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Abstract: Diabetic kidney disease (DKD) is a highly prevalent condition worldwide. It represents
one of the most common complications arising from diabetes mellitus (DM) and is the leading cause
of end-stage kidney disease (ESKD). Its development involves three fundamental components: the
hemodynamic, metabolic, and inflammatory axes. Clinically, persistent albuminuria in association
with a progressive decline in glomerular filtration rate (GFR) defines this disease. However, as
these alterations are not specific to DKD, there is a need to discuss novel biomarkers arising from
its pathogenesis which may aid in the diagnosis, follow-up, therapeutic response, and prognosis of
the disease.
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1. Introduction

Diabetic kidney disease (DKD) is a highly prevalent condition worldwide. It represents
one of the most frequent complications of diabetes mellitus (DM) and is the primary cause
of end-stage kidney disease (ESKD). Its pathogenesis involves three fundamental compo-
nents: the hemodynamic, metabolic, and inflammatory axes [1]. Persistent albuminuria,
accompanied by a progressive decline in glomerular filtration rate (GFR) [2], characterizes
DKD clinically. However, these alterations are not specific to DKD, highlighting the need
to identify novel biomarkers that arise from the pathogenesis of this disease to aid in its
diagnosis, follow-up, therapeutic response, and prognosis.

While there are several reviews that have examined the inflammatory component of
DKD, few have provided a comprehensive review that is specific to DKD. Therefore, this
paper aims to provide a unique and comprehensive review of the inflammatory component
of DKD, highlighting the current understanding of the pathophysiology of inflammation in
the development and progression of DKD.

As diabetes mellitus is an inflammatory disease that extends beyond the traditional
hemodynamic and metabolic axes [3], the early detection of inflammatory biomarkers is
essential in reducing complications related to the disease. Early detection, coupled with
the optimization of currently available therapeutic options, can delay the progression of
DKD towards terminal stages that require renal replacement therapy and cause death [1,4].
Therefore, this review aims to analyze the molecular aspects of the disease and the clinical
utility and role of new biomarkers in the management of DKD.
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2. Epidemiology and Perspectives in Diabetic Kidney Disease

Diabetes mellitus (DM) is one of the most common chronic, non-communicable dis-
eases, making it one of the fastest-growing global health emergencies in recent decades.
According to recent data from the International Diabetes Federation (IDF), the global preva-
lence of DM in adults aged 20 to 79 years was 537 million in 2021, representing 10.5% of
the population. This number is expected to rise to 643 million by 2030 [5]. However, there
is often a delay of 4 to 7 years between the onset of DM and its diagnosis, and even more
time passes before any clinical damage becomes apparent. Therefore, the development of
earlier diagnostic strategies is of great interest.

Diabetic kidney disease (DKD) affects approximately 30–40% of patients with type 1
or type 2 diabetes mellitus (DM) [6]. The pathogenesis and progression of DKD involve
three fundamental axes: the hemodynamic, metabolic, and inflammatory axes. Of these,
the inflammatory axis is gaining increasing importance and evidence as a possible thera-
peutic target [1].

Traditionally, DKD has been considered a non-inflammatory glomerular disease, with
its pathogenesis attributed to hemodynamic and metabolic alterations. However, recent
discoveries and advances in understanding the immune response have challenged this view,
identifying inflammation as a central phenomenon in the development and progression of
DKD [1]. This updated understanding of the disease has led to advances in its treatment and
has opened up the possibility of considering new molecules identified in the course of the
disease as therapeutic targets and markers for diagnosis, monitoring, and prognostication.
Figure 1 reviews the various components of the pathophysiology of DKD.
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3. Limitations of Conventional Biomarkers

The diagnosis of DKD relies on the detection of albuminuria and a decrease in the
estimated glomerular filtration rate (eGFR), which is measured by serum creatinine lev-
els [7]. The decline in the eGFR is a consequence of renal function loss and significant
destruction of the glomeruli [7]. Among the markers used to assess DKD, albuminuria is
typically the most robust tool for predicting prognosis and evaluating treatment efficacy [5].
Urinary albumin excretion (UAE) is utilized for risk classification and reflects the severity
of albuminuria [8].

There is a clear correlation between the extent of structural damage and renal function,
particularly at moderate levels of eGFR reduction during DKD [9]. However, this associa-
tion is less apparent in the initial stages of the disease when albuminuria is low or eGFR
reduction is minimal [9]. This highlights the need to identify biomarkers that enable earlier
evaluation of renal structural damage and the identification of populations at a high risk
of progression [9].

In DKD follow-up, the main predictors of disease progression are variations in the
current and previous eGFRs [10]. Therefore, the GFR remains the primary clinical biomarker
for evaluating prognosis in DKD and is frequently used in clinical practice and trials [10].
The CKD-EPI and MDRD equations, which use creatinine as a marker to estimate the GFR,
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are commonly used for GFR estimation [10]. The differences in the diagnostic accuracy of
these two equations are minimal. However, it is important to note that these equations
may either under- or overestimate the true GFR in DKD due to compensatory changes in
the remaining nephrons. An important limitation of the currently available diagnostic and
follow-up methods is their reduced utility in patients with a normoalbuminuric phenotype,
which is increasingly prevalent and lacks targeted therapy [11].

Given the limitations of currently available diagnostic and follow-up methods in
patients with normoalbuminuric phenotype, there is a need to develop and identify new
biomarkers for DKD. We propose to group these biomarkers based on their utility in diag-
nosing, monitoring progression, evaluating therapeutic response, and predicting prognosis
in patients with DKD, as shown in Table 1. We will review information on novel biomarkers
and their potential clinical utility in these scenarios.

Table 1. Biomarkers in diabetic kidney disease.

Author Year Biomarker Diagnostic Therapeutic
Response

Monitoring and
Forecasting Comment

Pena, M.J. [5] 2016 Renal urinary
proteome 0 1 0

Could identify who will
have the best

clinical outcome

Fontalvo, J.E.R. [8] 2021 Albuminuria 1 1 [12] 1 Urinary measurement

Colhoun, H.M. [10] 2018 Creatinine 1 0 1 Plasma measurement

Haase-Fielitz, A. [13] 2009 Serum Cystatin
C (CysC) 1 0 1 * Marker ↑ before

creatinine variation

Kaul, A. and Behera,
M.R. [14] 2018 NGAL 1 0 1 * Serum and urinary

measurement

Barutta, F. [15] 2021 Plasma KIM-1 1 0 1 [16] Serum measurement

Tye, S.C. [17] 2021 Glycosylated
hemoglobin 0 1 * 0 Serum measurement

Gupta, A. [18] 2022 NETs 0 1 0 Inhibition may be a
therapeutic target

Panduru, N.M. [19] 2013 L-FABP 0 0 1 Urinary measurement

Kalantarinia, K. [20] 2014 TNF-a 0 0 1 Serum and urinary
measurement

Pavkov, M.E. [21] 2015 TNFR 1 -2 0 0 1 Plasma measurement

Sanchez, M. [22] 2018 8-OHdG 0 0 1 Plasma measurement

Diagnosis—0 = no, 1 = yes; Therapeutic Response—0 = no, 1 = yes; Follow-up and Prognosis—0 = no,
1 = yes; NGAL—Neutrophil gelatinase-associated lipocalin; NETs—secretion of neutrophil extracellular traps;
L-FABP—liver-type fatty acid-binding protein TNF-α—tumor necrosis factor alpha; TNFR 1-2—serum tumor
necrosis factor receptors 1 and 2; 8-OHdG—8-Hydroxy-2′-deoxyguanosine; *—controversial results.

4. Novel Biomarkers in Diabetic Kidney Disease

Undoubtedly, early diagnosis is crucial for risk management to improve progno-
sis and slow the progression of kidney disease associated with DM [1,23,24]. However,
conventional diagnostic tests have profound limitations, as previously described, which
often result in a late diagnosis. Therefore, the continuous search for novel biomarkers in
urine and serum, based on proteomics and metabolomics, has gained relevance in recent
years. This is due to the improved understanding of the pathophysiology and mechanisms
associated with the development of DKD [23,25].

Due to advances in understanding the molecular mechanisms behind acute and
chronic kidney injury, numerous biomarkers have been proposed. While these have mainly
been identified in acute kidney injury (AKI), they could also have significance in the
evaluation of patients with diabetic kidney disease (DKD). Such biomarkers could increase
the precision with which the presence and progression of DKD is evaluated, an area
in which conventional biomarkers, such as serum creatinine, used to estimate GFR and
albuminuria have limitations [26–28]. Despite the availability of novel biomarkers with
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a high diagnostic and discriminative capacity, good sensitivity and specificity, and the
capability of detecting minimal changes in renal structure and function, the evidence of
their usefulness remains variable and controversial [26,29].

Moreover, it is important to note that as per the AKI consensus, biomarkers do not
replace conventional tests and adequate clinical evaluation. Rather, they serve as comple-
mentary tests that allow for the earlier identification and individualization of populations
that could potentially benefit from cardiovascular risk prevention and management inter-
ventions [30]. In the following sections, we describe the biomarkers proposed in different
scenarios in DKD.

4.1. Diagnostic Biomarkers

The conventional diagnostic tests for DKD, as previously mentioned, include albumin-
uria and the eGFR, which is estimated by creatinine [8]. However, several clinical factors
have been identified that can predict the decline in glomerular filtration rate and progres-
sion of DKD [10]. These factors include age, duration of diabetes, levels of glycosylated
hemoglobin (HbA1c), systolic blood pressure (SBP), albuminuria, previous eGFR, and the
presence of other microvascular complications such as diabetic retinopathy [8,10]. Despite
the existence of these factors, robust predictive equations are not available to predict the
development of DKD, highlighting the need for improved risk management beyond the
knowledge derived from epidemiologically based studies on the risk of eGFR decline asso-
ciated with these factors [31,32]. Furthermore, given the limitations in the use of creatinine
and albuminuria and the existence of the normoalbuminuric phenotype of DKD, other
diagnostic tests are necessary to identify the presence of DKD.

4.1.1. Serum Cystatin C (CysC)

Cystatin C (CysC) is a low-molecular-weight protein composed of 122 amino acids
and is part of the cysteine protein inhibitor family. It is encoded by the CST3 housekeeping
gene located on chromosome 20 (20pl1. 21) [33]. Cysteine cathepsins play a role in various
physiological processes, including protein turnover, pro-protein processing, bone remod-
eling, antigen presentation, and apoptosis [34]. CysC, which is the most abundant and
potent member of the endogenous inhibitors that control the activities of these enzymes
both inside and outside cells, participates in numerous pathological processes, such as
cardiovascular disease and inflammation [35].

CysC is synthesized and released into the plasma at a constant rate by all nucleated
cells in the organism. Due to its small size and positive charge, it is freely filtered at the
glomerular level and then completely reabsorbed and degraded but not secreted by the
renal tubules [36,37]. Therefore, serum CysC can be used as a biomarker for the early
diagnosis of AKI and may reflect early changes in renal function and reduction in the eGFR.
In scenarios such as the first 6 hours in the postoperative period of cardiovascular, it has a
sensitivity and specificity estimated at 71% and 53%, respectively [13]. CysC enables an
earlier diagnosis of AKI than creatinine variations, but its use is limited when compared
with other biomarkers such as neutrophil gelatinase-associated lipocalin (NGAL) [38,39].

In a prospective observational study involving 237 patients with type 2 diabetes
mellitus, both serum and urinary levels of CysC were evaluated over a follow-up period of
29 months. The study showed that CysC levels were associated with both a decrease in the
eGFR and the progression of DKD [40]. Further analysis of this study suggested that CysC
could be an earlier marker of a reduced filtration rate compared to creatinine. Another
study by Jeon et al. also demonstrated that CysC levels increased with increasing stages
of CKD from I to III and from normoalbuminuria to microalbuminuria, with a positive
correlation with the albumin-to-creatinine ratio [41].

4.1.2. Neutrophil Gelatinase-Associated Lipocalin (NGAL)

NGAL, also known as neutrophil gelatinase-associated lipocalin, is a 25 kDa protein
belonging to the lipocalin family [42]. It is produced by both neutrophils and injured
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epithelial cells of the nephron, leading to its specific release into the blood and urine in
response to nephron injury [42]. NGAL is filtered from plasma through the glomerular
filtrate and then reabsorbed by endocytosis via the megalin system in the proximal tubule.

In a cross-sectional study of 94 diabetic patients and 45 non-diabetic control subjects,
the levels of serum and urinary damage markers were measured, revealing that NGAL
levels were 1.5 times higher in the diabetic patients than in the healthy subjects. This
study also found that markers of glomerular and tubular damage were associated with the
presence of albuminuria independent of eGFR, suggesting that albuminuria could result
from both glomerular and tubulointerstitial damage [43]. NGAL has also been proposed as
a potential biomarker for identifying and detecting early-stage DKD [14].

Tubular injury may occur before glomerular injury in people with diabetes, and NGAL
can be a useful biomarker for early detection of diabetic nephropathy (DN). NGAL can
detect incipient nephropathy changes earlier than proteinuria. In a study of 144 patients
with type 2 diabetes mellitus, both serum and urinary measurements of NGAL were
performed, and both were able to predict the appearance of albuminuria, allowing for
the early detection of DN [14]. Additionally, Carvalho et al. found that uKIM-1 and
urinary NGAL levels were increased in type 2 diabetes mellitus patients with normal or
mildly increased albuminuria, suggesting that both tubular and glomerular injuries may
be occurring even at the earliest stages of DKD [44].

A recent meta-analysis that included 19 studies found that serum NGAL had a
pooled sensitivity of 0.79 (95% confidence interval [CI] 0.60–0.91) and a specificity of
0.87 (0.75–0.93). Urine NGAL had a pooled sensitivity of 0.85 (0.74–0.91) and a speci-
ficity of 0.74 (0.57–0.86) [45]. The pooled sensitivity and specificity for kidney disease in
normoalbuminuric patients with diabetes were 0.90 (0.82–0.95) and 0.97 (0.90–0.99) for
serum NGAL, respectively, and 0.94 (0.87–0.98) and 0.90 (0.81–0.96) for urine NGAL, re-
spectively [45]. These results indicate that NGAL can be useful for classifying DKD and
can provide an added diagnostic value in the group of patients with normoalbuminuric
kidney disease [45].

4.1.3. Plasma KIM-1 (KIM-1)

Injury molecule 1 (KIM-1) is a type I transmembrane glycoprotein that is expressed in
the apical membrane of the proximal renal tubular cells; its serum levels tend to increase
in patients with tubular injury [15]. In a cohort study of patients with type 1 diabetes
mellitus and proteinuria, baseline serum KIM-1 levels were a strong predictor of eGFR loss
and ESKD during the 5 to 15 years of follow-up after adjusting their values for baseline
urinary albumin-to-creatinine ratio levels, eGFR, and Hb1Ac [46]. Additionally, in a
cohort study that included 462 patients, of whom 259 were normoalbuminuric and 203 of
had microalbuminuria, plasma KIM-1 levels predicted an early reduction in eGFR and
the progression of kidney disease independent of other variables, such as systolic blood
pressure (BP), HbA1c, AER, eGFR, and TNFR1 [12]. On the contrary, data on urinary KIM-1
in DKD were disappointing and limited thus far [15].

4.1.4. Other Diagnostic Biomarkers in DKD

There are several biomarkers with probable utility in the context of diabetic kidney
disease (DKD), including fibroblast growth factors 21 and 23 (FGF21, FGF23) and pigment
epithelium-derived factor (PEDF), which are associated with inflammatory pathways and
fibrosis [10]. Additionally, markers of endothelial dysfunction, such as the mid-regional
fragment of pro-adrenomedullin (MR-proADM), and cardiac injury markers, such as
N-terminal pro-B-type natriuretic peptide (NT-proBNP), may correlate with a decline
in the eGFR [10]. Copeptin, a biomarker derived from arginine vasopressin, has been
associated with the progression of DKD and is an independent marker of eGFR reduction
and even progression to end-stage renal disease (ESRD) [10]. While the list of biomarkers
with probable utility in DKD continues to grow, their validation in clinical scenarios has
been limited.



Biomolecules 2023, 13, 633 6 of 13

4.2. Biomarkers of Therapeutic Response

In the treatment and risk management of patients with DKD, it is crucial to search
for biomarkers that can predict an individual’s response to proposed treatments as well as
evaluate their risk prediction. However, many studies that evaluate and predict disease
progression do not provide information regarding the participants’ response to the eval-
uated drugs, nor do they identify patients at an increased risk of secondary or adverse
events from the therapeutic intervention studied [6]. Additionally, individual patients can
show a great variability in their clinical response to drugs or therapeutic interventions [6].
Therefore, having biomarkers of therapeutic response can save time and reduce costs when
prescribing a drug [6].

Conversely, identifying patients with a higher probability of responding to therapeutic
and reno-protective strategies can modify the course of the disease and optimize the impact
of the therapeutic resources available. The use of biomarkers to stratify patients according
to their response to treatment is an encouraging idea [17]. Measuring these biomarkers
before exposing the patient to the intervention and defining whether therapy is indicated
based on the biomarker level is an approach that has gained ground in the management of
DKD. Short-term changes in biomarkers are then used to predict the long-term efficacy of
the drug [17].

Markers of clinical response commonly used in different studies include the reduction
of albuminuria, blood pressure, glucose, or cholesterol levels [47]. However, these markers
alone may not be sufficient to define populations with potential benefits from drug use
before initiation or an increased risk of side effects [47]. Surrogates of therapeutic response
have shown limitations in study designs evaluating the real effect of novel drugs, such as
SGLT2 inhibitors, or previous interventions, such as aldosterone receptor antagonists, in
which the polymorphism of the angiotensin-converting enzyme II can predict populations
with a greater or lesser response to pharmacological intervention [47]. Therefore, defining
better markers of therapeutic response presents a clinical challenge.

For instance, SGLT2 inhibitors have been shown to be innovative drugs with favorable
clinical outcomes in patients with DKD [16,48]. Conventional markers such as glycosylated
hemoglobin may not fully reflect the response to treatment, and clinical markers such as
the reduction in blood pressure and albuminuria behavior may even reflect the long-term
therapeutic response [17,49]. Thus, it is essential to find more precise markers that can
better predict the therapeutic response to SGLT2 inhibitors and other treatments for DKD.

In the CANTATA-SU study comparing canagliflozin against glimepiride, a subsequent
analysis of patient samples found that the use of canagliflozin led to significant reductions
in the plasma levels of TNF receptor 1 (TNFR1; 9.2%; p < 0.001), IL-6 (26.6%; p = 0.010), ma-
trix metalloproteinase 7 (MMP7; 24.9%; p = 0.011), and fibronectin 1 (FN1; 14.9%; p = 0.055)
during the two-year follow-up period [50,51]. These markers of inflammation and extracel-
lular matrix alteration may serve as indicators of therapeutic response to iSGLT-2 treatment.
In addition, a sub-analysis of the Canagliflozin Cardiovascular Assessment Study (CAN-
VAS) showed that canagliflozin use decreased KIM-1 and moderately reduced TNFR-1
and TNFR-2 compared to a placebo in people with type 2 diabetes [52]. Dapagliflozin,
another SGLT2i, has also been studied for its effects on the urine metabolome and was
found to increase urinary concentrations of branched-chain amino acids, lactate, and ketone
bodies, which contribute to reno-protective effects. Moreover, dapagliflozin use resulted in
a significant clinical reduction of albuminuria in patients with DKD [53].

In addition to iSGLT-2 inhibitors, other pharmacological interventions are being stud-
ied to identify biomarkers of therapeutic response, including pentoxifylline. In the PRE-
DIAN study, it was observed that adding pentoxifylline to RAS blockade therapy led to a
reduction in the urinary excretion of TNF-α, which was inversely related to the eGFR in
patients with stage 3 and 4 chronic kidney disease [54]. This suggests that TNF-α could
potentially serve as a biomarker for monitoring the therapeutic response to pentoxifylline
treatment in patients with CKD.
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Proteomics has the potential to facilitate personalized medicine by identifying patients
who are more likely to respond to treatment and are at greater risk of adverse or secondary
events [6]. Evaluating an individual’s proteome can aid in determining patients with a
favorable or poor baseline response to therapeutic intervention [55]. Additionally, monitor-
ing the proteome dynamically during treatment could identify patients who experience
additional benefits or favorable clinical results over time that could be adjusted based on
their response to treatment [6].

Although proteomics holds great potential in identifying new biomarkers of thera-
peutic response, studies in this area are often limited by their high cost and small sample
sizes. Methodological biases, such as the type of study design used or the lack of adjust-
ment for confounding factors such as baseline eGFR, further complicate the analysis of
proteomic data [15]. Currently, CKD-273 is the proteomic biomarker with the strongest
evidence for its use in managing DKD [15]. This biomarker has been suggested to identify
patient subgroups that are more likely to respond to therapeutic interventions, such as ARB
II or spironolactone, in studies such as DIRECT-2, PRIORITY, and the MAR-LINA-T2D
trial. However, despite this promising potential, these studies have not yet demonstrated
clear benefits in reducing the progression of kidney disease or albuminuria [56–58]. More
research is needed to fully evaluate the clinical utility of proteomic biomarkers in the
management of DKD.

The study of pathophysiological mechanisms during DKD, particularly inflammation,
has identified potential therapeutic targets and prognostic markers that offer opportunities
for increasing treatment options for these patients [1]. Of particular interest is the activation
of the neutrophil mechanisms involved in the innate immune response, which leads to DNA
de-condensation and histone citrullination by PAD-4, a histone deaminase [18]. This results
in the secretion of NETs, which contain DNA, histones, and neutrophil proteases such as
neutrophil elastase (NE) and myeloperoxidase (MPO) [18]. NETs have been proposed as
mechanisms that mediate the development of cardiovascular diseases and DKD through
inflammation that is not mediated by an infection response. Recent research has suggested
that inhibiting NETs could be a novel therapeutic target and a biomarker for follow-up and
prognosis in DKD patients [18].

The identification and study of biomarkers for therapeutic response is an ongoing pro-
cess, utilizing proteomic and metabolomic analysis to identify clinically relevant molecules.

4.3. Monitoring and Prognostic Biomarkers

We can begin by discussing biomarkers of tubular damage, such as KIM-1, NGAL, α-1-
microglobulin, NAG, cystatin C, and L-FABP [2]. KIM-1 is one of the most-studied markers,
with research including a nested case–control study (n = 190 cases of incident DKD and
190 matched controls) and a prospective cohort study (n = 1156) that used banked baseline
plasma samples from participants in randomized controlled trials of early (ACCORD) and
advanced (VA NEPHRON-D) DKD [59]. The results of these studies indicate that KIM-1
is a strong predictor of decline in glomerular filtration rate in both early and advanced
DKD [59]. In addition, in the Chronic Renal Insufficiency Cohort (CRIC) Study, which
involved 894 patients, high plasma levels of KIM-1, TNFR-1, TNFR-2, MCP-1, suPAR, and
YKL-40 were associated with an increased risk of DKD progression, with TNFR-1 being
discussed in further detail in another section [60]. However, there is still a need for further
research on biomarkers of therapeutic response, including proteomic and metabolomic
responses, to identify molecules of clinical interest.

Liver-type fatty acid-binding protein (L-FABP) is another marker of tubular damage
and DKD progression. Elevated levels of L-FABP in urine have been shown to correlate
with the progression of DKD [2]. In a study that included 1549 patients with type 1 diabetes,
334 had microalbuminuria, 363 had macroalbuminuria, and the remaining patients had an
albumin excretion rate (AER) within normal reference ranges [19]. The study found that
elevated levels of L-FABP were an independent factor in the progression of DKD, regardless
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of the clinical stage of the patients [19]. In contrast, other markers of tubular damage, such
as NGAL or cystatin C, have shown controversial results in predicting DKD progression [2].

It has been determined that inflammation markers such as tumor necrosis factor alpha
(TNF-α) and IL-1β could predict the progression of diabetic nephropathy [61,62]. TNF-α
binds to TNF-α type 1 (TNFR1) and type 2 (TNFR2) receptors. The latter can be identified
in the circulation in soluble form [2]. On the other hand, TNF-α exerts cytotoxic effects
on glomerular and mesangial cells and is therefore a determinant of the development of
renal injury [1,63]. Its elevated levels have been identified in animal and human models of
diabetic nephropathy at both urinary and serum levels [2,20]. Great interest has also been
aroused in the presence of high levels of soluble forms of TNF-α receptors in the systemic
circulation, as discussed below [2].

Tumor serum necrosis receptor factors 1 (TNFR1) and 2 (TNFR2) are proinflammatory
markers that are increasingly used in monitoring and predicting the progression of DKD.
Elevated levels of TNFR1 and TNFR2 are associated with worsening albuminuria, a reduced
GFR, the onset of end-stage renal disease, the requirement of renal replacement therapy, and
death [21,64–66]. Furthermore, serial histopathological studies have demonstrated that the
presence of elevated levels of TNFR1 and TNFR2 are strongly related to the development
of end-stage renal disease in patients with type 2 DM and are associated with early changes
in the clinical course of DKD [21]. Among these early changes, a significant inverse
proportional correlation was found with the percentage of endothelial cell fenestration and
the total filtration surface of the glomerulus. Additionally, a significant positive correlation
was made with the mesangial fractional volume, glomerular basement membrane width,
podocyte process width, and the percentage of global glomerular sclerosis [21]. These
findings support the notion that the inflammatory activity of these molecules is associated
with early changes in DKD.

The Diabetes Control and Complications Trial (DCCT) was a population study that
analyzed 1237 patients who were free of albuminuria and cardiovascular disease at the
beginning of the follow-up period [67]. A sub-analysis of this study determined that
high levels of inflammatory markers, especially E-selectin (sE-selectin) and soluble tumor
necrosis factor receptors (TNFR)-1 and -2, are important determinants of the occurrence
of microalbuminuria in patients with type 1 diabetes mellitus [67]. In a complementary
observational cohort study that included 349 patients with type 1 diabetes mellitus, high
circulating levels of TNFR2 were identified as the main determinants of the decline in
the eGFR in patients with type 1 diabetes mellitus and proteinuria. These effects are
accentuated by poor metabolic control associated with elevated levels of glycosylated
hemoglobin [68].

In addition, individual plasma markers of inflammation and fibrosis, such as TNFR1,
TNFR2, and YKL-40, as well as tubular damage markers such as KIM-1 have been associated
with an increased risk of end-stage renal disease requiring renal replacement therapy in
adults with DM and GFR < 60 mL/min/1.73 m2 [69]. In individual biomarker models
adjusted for eGFR, UACR, and established risk factors, hazard ratios for incident kidney
failure with replacement therapy (KFRT) per 2-fold higher biomarker concentrations were
1.52 (95% CI, 1.25–1.84) for plasma KIM-1, 1.54 (95% CI, 1.08–2.21) for TNFR1, 1.91 (95%
CI, 1.16–3.14) for TNFR2, and 1.39 (95% CI, 1.05–1.84) for YKL-40 [69]. These biomarkers
have shown promising potential for identifying populations at a high risk for poor disease
progression and requiring renal replacement therapy.

The increasing knowledge of the pathophysiological mechanisms involved in the
clinical course of DKD has allowed for the identification of other pathological pathways
beyond metabolic control and hemodynamic alterations. In addition to biomarkers associ-
ated with inflammation, we will comment on those derived from oxidative stress [1]. One
such biomarker is 8-Hydroxy-2′-deoxyguanosine (8-OHdG), a product of oxidative DNA
damage that can be found at the plasma level and is excreted in urine after DNA repair
by nuclease activity [2,70]. This suggests that 8-OHdG could be a biomarker of oxidative
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DNA damage in diabetic patients, a group which has demonstrated higher levels of this
product when compared to healthy populations [71].

It is important to note that while some studies have shown the potential utility of 8-
OHdG as a prognostic marker of DKD, other studies have reported limitations in its use [22].
For instance, one study found that monitoring the kinetics of 8-OHdG at the urinary level
may be challenging in establishing a prognosis [72]. Therefore, further research is needed to
better understand the role of oxidative stress biomarkers, including 8-OHdG, in predicting
the adverse outcomes and progression of DKD. Nonetheless, these findings highlight the
importance of considering other pathological pathways beyond metabolic control and
hemodynamic alterations in the pathogenesis of DKD.

The identification of biomarkers related to tubular damage, inflammation, fibrosis,
and oxidative stress shows promise in identifying high-risk populations for DKD and
developing effective intervention and prevention strategies. However, further studies are
necessary to establish the clinical relevance of these biomarkers and to monitor the role of
novel molecules developed for diabetes mellitus treatment. Figure 2 provides an overview
of the potential biomarkers for DKD.
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5. Limitations in the Use of New Biomarkers

The history of medicine has brought us to a point at which personalized intervention
strategies are being sought with the aim of identifying molecules that can help classify
subpopulations and optimize therapeutic interventions. However, in the case of biomarkers
for DKD, much of the available information is based on animal, cellular, and in vitro studies,
and the results of large population studies are controversial [10].

Another crucial factor to consider is the cost-effectiveness of using these biomarkers,
which is beyond the scope of this publication. The limited availability of these markers
worldwide restricts their widespread use. Moreover, it is crucial to consider the potential
variability resulting from diagnostic test studies and the performance of each test, which
may alter the interpretation of the results [73].

It is important to note that the diagnostic performance of these biomarkers is not
limited to DKD and can be influenced by other factors, such as infectious processes, which
can affect molecules such as IL-18, NGAL, and calprotectin without necessarily indicating
the presence of acute kidney injury [74]. Therefore, the impact of comorbidities on the
behavior of these biomarkers should be taken into consideration, and the proposed cut-off
points for diagnosis, follow-up, and prognosis may need to be re-evaluated [75].

Moreover, recent studies have revealed that DM can affect the performance of biomark-
ers in predicting the development of kidney disease, adding to the challenge of identifying
suitable biomarkers for diagnosis, therapeutic response, follow-up, and prognosis [76].
However, the application of these biomarkers is limited by various factors such as the
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availability of test platforms, cost, variability in testing techniques and results, and the lack
of approval from national and international regulatory bodies [77].

6. Conclusions

In recent years, there has been an emergence of new treatment options for DKD, and
research is ongoing to identify potential therapeutic targets for prevention, follow-up, and
prognosis. However, the implementation of these biomarkers in clinical practice is still a
work in progress, as further studies are needed to confirm their utility. Nonetheless, the
development of novel molecules and treatment strategies is promising, and it is hoped
that in the future, clinicians will have access to a wider range of effective and personalized
interventions for patients with DKD.
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