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Abstract: Due to the need to include renewable energy resources in electrical grids as well as the
development and high implementation of PV generation and DC grids worldwide, it is necessary
to propose effective optimization methodologies that guarantee that PV generators are located and
sized on the DC electrical network. This will reduce the operation costs and cover the investment
and maintenance cost related to the new technologies (PV distributed generators), thus satisfying
all technical and operative constraints of the distribution grid. It is important to propose solution
methodologies that require short processing times, with the aim of exploring a large number of
scenarios while planning energy projects that are to be presented in public and private contracts,
as well as offering solutions to technical problems of electrical distribution companies within short
periods of time. Based on these needs, this paper proposes the implementation of a Discrete–
Continuous Parallel version of the Particle Swarm Optimization algorithm (DCPPSO) to solve the
problem regarding the integration of photovoltaic (PV) distributed generators (DGs) in Direct Current
(DC) grids, with the purpose of reducing the annual costs related to energy purchasing as well as
the investment and maintenance cost associated with PV sources in a scenario of variable power
demand and generation. In order to evaluate the effectiveness, repeatability, and robustness of the
proposed methodology, four comparison methods were employed, i.e., a commercial software and
three discrete–continuous methodologies, as well as two test systems of 33 and 69 buses. In analyzing
the results obtained in terms of solution quality, it was possible to identify that the DCPPSO proposed
obtained the best performance in relation to the comparison methods used, with excellent results
in relation to the processing times and standard deviation. The main contribution of the proposed
methodology is the implementation of a discrete–continuous codification with a parallel processing
tool for the evaluation of the fitness function. The results obtained and the reports in the literature for
alternating current networks demonstrate that the DCPPSO is the optimization methodology with
the best performance in solving the problem of the optimal integration of PV sources in economic
terms and for any kind of electrical system and size.

Keywords: DC networks; discrete–continuous metaheuristic; parallel processing tool; photovoltaic
generation; variable power demand; variable renewable generation

MSC: 65K05; 90C26; 90C27

1. Introduction

Nowadays, DC grids are widely used around the world given their different advantages
in comparison with their alternate current (AC) counterparts, i.e., their easy implementation,
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low investment and maintenance costs, and low operating complexity [1–4]. For these reasons,
several electrical industry manufacturers and researchers have put their efforts and money
into developing efficient methodologies for the operation and planning of this kind of
grid, with the optimal integration of distributed energy resources currently being the topic
of interest [5–8]. The optimal integration of distributed energy resources aims to locate
and operate distributed generators (DGs) and energy storage systems within electrical
systems in order to improve the different technical, economic, and environmental indices
of DC grids [9–11]. This problem has been highly studied in alternating current networks
by multiple authors, who obtained excellent results in terms of solution and processing
times [12–14] and have taken advantage of different methodologies for solving problems
with similar characteristics proposed in the literature [15,16], with particular adaptations
to different electrical issues. However, the performance of the methodologies for AC
networks reported in the literature must be evaluated in DC grids through the proposal
of very new methodologies; in each of these cases, the mathematical formulations are
different due to the absence of reactive or frequency components in the DC networks,
which generates a completely different problem. Consequently, the optimal integration
of PV sources into DC grids has become a widely studied topic in recent years [17–19].
In the specialized literature, many studies have been reported with regard to solving
the problem of the optimal integration of PV sources into DC grids in order to improve
technical conditions (power loss, voltage profiles, system chargeability, etc.) and reduce the
environmental impact associated with fossil fuel-based generation as well as with operating
and investment costs [20–22].

As for the methodologies used to improve the technical characteristics of the grids,
multiple works can be found in the literature. One example is [23], which proposed the
use of mixed-integer quadratic programming and the General Algebraic Modeling System
(GAMS) software as a solution. In this work, the authors demonstrated the effectiveness
of GAMS solvers in terms of standard deviation and processing times. However, this
kind of software is often stuck in the local optima and increases the costs and complexity
of the solution methodology. Other works have used integer non-linear programming
methods to represent the mathematical model that could describe the optimal integration
of DGs into DC grids for the reduction of power losses [24], which also requires specialized
software, thus increasing the acquisition costs and the complexity of the solution. In or-
der to minimize the implementation of specialized software, different authors have used
optimization methods that were based on sequential programming and developed in free
software, aiming to reduce power losses via algorithms such as the particle swarm opti-
mization method [12] and the vortex search algorithm [25], among others [26]. The solution
impact, standard deviation, and processing time from these works’ simulation results were
then evaluated in order to demonstrate the effectiveness and robustness of the proposed
solution methodologies.

In the last decade, several works have been reported whose objective function is
to reduce CO2 emissions in DC grids by optimally sitting and sizing PV sources. These
works employed optimization methods based on sequential programming and aimed to
improve the quality of the solution as well as reduce processing times by avoiding the
implementation of specialized software [27,28]. However, most of the works published
in recent years have focused on improving economical indices such as the reduction of
energy purchasing/production, investment, and maintenance costs associated with DG
as these indices directly affect both users and electrical operators. In this vein, PV sources
are the most developed and installed technology around the world. An example of this
is the work presented in [29], which used the BONMIN solver of GAMS to solve the
mathematical model that represents the problem of optimal integration of DGs in DC grids
in order to reduce annual costs. This methodology remained stuck in the local optima,
with short processing times and a standard deviation of zero. Similarly, in [30], a two-stage
optimization process was proposed for the integration of PV and wind generators in a DC
grid, with the aim of reducing production and investment costs. The results demonstrated
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the effectiveness of the proposed methodology in terms of its objective function. However,
the authors did not analyze the method’s repeatability and processing times. In addition,
this work employed a master–slave methodology that is traditionally used in the literature
to solve for the optimal integration of DGs in both DC and AC grids [31]. This methodology
employs two kinds of optimization methods, i.e., discrete and continuous, thus requiring
more time and increasing the complexity of the solution.

Seeking to improve the effectiveness and robustness of the solution methodologies for
the problem under study, the literature has proposed modified optimization algorithms that
employ discrete–continuous methodologies to solve the problem of PV sources’ optimal
integration into DC grids. These techniques involve continuous optimization methods
that force some variables within the solution to be discrete, thus offering a solution to the
location problem while keeping the rest of the variables continuous in order to solve the
DG sizing problem. An example of this is [29], where a discrete–continuous version of the
vortex search algorithm for integrating PV sources in DC grids was proposed. Its aim was
to reduce the annual costs associated with energy purchasing, investment, and maintenance.
In this paper, the authors compared the results obtained by the proposed methodology to a
discrete–continuous version of the Chu and Beasley genetic algorithm and the BONMIN
solver of GAMS, which are used to solve the same problem in AC grids [32]. This work
compared the average results obtained by the solution methodologies, demonstrating the
effectiveness of the proposed solution, but it did not analyze the effects of all solution meth-
ods on aspects such as standard deviation and processing times. Furthermore, within the
mathematical model and its validation, the voltage and branch current limits associated
with the test systems were not analyzed. By using a discrete–continuous codification,
ref. [33] proposed a modified version of the generalized normal distribution optimizer to
solve the studied problem. In their manuscript, the authors compared the results obtained
with a discrete–continuous version of the vortex search algorithm, a genetic algorithm,
and the BONMIN solver of GAMS. The results obtained demonstrated the effectiveness of
the proposed methodology, and all constraints related to the operation of the microgrids
were satisfied. However, the proposed methodology reported longer times in compari-
son with other methods. Moreover, the authors did not include the analysis of standard
deviation and the impact of processing times.

Based on the aforementioned works, it is possible to conclude that it is currently neces-
sary to propose new methodologies for solving the problem of integrating PV sources into
DC grids, ones that reduce complexity by implementing discrete–continuous codifications
and by reducing the processing times. These must also guarantee excellent performance in
terms of the objective function and standard deviation, with the aim of obtaining a solution
of good quality each time that the algorithm is executed. Another objective should be to
achieve shorter processing times in order to explore a large number of scenarios while
planning the energy projects that are to be presented in public and private contracts, as well
as to offer a solution to the technical problems in distribution electrical companies within a
short period of time [34].

In light of the issues mentioned above, this study implemented a discrete–continuous
parallel version of the particle swarm optimization (PSO) algorithm to solve the problem
regarding the integration of PV sources into DC grids. This solution methodology employs
a parallel processing tool that takes advantage of all the functions of the computer, with the
purpose of reducing processing times. This methodology has been used in the literature to
solve the problem of the optimal integration of PV sources in AC grids [13]; however, its
performance has not been validated in DC grids. The reduction of annual costs associated
with energy purchasing, investment, and maintenance in PV sources installed in DC
grids was thus used as an objective function by implementing a fitness function to ensure
compliance with the technical and operative constraints that represent the operation of the
DC in an environment of PV sources. Furthermore, to demonstrate the effectiveness of the
proposed methodology, two test systems of 33 and 69 buses were used, and we focused
on the methodologies that consider the integration of distributed energy resources into
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DC grids. In addition, four methods were employed for comparison (most of which were
discrete–continuous, as identified in the state of the art), including the BONMIN solver of
GAMS. This paper makes the following contributions:

i. A new approach for the discrete–continuous version of the particle swarm optimiza-
tion algorithm;

ii. The implementation of parallel processing to solve the problem concerning the inte-
gration of PV sources into DC grids in order to reduce processing times and improve
the exploration of the algorithm;

iii. The identification of the most efficient methodology to date via simulation results,
which could solve the problem of the optimal integration of PV sources into AC and
DC grids for annual cost reduction. This considers the results reported in [13] for AC
networks.

This paper is structured as follows: Section 2 presents the mathematical model used
to solve the problem of the optimal integration of PV sources into DC grids for annual
cost reduction; Section 3 describes the proposed solution methodology; Section 4 describes
the 33- and 69-node test systems as well as the generation and demand curves used and
the considerations made in obtaining the simulation results; Section 5 analyzes the results
obtained by the methodologies in terms of the solution, processing times, and repeatability;
and Section 6 presents the conclusions and future works derived from this research.

2. Mathematical Formulation

This section presents the mathematical formulation of the problem concerning the
integration of PV sources into DC grids for the reduction of energy production/purchas-
ing costs associated with conventional generators (electrical grid, DIESEL generators,
among others) as well as the initial investment and maintenance costs related to PV genera-
tors. Furthermore, this mathematical model includes all constraints related to the technical
and operating constraints of DC grids in the context of PV sources.

2.1. Objective Function

The objective function is presented in Equation (1). This equation considers the mini-
mization of the annual costs associated with energy purchasing in relation to conventional
generators ( f1) as well as to investment and maintenance with regard to the installation of
PV sources ( f2).

OF = min Annualcosts = min( f1 + f2) (1)

To calculate the annualized energy purchasing costs while considering the lifetime
of the PV generators and the increase in power demand, Equation (2) was used, where
CkWh corresponds to the cost of each kWh, T represents the number of days in a regular
year (365), and Fa is the factor that annualizes the total energy purchasing/production
costs by conventional generators installed in the DC grid. In Equation (3), ta represents
the fixed return rate for the investment made in the integration of the PV generators, Nt
corresponds to the number of years contained inside the useful life of the PV sources,
and Fc corresponds to the annual increase in power demand within the planning horizon.
This factor is described in Equation (4), where te represents the increase in the energy
purchasing cost within the analyzed time (expressed as a percentage); pcg

i,h represents the
power supplied by the conventional generator located at node i in the period of time h; and
∆h is the duration of the said power supply. Finally, ΩN , ΩH, and ΩT represent the set of
nodes that make up the DC grid, the total periods of time considered for a day of operation,
and the useful life of the PV generators (years).

f1 = CkWhTFaFc

(
∑

i∈ΩH
∑

i∈ΩN

pcg
i,h∆h

)
(2)
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Fa =

(
ta

1− (1 + ta)
−Nt

)
(3)

Fc =

(
∑
t∈T

(
1 + te

1 + ta

)t
)

(4)

Equation (5) calculates the investment and maintenance costs associated with the
integration of PV sources into the DC grid, where Cpv corresponds to the cost per kW of
the PV sources, ppv

i represents the total PV power installed at bus i, Cpv
O&M denotes the

maintenance cost of the PV generators by kW generated, and ppv
i,h is the power supply of

the PV sources located at bus i for the period of time h. In this equation, Ωpv denotes the
set of buses that contain PV sources.

f2 = CpvFa

 ∑
i∈Ωpv

ppv
i

+ T

 ∑
i∈ΩH

∑
i∈Ωpv

Cpv
O&M ppv

i,h∆h

 (5)

2.2. Constraints

The set of constraints that represent the problem of the optimal integration of PV
sources into DC grids while considering variable power demand and generation is pre-
sented in Equations (6)–(11).

pcg
i,h + ppv

i Cpv
h − Pd

i,h = vi,h ∑
j∈ΩN

Gijvj,h (6)

Pcg,min
i ≤ pcg

i,h ≤ Pcg,max
i (7)

xi p
pv,min
i ≤ ppv

i ≤ xi p
pv,max
i (8)

∑
i∈Ωpv

xi ≤ Ndev
pv (9)

Vmin
i ≤ vi,h ≤ Vmax

i (10)

Iij,h ≤ Imax
ij (11)

Equation (6) represents the power balance of the electrical grid. Here, Pd
i,h denotes the

active power demanded at node i in the period of time h, Cpv
h is the factor that determines

(from 0 to 100%) the power production of PV sources in relation to the radiance potential of
the region where the electrical system is located, vi,h and vj,h represent the voltage profiles
at buses i and j in period of time h, and Gij denotes the conductance value related to the
branch that connects buses i and j. Equation (7) formulates the constraint that ensures that
the minimum (pcg,min

i ) and maximum (pcg,max
i ) power are supplied by the conventional

generator located at node i. Equation (8) establishes the minimum (ppv,min
i ) and maximum

(ppv,max
i ) power bounds for the PV sources located at node i, where xi corresponds to a

binary variable that takes a value of 1 when a PV source is located at node i and a value
of 0 when it is not. In this way, Equation (8) limits the maximum number of PV sources
(Ndev

pv ) to be located in the DC grid. Equation (10) describes the constraints related to the
voltage profile limits, where Vmin

i and Vmax
i correspond to the minimum and maximum

voltage profiles allowed at node i. Finally, Equation (11) represents the maximum branch
limit, where Iij,h and Imax

ij correspond to the branch and maximum current allowed for the
branch that connects buses i and j.

FF = min( f1 + βPF) (12)



Mathematics 2022, 10, 4512 6 of 17

PF =



max
{

0, ∑
i∈N

(ppv
i − Ppv,max

i xDG
i )

}
+

∣∣∣∣min
{

0, ∑
i∈N

(ppv
i − Ppv,min

i xDG
i )

}∣∣∣∣
+max

{
0, ∑

i∈N
(vi −Vmax

i )

}
+

∣∣∣∣min
{

0, ∑
i∈N

(vi −Vmin
i )

}∣∣∣∣
+max

{
0, ∑

i∈N
∑

j∈N
(Iij − Imax

ij )

}
+max

{
0,
(

∑
i∈N

xi − Ndev
pv

)}



(13)

In order to guarantee all the previously described constraints and improve the explo-
ration of the solution space, this paper used the fitness function presented in (12), which
allows the penalization of the objective function when some constraints are violated by
permitting the solution methodology to explore infeasible regions. This helps to improve
the solution and reduce processing times [35]. In FF, β is entrusted with normalizing the
values calculated by the penalty Factor (PF) described in Equation (13). For this manuscript,
β = 1000, which is obtained through a heuristic process.

3. Proposed Solution Methodology

This paper used a parallel discrete–continuous version of the PSO method [31] to solve
the problem regarding the optimal integration of PV sources into DC grids. This solution
methodology resolves the discrete–continuous codification that describes the problem. It
avoids the use of the traditional master–slave strategy used in the specialized literature for
sitting and sizing DGs in electrical networks [34,36], which requires two solution methods:
a binary/discrete optimization method to solve the location problem and a continuous
optimization method to solve the sizing problem. This offers a solution to the problem, but
it results in increased complexity and processing times.

The discrete–continuous codification used here is illustrated in Figure 1. It can be seen
that the location and power values (sizing) of the different PV sources in the DC grid are
included in the same vector of size 1X2Ndev

pv . The discrete variables are associated with the
location problem, and the continuous variables are related to the sizing of the DGs. Note
that in the same figure, the DGs located at node 4 have a nominal power of 0.19 Kw, while
the PV sources installed at node 41 have a nominal power of 2.4 kW.

                             

 

4 10 41 0.19 1.25 2.4 

 

          Node location of  PV DGs                           Sizing of  PV DGs 

Half of vector size  

Figure 1. Codification used for the optimal integration of PV sources.

To solve the problem concerning the optimal integration of PV sources into DC grids
via the aforementioned codification, this paper used the DCPPSO. This modified version of
PSO discretizes the variables related to the location for each particle by using the number
of candidate buses in the electrical system, and it allows for the variables associated with
PV source sizing to remain continuous. Furthermore, the modified PSO uses parallel
processing to evaluate the FF of each particle, which enables the reduction of processing
times. It is important to highlight that in order to evaluate the FF, it is necessary to use
an hourly power flow (HPF) that allows for the inclusion of variable power demand and
generation related to PV sources, which is caused by the variation in the solar radiance in
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the region where the electrical system is located [34]. The pseudo-code that describes the
DCPPSO/HPF methodology is presented below:

It can be observed that the first step of Algorithm 1 consists of reading all the DC
grid data and the parameters associated with DCPPSO. A maximum number of iterations
(itermax) is set as a stopping criterion. Then, the first iteration generates the initial particle
swarm via the codification presented in Figure 1 while considering random values between
the number of buses and the power limits assigned to the DGs. Afterwards, the FF of
each particle is calculated using Equation (12), for which an hourly power flow based on
the successive approximations method is used [35]. Every hour, this method updates the
power demand and PV generation during an average operation day in order to calculate the
objective function described in Equation (1), thus taking variable demand and generation
into account.

Algorithm 1: Pseudo-code for the DCPPSO/HPF
Data: Read DC grid data and optimization parameters
for iter = 1 : itermax do

if iter == 1 then
Generate the particle swarm;
Calculate the FF for each particle by using the HPF;
Select the FF and position obtained by each particle as the best particle
solution and position;

Select the best solution in the swarm and its position as the incumbent;
else

Calculate the velocity vector (VV);
Update the position of the particle swarm by using the last position,
the incumbent, and the VV;

Calculate the FF for each particle by using the HPF;
Update the best particle solution and position;
Update the incumbent;
if The stopping criterion has been met? then

Finish the optimization process;
Print the incumbent;
Break;

else
Continue;

end
end

end

The base of the Particle Swarm Optimization algorithm (PSO) is the use of a population
to explore the solution space in each iteration, taking advantage of the social and cognitive
knowledge to converge on a solution of good quality. In each iteration of the algorithm, it is
necessary to evaluate the FF of each particle that makes up the population, which requires
long processing times. The proposed methodology considered the implementation of a
parallel processing tool that uses all Workers (W) of the computer to evaluate as individuals
the number of workers that exist, which reduces the processing time [35]. In order to carry
out this task, a highly used the tool in the literature called “parfor” of Matlab [13] was
employed, which made the parallel evaluation of the FF that comprises the population
possible by allowing for the reduction of the processing times inside the iterative process.
In this parallel processing, the PC employs all workers to evaluate the different particles
that make up the swarm in groups with a size equal to W, executing as many processes
as necessary to evaluate all particles in the swarm. The time required for this task can be
calculated by means of Equations (14) and (15). The former allows obtaining the number of
parallel processes (NPP) required for evaluating all particles in the swarm, while the latter
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calculates the total processing time required to carry out the process (PPT). Here, MPT
represents the maximum processing time required for all particles to be evaluated [35].

NPP = CEIL(n/W) (14)

PPT = NPP ·MTRP (15)

After evaluating the FF of all particles, in the first iteration, the solution and position of
each particle are assigned as the best values. Furthermore, the particle with the best solution
is selected as the incumbent of the problem (the best solution) by storing its position and FF.

From the second iteration until the end of the process, each iteration calculates the ve-
locity vector (VV) by using random values, as well as the position information of each parti-
cle (cognitive knowledge) and the incumbent (social knowledge). Subsequently, the particle
movement is generated by using the VV and the current position. Then, the FF of the
swarm is calculated, and the best particle position and solution as well as the incumbent are
updated. At the end of each iteration, the stopping criterion is analyzed. In this particular
case, it is verified whether the maximum number of iterations has been achieved. If this
has occurred, the optimization process ends; if not, another iteration is carried out.

4. Test Scenarios and Considerations
4.1. Test Systems

In this paper, the DC versions of the 33- and 69-bus test systems were used, which
are illustrated in Figure 2. These are widely used for validating planning strategies in DC
grids [33].

DC

Slack

1 2

3 4 5

6

7 8 9 10 11 12 13 14 15 16 17 18

23

24

25

19

20

21

22

26 27 28 29 30 31 32 33

(a)

Slack

DC
1234567

89

101112131415161718192021222324252627

(b)

3637383940414243444546

474849505354555657585960616263646566676869

51

52

2829303132333435

Figure 2. Electrical configuration of the DC (a) 33- and (b) 69-bus test systems [33].

Figure 2a illustrates the first test system, which comprises 33 buses and 32 branches.
It employs a voltage of 12.66 kV and a power of 100 kW as base values. The parametric
information of this test system is described in [37]. To obtain the branch current limits for
this test system, the HPF described in the last section was used while considering the power
demand and generation curves for Antioquia, Colombia (Figure 3). Consequently, the max-
imum current allowed for this test system was 310 A, and the electrical conductor was
350 kcmils.

Figure 2b presents the second test system employed in this research. It comprises
69 buses and 68 branches and uses the same base values as the 33-bus grid [37]. To obtain the
branch current limits, the same methodology was employed, which provided a maximum
allowed current of 335 A for an electrical conductor with a caliber of 400 kcmils.

4.2. Power Generation and Demand

To estimate the average impact on the annual costs of the electrical grid, this study
considered the power demand and generation of PV sources in the region of Antioquia,
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Colombia for an average day of operation. Figure 3 describes this behavior for a period of
24 h.

2 4 6 8 10 12 14 16 18 20 22 24
0

10
20
30
40
50
60
70
80
90

100

Time (h)

D
em

an
d

an
d

PV
po

w
er

ge
ne
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ti

on
[%

]

Power demand
PV Generation

Figure 3. Typical power demand and PV generation behavior in Antioquia, Colombia [35].

4.3. Comparison and Considerations

One of the main objectives of this paper is to demonstrate the effectiveness of the
proposed methodology in terms of the solution, repeatability, and processing times. To this
effect, four comparison methods were selected from the specialized literature, which used
specialized software and sequential programming optimization methods to solve the
studied problem. The first solution method was the BONMIN solver of GAMS, the second
was a discrete–continuous version of the Chu and Beasley genetic algorithm, the third was
a discrete–continuous version of the vortex search algorithm (DCVSA), and the fourth was
a discrete–continuous version of the generalized normal distribution optimizer (DCGNDO).
The selection of these methods was based on the fact that they have all been used to
solve the problem regarding the optimal integration of PV sources into DC grids, and
that they have been evaluated in the same test systems and conditions as those used in
this paper [29,33]. Furthermore, most of these comparison methods take advantage of the
discrete–continuous codifications used by the proposed methodology (DCPPSO).

The main considerations and information used to validate the effectiveness and ro-
bustness of the proposed methodology in relation to the comparison methods are described
below:

• All parameters used to evaluate the effects of PV source methods are presented in
Table 1 [29].

• The maximum number of PV sources considered for installation was 3, and the
maximum power capacity was 2.4 p.u. [29].

• The maximum allowed oscillation for the voltage profiles was +/− 10% of each test
system’s nominal voltage.

• Both test systems considered non-telescopic grids, for which the maximum current in
all branches corresponds to the maximum current allowed: 310 and 350 A for 33- and
69-bus test systems, respectively.

• The optimization parameters of the comparison methods were taken from the original
paper [29,33], while the parameters of the DCPPSO are reported in Table 2.

• To evaluate the average processing time and the repeatability of the proposed method-
ology, each technique was executed 100 times while also analyzing the standard
deviation obtained.
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• The simulations were carried out in a Dell Precision T7600 Workstation with an
Intel(R) Xeon(R) CPU ES-2670 @2.50 GHz and 32 GB of RAM while running the
Matlab software, version 2022a.

Table 1. Parameters for the optimal integration of PV sources into electrical grids.

Param. Value Unit Param. Value Unit

CkWh 0.1390 USD/kWh T 365 days
ta 10 % Nt 20 years
∆h 1 h te 2 %
Cpv 1036.49 USD/kWp C0&M 0.0019 USD/kWh
Nava

pv 3 - ∆V ±10 %

spv,min
k

0 kW spv,max
k 2400 kW

α1 100× 104 USD/V α2 100× 104 USD/V
α3 100× 104 USD/W α4 100× 104 USD/A

Table 2. DCPPSO parameters.

Parameter 33-Bus Test System

Number of particles (Ni) 100
Maximum iterations (tmax) 1000

Maximum inertia 0.4133
Cognitive component 1.96236

Social component 2

5. Simulation Results

Tables 3 and 4 present and analyze the simulation results obtained with the proposed
methodology and the comparison methods in the 33- and 69-bus test systems. This table
shows, from left to right, the following information: the methodology used, the PV source
location and capacity, the total annual costs, the reduction achieved with respect to the
baseline case (the scenario without PV sources), the average processing time, the standard
deviation, the worst voltages, and the maximum current.

Table 3. Simulation results obtained via different methodologies in the 33-bus test system in both AC
and DC grids.

Methodology Bus/Power
(MVAr)

Acost (USD/year)/
Reduction (%)

Time
(s)

STD
(%)

Vworst
(p.u)

Imax
(A)

Baseline case [0–2.4] 3,644,043.01 - - - - - - [0.9–1.1] 310

BONMIN
18/1.4301
32/2.0611
33/1.7155

2,664,089.12/26.8919 0.77 0 0.93 304

DCCBGA
11/1.1629
14/0.9434
31/1.4827

2,662,724.82/26.9293 2.43 0.0557 0.93 304

DCVSA
9/0.5803

15/1.2913
31/1.7155

2,662,425.32/26.9375 76.86 0.0620 0.93 304

DCGNDO
10/0.9742
16/0.9202
31/1.6925

2,662,371.59/26.9390 166.15 0.0601 0.93 304

DCPPSO
10/0.9680
16/0.9189
31/1.6999

2,662,371.59/26.9390 8.52 0.0398 0.93 304
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Table 4. Simulation results obtained by solution methods in the 69-bus test system.

Methodology Bus/Power
(MVAr)

Acost (USD/year)/
Reduction (%)

Time
(s)

STD
(%)

Vworst
(p.u)

Imax
(A)

Base case [0–2.4] 3,817,420.38 - - - - - - [0.9–1.1] 335

BONMIN
21/0.4971
61/2.3999
65/0.8530

2,785,208.63/27.0395 2.02 0 0.93 304

DCCBGA
19/0.7908
61/1.7890)
64/1.1474

2,785,598.84/27.0292 7.74 0.1289 0.93 319

DCVSA
23/0.7720
62/2.3402
63/0.6185

2,785,538.58/27.0308 269.22 0.0974 0.93 319

DCGNDO
19/0.4969
61/2.3999
64/0.8470

2,785,011.53/27.0446 376.88 0.2384 0.93 319

DCPPSO
22/0.5310

61/2.4
64/0.8105

2,784,987.68/27.0452 28.24 0.0226 0.93 319

5.1. 33 Bus Test System

In the results presented in Table 3, it can be observed that all solution methodologies re-
duce the annual costs by 26.92% on average in comparison with the baseline case. However,
the DCPPSO obtained the best results. Figure 4 illustrates the improvement achieved with
this methodology, which obtained reductions of 6.44× 10−2%, 1.32× 10−2%, 2× 10−3%,
and 0 when compared to the BONMIN, DCCBGA, DCVSA, and DCGNDO techniques,
respectively. Thus, the average annual cost reduction was 2.62× 10−2%. It is possible to
conclude that DCGNDO achieved the same results as DCPPSO in this test system.
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Figure 4. Improvements regarding annual cost reduction achieved by the DCPPSO with respect to
the comparison methods in the 33-bus test system.

As for the processing times, the fastest method was the BONMIN solver, followed
by the DCCBGA (Figure 5). These methods required 95.41% and 85.54% less time than
the DCPPSO. In the 33-bus test system, the DCPPSO was in third place, with a reduction
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of 78.12% and 89.88% in processing times when compared to the DCVSA and DCGNDO.
Despite these results, DCPSO had the best performance in terms of the solution. Figure 5
shows that the proposed methodology obtained the best results in terms of repeatability
when compared to the solution methods based on sequential programming; it achieved an
average standard deviation (STD) reduction of 48.80%. It is important to highlight that the
BONMIN solver showed an STD of 0% since it belongs to the family of specialized software
that guarantees the same solution each time that the algorithm is executed, although it has
disadvantages in terms of purchase costs and implementation complexity [35,38].

Finally, columns 6 and 7 of Table 3 show that all solution methods satisfy the voltages
and branch current bounds.
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Figure 5. Improvements obtained by the DCPPSO with respect to the comparison methods in the
33-bus test system in terms of processing time and standard deviation.

5.2. 69-Bus Test System

The results obtained for the 69-node test system are shown in Table 4. Figure 6
illustrates the improvements achieved by the DCPPSO with respect to the comparison
methods. Figure 6 shows that the proposed methodology obtained the best results in terms
of annual cost reduction, with an average reduction of 1.24× 10−2%.

As for the processing times (Figure 7), DCPPSO was in third place, being outperformed
by BONMIN and DCCBGA by 92.81% and 72.59%, respectively. However, DCPPSO was
superior to the DCVSA and DCGNDO, reducing the processing times by 89.51% and
92.50%. When comparing these results with those obtained in the 33-bus test system, it
can be observed that the differences with respect to the faster methods (BONMIN and
DCCBGA) were reduced, while the quality of the solution was also the best. The proposed
methodology achieved STD reductions of 82.46, 82.46, and 82.46% with respect to the
DCCBGA, the DCVSA, and DCGNDO, respectively, (i.e., 83.23% on average). In this
test system, the BONMIN solver reported an STD equal to 0, given its aforementioned
characteristics. Finally, columns 6 and 7 of Table 4 demonstrate that all methodologies
satisfied the voltage and current branch bounds established for the 69-bus test system.
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Figure 6. Improvements in the reduction of annual costs as achieved by DCPPSO with respect to the
comparison methods in the 69-bus test system.
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Figure 7. Improvements obtained by the DCPPSO with respect to the comparison methods in the
69-bus test system in terms of processing time and standard deviation.

6. Conclusions and Future Work

This paper proposed a discrete–continuous version of the particle swarm optimization
algorithm to solve the problem regarding the optimal integration of PV sources into DC
grids, with the purpose of reducing the energy purchasing/production costs associated
with conventional generators as well as the investment and maintenance costs related to
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distributed generation. To evaluate the effectiveness, repeatability, and robustness of this
solution methodology, four comparison methods and two test systems (33 and 69 buses)
were used, which executed each methodology 100 times.

The advantages that the DCPPSO have are related to the implementation of a discrete–
continuous codification that allows for the resolution of discrete and continuous problems
at the time of its execution, which considers the discrete variables related to the location
problem in this particular case as well as the continuous variables associated with the sizing
problem of PV distributed generators on the DC grid. Furthermore, this methodology takes
advantage of the PSO, a metaheuristic optimization technique that has been highly used
in the literature to solve non-linear problems [12,35] due to its excellent effectiveness and
robustness in solving non-linear and non-convex problems, such as those addressed here.
Finally, inside the DCPPSO proposed, a parallel processing tool for evaluating the objective
function of the population in each iteration was used, which allowed for the reduction of
the processing time required for the solution methodology; thus, it was possible to present
a solution of excellent quality with short processing times.

As for the results obtained in the 33-bus test system, even though DCPPSO was not
the fastest method, it yielded excellent results in terms of processing times, with an average
of 16.81 seconds. This method also achieved the best result in terms of the quality of the
solution (annual cost reduction), with an average reduction of 0.0199% in comparison
with the other methods. Furthermore, the proposed methodology was in second place
in terms of the standard deviation, with a reduction of 48.80% when compared to the
other discrete–continuous methodologies; it was only surpassed by the BONMIN solver of
GAMS, a commercial software that increases the complexity and cost of solving the studied
problem. Based on these results, the DCPPSO is considered to be an excellent methodology
for the optimal integration of PV sources into small DC grids, with excellent results in
terms of processing times and standard deviation.

For the 69-bus test system, the simulation results showed a similar behavior. Regarding
the solution impact, DCPPSO obtained the best results, with an average reduction of
0.0126% with respect to the other methods. It also obtained the best results in terms of
standard deviation; it was only surpassed by the BONMIM solver. As for the processing
times, the DCPPSO was also in third place, taking longer than the BONMIN solver and
the DCCBGA. This was due to the fact that BONMIN is a commercial solver and that the
DCCBGA does not operate similarly to the other discrete–continuous solution methods;
it does not work with population in its iterative process, which reduces the processing
times and negatively impacts the quality of the solution. With respect to the other discrete–
continuous methods, DCPPSO obtained an average processing time reduction of 91%.
These methods were the most efficient methods after DCPPSO with regard to the quality
of the solution. Based on the last results, the DCPPSO is the solution methodology with
the best outcome in terms of the solution (annual cost reduction), as it showed excellent
performance in terms of standard deviation and processing times for DC grids of any
size. Furthermore, the results reported in [13] concluded that the DCPPSO is the most
effective methodology for solving the problem of the optimal integration of PV sources in
AC networks of different sizes. It can thus be concluded that to date, the DCPPSO is the
solution methodology with the best trade-off in economic terms to solve the integration
problem of PV sources in any kind of electrical network, with reduced processing times.
The above-mentioned conclusions are based on the state-of-the-art knowledge acquired by
the authors.

The proposed methodology works in other DC networks that consider the main
generator, distribution system load, and PV distributed generators due to the mathematical
model used, which considered all technical and operative constraints that represent the
DC grids in an environment of PV distributed generations. However, in the particular case
when other distributed energy resources are considered, e.g., energy storage systems, all
equations that model this kind of electric devices must be included in the mathematical
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formulation with the aim of guaranteeing an adequate representation of the electrical
networks used.

Future work could consider the implementation of new solution methodologies and
other parallel processing tools that allow for the improvement of the results in terms of the
quality of the solution and processing times. In addition, the mathematical model could
include other technical, economic, and environmental indices related to the operation of
the DC grid, such as the power losses produced in the transport of energy, voltage stability,
load chargeability, reductions in fossil fuel-based energy production and CO2 emissions,
among others. By including the technical, economic, and environmental aspects of the grid,
it is possible to consider a multi-objective optimization algorithm in solving the problem
of the optimal integration of PV sources into the DC grid. Finally, DCPPSO could be
used to solve the problem concerning the optimal integration of energy storage systems
into DC grids by taking advantage of the power of PV sources at times without solar
production, which would improve the technical, economic, and environmental conditions
of electrical networks.
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