a bal-
anced load scenario for the 8-bus system. It also presents the length for each network
section, the load levels per phase present for each load bus (PQ) bus and the topology of
the electrical network.

Table 4. Information corresponding to the 8-bus test system for the balanced case.

Line Bus i Bus j Lij (km) PD
j,h (kW) QD

j,h (kvar)

1 1 2 1.00 1054.2 0
2 2 3 1.00 806.5 0
3 1 4 1.00 2632.5 0
4 1 5 1.00 609 0
5 5 6 1.00 2034.5 0
6 3 7 1.00 932.8 0
7 3 8 1.00 1731.4 0

Table 5 shows the corresponding information for the case of operating under an
unbalanced load scenario for the 8-bus system, in which the different load levels per phase
present for each PQ bus are shown.

Table 5. Information corresponding to the 8-bus test system for the unbalanced case.

Bus j PD
j,a (kW) QD

j,a (kvar) PD
j,b (kW) QD

j,b (kvar) PD
j,c (kW) QD

j,c (kvar)

2 3162.6 0 0 0 0 0
3 0 0 2419.5 0 0 0
4 0 0 0 0 7897.5 0
5 913.5 0 913.5 0 0 0
6 0 0 3051.6 0 3051.6 0
7 2798.4 0 0 0 0 0
8 1298.55 0 2597.1 0 1298.55 0

5.2. Second Test System

This second test system is a three-phase electrical distribution network made up of
26 lines and 27 buses operating at an average nominal voltage of 13.8 kV between phase and
neutral with a unitary power factor. Due to its radial topology, the slack bus corresponds to
bus 1 [26]. The electrical network is presented in Figure 5.

Figure 5. Single-line diagram for the 27-bus test system.

Table 6 shows the corresponding information for the case of operating under a bal-
anced load scenario for the 27-bus system, in which the length for each network section
and the load levels per phase present for each PQ bus and the topology of the electrical
network are shown.
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Table 6. Information corresponding to the 27-bus test system for the balanced case.

Line Bus i Bus j Li,j (km) PD
j,h (kW) QD

j,h (kvar)

1 1 2 0.55 0 0
2 2 3 1.50 0 0
3 3 4 0.45 297.5 184.4
4 4 5 0.63 0 0
5 5 6 0.70 255 158
6 6 7 0.55 0 0
7 7 8 1.00 212.5 131.7
8 8 9 1.25 0 0
9 9 10 1.00 266.1 164.9
10 2 11 1.00 85 52.7
11 11 12 1.23 340 210.7
12 12 13 0.75 297.5 184.4
13 13 14 0.56 191.3 118.5
14 14 15 1.00 106.3 65.8
15 15 16 1.00 255 158
16 3 17 1.00 255 158
17 17 18 0.60 127.5 79
18 18 19 0.90 297.5 184.4
19 19 20 0.95 340 210.7
20 20 21 1.00 85 52.7
21 4 22 1.00 106.3 65.8
22 5 23 1.00 55.3 34.2
23 6 24 0.40 69.7 43.2
24 8 25 0.60 255 158
25 8 26 0.60 63.8 39.5
26 26 27 0.80 170 105.4

Table 7 shows the corresponding information for the case of operating under an
unbalanced load scenario for the 27-bus system, in which the different load levels per phase
present for each PQ bus are shown.

Table 7. Information corresponding to the 27-bus test system for the unbalanced case.

Bus j PD
j,a (kW) QD

j,a (kvar) PD
j,b (kW) QD

j,b (kvar) PD
j,c (kW) QD

j,c (kvar)

2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 892.5 553.2 0 0 0 0
5 0 0 0 0 0 0
6 0 0 765 474 0 0
7 0 0 0 0 0 0
8 0 0 0 0 637.5 395.1
9 0 0 0 0 0 0
10 0 0 0 0 798.3 494.7
11 0 0 255 158.1 0 0
12 1020 632.1 0 0 0 0
13 446.25 276.6 446.25 276.6 0 0
14 0 0 286.95 177.75 286.95 177.75
15 159.45 98.7 0 0 159.45 98.7
16 0 0 382.5 237 382.5 237
17 1 0 765 474 0 0
18 382.5 237 0 0 0 0
19 446.25 276.6 446.25 276.6 0 0
20 0 0 510 316.05 510 316.05
21 127.5 79.05 0 0 127.5 79.05
22 0 0 159.75 98.7 159.75 98.7
23 165.9 102.6 0 0 0 0
24 0 0 0 0 209.1 129.6
25 255 158 255 158 255 158
26 63.8 39.5 63.8 39.5 63.8 39.5
27 170 105.4 170 105.4 170 105.4
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5.3. Set of Available Conductors

Eight different types of conductors are considered to be assigned within the different
test systems exposed. Table 8 shows the different values of impedances, maximum thermal
currents and cost per kilometer for each of them.

Table 8. Set of conductors considered for the different test systems.

Gauge (c) r (Ω/km) x (Ω/km) Ic,max (A) Cc (US$/km)

1 0.8763 0.4133 180 1986
2 0.6960 0.4133 200 2790
3 0.5518 0.4077 230 3815
4 0.4387 0.3983 270 5090
5 0.3480 0.3899 300 8067
6 0.2765 0.3610 340 12,673
7 0.0966 0.1201 600 23,419
8 0.0853 0.0950 720 30,070

6. Computational Validation

The proposed optimization methodology is implemented on a personal computer
using MATLAB® R2021a software. The computer has an Intel (R) Core (TM) i7-8565U CPU
@1.80 GHz 1.99 GHz, 8 Gb RAM (Intel, Santa Clara, CA, USA), and Windows 11 Home
operating system of ×64 bits. The results are analyzed with the help of Microsoft Power BI
Desktop® Version 2.109.642.0 ×64 bits (Redmond, WA, USA).

7. Results and Discussion

This section presents the numerical results obtained for both test systems considering
an operating scenario in peak demand, i.e., T = 8760 h and with demand of 100% at every
instant of time.

7.1. Results in a Balanced Operating Scenario

The results obtained for IEEE 8 and 27-bus test systems of are presented consid-
ering the optimization method presented with the master-slave structure for balanced
operating scenarios.

7.1.1. Results in the IEEE 8-Bus Test System

Table 9 presented in [30] shows the solutions obtained by different comparative
methods, such as the tabu search algorithm (TBA), traditional genetic algorithm (TGA),
Chu and the Beasley genetic algorithm (CBGA), the exact MINLP solver model in General
Algebraic Modeling System (GAMS), Newton’s metaheuristic algorithm (NMA) and the
vortex search algorithm (VSA). In the same way, the solution reached by the proposed
GNDO is presented.

Table 9. Solutions obtained by different optimization methods.

Method Gauges Investment in
Conductors (US$) Losses (US$) Annual Costs

(US$)

TGA {6,5,3,4,4,1,4} 125,433 406,222.461 531,655.461
CBGA {6,6,4,4,4,1,4} 143,076 373,155.965 516,231.965
GAMS {6,4,4,5,4,1,2} 122,358 416,681.580 539,039.580

TBA {6,5,4,4,4,1,3} 125,433 397,754.442 523,187.442
VSA {6,6,5,5,4,2,4} 163,350 345,007.959 508,357.959

NMA {6,6,5,5,4,2,4} 163,350 345,007.959 508,357.959

GNDO {7,7,5,5,4,2,4} 227.826 228,143.791 455,969.791

The results presented in Table 9 show that (i) the proposed methodology based on the
GNDO improves the numerical results obtained by the NMA and discrete version of the
VSA (DVSA) algorithms, with a solution equal to US $ 455,969,791, of which 50.03% corre-
sponds to the costs associated with energy losses stipulated for the established planning



Energies 2023, 16, 1311 21 of 35

horizon and 49.97% corresponds to the costs associated with the investment in conductors.
(ii) The second-best solution methodology is the NMA and DVSA algorithms, both with
an objective function value equivalent to US$ 508,357,959, followed in third place by the
CBGA solution methodology with an objective function value of US$ 516,231,965. (iii) It is
noted how the solution obtained by the GNDO presents the highest level of investment in
conductors compared to the other methods. However, this increase in the investment cost is
compensated by a lower level of cost in energy losses, so in that sense the best combination
of gauges is achieved for this test system. (iv) The proposed methodology based on the
GNDO reduces annual costs by 10.30% compared to the second-best solution presented in
Table 9.

In contrast, Figure 6 shows the behavior of the voltage profiles at the eight buses of
the system, where it can be observed that the minimum voltage value is present in bus six
with a value of 0.9904 pu, yet it should be clarified that because the system is in a balanced
load scenario, the behavior of the different voltage profiles for the different phases A, B
and C will be the same.

Figure 6. Behavior of the voltage profiles in the 8-bus three-phase distribution system under a
balanced load scenario.

On the other hand, Figure 7 shows the total apparent power losses (S) for the phases
A, B and C in the different branches belonging to the eight-bus system, it can be observed
that the greatest value of losses is present in branch four with a value of 58.53 kVA. It is
worth clarifying that because the system is in a balanced load scenario, the corresponding
contribution of each of the phases A, B and C to the total power losses in each branch will
be the same.

Figure 7. Power losses present in the branches of the three-phase 8-bus distribution system under a
balanced load scenario.

Finally, Figure 8 represents the loadability of each of the branches in the 8-bus system,
which shows the comparison between the maximum current value obtained from the
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phases A, B and C for a given branch X against the maximum-established current limits
according to gauge-type obtained for said network section shown in Table 8. In this way, it
is important to highlight that the maximum flowing currents for each of the branches are
quite far from the limits of the established maximum current.

Figure 8. Loadability levels present in the branches of the three-phase 8-bus distribution system
under a balanced load scenario.

7.1.2. Results in the IEEE 27-Bus Test Scenario

In Table 10 presented in [30] the results obtained by different comparative methods are
presented, such as the vortex search algorithm (VSA) and Newton’s metaheuristic algorithm
(NMA). In the same way, the solution reached by the proposed GNDO is presented.

Table 10. Solutions obtained by different optimization methods.

Method Gauges Investment in
Conductors (US$) Losses (US$) Annual Costs

(US$)

VSA {7,7,5,4,4,3,3,1,1,4,4,2,3
2,1,4,4,2,2,2,1,1,2,2,1,1} 344,352.150 217,672.327 562,024.477

NMA {7,7,4,4,4,4,3,1,1,4,4,3,3
1,2,4,3,2,1,1,1,1,2,2,1,1} 337,744.800 219,950.455 557,695.255

GNDO {7,7,4,4,4,3,3,1,1,4,4,2,1
1,1,3,2,2,1,1,1,1,1,1,1,1} 319,768.08 230,115.492 549,883.572

The results presented in Table 10 show that (i) the proposed methodology based on the
GNDO improves the numerical results obtained by the NMA and DVSA algorithms, with a
solution equal to US $ 549,883.572, of which 41.85% corresponds to the costs associated with
the energy losses stipulated for the established planning horizon and 58.15% corresponds
to the costs associated with the investment in conductors; (ii) It is noted how the solution
obtained by the GNDO presents the lowest level of investment in conductors compared to
the other methods. However, this lower investment cost promotes an increase in the cost of
energy losses, so, although there is a slight increase in the latter, it is not high enough, so
the lowest value of the objective function is obtained when compared with the objective
functions of the different methods shown in Table 10. In this sense, the best combination of
gauges is achieved for this test system. (iii) The GNDO methodology reduces annual costs
by 1.40% with respect to the second-best solution presented in Table 10.

In contrast, Figure 9 shows the behavior of the voltage profiles in the 27 buses of the
system, where it can be observed that the minimum voltage value is present in bus 10 with
a value of 0.9771 pu, and should be clarified that because the system is in a balanced load
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scenario, the behavior of the different voltage profiles for the different phases A, B and C
will be the same.

Figure 9. Behavior of the voltage profiles in the three-phase 27-bus distribution system under a
balanced load scenario.

On the other hand, Figure 10 shows the total apparent power losses (S) for the phases
A, B and C in the different branches belonging to the 27-bus system, it can be observed that
the highest losses occur in branch two with a value of 42.42 kVA. Because the system is in a
balanced load scenario, the corresponding contribution of each of the phases A, B and C to
the total power losses in each branch will be the same.

Figure 10. Power losses present in the branches of the three-phase 27-bus distribution system under
a balanced load scenario.

Finally, Figure 11 represents the loadability of each of the branches in the 27-bus
system, which shows the comparison between the maximum current value obtained from
the phases A, B and C for a given branch X against the maximum-established current limits
according to gauge-type obtained for said network section shown in Table 8. In this way, it
is important to highlight that the maximum flowing currents for each of the branches are
quite far from the limits of the established maximum current.
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Figure 11. Country house with poor lighting.

7.2. Results in an Unbalanced Operating Scenario

The results obtained for IEEE 8- and 27-bus test systems are presented considering the
optimization method used with master-slave structure for the unbalanced operating scenarios.

7.2.1. Results in the IEEE 8-Bus Test System

Table 11 presented in [30] shows the results obtained by different comparative methods,
such as the vortex search algorithm (VSA) and Newton’s metaheuristic algorithm (NMA).
In the same way, the solution reached by the proposed GNDO is presented.

Table 11. Solutions obtained by different optimization methods.

Method Gauges Investment in
Conductors (US$) Losses (US$) Annual Costs

(US$)

VSA {7,7,7,5,5,4,4} 289,713 269,045.394 558,758.394
NMA {7,7,7,5,5,4,4} 289,713 269,045.394 558,758.394

GNDO {7,7,7,5,5,4,4} 289,713 269,045.394 558,758.394

The results presented in Table 11 show that (i) the proposed methodology based on
the GNDO does not improve but matches the numerical results obtained by the NMA and
VSA algorithms because a solution equal to US $ 558,758.394 is obtained, of which 48.15%
corresponds to the costs associated with the energy losses stipulated for the established
planning horizon and 51.85% corresponds to the costs associated with the investment
in conductors.

In contrast, Figure 12 shows the behavior of the voltage profiles in the eight buses of
the system, where it can be observed that the minimum voltage value is present in bus six
for the phase B with a value of 0.9869 pu, it should be noted that because the system is in
an unbalanced load scenario, the behavior of the different voltage profiles for the different
phases A, B and C will no longer be the same.
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Figure 12. Behavior of the voltage profiles in the three-phase 8-bus distribution system under an
unbalanced load scenario.

On the other hand, Figure 13 shows the total apparent power losses (S) for the phases
A, B and C in the different branches belonging to the eight-bus system. It can be observed
that the highest losses value is present in branch three in phase C with a value of 50.89 kVA.
It should be clarified that because the system is in an unbalanced load scenario, the corre-
sponding contribution of each of the phases A, B and C to the total power losses in each
branch will no longer be the same.

Figure 13. Power losses present in the branches of the three-phase 8-bus distribution system under
an unbalanced load scenario.

Finally, Figure 14 represents the loadability of each of the branches in the 8-bus system,
which shows the comparison between the maximum current value obtained of phases A, B
and C for a given branch X against the maximum-established current limits according to
gauge-type obtained for said network section shown in Table 8. In this way, it is important
to highlight that the maximum flowing currents for each of the branches are quite far from
the limits of the established maximum current.
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Figure 14. Loadability levels present in the branches of the three-phase 8-bus distribution system
under an unbalanced load scenario.

7.2.2. Results in the IEEE 27-Bus Test Scenario

Table 12 presented in [30] shows results obtained by different comparative methods,
such as the vortex search algorithm (VSA) and Newton’s metaheuristic algorithm (NMA).
In the same way, the solution reached by the proposed GNDO is presented.

Table 12. Solutions obtained by different optimization methods.

Method Gauges Investment in
Conductors (US$) Losses (US$) Annual Costs

(US$)

VSA {7,7,5,4,4,4,4,2,2,4,4,3,2
1,1,2,3,2,1,2,2,1,2,2,4,1} 350,392.95 257,999.185 608,392.135

NMA {7,7,4,4,4,3,4,2,1,4,4,4,2
1,1,4,3,2,2,1,1,1,2,2,2,1} 344,954.40 252,624.608 597,579.008

GNDO {7,7,4,4,4,4,4,1,1,4,4,3,1
1,1,4,2,2,1,1,1,1,1,1,1,1} 331,828.08 257,190.720 589,018.800

The results presented in Table 12 show that (i) the proposed methodology based on the
GNDO improves the numerical results obtained by the NMA and DVSA algorithms, with a
solution equal to US $ 589,018,800, of which 43.66% corresponds to the costs associated with
the energy losses stipulated for the established planning horizon and 56.34% corresponds to
the costs associated with the investment in conductors; (ii) It is indicated how the solution
obtained by the GNDO presents the lowest investment in conductors compared to the other
methods. However, this lower investment cost promotes an increase in the cost of energy
losses, so, although there is a slight increase in the latter, it is not high enough, so the lowest
value of the objective function is obtained when compared with the objective functions of
the different methods presented in Table 12. In this sense, the best combination of gauges is
achieved for this test system. (iii) The proposed methodology based on the GNDO reduces
annual costs by 1.43% compared to the second-best solution presented in Table 12.

In contrast, Figure 15 shows the behavior of the voltage profiles in the 27 buses of the
system, where it can be observed that the minimum voltage value is present in bus 10 for
phase C with a value of 0.9596 pu. This is due to the active and reactive power demand
value present in bus 10 for phase C, with values of 798.3 kW and 497.7 kvar, respectively,
which constitute the highest demand values for this phase in all the buses of the distribution
system in the unbalanced scenario. In this sense, by comparing phases A, B and C, it can be
seen that, since the first two lack demand, their behavior with respect to phase C remains
more stable. In the same way, when performing a topological analysis of the network, it
is possible to observe that bus 10 is one of the furthest nodes from the slack node, which
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entails more significant voltage variations. It should be clarified that because the system
is in an unbalanced load scenario, the behavior of the different voltage profiles for the
different phases A, B and C is not the same.

Figure 15. Behavior of the voltage profiles in the three-phase 27-bus distribution system under an
unbal-anced load scenario.

On the other hand, Figure 16 shows the total apparent power losses (S) for the phases
A, B and C in the different branches belonging to the 27-bus system; it can be observed that
the greatest losses are present in phase B for branch two with a value of 17.06 kVA and in
phase C for branch seven with a value of 17.15 kVA. It is valid to clarify that because the
system is in an unbalanced load scenario, the contribution corresponding to phases A, B,
and C to the total power losses in each branch will no longer be the same.

Figure 16. Power losses present in the branches of the three-phase 27-bus distribution system under
an unbalanced load scenario.

Finally, Figure 17 represents the loadability of each of the branches in the 27-bus
system, which shows the comparison between the maximum current value obtained of
phases A, B and C for a given branch X against the maximum-established current limits
according to gauge-type obtained for said network section shown in Table 8. In this way, it
is important to highlight that the maximum flowing currents for each of the branches are
pretty far from the limits of the established maximum current.
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Figure 17. Loadability levels present in the branches of the three-phase 27-bus distribution system
under an unbalanced load scenario.

7.3. Complementary Analysis

To analyze the behavior of the proposed algorithm, Figures 18 and 19 are shown.
These results show how the proposed GNDO algorithm behaved in the search to minimize
the value of the objective function throughout all iterations (tmax). It is observed how the
IEEE 8-bus system for both balanced and unbalanced loads manages to converge and
stabilize in a few iterations; on the other hand, the IEEE 27-bus system for both balanced
and unbalanced loads takes many more iterations (t) to converge.

In the same way, according to the results obtained from the IEEE 8- and 27-bus systems
for the test scenarios under balanced and unbalanced loads, the following is obtained:

• The proposed GNDO only needs a single evaluation to obtain the numerical results
presented in this research, which guarantees very reduced computation times, making
this algorithm the most efficient one reported in the specialized literature.

• The proposed GNDO improves the results in most of the case studies presented, with
the exception of the 8-bus test system under an unbalanced operating scenario, in
which it matches the results obtained by algorithms such as the NMA or the VSA.
In this way, it can be inferred that for this particular case study, the overall optimal
solution has been obtained.

• The levels of loadability shown for each of the lines in the different cases of study
guarantee good functioning in the electrical distribution systems tested, additionally
ensuring the possibility of future expansions and new load connections.
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Figure 18. Behavior of the value of the objective function for: (a) 8-bus system with balanced load;
(b) 27-bus system with balanced load.

Figure 19. Behavior of the value of the objective function for: (a) 8-bus system with unbalanced load;
(b) 27-bus system with unbalanced load.
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7.4. Selection of Conductors Considering Different Load Periods

To validate the effectiveness of the proposed GNDO in dealing with medium-scale
distribution networks considering demand variations, this subsection presents some nu-
merical validations for the three-phase asymmetric version of the IEEE 33-bus grid. It´s
single line diagram is presented in Figure 20. The nodal connections and the line lengths
are listed in Table 13.

Slack
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19

20

21
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24
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26 27 28 29 30 31 32 33

Figure 20. IEEE 33-bus single line diagram.

Table 13. Information corresponding to the 33-bus test system.

Line Bus i Bus j Lij (km)

1 1 2 0.0699
2 2 3 0.3720
3 3 4 0.2762
4 4 5 0.2876
5 5 6 0.7630
6 6 7 0.4030
7 7 8 1.4733
8 8 9 0.8850
9 9 10 0.8900
10 10 11 0.1308
11 11 12 0.2491
12 12 13 1.3115
13 13 14 0.6272
14 14 15 0.5585
15 15 16 0.6457
16 16 17 1.5050
17 17 18 0.6530
18 2 19 0.1603
19 19 20 1.4298
20 20 21 0.4439
21 21 22 0.8231
22 3 23 0.3798
23 23 24 0.8035
24 24 25 0.7985
25 6 26 0.1532
26 26 27 0.2145
27 27 28 0.9963
28 28 29 0.7524
29 29 30 0.3830
30 30 31 0.9687
31 31 32 0.3362
32 32 33 0.4356

The information regarding power consumption per node in the three-phase version of
the 33-bus grid is listed in Table 14.
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Table 14. Information corresponding to the 33-bus test system.

Bus j PD
j,a (kW) QD

j,a (kvar) PD
j,b (kW) QD

j,b (kvar) PD
j,c (kW) QD

j,c (kvar)

2 100 50 100 60 0 0
3 90 0 90 40 0 0
4 120 75 120 80 150 90
5 60 20 60 30 60 30
6 60 18 60 20 60 20
7 200 150 0 0 100 100
8 200 0 200 100 0 0
9 60 60 0 0 0 0
10 60 60 60 20 0 0
11 45 30 45 30 45 30
12 0 0 60 35 155 100
13 60 110 60 35 60 35
14 120 80 190 80 120 80
15 60 10 60 50 60 10
16 60 20 110 80 60 20
17 60 20 150 95 0 0
18 90 40 100 0 90 40
19 0 0 0 0 90 40
20 210 50 85 40 70 75
21 90 40 110 40 110 20
22 300 400 0 0 90 40
23 90 50 70 0 0 0
24 420 200 420 200 420 200
25 120 75 0 0 150 100
26 60 25 80 25 0 0
27 0 0 80 25 0 0
28 60 20 48 24 60 20
29 120 70 185 75 120 70
30 200 600 400 400 500 600
31 150 70 120 90 150 70
32 210 100 120 35 210 100
33 60 40 100 750 0 0

To evaluate the effectiveness of the proposed GNDO in solving the problem of the
optimal selection of conductors in three-phase unbalanced distribution networks against
different demand variations, three numerical validations are carried out, as defined below.

• Case 1: The evaluation of the optimization methodology during the peak load con-
dition, condition, i.e., under the same simulation conditions used for the 8- and
27-bus grids.

• Case 2: The evaluation of the optimization methodology considering daily load
variations, according to Table 15 data.

• Case 3: The evaluation of the optimization methodology considering three different
demand periods over the year as follows: (i) 1000 h at 100 percent demand, (ii) 6760 h
at 60 percent demand, (iii) 1000 h at 30 percent demand.

Table 15. Daily demand variation for the 33-bus grid.

Time (h) Demand (pu) Time (h) Demand (pu) Time (h) Demand (pu)

1 0.684511335492475 9 0.706039245570585 17 0.874071251666984
2 0.644122690036197 10 0.787007048961707 18 1
3 0.613069156029720 11 0.839016955610593 19 0.983615926843208
4 0.599733282530006 12 0.852733854067441 20 0.936368832158506
5 0.588874071251667 13 0.870642027052772 21 0.887597637645266
6 0.598018670222900 14 0.834254143646409 22 0.809297008954087
7 0.626786054486569 15 0.816536483139646 23 0.745856353591160
8 0.651743189178891 16 0.819394170318156 24 0.733473042484283

Note that no comparison with the previous literature reports is made in this simulation
scenario since this is the first time that the IEEE 33-bus grid is adapted to a three-phase
unbalanced version of studying the problem of the optimal selection of conductors. This
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implies that the results reported here will become a reference for future developments in
this research area.

Table 16 presents the list of calibers assigned for each operative scenario. The main
characteristic of the conductors selected for each operative scenario is that these solutions
fulfill the telescopic operating condition typically implemented by distribution companies
to reduce investment costs in conducting material.

Table 16. Conductors selected for the IEEE 33-bus grid at each operative scenario.

Line Case 1 Case 2 Case 3

1 7 4 7
2 7 4 7
3 7 4 7
4 7 4 7
5 7 4 7
6 7 4 7
7 7 4 7
8 7 4 7
9 7 4 7
10 7 4 7
11 7 3 6
12 7 3 6
13 7 3 4
14 6 2 4
15 5 1 1
16 5 1 1
17 1 1 1
18 4 1 5
19 4 1 2
20 4 1 1
21 1 1 1
22 5 3 4
23 5 3 4
24 1 1 1
25 7 4 7
26 7 4 5
27 6 1 5
28 6 1 3
29 6 1 3
30 3 1 1
31 2 1 1
32 2 1 1

Table 17 presents the investment, operating, and total costs for the IEEE 33-bus grid.
Note that Cpen is zero for all the solutions listed in Table 16 since each final solution is
100% feasible.

Table 17. Investment and operating costs found with the application of the GNDO to the three-phase
version of the IEEE 33-bus grid for each operative scenario.

Case Cinv (USD) Closs (USD) Z (USD)

1 814,647.151 88,991.787 903,638.938
2 195,187.456 7246.061 202,433.517
3 593,777.672 48,350.741 642,128.413

The numerical results presented in Table 17 reveal the following:

i. The investment and operating cost in Case 1, where the peak load condition is analyzed
during the year, shows that to minimize the costs of energy losses, the size of the
conductors is increased considerably, being this investment costs about 90.1518% of
the total costs of the plan. This is an expected result since, as observed in Table 16, the
solution of Case 1 has the largest conductor sizes compared with the remainder of the
simulation cases.
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ii. The operation scenario considering the daily load profile shows the more realistic
simulation scenario (see Case 2) where the energy losses considerably reduce their
costs when compared to the peak load operation scenario (about 91.8576%), which has
a direct effect on the conductors selected to supply the energy load within this daily
operation case. Note that the reduction in the investment costs when compared to
Case 1 and Case 2 is about 76.0402%. This is an expected reduction in the investment
costs since these are nonlinearly related to the energy loss costs, which implies that
smaller conductor sizes can be found as an adequate balance between investment and
operating costs.

iii. Case 3 shows an intermediate solution scenario between Cases 1 and 2, with a total
investment of USD/year 642, 128.413 distributed about 92.4702% on investment in
conductors and 7.5298% in costs of the energy losses. Note that what happened with
Case 1, the expected energy losses costs of the network, have an essential influence
on the size of the conductors selected (see Table 16); in addition, note that for the
distribution company, the solution in Case 3 can be the most attractive alternative since
it has moderate investment costs with the main advantage that the selected conductors
can support future load increments without any changes in the grid structure.

iiii. Analyzing the processing times, we obtained that for Case 1 it takes 215.5422075
seconds to converge in a single evaluation, while Case 2 and 3 take 4514.526068 and
488.239934 seconds, respectively. Based on the results obtained we can observe that
Cases 1 and 2 don’t represent big computational processing times, in other hand for
third case its time increases among other things for daily demand variations.

8. Conclusions and Future Work

The problem of the optimal selection of conductors in asymmetric three-phase distri-
bution networks was analyzed in this work with an improved version of the generalized
normal distribution algorithm called GNDO. This algorithm included the exploration
and exploitation stages based on hyper-ellipses of variable radius, which were uniformly
distributed using a Gaussian distribution compared to the best current solution Xt

best if
the parameter ϑ was greater than 50%. The numerical results show that for the 8-bus
system, the proposed GNDO improves the results reported for the balanced case with a
value of US $455,969.791, on the other hand, for the unbalanced case it is the same as the
reported results with a value of USD 558,758.394. In the case of the 27-bus system, the
proposed GNDO improves the results reported for both the balanced case and the unbal-
anced case with US $ values 549,883.572 and US $589,018.800, respectively. This makes the
proposed method the reference methodology to compare new optimization methods that
are applicable to the problem of optimal selection of conductors in asymmetric three-phase
distribution networks.

The processing times of the GNDO show that it takes on average 31.24 s to obtain a
solution in the 8-bus system under the scenarios presented, and it takes 168.43 s on average
to obtain a solution in the 27-bus system under the scenarios presented, which corresponds
to extremely shorter computation times taking into account that the dimensions of the
solution space for these systems are in the order of 87 and 826 representing 2097.152 million
and 3.02231454903657× 1023 three hundred thousand trillion possibilities.

It’s notable that when the IEEE system buses increase, the processing time will increase
in the same way. When comparing the processing time in the IEEE 27-bus system under
peak demand and the processing time in the IEEE 33-bus system under peak demand
(Case 1), it’s possible to observe that it wasn’t a representative incremental time. The
delta value was only 47.1122 seconds. For this reason, the proposed GNDO is suitable for
large-scale power grids, and its implementation doesn’t have an upper limit of application.

In future works, the following works can be made: (i) apply the proposed metaheuris-
tic methodology can be applied to solve problems associated with the local distribution
system, such as the location of possible charging stations for electric vehicles, possible
distributed generation, electrical compensation systems, and protection and load-balancing
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devices; (ii) to apply new combinatorial optimization methods using efficient initializa-
tion algorithms for selecting conductors in large-scale distribution networks by including
intelligent evolution strategies that consider the telescopic nature of the studied problem
and the possibility of integrating distributed energy resources in the distribution network;
and (iii) to develop a convex approximation model for the three-phase networks with
a mixed-integer structure that ensure the repeatability of the solution methodology and
high-quality solutions with low computational effort.
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