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Abstract: This paper presents a new optimal power flow (OPF) formulation for monopolar DC
networks using a recursive convex representation. The hyperbolic relation between the voltages and
power at each constant power terminal (generator or demand) is represented as a linear constraint for
the demand nodes and generators. To reach the solution for the OPF problem a recursive evaluation of
the model that determines the voltage variables at the iteration t + 1 (vt+1) by using the information
of the voltages at the iteration t (vt) is proposed. To finish the recursive solution process of the
OPF problem via the convex relaxation, the difference between the voltage magnitudes in two
consecutive iterations less than the predefined tolerance is considered as a stopping criterion. The
numerical results in the 85-bus grid demonstrate that the proposed recursive convex model can solve
the classical power flow problem in monopolar DC networks, and it also solves the OPF problem
efficiently with a reduced convergence error when compared with semidefinite programming and
combinatorial optimization methods. In addition, the proposed approach can deal with radial
and meshed monopolar DC networks without modifications in its formulation. All the numerical
implementations were in the MATLAB programming environment and the convex models were
solved with the CVX and the Gurobi solver.

Keywords: recursive convex formulation; optimal power flow solution; monopolar DC networks;
power losses minimization; convex optimization

MSC: 90C25; 90C26; 90C34

1. Introduction

Monopolar DC networks represent an opportunity to distribute electrical energy from
high- to low-voltage levels with a high efficiency regarding energy losses and excellent
voltage profiles when compared to the classical AC electrical networks [1–3]. In general, a
monopolar DC network is composed of two wires where one of them corresponds to the
energized pole (+Vdc), and the other one corresponds to the return wire, which is typically
solidly grounded, and each load terminal to ensure the adequate voltage regulation on
these loads [4]. Even if monopolar DC networks are less complex than AC networks due
to the non-existence of reactive power and frequency variables, these continue to offer
important challenges in static and dynamic analyses [5,6]. This research focuses in the area
of steady-state analyses (static studies) for monopolar DC networks by proposing a new
recursive convex formulation to solve the optimal power flow (OPF) problem in this grid
in the presence of multiple dispersed sources and constant power terminals [7].

In the current literature the OPF problem for monopolar DC networks has been
widely studied via mathematical-based or combinatorial-based optimization [7,8]. Here,
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we present some important advances in this area. The authors of [9] proposed the ap-
plication of the second-order cone programming to reformulate the power flow problem
in radial monopolar DC networks. The proposed model is special for isolate microgrids
with multiple constant power terminals and dispersed sources. The authors of [10] pre-
sented the application of the convex optimization to deal with the OPF problem in DC
multiterminal systems with dispersed generators and controlled DC-DC converters. The
OPF is formulated via the semidefinite programming (SDP) theory. The numerical results
showed the convergence of the SDP reformulation to the global optimal solution with
minimum (negligible) estimation errors. The authors of [11] present four different models
to solve the OPF problem in monopolar DC networks. These OPF approaches are based on
recursive approximations of the power balance equations into linear recursive expressions.
To reduce the convergence error, an iterative procedure that starts with plane voltages
is implemented and these are updated at each iteration until the desired convergence is
reached. The numerical results confirm the efficiency of these approaches when compared
with the exact nonlinear formulation of the OPF problem solved via interior point methods
with logarithmic barriers.

Another important research area corresponds to the application of metaheuristic op-
timizers to deal with the OPF problem in monopolar DC networks. These combinatorial
optimization methods are based on the well-known master–salve optimization concept [12].
In the OPF problem, the master stage is entrusted with determining the set of power injec-
tions in the dispersed generators, while the slave optimization stage evaluates an efficient
power flow method to determine the feasibility of the proposed solution [13]. Ref. [14] has
presented the application of the salp swarm optimization algorithm combined with the
successive approximation method to deal with the optimal power dispatch in dispersed
generation sources for monopolar DC network applications. Two test feeders composed of
21 and 69 nodes were used to validate the proposed master–slave optimizer. The numerical
results demonstrated its efficiency when compared with metaheuristic techniques, such as
particle swarm optimization, ant lion optimization, black hole optimization, the continuous
genetic algorithm, and multiverse optimization. The authors of [15] have presented the
application of the vortex search algorithm to solve the OPF problem in DC networks with
multiple dispersed generation sources. The vortex search algorithm was used in the master
stage to determine the optimal power injection in the distributed generators while the
successive approximation method was used. The main advantage of the vortex search
algorithm is that its formulation is based on Gaussian distributions which increases the
probability to find the global optimum at each evaluation of the algorithm. A complete
revision of the state of the art regarding combinatorial optimization methods applied to
the OPF problem in monopolar DC networks was provided by the authors of [7]. In this
research, the general formulation of the OPF model (the exact nonlinear programming
model) and three solution techniques, such as the continuous genetic algorithm, the particle
swarm optimizer, and the black hole optimizer, were provided. Test feeders composed of
21 and 69 nodes were employed for all the numerical validations with excellent numerical
results for the different penetration levels of the dispersed generation from 20 to 60% of the
total power consumption.

Table 1 summarizes the main approaches available in the current literature to solve
the OPF problem in monopolar DC networks.
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Table 1. Main literature reports applied to the OPF solution in monopolar DC networks.

Methodology Classification Year Reference

Semidefinite programming Convex optimization 2016 [10]
Second-order cone programming (SOCP) Convex optimization 2018 [9]
Sequential quadratic programming Convex optimization 2019 [11]
Black hole optimization Combinatorial optimization 2019, 2020 [7]
Continuous genetic algorithm Combinatorial optimization 2020 [7]
Particle swarm optimization Combinatorial optimization 2020 [7]
Vortex search algorithm Combinatorial optimization 2020 [15]
Sine–cosine algorithm Combinatorial optimization 2019, 2022 [16]

Note that the optimization methodologies in Table 1 show two clear tendencies in the
solution of the OPF problem for monopolar DC networks. The first tendency is oriented
to the application of convex optimization methods [17]. These methods address the OPF
problem from its mathematical structure in order to achieve equivalent models that ensure
the convexity of the solution space and the objective function, which implies that the
contribution of these methodologies is in the mathematical modeling and not in the solution
technique itself [18]. The second tendency corresponds to the application of combinatorial
optimization methods based on master–slave algorithms, where the master stage defines
the power injections in the dispersed sources and the slave stage solves the resulting power
flow problem [7]. The contribution of these approaches is the easy implementation of
any metaheuristic optimizer to solve the exact nonlinear formulation of the OPF using an
arbitrary programming language. However, when comparing the convex optimization
methods and the combinatorial ones, it is worth mentioning that the first solution method
ensures the global optimum finding [19], while the combinatorial optimization algorithms
only ensure good solutions being in the general local optimums [20].

The main contribution of this research corresponds to the proposition of a new re-
cursive convex model to deal with the OPF problem via convex approximations to find
the voltage values vt+1 using the voltages vt as the initial point, with t being the itera-
tive counter. To reach a convex representation of the OPF model, the hyperbolic relation
between the powers and voltages in the generation sources is relaxed, and the voltage
variables in the demand nodes using Taylor’s series expansion are linearized [21]. The pro-
posed recursive convex model can be used to solve the classical power flow problem when
the monopolar DC networks lack dispersed generators, and it also solves the OPF problem
with multiple generators independent of the grid configurations, i.e., it is applicable to
radial and meshed networks.

The remainder of this contribution is structured as follows: Section 2 presents the
classical OPF formulation that exhibits the non-convexities of this problem in the power
equilibrium constraint at each node. Section 3 presents the proposed recursive convex
model by introducing current injections as auxiliary variables that allow transforming the
hyperbolic constraint that relates currents and powers in second-order cones. Section 4
presents the main characteristics of the 85-bus grid as well as all the numerical validations.
Finally, Section 5 lists the main concluding remarks derived from this research and some
possible future works.

2. Optimal Power Flow Problem

The problem of the optimal power flow in monopolar DC networks corresponds to a
nonlinear non-convex programming problem, where the main objective is to minimize the
total grid power losses of the network for a particular load and demand conditions [22].
The nonlinear programming model that represents the OPF problem is presented below.
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2.1. Objective Function

The objective function represents the minimization of the total grid power losses in all
the branches of the network [5]. This function is presented in Equation (1) as a function of
the conductance matrix and the grid voltage profiles [23].

min z = ∑
k∈N

∑
m∈N

Gkmvkvm, (1)

where z is the objective function value, vk and vm are the voltage values at nodes k and m,
and the Gkm is the value of the conductance matrix that connects nodes k and m, respectively.

Remark 1. The objective function of the OPF problem in (1) is indeed a convex quadratic function
of the voltage magnitudes due to the conductance matrix G is a positive semidefinite matrix that
is defined as a function of the resistive connections of the network [24]. This matrix is positive
semidefinite if only and only if all the nodes are connected, i.e., the system does not have isolated
nodes [25].

To illustrate that the conductance matrix is indeed a positive semidefinite matrix, let us
consider that the monopolar DC network is represented by an oriented graph G = {N , E},
where N is the set of nodes and E ⊆ N ×N the set of branches. The cardinality of N is
n and the cardinality of E is m. The nodal admittance matrix is G ∈ Rn×n. Note that the
components of the conductance matrix are obtained as follows:

G =

{
Gkk = ∑m∈N

1
rkm

k 6= m
Gkm = − 1

rkm
k 6= m

where rkm represents the resistive element associated with the branch that connects nodes k
and m.

Note that the structure of the conductance matrix G is such that ‖Gkk| ≥ ‖Gkm‖, which
implies that it is diagonal dominant and also positive semidefinite [25].

2.2. Set of Constraints

The OPF problem in monopolar DC networks is constrained by the power balance
equations, voltage regulation, and capacities of generation in power sources among others.
The set of constraints for the OPF problem are listed below.

pg
k + pdg

k − pd
k = vk ∑

m∈N
Gkmvm, ∀k ∈ N (2)

pg,min
k ≤ pg

k ≤ pg,max
k , ∀k ∈ N (3)

pgd,min
k ≤ pgd

k ≤ pgd,max
k , ∀k ∈ N (4)

vmin
k ≤ vk ≤ vmax

k , ∀k ∈ N (5)

vk = vslack. k = slack (6)

where pg
k is the total power generation in the slack source, pdg

k is the power generation in the
dispersed source connected at node k, pd

k represents the total power consumption at node
k. Remember that Gkm is the conductive effect that associates nodes k and m, which are
obtained from the general admittance matrix that presents the physical connection of the
system [25]. pg,min

k and pg,max
k are the minimum and maximum power inputs in the slack

source; pgd,min
k and pgd,max

k are the minimum and maximum power limits in the dispersed
source connected at node k; vmin

k and vmax
k correspond to the minimum and maximum

voltage limits allowed for the voltage magnitudes as each node of the network; and vslack is
the voltage reference assigned to the slack source.
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Note that (2) represents the power balance equilibrium at each node k of the network
which is a nonlinear non-convex constraint due to the product among voltages in the
right-hand side of the equation. Inequality constraints (3) and (4) define the minimum
and maximum power generation capabilities of the slack and power sources connected
in the monopolar DC network; inequality constraint (5) ensures the voltage regulation
bounds in the monopolar DC network which is a constraint typically imposed by regulatory
policies; and finally, Equation (6) defines the voltage output in the slack source, i.e., the
voltage-controlled node.

Remark 2. The unique nonlinear non-convex constraint of the OPF problem corresponds to
Equation (2) because it has a product between voltage variables which makes it so that the OPF model
takes a non-convex structure that complicates its solution using conventional optimization methods.

3. Recursive Convex OPF Approach

To obtain a recursive convex model that permits to solve the OPF problem via convex
optimization, the nonlinear set of equations regarding the power balance per node is
approximated into an affine set of constraints [26]. Note that set of Equations (2) can be
rewritten as presented in (7).

pg
k

vk
+

pdg
k

vk
−

pd
k

vk
= ∑

m∈N
Gkmvm, ∀k ∈ N (7)

where in the left-hand side the hyperbolic relation between power and voltages is presented.
In addition, we can observe the following facts:

i. The fractional relations between power injections in slack and dispersed generation

sources involve each one of the two variables, i.e., the power injections pg
k and pdg

k
in the numerator, and the voltage magnitude vk at the denominator. However, we
know that the voltage variable in generation sources presents small variations with
respect to the ideal value. For this reason, we approximate these as presented in
Equations (8) and (9).

pg
k

vk
≈

pg
k

vt
k

, ∀k ∈ N (8)

pdg
k

vk
≈

pdg
k

vt
k

, ∀k ∈ N (9)

where vt
k represents the voltage value at the iteration t (current linearizing point),

which is a predefined value that is being updated recursively as will be described
ahead in this document.

ii. The hyperbolic relation between voltages and currents in the fraction term pd
k

vk
regarding

constant power terminals only has a variable the voltage value at the denominator. This
implies that different from generators where numerators and denominators are varying,
in the demand nodes, only the denominator changes, which means that the value of
the vk variable defines the final value of this relation. For this reason, to approximate
this component, we employ the first Taylor’s series expansion of the variable v−1

k in
the linearizing point vt

k [27]. This produces the linear equivalent relation in (10).

pd
k

vk
≈ 2

pd
k

vt
k
−

pd
k

(vt
k)

2 vk, ∀k ∈ N (10)

Remark 3. Considering the approximations in Equations (8)–(10), the left-hand side component of
the power balance constraint in (7) is now a linear affine expression that takes the structure in (11).
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pg
k

vt
k
+

pdg
k

vt
k
−
(

2
pd

k
vt

k
−

pd
k

(vt
k)

2 vt+1
k

)
= ∑

m∈N
Gkmvt+1

m , ∀k ∈ N (11)

where vt+1
m will be the new updated value of the voltage variables.

In order to represent the convex equivalent model to solve the OPF problem in monopo-
lar DC networks, the exact nonlinear programming models (1) to (6) are reformulated as
presented below:

Obj. Func.: min z = ∑
k∈N

∑
m∈N

Gkmvt+1
k vt+1

m , (12)

Subject to:
pg

k
vt

k
+

pdg
k

vt
k
−
(

2
pd

k
vt

k
−

pd
k

(vt
k)

2 vt+1
k

)
= ∑

m∈N
Gkmvt+1

m , ∀k ∈ N (13)

pg,min
k ≤ pg

k ≤ pg,max
k , ∀k ∈ N (14)

pgd,min
k ≤ pgd

k ≤ pgd,max
k , ∀k ∈ N (15)

vmin
k ≤ vt+1

k ≤ vmax
k , ∀k ∈ N (16)

vt+1
k = vslack. k = slack (17)

Note that in convex optimization models (12)–(17), only the variables regarding
voltages are using superscripts t and t + 1, which means that vt

k is the predefined voltage
value at node k where is the linearizing point to reach the next value vt+1

k . For the remaining
variables, i.e., powers in the slack and dispersed generation sources, this is not related
to superscripts because the new value of them does not depend on the previous value
assigned to them.

To illustrate the recursive implementation of the proposed convex model to solve the
OPF problem in monopolar DC networks, Algorithm 1 is used.

Algorithm 1: Recursive OPF solution using a relaxed convex approximation.
Data: Select the monopolar DC network
Result: Present the final values for the OPF variables

1 Transform the DC system into its per-unit equivalent;
2 Select the maximum number of iteration tmax;
3 Chose the convergence error ζ;
4 Make t = 0;
5 Set all the nodal voltages as vt

k = vslack;
6 for t ≤ tmax do
7 Solve the convex model (12)–(17);

8 Calculate the convergence error ε = maxk∈N
{∣∣∣∣∣∣vt+1

k

∣∣∣− ∣∣vt
k

∣∣∣∣∣};

9 if ε ≤ ζ then
10 for k ≤ n do
11 Report voltages vt+1

k ;

12 Report power generations pg
k and pdg

k ;

13 Report the final grid power losses z;
14 break;
15 else
16 for k ≤ n do
17 Make vt+1

k = vt
k;
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4. Numerical Validations

To evaluate the efficiency of the proposed recursive formulation to deal with the
OPF problem in monopolar DC networks, the 85-bus grid presented in [28] is used, by
considering only the positive pole load information. The electrical configuration of this test
feeder is presented in Figure 1, and all the parametric information can be consulted in [28].
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Figure 1. Grid topology of the IEEE 85-bus system for monopolar power flow applications.

For the 85-bus grid, two possible operative scenarios to validate the effectiveness of
the proposed recursive convex formulation are considered.

i. The solution of the classical power flow problem, considering that in the grid there is
no penetration of the dispersed generation.

ii. The location of four dispersed generators in the nodes 12, 19, 35, and 63, with nominal
capacities of 750 kW each one.

4.1. Comparison with Specialized Power Flow Methods

To validate the first simulation scenario, we compare the power flow solution with
efficient and well-known power flow methods for monopolar DC networks with a ra-
dial structure. The comparative power flow methods are: the Newton–Raphson (NR),
triangular-based formulation (TBF), successive approximations method (SAM), matricial
backward–forward method (MBFM), hyperbolic approximation method (HAM), and prod-
uct approximation method (PAM). Each one of these power flow methodologies can be
consulted in [29]. However, it is important to mention that all of these algorithms were
programmed in this research in order to obtain a fair comparison among the literature
reports and our proposed optimization model. Table 2 presents the comparative analysis
between the aforementioned power flow methods and the proposed optimization mod-
els (12)–(17) solved in the convex tool CVX for MATLAB. For simplicity, the proposed
approach is named the recursive convex formulation (RCF).

The numerical results in Table 2 show that the proposed RCF approach adequately
solves the power flow problem in monopolar DC networks when compared with special-
ized numerical methods for a power flow analysis in this type of distribution network [29].
The final grid power losses reached by the RCF approach have an estimation error of
1.0159 × 10−7 when compared to the Newton–Raphson approach; however, this value
implies that the first six decimals are completely equivalent, which is enough for any
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particular application in real DC systems. Note that due to the optimization nature of
the RCF approach, it only takes two iterations to solve the power flow problem, while
the derivative-based algorithms take four iterations, and the linear-based methods take
eight iterations.

Table 2. Power flow solution for the 85-bus grid using different methodologies.

Method Power Loss (kW) Iterations Error (%)

NR 58.6974817069044 4 —
TBF 58.6974816840913 8 3.8865 × 10−8

SAM 58.6974817053999 8 2.5631 × 10−9

MBFM 58.6974817051754 8 2.9456 × 10−9

HAM 58.6974817059701 4 1.5917 × 10−9

PAM 58.6974817055268 4 2.3469 × 10−9

RCF 58.6974817665350 2 1.0159 × 10−7

4.2. Comparison with Combinatorial Optimizers

This section presents a comparative analysis of the proposed RCF to solve the OPF
problem in monopolar DC networks with respect to three specialized combinatorial op-
timization methods. The metaheuristic optimizers selected are: the black hole optimizer
(BHO) [7], the sine–cosine algorithm (SCA) [16], and the vortex search algorithm (VSA) [15].
It is worth mentioning that these methodologies are selected based on the following factors:
(i) the black hole optimization method is part of the metaheuristic optimizers based on the
interaction between stars and black holes in the center of the galaxies. This method can be
classified in the family of the particle swarm optimizers, and it includes the general inspira-
tion of the metaheuristics with physical bases; (ii) the sine–cosine algorithm is selected as a
comparative optimizer because this algorithm is inspired by mathematics. This algorithm
explores and exploits the solution space using trigonometric functions (sine and cosine
functions) which include the main characteristics of nonlinear functions in combinatorial
optimization processes; and (iii) the vortex search algorithm is selected because it is the best
metaheuristic optimizer reported in the current literature to deal with the OPF problem in
monopolar DC networks. In addition, it is a metaheuristic optimization technique based
on Gaussian distributions that explores and exploits the solution space using variable
hyper-ellipses, maintaining the diversity of the solution during the iteration process, and
introduces the advantages of the probability distribution functions for solving nonlinear
optimization problems.

Table 3 presents the comparison between the proposed RCF and the selected meta-
heuristic optimizers. It is worth mentioning that the comparative algorithms were set
with 10 individuals, 1000 iterations, and 100 consecutive evaluations to determine their
average behavior.

Table 3. OPF solution for the 85-bus grid using different methodologies.

Method Power (kW) Min. (kW) Mean (kW) Max. (kW) Std. (kW) Time (s)

BHO

380.963290296850
177.993027750899
452.378953478316
438.980259314788

 3.30792201837848 3.88938176547841 4.85945934769858 3.7387 × 10−3 5.6512

SCA

418.178542918465
201.118987781865
436.569616339663
439.104849610947

 3.26423557079929 3.44705722809309 3.44705722809309 3.7791 × 10−4 2.5917

VSA

414.665838724249
199.172292151730
439.728488484532
439.040028810461

 3.26358341808515 3.26358341853136 3.26358341931154 2.2713 × 10−12 2.8837

RCF

414.660935921302
199.172929051667
439.731195339216
439.036439456949

 3.26358363439168 3.26358363439168 3.26358363439168 0 1.8438
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The numerical results in Table 3 show that:

i. As the literature mentions (see Ref. [15]), the VSA methodology is the most efficient
algorithm regarding combinatorial optimization methods to deal with the OPF prob-
lem. Note that the difference between the minimum and maximum solutions is less
than 1.2263 × 10−09, with a standard deviation of 2.2713 × 10−12.

ii. The BHO and the SCA approaches are stuck in locally optimal solutions with differ-
ences of about 1.3586 and 0.0200% with respect to the optimal solution found with
the VSA method. These results show that, numerically speaking, the SCA approach
can be considered accurate for solving the OPF problem in monopolar DC networks
with the main advantage being that its implementation is very simple due to its basic
evolution rules [30].

iii. The proposed RCF reaches the global optimal solution of the OPF problem, i.e.,
3.2635 kW, considering between four to six decimals. This implies that the difference
in the RCF, when compared with the VSA, is few in milliwatts. If we suppose that the
global optimum corresponds to the VSA solution, then the RCF has an estimation error
of about 6.6279 × 10−06%, which implies that for any practical application the RCF
method is effective to solve the OPF problem with the main advantage that, owing to
the convexity of the solution space, statistical analyses are not required, which is not
the case for metaheuristics.

Note that even if the statistical performance of the VSA method is enough for
any practical application of the OPF studies in a monopolar DC network, its standard
deviation is non-zero, which implies that each solution variates in some decimals at each
ruining, which makes implementing statistical validations to confirm its effectiveness
always necessary. On the other hand, regarding processing times, the proposed RCF
only takes about 1.84 s to solve the OPF problem in the 85-bus grid, while the VSA takes
an additional second, i.e., 2.88 s. Nevertheless, note that to confirm the effectiveness of
the VSA method, 100 evaluations of the complete methodology were made and it took
288.37 s, while the proposed RCF does not require multiple evaluations because, via the
convex theory, it is known that the optimal solution for the problem will be always the
same (global optimization properties).

4.3. Comparison with a Semidefinite Programming Model

To demonstrate the effectiveness of the proposed RCF to solve the OPF problem in
monopolar DC networks, a comparative analysis with the equivalent semidefinite program-
ming (SDP) approach reported in [10] was conducted. The SDP approach is selected as the
comparative algorithm because it can deal with radial and meshed distribution networks
without any modification in its mathematical formulation. To obtain a meshed configu-
ration for the 85-bus grid, four additional lines are included for the system in Figure 1.
These lines connect nodes 15–32, 16–23, 59–80, and 74–83. For these lines, the equivalent
resistance values are 0.520, 0.640, 0.495, and 0.635 Ω, respectively.

Table 4 presents the comparative analysis between the proposed RCF and the SDP
method for the radial and meshed configurations of the 85-bus grid. Note that the so-
lution of the SDP model was reached with the CVX tool in the MALTAB programming
environment using the SDPT3 solver.

The numerical results in Table 4 reveal that:

i. Both convex optimization methods converge to the same global optimal solution with
the main advantage that a statistical validation of the effectiveness of these algorithms
is not required, because due to the convex nature of the solution space, the optimal
solution reached is indeed the global optimum. Note that the difference between the
objective functions is lower than some milliwatts, confirming their efficiency to solve
the OPF problem in monopolar DC networks.
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ii. The numerical results confirm that the SDP and the RCF methods allow solving
the OPF problem in radial and meshed monopolar DC distribution networks. In
addition, the meshed configuration presents 0.2676 kW of additional energy losses
when compared with the meshed configuration. This is an expected behavior in
electrical networks with meshes because the voltage profile is improved and the
power flows present a better redistribution.

With respect to the processing times, it is clear that the RCF method is more efficient
to solve the OPF problem in monopolar DC networks, because in both configurations, it
takes less than 2 s, while the processing times of the SDP in both cases are higher than 35 s.
However, this behavior is easily explained due to the number of variables regarding the
voltages in the SDP model, which is n2 (note that the SDP problems are defined in the space
of square matrices), while the recursive model does not increase the number of variables,
and these remain as n in the case of the voltages for each recursive evaluation.

Table 4. OPF solution for the 85 bus with radial and meshed configurations using the proposed RCF
and the SDP method.

Method Power (kW) Min. (kW) Time (s)

Radial configuration

SDP

414.667268948386
199.170800020030
439.727950779580
439.041025339755

 3.26360276596915 38.5165

RCF

414.660935921302
199.172929051667
439.731195339216
439.036439456949

 3.26358363439168 1.8438

Meshed configuration

SDP

499.999555544086
218.553723985719
381.320450037291
414.949506471181

 2.99597169762933 35.1618

RCF

500.034832543591
218.550039816306
381.327927092341
414.97099629762

 2.99596545080895 1.8125

4.4. MATLAB Implementation

To illustrate the general implementation of the proposed RCF, here we present a small
numerical example composed of a monopolar DC network with six nodes. This is a test
feeder operated in the substation bus with a voltage of 220 V. The parametric information
for this test feeder is presented in Table 5.

Table 5. Branch and load parameters for the six-bus grid in monopolar DC applications.

Node j Node k Rjk (Ω) Pdk (W)

1 2 0.25 1500
2 3 0.50 1750
3 4 0.45 1250
2 5 0.35 1350
3 6 0.40 1500

Figure 2 depicts the MATLAB implementation of the proposed RCF to solve the OPF
problem in monopolar DC networks. Note that for this numerical example, the presence of
two disperse generators with maximum power generations about 2750 W was considered.
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1 %% RECURSIVE CONVEX FORMULATION
2 c l c ; c l e a r ; t i c
3 % SYSTEM DATA
4 Vb = 2 2 0 ; Pb = 1000 ;% V and W
5 Rb = (Vb^2)/Pb ; % (Ohm)
6 % [ i j R i j (Ohm) ]
7 LINES = [1 2 0 . 2 5 ; 2 3 0 . 5 0 ; 3 4 0 . 4 5 ; 2 5 0 . 3 5 ; 3 6 0 . 4 0 ] ;
8 % % [ i Pkd Pkg ]
9 NODES = [1 0 0 ; 2 1500 0 ; 3 1750 0 ; 4 1250 0 ; 5 1350 0 ; 6 1500 0 ] ;

10 NODES( [ 4 6 ] , 3 ) = 275 0 ; % D i s p e r s e d g e n e r a t i o n
11 % Per −Unit t r a n s f o r m a t i o n
12 LINES ( : , 3 ) = LINES ( : , 3 ) /Rb ; NODES( : , 2 : 3 ) = NODES( : , 2 : 3 ) /Pb ;
13 %% INCIDENCE MATRIX
14 N = s ize (NODES, 1 ) ; L = s iz e ( LINES , 1 ) ; A = zeros (N, L ) ;
15 for k = 1 : L
16 n = LINES ( k , 1 ) ; m = LINES ( k , 2 ) ; A( n , k ) = 1 ; A(m, k ) = −1;
17 end
18 %% PRIMITIVE ADMITANCE MATRIX
19 G = diag ( 1 . / LINES ( : , 3 ) ) ; Gbus = A*G*A. ’ ;
20 Vmin = 0 . 9 0 ; Vo = ones (N, 1 ) *Vmin ;
21 zeta = 1e −10; tmax = 2 0 ; Keep = [ ] ;
22 for t = 1 : tmax
23 %% RCF mode l ing
24 cvx_begin
25 cvx_solver gurobi
26 v a r i a b l e Pgs (N, 1 ) ;
27 v a r i a b l e Id (N, 1 ) ;
28 v a r i a b l e Pgd (N, 1 ) ;
29 v a r i a b l e V(N, 1 ) ;
30 minimize transpose (V) * ( Gbus*V) ;
31 s u b j e c t to
32 V( 1 , 1 ) == 1 ;
33 for k = 1 :N
34 %% B a l a n c e s
35 Pgs ( k , 1 ) /Vo( k , 1 ) − NODES( k , 2 ) * (2/Vo( k , 1 ) − (1/Vo( k , 1 ) ) ^2*V( k , 1 ) ) + 1*Pgd ( k , 1 ) /Vo( k , 1 )

== Gbus ( k , : ) *V ( : , 1 ) ;
36 i f k > 1
37 Pgs ( k , 1 ) == 0 ;
38 end
39 0 <= Pgd ( k , 1 ) <= NODES( k , 3 ) ;
40 end
41 cvx_end
42 Keep ( t , : ) = [ t max ( abs ( abs (Vo) − abs (V) ) ) cvx_optval *Pb ] ;
43 i f max ( abs ( abs (Vo) − abs (V) ) ) <= zeta
44 Vo = V;
45 break
46 e lse
47 Vo = V;
48 end
49 end
50 Time = toc ;

Figure 2. MATLAB implementation of the proposed RCF to the 6-bus system

Table 5. Branch and load parameters for the fsix-bus grid in mopololar DC applications

Node j Node k Rjk (Ω) Pdk (W)

1 2 0.25 1500
2 3 0.50 1750
3 4 0.45 1250
2 5 0.35 1350
3 6 0.40 1500

Figure 2 depicts the MATLAB implementation of the proposed RCF to solve the OPF
problem in monopolar DC networks. Note that for this numerical example, the presence of
two disperse generators with maximum power generations about 2750 W was considered.

Once the MATLAB code in Figure 2 is solved for the 6-bus grid, voltage profiles when
dispersed generators are or are not connected are presented in Figure 3.

Voltage profiles in Figure 3 as expected clearly improves when the dispersed generators
are connected to the network. Note that the voltage regulation without dispersed generators
is higher than 10%, however, with the inclusion of dispersed sources, it improves until
2.30%. In addition, the initial power losses for this test feeder are 645.3576 W, which are
reduced to 68.2905 W when the dispersed sources in nodes 4 and 6 generates 2266.1062 W
and 2643.2839 W, respectively.

Figure 2. MATLAB implementation of the proposed RCF to the six-bus system.

Once the MATLAB code in Figure 2 is solved for the six-bus grid, voltage profiles
when dispersed generators are or are not connected are presented in Figure 3.
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Figure 3. Voltage profiles for the six-bus system when dispersed generation is or is not considered.

The voltage profiles in Figure 3, as expected, clearly improve when the dispersed
generators are connected to the network. Note that the voltage regulation without dispersed
generators is higher than 10%; however, with the inclusion of dispersed sources, it improves
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until 2.30%. In addition, the initial power losses for this test feeder are 645.3576 W, which
are reduced to 68.2905 W when the dispersed sources in nodes 4 and 6 generate 2266.1062
and 2643.2839 W, respectively.

5. Conclusions

The problem regarding the OPF solution in monopolar DC networks was addressed
in this research through the implementation of a recursive convex approximation approach.
The hyperbolic relation between the powers and voltages in demand nodes was refor-
mulated as an affine equation through the linear approximation based on Taylor’s series
expansion for the function 1

vk
. In addition, the nonlinear relation between powers and

voltage in the slack and dispersed generations was relaxed using the value of the voltages
at the iteration t in order to determine their new values at the iteration t + 1. To eliminate
the estimation error between the linear approximation of the nonlinear function 1

vk
, a recur-

sive solution of the equivalent convex model is implemented until the error between two
consecutive iterations, i.e., ε = maxk∈N

{∣∣∣∣∣∣vt+1
k

∣∣∣− ∣∣vt
k

∣∣∣∣∣}, reached the desired convergence.
The numerical simulations demonstrated that: (i) the proposed RCF can efficiently

solve the classical power flow problem by fixing all the power generation in the dispersed
sources as zero, and the error between the RCF model and the Newton–Raphson method
was less than 1× 10−06, which confirms the effectiveness of the RCF as a power flow solver;
(ii) the comparative analysis between the RCF approach and the metaheuristic optimizers
shows that the proposed approach effectively reaches the global optimal solution of the
problem without recurring in a statistical analysis, while the BHO and the SCA are stuck in
locally optimal solutions and the VSA is the only metaheuristic approach that can deal with
the OPF solution in monopolar DC networks with low standard deviations; and (iii) the
comparative analysis of the RCF with respect to the SDP approach confirmed that both
convex methods reached the global optimal solution with the main advantage that these are
directly applicable to radial and meshed distribution networks without any modification in
their mathematical structures; however, the RCF corresponded to the most efficient method
to solve the OPF problem when compared with the SDC approach and the combinatorial
optimizers regarding processing times.

In future works, it will be possible to develop the following research: (i) to extend
the proposed convex recursive model to operate batteries and renewable generators in
monopolar DC networks; (ii) to propose a recursive convex formulation to solve the
OPF problem in bipolar DC networks, including unbalanced loads and non-grounded
neutral wire; and (iii) to obtain a mixed-integer convex model to locate and size renewable
generators in monopolar DC networks.
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