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Departamento de Ingenieŕıa Eléctrica, Electrónica y Computación

Manizales

2023



Contents

Contents i

List of Tables iii

List of Figures iv

Acknowledgments vii

Abstract viii

Resumen xi

1 Preliminaries 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 General Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Academic Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Materials and Methods 9
2.1 Subject-Level Extraction of Motor Imagery t-f Feature Dynamics . . . . . 9

2.1.1 Estimation of Common Spatial Patterns . . . . . . . . . . . . . . . 9
2.1.2 Computation of Functional Connectivity of Brain Networks . . . . . 10
2.1.3 Assessment of Event-Related De/Synchronization . . . . . . . . . . 10
2.1.4 A New Proposal for Complexity-Based Estimation of Event-Related

De/Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Intra-subject Neural Response Variability . . . . . . . . . . . . . . . . . . . 13

2.2.1 A New Proposal for Group-level Extraction of Multi-subject t-f Fea-
tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Electrophysiological Indicators in MI Tasks . . . . . . . . . . . . . . 14
2.2.3 A New Porposal for Evaluating the BCI Efficiency using Classifier

Performance and Electrophysiological Indicators . . . . . . . . . . . 15
2.3 Description Tested of Bi-task MI Databases . . . . . . . . . . . . . . . . . 18

2.3.1 Dataset D-I: BCI Competition IV . . . . . . . . . . . . . . . . . . . 18
2.3.2 Dataset D-II: Gigascience . . . . . . . . . . . . . . . . . . . . . . . 18

i



CONTENTS

3 Experiments and Results of Subject-Level Extraction of t-f Feature Dy-
namics 20
3.1 Preprocessing of EGG signals . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Inter-subject Varibility and its Impact on Classification Accuracy . . . . . 21
3.3 Single-subject Dynamics Performed by Common Spatial Patterns . . . . . 22
3.4 Single-subject Dynamics Extracted by Functional Connectivity . . . . . . 25
3.5 Single-subject Dynamics Extracted by Event-Related De/Synchronization . 27

4 Experiments and Results of Complexity-Based Estimation of Event-Re-
lated De/Synchronization 30
4.1 Preprocessing of EGG signals . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Parameter Tuning of Compared Entropy-based Estimators . . . . . . . . . 30
4.3 Interpretability of Time-courses Estimated for Event-Related De/Synchro-

nization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 Contribution of Sensorimotor Area to Distinguishing Between MI Tasks . . 37
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Experiments and Results of Intra-subject Neural Response Variability 43
5.1 Experiments and Results of Multi-subject Dynamic Models . . . . . . . . . 43

5.1.1 Parameter Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.2 Clustering of Subject-Level Efficiency . . . . . . . . . . . . . . . . . 44
5.1.3 Results of CSP-based Multi-subject Model . . . . . . . . . . . . . . 44
5.1.4 Results of Functional Connectivity based Multi-subject Model . . . 45
5.1.5 Results of Event-related De/Synchronization based Multi-subject

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Experiments and Results of Regression Analysis between Classifier Perfor-
mance and Electrophysiological Indicators . . . . . . . . . . . . . . . . . . 48
5.2.1 Preprocessing of EEG signals . . . . . . . . . . . . . . . . . . . . . 49
5.2.2 Bi-Class Accuracy Estimation as a Response Variable . . . . . . . . 49
5.2.3 Computation of Pre-Training Desynchronization Indicator . . . . . 50
5.2.4 Initial Training Synchronization Assessment . . . . . . . . . . . . . 52
5.2.5 Drn-Based Indicator Extraction and Regression . . . . . . . . . . . 54
5.2.6 Clustering of Subject-Level Efficiency . . . . . . . . . . . . . . . . . 56
5.2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Conclusions 61

Bibliography 63

ii



List of Tables

4.1 Influence of the short-time window on the bi-class classifier accuracy performed

by each tested Entropy-based estimator. Notation ∗ stands for the values of

τ reaching the best accuracy of MI tasks. Note that individuals are ranked

in decreasing order to rate the BCI literacy. The best individual scores are

underlined while the best values performed between the estimators are marked

in black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Tuning of complexity values, threshold tolerance ρ and embedding value M ,

performed at τ=1 s, fixing Q=250-M . Notation Q′ stands for the reduced size of

VQ alphabets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Biserial Spearman correlation coefficient quantified between the ξ1 indicator, ex-

tracted within different scenarios of resting data, and the accuracy response,

estimated at each window length of δτ . Notations LC, DRN, and LOO stand for

Linear Correlation [1], Deep Regression Network, and leave-one-out-cross valida-

tion strategy, respectively. The best value per row is marked in bold. . . . . . . 55
5.2 Computed values of r for the indicator of initial training synchronization within

the evaluated rhythm bandwidths: µ, β, µ+β. Notations LC, DRN, and LOO

stand for Linear Correlation [1], Deep Regression Network, and leave-one-out-

cross validation strategy, respectively. The best value per row is marked in bold. 56

iii



List of Figures

2.1 Proposed Deep Regression Network with three-layers architecture corre-
sponding to the extraction of salient sensorimotor patterns, subject indica-
tor computation, and the linear regression of performance responses on the
assessed indicator vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Trial timing used to implement the MI paradigm of the tested databases . 18

3.1 Individual classifier accuracy of MI tasks estimated for D-I (a) and D-II (b) at

different window lengths (Subjects are ranked in decreasing order of performance

at τ∗J=1). c) Accuracy averaged across all subject set. The dashed line separates

the BCI-literate subjects from BCI-illiterate ones. . . . . . . . . . . . . . . . . 22
3.2 t-f CSP dynamics computed for representative individuals (BCI-literate and BCI-

illiterate) belonging to each tested dataset (D-I and D-II). Under each plot, the

accuracy evolution over the interval of neural activation T is displayed for a fixed

value of window τJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Topographical arrangement presenting the t-f dynamics of CSP patterns θJ(f, τ)

for the subjects performing the best and worst accuracy of each validated database. 25
3.4 Labeled brain neural dynamics, θφ(f, τ |λ), extracted by the functional connectiv-

ity method using wPLI and performed by the representative literate individuals:

B08T (upper plots) and S14 (lower plots). . . . . . . . . . . . . . . . . . . . . 26
3.5 ERD/S maps of channels placed above the sensorimotor cortex areas (C3, Cz,

and C4) performed by each subject. The rhythm modulation amplitudes are

presented for label l – left hand (upper row) and l′ – right hand (bottom row).

(a) B08T, (b) B01T, (c) B02T, (d) S43, (e) S14, (f) S46, (g) S01, (h) S38, and

(i) S27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 ERD/S analysis. Topoplots of the extracted dynamics θζ(f, τ ; c|λ), showing the

dominance to different extents, performed by B08T (class l left side) and (class

l′ right side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Performance variability depending on the individual parameter set-up of VQ-

En estimator, accomplished at the examined windows τ . Presented values of
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Abstract

Evaluation of brain dynamics elicited by motor imagery (MI) tasks can contribute to
clinical and learning applications. In this work, we propose four specific improvements
for brain motor intention response analysis based on EEG recordings by considering the
nonstationarity, nonlinearity of brain signals, inter- and intra-subject variability, aimed
to provide physiological interpretability and the distintiveness between subjects neural
response. Firstly, to build up the subject-level feature framework, a common represen-
tational space, is proposed that encodes the electrode (spatial) contribution, evolving
through time and frequency domains. Three feature extraction methods were compared,
providing insight into the possible limitations. Secondly, we present an Entropy-based
method, termed VQEnt, for estimation of ERD/S using quantized stochastic patterns as a
symbolic space, aiming to improve their discriminability and physiological interpretability.
The proposed method builds the probabilistic priors by assessing the Gaussian similar-
ity between the input measured data and their reduced vector-quantized representation.
The validating results of a bi-class imagine task database (left and right hand) prove that
VQEnt holds symbols that encode several neighboring samples, providing similar or even
better accuracy than the other baseline sample-based algorithms of Entropy estimation.
Besides, the performed ERD/S time-series are close enough to the trajectories extracted by
the variational percentage of EEG signal power and fulfill the physiological MI paradigm.
In BCI literate individuals, the VQEnt estimator presents the most accurate outcomes at
a lower amount of electrodes placed in the sensorimotor cortex so that reduced channel set
directly involved with the MI paradigm is enough to discriminate between tasks, providing
an accuracy similar to the performed by the whole electrode set. Thirdly, multi-subject
analysis is to make inferences on the group/population level about the properties of MI
brain activity. However, intrinsic neurophysiological variability of neural dynamics poses
a challenge for devising efficient MI systems. Here, we develop a time-frequency model
for estimating the spatial relevance of common neural activity across subjects employ-
ing an introduced statistical thresholding rule. In deriving multi-subject spatial maps,
we present a comparative analysis of three feature extraction methods: Common Spatial
Patterns, Functional Connectivity, and Event-Related De/Synchronization. In terms of
interpretability, we evaluate the effectiveness in gathering MI data from collective popula-
tions by introducing two assumptions: i) Non-linear assessment of the similarity between
multi-subject data originating the subject-level dynamics; ii) Assessment of time-varying
brain network responses according to the ranking of individual accuracy performed in
distinguishing distinct motor imagery tasks (left-hand versus right-hand). The obtained
validation results indicate that the estimated collective dynamics differently reflect the
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flow of sensorimotor cortex activation, providing new insights into the evolution of MI
responses. Lastly, we develop a data-driven estimator, termed Deep Regression Network
(DRN), which jointly extracts and performs the regression analysis in order to assess the
efficiency of the individual brain networks in practicing MI tasks. The proposed double-
stage estimator initially learns a pool of deep patterns, extracted from the input data,
in order to feed a neural regression model, allowing for infering the distinctiveness be-
tween subject assemblies having similar variability. The results, which were obtained on
real-world MI data, prove that the DRN estimator fosters pre-training neural desynchro-
nization and initial training synchronization to predict the bi-class accuracy response, thus
providing a better understanding of the Brain–Computer Interface inefficiency of subjects.
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Resumen

La evaluación de la dinámica cerebral provocada por las tareas de imaginación motora (Mo-
tor Imagery - MI ) puede contribuir al desarrollo de aplicaciones cĺınicas y de aprendizaje.
En este trabajo, se proponen cuatro mejoras espećıficas para el análisis de la respuesta de
la intención motora cerebral basada en registros de Electroencefalograf́ıa (EEG) al con-
siderar la no estacionariedad, la no linealidad de las señales cerebrales y la variabilidad
inter e intrasujeto, con el objetivo de proporcionar interpretabilidad fisiológica y la dis-
criminación entre la respuesta neuronal de los sujetos. En primer lugar, para construir el
marco de caracteŕısticas a nivel de sujeto, se propone un espacio de representación común
que codifica la contribución del electrodo (espacial) y como esta evoluciona a través de
los dominios de tiempo y frecuencia. Tres métodos de extracción de caracteŕısticas fueron
comparados, proporcionando información sobre las posibles limitaciones. En segundo lu-
gar, se presenta un método basado en Entroṕıa, denominado VQEnt, para la estimación
de la desincronización relacionada a eventos (Event-Related De-Synchronization - ERD/S )
utilizando patrones estocásticos cuantificados en un espacio simbólico, con el objetivo de
mejorar su discriminabilidad e interpretabilidad fisiolǵica. El método propuesto construye
los antecedentes probabiĺısticos mediante la evaluación de la similitud gaussiana entre los
datos medidos de entrada y su representación cuantificada vectorial reducida. Los resulta-
dos de validación en una base de datos de tareas de imaginación bi-clase (mano izquierda
y mano derecha) prueban que VQEnt contiene śımbolos que codifican varias muestras
vecinas, proporcionando una precisión similar o incluso mejor que los otros algoritmos
basados en estimación de entroṕıa de referencia. Además, las series temporales de ERD/S
calculadas son lo suficientemente cercanas a las trayectorias extráıdas por el porcentaje de
variación de la potencia de la señal EEG y cumplen con el paradigma fisiológico de MI.
En individuos alfabetizados en BCI, el estimador VQEnt presenta los resultados precisos
con una menor cantidad de electrodos colocados en la corteza sensoriomotora, de modo
que el conjunto reducido de canales directamente involucrados con el paradigma MI es
suficiente para discriminar entre tareas. En tercer lugar, el análisis multisujeto consiste en
hacer inferencias a nivel de grupo/población sobre las propiedades de la actividad cerebral
de la imaginación motora. Sin embargo, la variabilidad neurofisiológica intŕınseca de la
dinámica neuronal plantea un desaf́ıo para el diseño de sistemas MI eficientes. En este
sentido, se presenta un modelo de tiempo-frecuencia para estimar la relevancia espacial de
la actividad neuronal común entre sujetos empleando una regla de umbral estad́ıstica que
deriva en mapas espaciales de múltiples sujetos. Se presenta un análisis comparativo de
tres métodos de extracción de caracteŕısticas: Patrones espaciales comunes, Conectividad
funcional y De-sincronización relacionada con eventos. En términos de interpretabilidad,
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evaluamos la efectividad en la recopilación de datos de MI para multisujetos mediante la
introducción de dos suposiciones: i) Evaluación no lineal de la similitud entre los datos
de múltiples sujetos que originan la dinámica a nivel de sujeto; ii) Evaluación de las re-
spuestas de la red cerebral que vaŕıan en el tiempo de acuerdo con la clasificación de la
precisión individual realizada al distinguir distintas tareas de imaginación motora (mano
izquierda versus mano derecha). Los resultados de validación obtenidos indican que la
dinámica colectiva estimada refleja de manera diferente el flujo de activación de la corteza
sensoriomotora, lo que proporciona nuevos conocimientos sobre la evolución de las respues-
tas de MI. Por último, se muestra un estimador denominado Red de regresión profunda
(Deep Regression Network - DRN ), que extrae y realiza conjuntamente un análisis de re-
gresión para evaluar la eficiencia de las redes cerebrales individuales, de cada sujeto, en
la práctica de tareas de MI. El estimador de doble etapa propuesto inicialmente aprende
un conjunto de patrones profundos, extráıdos de los datos de entrada, para alimentar un
modelo de regresión neuronal, lo que permite inferir la distinción entre conjuntos de suje-
tos que tienen una variabilidad similar. Los resultados, que se obtuvieron con datos MI
del mundo real, demuestran que el estimador DRN usa la desincronización neuronal previa
al entrenamiento y la sincronización del entrenamiento inicial para predecir la respuesta
de precisión bi-clase, proporcionando aśı una mejor comprensión de la ineficiencia de la
respuesta de MI de los sujetos en las Interfaces Cerebro-Computador.

Palabras clave

imaginación motora, entropia, ritmos sensori-motores, sincronización relacionada a even-
tos, interfaz cerebro-computador, redes de regresión, analisis multi-subjeto.
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Chapter 1

Preliminaries

1.1 Introduction

The brain is the complex and mysterious core of who we are as human beings; its pro-
cess determines our personalities, thoughts, emotions, behaviors, and body functions. So,
understanding brain functions and the neural circuits involved in their operation awake re-
searchers of multiple science disciplines as this knowledge helps to prevent and treat brain
diseases and disorders. In this regard, neural signal processing methods are crucial to de-
termine how the brain represents or encodes information about different internal/external
conditions and how to extract or decode this information from the measured neural sig-
nals [2]. Those questions are relevant to researchers developing Brain-Computer Interfaces
(BCI), which aim to translate the brain response to commands to external devices. The
most applied BCI principally focus on the development of personal assistance systems for
people with serious motor disabilities, disorders, or degenerative neuropathologies that are
unable to communicate properly, impacting significantly their quality of life and ability to
live independently [3,4]. Usually, BCI systems are based on a widely used cognitive neuro-
science paradigm Motor Imagery (MI), which corresponds to the brain activity patterns of
the imagination of a motor action without involving muscle activities. It is believed that
real movements and those performed mentally (imaginary movements) are functionally
similar [5].

From the neural signal processing point of view, a BCI system comprises two fundamen-
tal stages; the acquisition of neural information and the discrimination of brain activity
patterns [6]. Regarding the signal acquisition stage, the neural response can be measured
using invasive and noninvasive neuroimage techniques. On the one hand, in invasive neural
recordings, electrodes are implanted directly into the grey matter either cortical or sub-
cortical areas being high-fidelity neural signals recorded with a high signal-to-noise ratio
(SNR) [7]. However, these techniques suffer from usability issues such as the involvement
of surgical procedures, problems regarding the stability of implants, and the risk of in-
fection. Therefore, these methods are limited to some medical research scenarios [8]. On
the other hand, non-invasive neuroimaging techniques measure neural activity out of the
scalp, including functional MRI (fMRI), Magnetoencephalography (MEG), and Electroen-
cephalographic (EEG) signals [2]. Recording cognitive tasks, with process time-scales less
than 100 ms, fMRI is inadequate since it provides an adequate spatial resolution but ex-
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1. PRELIMINARIES

hibits insufficient time resolution caused by its dependence on blood flow. In contrast,
EEG and MEG signals, having a high-temporal resolution, measure the brain activity
caused by the flow of electric currents or by magnetic fields that are measurable outside of
the head, respectively. Nevertheless, MEG signals could be interfered with other magnetic
signals, such as the earth’s magnetic field, requiring specific equipment and laboratory
configuration for recording it. EEG signal is the most employed because of its easy, non-
expensive, low-risk, and portable acquisition [9]. Accordingly, EEG analysis is used for
studying the brain dynamics in several applications such as testing afferent pathways,
game controlling, clinical diagnosis, sleep analysis, and BCI [10,11].

EEG recording results of the complex firing pattern of billions of neurons that com-
municate with each other in a highly distributed, dynamic, and complex system as is the
human brain [12]. As neurons tend to work in synchrony, EEG shows primary forms of
activity which are the brain rhythms commonly used for different types of tasks being
categorized under six frequency bands δ band (0.5 − 4 Hz ), θ band (4 − 8 Hz ), α band
(8− 12 Hz ), µ band (8− 12 Hz ), β band (13− 30 Hz ), and γ band (> 25 Hz ) [11,13]. For
MI activity analysis, both the µ and β waveforms are widelyknown as informative due to
they are associated with those cortical areas directly connected to the channels of a nor-
mal motor output [14]. Also, elicited by MI activity, Event-Related De/Synchronization
(ERD/S) captures temporal dynamics related to both sensory and cognitive processes.
So, ERD/S is a time-locked change of ongoing EEG signals of electrodes placed in the
sensorimotor area, showing an intensified cooperation between the decreasing ipsilateral
and increased contralateral motor regions for movement representations.

For the second stage, the discrimination of brain activity patterns requires the design-
ing of methodologies able to take a broad amount of neural measures to detect event-
related response patterns from an overwhelming noise recording, providing the means for
characterizing task-related brain states and distinguishing them from non-interesting ac-
tivity [15]. Moreover, MI-BCI systems development contains two-stages, calibration and
online mode. In the calibration mode, the user performs voluntary ERD/S modulations
and the BCI pipeline, containining, preprocessing, feature extraction, and classification
stages, learns subject dependent MI patterns extracting its temporal, spectral, and spa-
tial characteristics. In the online mode, learned patterns are translated into a control
signal to some external application or device.

Although the primary goal of a BCI system is to classify brain signals, understanding
MI fundamentals gives insights into the underpinning brain dynamic organization since a
mental representation of specific movements involves cooperating (sub-)cortical networks
in the brain. Thus, evaluation and interpretation of brain dynamics in the sensorimotor
area may contribute to the assessment of pathological conditions, the rehabilitation of
motor functions [16,17], motor learning and performance [18], evaluation of brain activity
functioning in children with developmental coordination disorders [19], improving balance
and mobility outcomes in older adults [20], and education scenarios [21–23], among other
applications. However, the most common limitations for decoding MI neural responses are
related to the inter and intra-subject variability that leads to the non-stationary, nonlinear,
and poor signal-to-noise ratio of EEG signals [24].

Nevertheless, to enhance the analysis of triggering mental activity, feature representa-
tion approaches are performed to derive distinct EEG spatial maps with varying frequency
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and time characteristics [25]. To begin with, Filter-Bank Common Spatial Patterns are a
popular algorithm in MI systems that discriminate multichannel EEG signals by highlight-
ing differences while minimizing similarities, selecting frequency bands appropriately [26].
Also, Functional Connectivity (FC) networks are extracted because a better understanding
of MI mechanisms requires knowledge of the way the co-activated brain regions interact
with each other [27]. Acordingly, the wPLI metric of EEG functional connectivity can
account for linear brain interactions but is also expected to be sensitive to nonlinear
couplings [28]. Another approach for characterizing the imaged hand movements is to
quantify frequency alterations in time-varying responses to a stimulus (event) through the
so-termed ERD/S, presenting a significant correlate of localized cortical oscillatory activ-
ity [29]. When imagining one hand moving, an increase/decrease in the power of µ and
β rhythms becomes more potent in the sensorimotor (electrodes C3 and C4) and premo-
tor (Cz) areas located contralaterally to the hand involved in the task [30]. Due to the
non-stationarity of EEG data, however, the effectiveness of feature extraction procedures
is reduced in deriving distinct EEG spatio-spectral patterns. Several factors can affect,
among others, the following: movement artifacts during recording, temporal stability of
mirroring activation over several sessions differs notably between MI time intervals [31,32],
low EEG signal-to-noise ratio, poor performance in small-sample settings [33], and inter-
subject variability in EEG dynamics [34]. Along with variability in the signal acquisition,
another circumstance that leads to low accuracy scores is that some subjects may have
brain networks, not sufficiently developed for practicing MI tasks [35]. As a result, the
performance of MI systems varies considerably across and within-subjects, severely de-
grading their reliability. Also, between 15% to 30% of users may not develop enough MI
coordination skills, which defines BCI illiteracy, subjects with BCI performance lower than
70%, posing one of the biggest challenges in MI research [36–38].

In detail, ERD/S is computed to capture channel-wise temporal dynamics related to
both sensory and cognitive processes. So, ERD/S is a time-locked change of ongoing EEG
signals of electrodes placed in the sensorimotor area, showing an intensified cooperation
between the decreasing ipsilateral and increased contralateral motor regions for movement
representations. Conventionally, ERD/S is estimated by the instantaneous amplitude
power that is normalized to a reference-time level and averaged over a representative
amount of EEG trails in an attempt to improve the signal-to-noise ratio [39]. For decreas-
ing the inherent inter-subject variability, the scatters of trial power must be accurately
reduced, usually by a trial-and-error procedure, hindering the detection and classifica-
tion of motor-related patterns in single-trial training. Correcting the baseline of each
single-trial before averaging spectral estimates is an alternative method [40]. Nonetheless,
the ERD/S patterns are characterized by its fairly localized topography and frequency
specificity, making this approach include a priori choice of frequency bands. However,
the band-passed oscillatory responses tend to depreciate a wide range of nonlinear and
non-stationary dynamics, which may be interacting in response to a given stimulus by
synchronization of oscillatory activities [41].

As a consequence of the nonstationarity and nonlinearity of acquired EEG data [42], the
MI brain activity shows considerable variations in complexity of the physiological system
with dynamics affected by motor tasks that can be perceived in the pre-stimulus activity
and the elicited responses. Thus, the extracted ERS/D time-courses can be modeled as
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the output of a nonlinear system. In this regard, various measures are reported to quantify
the complex dynamics of elicited brain activity, like Kolmogorov complexity [43], Permu-
tation Entropy, Sample Entropy, and its derived modification termed Fuzzy Entropy [44]
that provides a fuzzy boundary for similarity measurements [45], or even the fusion of
Entropy estimators to achieve the complementarity among different features, as developed
in [46]. However, extraction of ERD/S dynamics using Entropy-based pattern estima-
tion is hampered by several factors like movement artifacts during recording, temporal
stability of mirroring activation over several sessions differs notably between MI time in-
tervals [32], low EEG signal-to-noise ratio, poor performance in small-sample setting [33],
and inter-subject variability in EEG patterns [34]. Hence, the reliability of Entropy-based
estimators may be limited by several factors like lacking continuity, robustness to noise,
and biasing derived from superimposed trends in signals.

One approach to yield more statistical stability from Sample-based estimators is to
transform the time series into a symbolic space, from which the regularity of MI activ-
ity is measured like in the case of Permutation Entropy that associates each time series
with a probability distribution, whose elements are the frequencies connected with fea-
sible permutation patterns, and being computationally fast [47]. Since the irregularity
indicator considers only the order of amplitude values, several variations to the initially
developed permutation Entropy are proposed to tackle the problem of information discard-
ing. Thus, Dispersion Entropy appraises the frequency of a symbolic space that is built
in mapping each sample through a class pattern set across epochs [48], retaining higher
sensitivity to amplitude differences and accepting adjacent instances of the same class [49].
Further improvements can be achieved by introducing information about amplitudes and
distances [50, 51]. Besides entering more free parameters to tune, the sample-based es-
timators face additional restrictions in the extraction of ERD/S dynamics like the fact
that motor imagery activity reduces the EEG signal complexity [52]. Also, there is a need
for a careful choice of the time window that mostly affects the effectiveness of short-time
feature extraction procedures; it must have enough length to cover the interval within a
neural pattern is activated, while at the same time it should remove the unrelated sampling
points [53].

To compensate for the intra-subject variability of EEG dynamics, novel approaches are
being developed to integrate information across subjects within a collective framework,
combining individual feature sets of neural dynamics to improve the brain representation
robustness, as explained in [54]. Thus, under the assumption that temporal signatures
from an evoked neural activity are similar across subjects, group models can be extracted
for decoding the multi-subject mental responses to complex stimuli without explicitly
representing the elicitation [55]. Several strategies for raw data aggregation can be im-
plemented for building group inferences, including serial/parallel combinations of subject-
level feature sets to form a more extensive multi-subject array [56]. Instead, data-driven
approaches have also been employed to infer collective feature structures, like joint diag-
onalization [57], temporally constrained sparse representation [58], canonical correlation
analysis [59], and versions derived from independent Component Analysis [60–62], among
others.

For interpretation purposes, the topographic representation is commonly computed to
display the spatial distribution of the extracted common neural patterns. Nonetheless,
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the building of multi-subject models implies the accurate aggregation of time-frequency
patterns extracted from EEG dynamics across the subjects by adequately selecting the do-
main parameters (i.e., time window length and filter bandwidth setup) [63]. Moreover, the
aggregation can face a different dimensionality derived from the feature extraction meth-
ods involved. Due to the difference in captured dynamics, each engaged extraction method
differently reflects the flow of sensorimotor, being one of the issues that arise in identifying
group relationships confidently [64]. Besides, to evaluate computational network models,
there is a need to establish the meaning of the aggregation of extracted brain-activity
patterns [65]. Hence, another issue to consider is to assess the ability of multi-subject
sets to preserve the main properties (i.e., the spatial distribution of brain neural activity
throughout time and spectral domains) extracted from single-subject models.

One more enhancing strategy of learning is identifying the causes of variability and
incorporating appropriate actions in order to compensate for the BCI inefficiency [66], for
instance, by including a calibration module that works hand-in-hand with the training
procedure to make learning algorithms adapt to user EEG patterns [67, 68]. In this re-
gard, the correlation between the neural activity features that are extracted in advance
(electrophysiological indicators or predictor) with the MI onset responses instructed via
sensory stimuli can be assessed to prescreen participants for the ability to learn regula-
tion of brain activity (pre-training measures) or for the improvement of learning abilities
(training phase) [69]. A systematic review of the predictors of neurofeedback training
outcome is given in [70,71], concluding that the most promising predictor seems to be the
(neurophysiological) baseline activity, which was derived from the parameter targeted by
the training. In an attempt to anticipate the evoked MI responses, several pre-training
electrophysiological indicators are reported, like functional connectivity of resting-state
networks [72], α rhythm activity of eyes-open and eyes-closed resting-states [73], pre-cue
EEG rhythms over different brain regions [74], and the power spectral density estimates of
resting wakefulness (before the cue-onset of the conventional MI trial timing and resting
state) [75,76]. Although this last predictor is one of the most used, its curve-fitting method
depends heavily on various parameters that are difficult to determine, regardless of the
resting data employed [77]. Other predictors are derived from measuring the change in elec-
trophysiological properties across the training sessions [78–80]. Thus, ERD/S is extracted
in order to evaluate the (in)efficiency of MI training, which shows a distinct activation of
the sensorimotor cortex region in response to imagery tasks [81]. Although visible ERD
lateralization of evoked MI activity has been considered for predicting the user’s con-
trol ability from neurophysiological measures [82], the characterization of its topography
and frequency specificity poses a challenging task because of the difficulty in accurately
quantifying the trial-to-trial variability [43,83].

The linear correlation and regression models are used to explore or test the relation-
ship between predictor and outcome measures, since they provide direct insight into the
possible reasons for BCI control failures. However, the assumption of proportionality
may be strong enough in real settings of MI tasks, resulting in scores with low values of
significance. Instead, this task can be solved using linearizing models (like logistic regres-
sion [84]), which vary depending on the types and numbers of EEG indicators selected in
each model [85]. Thus, related to motor evoked potential time series, nonlinear models
(like random forests) can achieve significantly better prediction performance than a linear
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one (or logistic regression) [86]. In particular, machine learning analysis in nonlinear re-
gression is extensively employed under two deep learning solutions [87,88]: i) utilizing an
ensemble of deep networks that suffer from larger computational complexity and ii) trans-
forming a single nonlinear regression hypothesis to a robust loss function that is jointly
optimizable with the deep network usually in terms of the mean square error. However,
the generalization ability is a major concern in developing deep regression models and
computational complexity and hardware consumption [89].

For all these reasons, in this work, we propose four specific improvements for brain
motor intention response analysis based on EEG recordings by considering the nonstation-
arity, nonlinearity of brain signals, inter- and intra-subject variability, aimed to provide
physiological interpretability and the distintiveness between subjects neural response.

Firstly, to build up the subject-level feature framework, a common representational
space, is proposed that encodes the electrode (spatial) contribution, evolving through
time and frequency domains. Three feature extraction methods were compared, providing
insight into the possible limitations. To address sources of inter-subject and inter-trial
variability of individuals, we extracted a feature set, for which the domain parameters
(time window length and filter bandwidth setup) are selected to be the more relevant
in discriminating between MI tasks, yielding a distinct dimensionality of each extracted
characteristic set.

Second, considering the nonstationarity and nonlinearity of EEG signals, we proposed a
feature extraction methodology based on Entropy for estimation of ERD/S using quantized
stochastic patterns as a symbolic space, aiming to improve their discriminability and
physiological interpretability. The proposed method builds the probabilistic priors by
assessing the Gaussian similarity between the input measured data and their reduced
vector-quantized representation. The performed ERD/S time-series are close enough to
the trajectories extracted by the variational percentage of EEG signal power and fulfill
the physiological MI paradigm. Also, the proposed estimator presents the most accurate
outcomes at a lower amount of electrodes placed in the sensorimotor cortex for the inter-
subjects variability.

Thirdly, we developed a methodology for building a time-frequency model for es-
timating the spatial relevance of common activity employing an introduced statistical
thresholding rule. Additionally, we present a comparative analysis of three feature extrac-
tion methods: Common Spatial Patterns, Functional Connectivity, and Event-Related
De/Synchronization. In terms of interpretability, we evaluated the effectiveness in gath-
ering MI data from collective populations by introducing two assumptions: i) Non-linear
assessment of the similarity between multi-subject data producing the subject-level dy-
namics; ii) Assessment of time-varying brain network responses according to the ranking
of individual accuracy performed in distinguishing distinct motor imagery tasks (left-hand
versus right-hand).

Lastly, we developed a data-driven estimator, which jointly extracts and performs the
regression analysis to assess the efficiency of the individual brain networks in practicing MI
tasks considering the inter- and intra-subject variability. The proposed estimator allows
for inferring the distinctiveness between subject assemblies having similar variability.
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1.2 General Objective

To develop a methodology for brain motor intention response analysis based on EEG
recordings by considering the nonstationarity, nonlinearity of brain signals, and inter- and
intra-subjects variability, aimed to provide physiological interpretability and the distinc-
tiveness between subjects neural response.

1.3 Specific Objectives

– To develop a feature representation framework to decode brain evolution dynamics
and motor imagery inter-subject variability preserving physiological interpretability.

– To propose a feature extraction method to estimate motor imagery response, that
considers the non-stationarity and non-linearity of brain time-series, aiming to im-
prove discriminability and physiological interpretability.

– To suggest a multi-subject feature representation methodology to capture intra-
subject features, which are considered as prevalent in the group, preserving physio-
logical interpretability.

– To propose an estimator to assess the individual brain networks efficiency in prac-
ticing MI task, deling with inter- and intra-subject variability allowing to infer the
distinctiveness between subject assemblies.
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Chapter 2

Materials and Methods

2.1 Subject-Level Extraction of Motor Imagery t-f

Feature Dynamics

Using a sliding window approach, the short-time feature set is extracted from multiple
frequency bands to build the labeled subject-level model of feature dynamics.

2.1.1 Estimation of Common Spatial Patterns

Given a filter-band-passed n-trial EEG recording matrix Xλ
nfτ∈RC×T , n∈Nλ, f∈Nf , CSP

finds within the time-windowed partition τ∈Nτ the linear transformation vector wfτ∈RC

that maximizes the Rayleigh Quotient (RQ) between both labels λ=[l, l′], defined as fol-
lows [90]:

max
∀wfτ

J =
w>fτΣ

l
fτwfτ

w>fτΣ
l
fτ +Σl′

fτwfτ

, s.t.: ‖w‖2 = 1 (2.1)

where the matrix Σλ
fτ=E

{
Xλ

nfτX
λ>
nfτ :∀n∈Nλ

}
is the simplest estimate of the class data

variance, computed at a frequency f and sliding window τ . The notations ‖ · ‖p and
E {·:∀n} stand for `p-norm and expectation operator across a variable n, respectively.

Then, the sampled data Xλ
nfτ is filtered through the learned spatial matrix Wfτ∈RK̂×C ,

holding K̂≤C transformation components. Further, the projected data Zλ
nfτ=WfτX

λ
nfτ

are obtained using only K̂=2k representative terms (namely, k first and k last rows), from
which the feature vector dnfτ∈R2k is then extracted as below [91]:

dnfτ = log
(
diag(var{Zλ

nfτ})
)
, dnfτ⊂D∈R(Nl+Nl′ )×G (2.2)

where var{·} denotes the variance operator. Note that the obtained feature matrix
D=[dnfτ :n∈Nλ] holds G=Nf×Nτ×2k concatenated features, which are extracted from
each MI recording trial.

Relying upon the inverse transformation matrix W−
fτ , ultimately, we model the CSP-

based dynamics of the spatial t-f patterns of brain activation, which are computed as
below:

θJ(f, τ) = vec{W−
fτ}> (2.3)
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where the vector θJ(f, τ)∈RC gathers the t-f contribution from c-th EEG channel in terms
of distinguishing between both labels, being learned over the whole trial set and calculated
by the highest variance value (i.e., K̂=1).

2.1.2 Computation of Functional Connectivity of Brain Net-
works

To investigate the pairwise inter-channel relationship, we use the weighted Phase Locking
Index (wPLI ) as an FC metric that quantifies the asymmetry of the phase difference dis-
tribution between two specific channels c, c′ (with ∀c, c′∈C, c 6=c′), being each one estimated
across the trial set, ∀n∈Nλ, as follows [92]:

φcc′(f, τ |λ) =

∣∣E{|∆Φ(n)
cc′ (f, τ ; c, c′|λ)| sgn

(
∆Φ

(n)
cc′ (f, τ ; c, c′|λ)

)
: ∀n

} ∣∣
E
{
|∆Φ(n)

cc′ (f, τ ; c, c′|λ)| : ∀n
} , (2.4)

where notation sgn stands for sign function and ∆Φ
(n)
c,c′(; |)∈R[0, π] is the instantaneous

phase difference computed through the continuous wavelet transform coefficients
W(n)

cc′ (f, τ ; c, c′|λ)∈R+ by the ratio ∆Φ
(n)
cc′ (; |)=W

(n)
c (; |)W(n)

c′ (; |)/|W(n)
c (; |)||W(n)

c′ (; |)|.
The wPLI metric, φcc′(f, τ |λ)∈Rv, is normalized to highlight the connectivity patterns

generated by each evoked task, being each mean-value averaged over the trial set within a
given baseline interval ∆T0. Thus, we obtain the inter-channel connectivity vector through
the following marginal across the node set: φ̂(f, τ |λ)=

∑
v∈V φ(f, τ ; v|λ) and the pairwise

variable v∈{c, c′∈V, c 6=c′}, where V=C(C-1)/2 is the number of considered paired links.
Therefore, we model the dynamics extracted from φ̂(, |)∈RC according to the following
rule:

θφ̂(f, τ |λ) = [φ̂(f, τ ; c|λ):c∈C] (2.5)

2.1.3 Assessment of Event-Related De/Synchronization

This time-locked change of ongoing EEG is a somatotopical organized control mechanism
that can be generated intentionally by mental imagery and has specific frequency-band
interpretation. Using each c-th measured EEG recording xλnf (c), the ERD/S estimation
is performed, at a frequency band f and sample τ , by squaring of samples and averaging
over EEG trials to compute the variational percentage (decrease or increase) in the EEG
signal power regarding a reference interval as follows [93,94]:

ζ(f, τ ; c|λ) =
(ξ(f, τ ; c|λ)− ξ̄(f ; c|λ))

ξ̄(f ; c|λ)
(2.6)

where ξ(f, τ ; c|λ)=E
{
|xλτ (c)|2nf∈xλnf (c):∀n

}
is the power scatter averaged across the trial

set and ξ̄(f ; c|λ)=E {ξ(f, τ ; c|λ):∀τ∈∆T0} , with ξ̄(f ; c|λ)∈R, is the trial power scatter
averaged over the reference time interval τ0⊂T , being T∈R+ the recording time span.

Given a label λ, therefore, we represent its corresponding ERD/S-based dynamics by
computing the functional in Eq. (2.6) across all channels, that is:

θζ(f, τ |λ) = [ζ(f, τ ; c|λ)∈R : ∀c ∈ C], θζ(; |) ∈ RC (2.7)
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As a result, we estimate the subject-level model of t-f feature dynamics {θ(s)
ϑ (f, τ |λ):

∀f, ∀fτ} extracted by each method (noted by ϑ={J, ζ, φ}) for s-th individual. The model

contains the electrode set contribution, θ
(s)
ϑ (, |)∈RC [0, 1], estimated at frequency f , time

τ , and given a label λ (besides the CSP-based spatial filtering that resumes in a single
model the joint influence of both labels).

2.1.4 A New Proposal for Complexity-Based Estimation of Event-
Related De/Synchronization

This time-locked change of ongoing EEG is a control-mechanism of the somatotopically
organized areas of the primary motor cortex, which can be generated intentionally by men-
tal imagery. For each measured EEG recording xn∈[x∆t,n∈R], the estimation of ERD/S is
performed, at specific and sample ∆t∈T , by squaring of samples and averaging over the
EEG trial set to compute the variational percentage (decrease or increase) in EEG signal
power regarding a reference interval (see Eq. (2.6)):

Instead of using the power-based estimates in Eq. (2.6) that are assessed across the
trial set, the ERD/S time series can be computed in a one-trial version, for instance, by
measuring the Entropy of time-series changes over time as below:

ζH∆t = E {H {Xn(τ)} : τ∈T} , τ > ∆t (2.8a)

s.t.: |∂H {Xn(τ)} /∂τ | exists for every τ⊂T (2.8b)

where Xn(·) are the state-space partition sets that can be extracted within a time window
lasting τ=Nτ∆t. In terms of the Entropy metric H {·}, the newly-introduced restric-
tion Eq. (2.8b) relies upon the assumption that several samples might be compared to
itself when two consecutive time windows commonly consist of the same samples. So,
the discrete-time space-state models can be built in the form of a following embedded
representation:

Xn(τ,M) = {x̃n(τ,M ; q)=[xm∆t,n(τ ; q):m∈[q, q +M − 1]]:q∈Q}, Q = Nτ −M (2.9)

where M is the embedding dimension, Q is the size of the state-space or alphabet, and
{x̃n(·, ·; q)∈RM} is the windowed representation or symbol.

Thus, the Entropy in Eq. (2.8a) can be estimated at a time window τ by a pairwise
comparison between a couple of embedded versions πn(·, ρ; τ):

H {Xn(τ,M); ρ} = − ln (πn(M + 1, ρ; τ)/πn(M,ρ; τ)) (2.10)

Relying on the fact that π(·, ·; ·) is the probability that two sequences are similar within
M points, a direct calculation is through the mean value of pattern count that is evaluated
as:

πn(M,ρ; τ) = E {num{d (x̃n(τ,M ; q), x̃n(τ,M ; q′))<ρ}:∀q, q′ ∈ Q, q 6= q′} (2.11)

where num{d(·, ·)}∈N is the count of distance lower than tolerance ρ∈R+, d(·, ·)∈R+ is
the distance between a couple of embedded partitions. So, two widely-known distances
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are used [95]:

SampEnt : dS(x̃n(τ,M ; q), x̃n(τ,M ; q′)) = max
∀m∈M

|xm∆t,n(τ ; q)− xm∆t,n(τ ; q′)| (2.12a)

FuzzyEnt : dF (x̃n(τ,M ; q), x̃n(τ,M ; q′)) = exp(dS(x̃n(τ,M ; q), x̃n(τ,M ; q′))2/ρ)
(2.12b)

where ρ∼0.1σx̃ and σx̃ is the standard deviation of the measured EEG data.

Symbolic Spaces using Quantized Stochastic Patterns

The pattern count in Eq. (2.10) can be alternatively assessed through the conditional
probability that two stochastic models, extracted from the same embedded representa-
tion in Eq. (2.9), are similar [96]. In particular, we estimate the conditional probability
p (xn(τ,M ; ·)|Xn(τ,M)) that reflects the closeness between the original expanded state-
space partition set, Xn(·, ·) and every element of an equivalent stochastic representation
with reduced dimension, xn(·, ·; ·)∈RM , created from the original set. Thus, we rewrite
the Entropy-based estimation, performed within τ , as below:

H {Xn(τ,M); ρ} = H {(xn(τ,M ; q′)|Xn(τ,M))}
= −

∑
q′∈Q′

p (xn(τ,M ; q′)|Xn(τ,M)) log p (xn(τ,M ; q′)|Xn(τ,M)) , (2.13)

where the reduced set holds Q′≤Q symbols xn∈Xn(·, ·), which are assumed to be more
distinct across the whole embedded representation.

We model the alternative embedded set, noted as Xn(·, ·)∈RQ′×M , using quantization
techniques, which compress a larger dataset in Eq. (2.9) into one smaller equivalent set
of code vectors. In particular, we employ the approach described in [97] that finds the
closest code-vector representation.

Nevertheless, the similarity pattern count calculation in Eq. (2.11) will necessitate
more statistics due to the reduced size of the newly introduced embedding stochastic
set. Instead, we propose to build the probabilistic priors in Eq. (2.10) between both
representations (original and VQ-reduced) by calculating the conditional probability that
a sample of the unfolded EEG signal belongs to every formed VQ symbol. So, according
to Bayes theorem, we have:

p (xn(τ,M ; q′)|Xn(τ,M))=p (Xn(τ,M)|xn(τ,M ; q′)) p (xn(τ,M ; q′))

Assuming that the input samples follow a Gaussian distribution, we employ the simi-
larity-based approach between sets for estimation of both probabilistic terms, as proposed
in [98]:

p (Xn(τ,M)|xn(τ,M ; q′)) ∼ N
(
Xn(τ,M)|µq′ ,σ2

q′

)
= E

{
γ
(
x̃n(τ,M ; q)|µq′ ,σ2

q′

)}
(2.14a)

p (xn(τ,M ; q′)) = E {p (x̃n(τ,M ; q) = xn(τ,M ; q′)) ,∀q} (2.14b)
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where p (x̃n(τ,M ; q) = xn(τ,M ; q′)) is the probability that a symbol belongs to every ele-
ment of the dictionary, p (x̃n(τ,M ; q) = xn(τ,M ; q′))=γ (x̃n(τ,M ; q),xn(τ,M ; q′)), being
γ (·) a Gaussian similarity function, and σσσ2

q′∈R,µµµq′∈RM the moments computed, respec-
tively, as below:

µµµq′ =
∑
∀q

x̃n(τ,M ; q)p (x̃n(τ,M ; q)=xn(τ,M ; q′))

σσσ2
q′ =

∑
∀q

(x̃n(τ,M ; q)− µq′)> (x̃n(τ,M ; q)− µq′) p (x̃n(τ,M ; q)=xn(τ,M ; q′))

Therefore, the proposed Entropy-based estimator, termed VQ-En, builds the proba-
bilistic priors by assessing the Gaussian similarity between the input and vector-quantized
representations for dealing with the scarce statistics because of small code-vector sets
(formed through the Euclidean distance), as detailed in Algorithm 1.

Algorithm 1 Building of VQ stochastic patterns.

1: procedure Vector Quatization in X

2: Input: x̃n(τ,M ; q), q ∈ [1, Q]

3: Initialize the reduced set Xn(τ,M), then xn(τ,M ; 1) = x̃n(τ,M ; 1)

4: for q ∈ [2, Q] do

5: Compute the distance between x̃n(τ,M ; q) and Xn(τ,M).
d(x̃n(τ,M ; q), Xn(τ,M)) = ||x̃n(τ,M ; q)− xn(τ,M ; q′)||22, q′ ∈ [1, Q′]

6: if ||d(x̃n(τ,M ; q), Xn(τ,M)) > ρ||1 = Q′ then

7: Xn(τ,M)← x̃n(τ,M ; q)

8: Q′ = Q′ + 1

9: end if

10: end for

11: end procedure

2.2 Intra-subject Neural Response Variability

2.2.1 A New Proposal for Group-level Extraction of Multi-sub-
ject t-f Features

The goal is to capture the inter-subject t-f feature dynamics, which are to be considered as
prevalent in the group/population level, guaranteeing that the MI responses are measured
from subjects under the identical conditions of the experimental paradigm. We assume
that the collected data are statistically independent between individuals. Under this
assumption, the common assessments of the extracted feature sets become confident as

13
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they are present in a higher number of subjects. In this regard, the subject-level model
provides a set of confident estimates that contributes the most to discriminating between
tasks using the following supervised, statistical thresholding algorithm [99]:

κfs (c) =

{
1, M{θcfs(τ)|λ : ∀∆Ti}<p
0, Otherwise,

where the rule M{·|λ:∀∆Ti} computes the statistical discrepancy/consistency along ∆Ti

time window using a non-parametric Mann-Whitney test under the null hypothesis that
the distribution of all channels is equal. Thus, κfs∈C holds the p-values for all the considered
channels. Besides, we apply the Kolmogorov-Smirnov and Bartlett’s tests to address these
issues since the estimated set can present failures related to normality and homoscedastic-
ity. Because we know the channel’s discriminant capacity of each subject, and assuming
the independence of the performed validation, we accomplish a group-level analysis using
the positive False Discovery Rate as a robust statistical correction in the multiple-subject
comparison testing.

We also evaluate the ability of multi-subject sets to preserve the main properties ob-
tained from the single-subject model sets. Namely, we quantify the variations in the spatial
distribution of common brain neural activity raised by the heterogeneity between subjects
due to the reported dependence of individual skills for adequately practicing the MI tasks.
As mentioned before, we build a group-level model for the BCI-literacy group in either
tested database. Thus, we appraise the inter-group topographical variability between at-
tained multi-subject dynamics. Besides, the intra-similarity of the extracted individual
dynamics is presented to estimate the influence of each subject on the performed dynamic
multi-subject model. So, we compute muti-subject models over all subjects. Then, the
multi-subject model is calculated by removing the subject with the worst accuracy. Next,
the multi-subject model is evaluated by subtracting the tow worst subjects, and so on,
desegregating each individual by the ranked accuracy. Here, we calculate the topograph-
ical similarity using a generalized inner product measured between a couple of spatial
dynamics, η and η′, projecting the difference of data onto a reproducing kernel Hilbert
space through a Gaussian kernel as follows [100]:

〈η,η′〉σ = exp
(
−‖η − η′‖2/σ2

)
(2.15)

where σ∈R+ is a ruling parameter for which the estimate is obtained from the MI segment.

2.2.2 Electrophysiological Indicators in MI Tasks

Pre-training Indicator of Neural De/synchronization

For quantifying the potential for desynchronization at rest over the sensorimotor area, the
spectral variability of a state of wakefulness conscious can be assessed by computing the
difference between the EEG background activity (a fit of f−1 noise spectrum) and the
spectral content of those rhythms that are directly related to MI responses (i.e., µ and β).
Thus, the pre-training neural predictor, noted as ξ1 ∈ R+, is estimated while using the
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following fitting-curve based approach developed in [1]:

ξ1 = max
∀f∈f
{δ(f)− ε(f ; ι∗,o∗)} (2.16a)

ι∗,o∗ = {arg min
mΩ ,σΩ ,ι,kΩ ,o

‖δ(f)−
( ∑
Ω=µ,β

kΩNΩ(f ;mΩ, σΩ) + ε(f ; ι,o)
)
‖2} (2.16b)

where δ(f) is the positive semi-definite power spectral density (PSD) computed from an
a priori given state of wakefulness, N (f ;mΩ, σΩ) is a Gaussian function modeling each
spectral peak of either sensorimotor rhythm Ω={µ, β}, widely reported for practicing MI
tasks [101]; {kΩ∈R+} are the summation rhythm weights; {mΩ∈R+} and {σΩ∈R+} are
the spectral moments ruling the offset and scale of each fitting function, respectively;
ε(f ; ι,o)=o1 + (o2/f

ι) is the hyperbolic fitting of noise with parameters {o1∈R+, o2∈R+},
ι∈R+. Notation ‖ · ‖p stands for `p-norm.

Initial training indicator of Event-related De/Synchronization

For a measured EEG recording, the estimation of ERD/S is performed, by squaring the
samples and averaging over the EEG trial set to compute the variational percentage
(decrease or increase) in EEG signal power regarding a given reference interval, as in
Eq. (2.6) [102]. Intending to provide a scalar-valued assessment of the synchronization
mechanism, the initial training indicator, which is noted as ξ2∈R+, is the distance mea-
sured between both labeled ERD/ERS time-series (λ=l, l′, denoting left-hand and right-
hand tasks, respectively). ERD/ERS are extracted within each rhythm Ω at channel c,
as below:

ξ2 = max
Ω,c

{
‖ζ̂(Ω, c|l)− ζ̂(Ω, c|l′)‖2

2

‖ζ̂(Ω, c|l)‖2‖ζ̂(Ω, c|l′)‖2

}
(2.17)

where ζ(Ω, c|λ) is the estimated ERD/ERS at channel c and bandwidth Ω, selecting
the baseline inverval as reference. The reported values of ξ2 are computed using the
maximization operator in Equation (2.17), relying on the fact that a single ERD/ERS
time series may occur at different electrodes and bandwidths, being sufficient to provide
an adequate neural response.

2.2.3 A New Porposal for Evaluating the BCI Efficiency using
Classifier Performance and Electrophysiological Indicators

For evaluating the BCI efficiency, we employ a learning rule that estimates an unknown
function O:RS 7→R from representative observations of an individual indicator (indepen-
dent variable) ξ∈RS, for which a multivariate model-free regression problem can be stated
through by optimizing, across the subject set s∈S, the following framework:

min
π
E {‖ν − (O{ξ(xm)|π}+ ε)‖p : ∀s ∈ S} , (2.18)

where ν∈RS is the response vector (dependent variable), ε∈RS is the additive error term
that is independent of ξ, and π is the unknown parameter vector that allows estimation
of the function O(; ) that fits the data most closely in terms of a given `p-norm distance.
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Here, the framework in Equation (2.18) is further developed by a proposed data-driven
estimator, termed Deep Regression Network (DRN), which jointly extracts and performs
the regression analysis, as follows:

min
π
E {‖ψ(Vs)− (O3 ◦O2 ◦O1{ξ(ϕ(xcs)) : s, c∈S,C ′}|π})‖1 : ∀s ∈ S} (2.19)

where the initial hidden layer O1 extracts through the function ϕ(xc) as a set of salient
patterns from all EEG recordings measured at every electrode xc, O2 is the fully-connected
layer that maps the first-layer inputs into a high-dimensional space, generalizing the salient
patterns sets over the considered channel configuration C ′ in order to assess the subject
indicator ξ∗, O3 is the output layer fed by the response set of individuals to perform the
regression analysis by incorporating a linear activation function, ψ(Vs) is a functional that
maps the scalar-valued response set Vs assessed for each subject into a single value.

Figure 2.1 sketches the proposed Deep Regression Network architecture that is based
on the non-sequential Wide&Deep neural network to perform learning of deep patterns
(using the deep path) under simple rules (through the short path) [103], implemented as
below:

� IN: input layer that holds the extracted relevant patterns {ϕ(xcs):∀c,m}.

� O1: fully-Connected layer that is used for extracting robust and epileptic rele-
vant patterns that are mapped into a high-dimensional latent space [104], holding
h=p1.5 size ({ϕ(·)})q neurons, being p·q the ceiling operator.

� CT: a concatenate layer that condenses the resulting feature sets of all electrodes
into a single block, sizing hC ′.

� O2: a fully-connected layer with size p0.5hC ′q that is linked to each output-layer
neuron.

� O3: the one-neuron regression equipped with a linear activation function to predict
the response.

Using the proposed Deep Regression Network framework, we extract the subject vector,
which is noted as ξ∗, as an indicator of MI neural activity that is further correlated with
the computed bi-class accuracy as a response variable. To this end, the parameters in
Equation (2.19) are adjusted, as follows:

� The set of relevant patterns {ϕ(xcs)} that holds elements extracted by the following
statistical moments: mean, median, variance, minimal, and maximal values. For
every subject, the moments are estimated over xc data using a short-time window
lasting 1 s with a 50% overlap. All time-varying moments are concatenated to form
a single set per channel.

� Both layers, O1 and O2, employ a hyperbolic tangent (tanh) as the activation func-
tion.
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� During learning, Adam algorithm optimizer and loss function are used, measuring
the Mean Absolute Error and fixing the learning rate to 10−3. In addition, the
weight values (empirically set to 10−3) are regularized while using the Elastic Net
regularization.

� The backpropagation algorithm solves the parameter set optimization of π with
auto differentiation under a Wide Deep Neural Network framework that includes
two hidden layers under elastic-net regularization.

� As the function mapping ψ(Vs), two operators over the response vectors are tested:
(a) the mean accuracy (noted as mean) that is averaged across the extraction window
lengths δτ and weighted by the subject variance performed at each window; (b) first
PCA component of the accuracy vectors (noted as PCA1).

� For evaluation purposes, we also contrast the DRN-based regression analysis with
the case of avoiding the data-driven indicator extraction. Which is, the estimator
in Equation (2.19) is directly fed by the scalar-valued neurophysiological indicators
devised in Equations (2.16a) and (2.17), fixing each individual vector element of ξ∗

to ξ∗=ξ1,2 and removing the concatenation layer CT.

-

-

-

- -

.

-

O1

.

IN CT O2 O3

ϕ(xc3)

ϕ(xc4)

ϕ(xC)

Fully-Connected()

Fully-Connected()

1

Fully-Connected()

Concatenate() Fully-Connected() Output()

...
...

ξ∗

Figure 2.1: Proposed Deep Regression Network with three-layers architecture correspond-
ing to the extraction of salient sensorimotor patterns, subject indicator computation, and
the linear regression of performance responses on the assessed indicator vector.
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2.3 Description Tested of Bi-task MI Databases

In this section we describe the employed BCI based MI tasks datasets for each one of our
proposed approaches.

2.3.1 Dataset D-I: BCI Competition IV

We perform experimental validation in nine subjects (M=9) of Dataset 2a1, holding EEG
signals acquired from the scalp by a C-channel montage (C=22). Every raw EEG channel
x(c)∈RT was sampled at 250 Hz (i.e., at the sample rate ∆t=0.004 s). To perform each MI
task (left and right hand with labels noted as λ∈{l, l′}, respectively), a short beep noticed
the trial beginning, followed by a fixation cross that appeared on the black screen within
the first 2 s-interval. An arrow (cue) appeared during 1.25 s, and pointed to the induced
direction. Then, each subject performed a demanded MI task while the cross reappeared
within the next time interval, starting from 3.25 s to the recording end. All signals were
collected in six runs separated by short breaks, performing Nλ=72 trials per class and each
lasting T=7 s. Of note, we only examined the labeled trials for which artifact removal had
been applied.

 

 

Figure 2.2: Trial timing used to implement the MI paradigm of the tested databases

2.3.2 Dataset D-II: Gigascience

We also examine this collection that holds EEG data obtained from fifty-two subjects
(although only M=50 are available) using a 10-10 placement electrode system with C=64

1BCI Competition IV, publicly available at www.bbci.de/competition/iv/
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channels2. Every channel x(c) lasted T=7 s and sampled at Fs=512 Hz. At the trial
beginning, a fixation cross was presented on a black screen within a period that lasted
2 s. Then, a cue instruction (related to either label – l or l′) appeared randomly on the
screen for 3 s that inquired each subject to imagine moving his/her fingers, starting to
form the index finger and proceeding to the little finger and touching each to their thumb.
Afterward, a blank screen was shown at the beginning of a break period, lasting randomly
between 4.1 and 4.8 s. For completing a single run, this procedure was repeated over
20 times and stopped at the end to fulfill a written cognitive questionnaire [105]. Every
subject performed five or six runs. Additionally, a single-trial recording of resting-state
lasting 60 s was collected from each subject.

Fig. 2.2 displays the trial timing used to implement the MI paradigm of the tested
databases: D-I and D-II.

2http://gigadb.org/dataset/100295
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Chapter 3

Experiments and Results of
Subject-Level Extraction of t-f
Feature Dynamics

Validation of the proposed approach includes i) Decomposition of input EEG time-series
into a frequency-specific temporal representation; ii) Subject-level feature extraction of t-f
dynamics, encoding the electrode contribution accordingly considered feature extraction
approaches.

3.1 Preprocessing of EGG signals

Initialily, every raw EEG channel x(c) is band-pass filtered in the frequency range f∈[4-40]
Hz using a filterbank of Nf=17 filters with 2 Hz bandwidth overlap. For either considered
database, the bandwidths are selected to cover µ and β, widely reported for practicing MI
tasks [93]. However, as suggested in [106], we split β oscillation into three bandwidths,
namely, [16-20], [20-24], and [24-28] Hz. Spectral partitioning is carried out within the fol-
lowing time-window lengths (namely, τJ=[0.5, 1, 1.5, 2] s with 90% overlapping). Then, to
provide physiological interpretation according to the implemented experimental paradigm
of MI, the dynamics are analyzed at the following representative intervals of interest:
∆T1=[0-2] s (interval prior to cue-onset or task-negative state), ∆T2=[0.8-2] s (cue-onset
interval), ∆T3=[2.6-4.6] s (motor imagery interval), ∆T4=[3.8-5.8] s (decaying motor im-
agery interval), and ∆T5=[4.4-6.4] s (break period). For addressing the volume conduction
problem, all t-f patterns are computed by performing the Laplacian filter previously over
the input EGG data to improve the spatial resolution of EEG recordings, avoiding the in-
fluence of noise coming from neighboring channels [107]. We implemented spatial filtering
using Biosig Toolbox1.

Pipeline for classification xxxx ponr ventana deslizante

1http://biosig.sourceforge.net
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3.2 Inter-subject Varibility and its Impact on Classi-

fication Accuracy

One aspect significantly influencing the extraction of dynamics is the subject’s ability to
evoke high-quality and recognizable MI responses. To manage inter-subject variability, we
assume the rationale by which the more developed the individual brain network, the higher
the accuracy in distinguishing between MI tasks. Accordingly, depending on whether a
subject has skills to master MI applications, both databases are split into two subject
assemblies: BCI-literacy and BCI-illiteracy. poner que el estado del arte 80% es literate.

To manage the significant impact of inter-subject variability on the reached accuracy,
BCI-literacy, or users with the ability to produce reliable and reasonably robust differences
in neural activity between distinct MI tasks (e.g., left-hand vs. right-hand) [108], and BCI-
illiteracy, or individuals who are not accurate enough to control the MI application.

We rank the subject set in decreasing order of the average discrimination accuracy
in Fig. 3.1a (D-I) and Fig. 3.1b (D-II), where a dashed vertical line separates both assessed
assemblies, displaying the individual performance estimated at different window lengths.
As a result, the D-I collection holds 6 BCI-literacy subjects and 3 BCI-illiterate. In turn,
D-II contains 23 BCI-literacy subjects, and the remaining 27 are BCI-illiterate.

The time-evolving accuracy reveals that the optimal value of τJ provides the best
accuracy and varies widely across subjects and ranges within the entire span of the tested
window length. Table 3.1 presents the mean and standard deviation of accuracy, averaged
across the subject set, indicating that the average performance tends to increase as the
length τJ shortens. However, the accuracy degrades for the smallest window. Because one
more concern in choosing τJ is the need for sufficient statistics to estimate the collective
dynamics, we fix the optimal window to τ ∗J=1 s as a tradeoff between accuracy and an
adequate number of samples on the interval of interest in implementing the multi-subject
modeling.

Table 1.Accuracy of the extracted RQ time-series, varying τJ . Notation All stands for

averaging across the while group, while Literate and Illiterate represent the corresponding

subject subset computation.
D-I D-II

τJ All Literate Illiterate All Literate Illiterate
0.5 83.8± 6.6 91.3±5.3 80.5±4.0 85.6±9.0 92.1±7.6 77.6±3.2
1.0 84.1± 7.9 94.1±4.1 79.8±4.5 85.7± 10.9 94.1±5.5 75.2±7.5
1.5 82.8± 9.8 93.0±5.4 78.0±7.1 87.6±11.3 96.0±4.0 77.2±10.0
2.0 82.1±11.3 95.0±5.3 76.5±8.3 87.2±11.6 95.4±3.9 77.0±11.8
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(a)

(b)

Figure 3.1: Individual classifier accuracy of MI tasks estimated for D-I (a) and D-II (b) at
different window lengths (Subjects are ranked in decreasing order of performance at τ∗J=1). c)
Accuracy averaged across all subject set. The dashed line separates the BCI-literate subjects
from BCI-illiterate ones.

3.3 Single-subject Dynamics Performed by Common

Spatial Patterns

After selecting the bandwidth setup, the starting point to implement the short-time feature
extraction of t-f CSP dynamics is the computation of RQ time-series by adequately tuning
the time window length τJ and by fixing the variance of the surrogate space to the first
eigenvectors (k=3) of the matrix Wfτ . Therefore, using a tailored software, we extract
two feature sets from each time-frequency segment: D∈R144×102 for D-I and D∈R200×102

for D-II.
For illustration purposes, we present the extracted CSP dynamics just for several rep-

resentative subjects, who have been reported as having high accuracy (BO8T for database
D-I, and S43, S14, S46 for D-II) and low accuracy (BO2T for D-I, and S10, S38, and S2 for
D-II). Fig. 3.2 presents the t-f features performed individually, revealing a very changing
behavior of the assessments. This fact becomes evident in the accuracy evolution over
time displayed under each plot of CSP-based dynamics.

Also, we appraise the spectral contribution by the marginal values of CSP dynamics
on each bandwidth of f , as seen on the plots depicted in Fig. 3.2. Thus, the individuals
with high accuracy (yellow spots) have a few spectral components powerfully localized,
showing that the more contributing waveforms are µ and β. In contrast, the low-accuracy
subjects have a weak contribution that tends to spread over all bandwidths, increasing
the variability of estimated CSP patterns.
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Figure 3.2: t-f CSP dynamics computed for representative individuals (BCI-literate and BCI-
illiterate) belonging to each tested dataset (D-I and D-II). Under each plot, the accuracy evolution
over the interval of neural activation T is displayed for a fixed value of window τJ .
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Another aspect to consider is the representative intervals of interest that influence
the most on the MI responses. Thus, in the cases of individuals with higher performance
(BCI-literacy), the best accuracy is estimated within ∆T3, when the most increased neural
activation is expected to take place according to the used trial timing. By the opposite,
subjects with lower accuracy (BCI-illiteracy) deliver better estimates of performance out-
side the MI period ∆T3; their high irregularity may explain this incorrect time localization
of relevant MI responses in following the experimental paradigm [109]. Consequently, the
more scattered over time and frequency domains the extracted CSP patterns, the lower
the accuracy achieved by the subjects.

From Fig. 3.2, it may be concluded that every subject rules the RQ evolution through
τ separately. This restriction poses a challenge for extracting multi-subject dynamics, for
which a unique value of the time window must be determined across the entire subject
set. Another critical point hindering the estimation of RQ maps is the use of CSP-
based filtering that demands a long window τ , decreasing the accuracy of the performed
t-f feature dynamics so that the variability of inter-subject dynamics increases notably
due to inherent non-stationarity, artifacts, a low signal-to-noise ratio of EEG signals,
individual differences in cortical activity resulting in variations of the covariance matrix
and consequently estimated spatial filters [110].

Once the domain parameters (i.e., time window length and filter bandwidth setup) are
selected, we compute the topographical representation of brain neural dynamics θJ(f, τ)
performed by CSP. For the sake of illustration, Fig. 3.3 displays the neural dynamics
performed by representative subjects of both data subsets, that is, BO8T and BO2T in
D-I, and S14 and S27 for Dataset D-II. As seen, the filter-bank bandwidths of BCI-literacy
individuals that contribute the most fall into µ and β oscillations, involving activity in the
centro-lateral primary motor area, supplementary motor area, and primary somatosensory
area, as reported in [111]. On the contrary, the illiterate subjects BO2T and S27 hold the
spectral contribution that is more localized over the pre-frontal to the mid-central area,
being lower on µ and spreading extensively, but with a much lower contribution. Overall,
the neural activation dynamics θJ(f, τ) are mostly confined within the cue-onset and MI
intervals but rising distinctly in the latter MI period of either subject. Note a few spurious
activities within ∆T1, which may be caused by the overlapping window of estimation.
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B08T B02T
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Figure 3.3: Topographical arrangement presenting the t-f dynamics of CSP patterns θJ(f, τ)
for the subjects performing the best and worst accuracy of each validated database.

3.4 Single-subject Dynamics Extracted by Functional

Connectivity

Before extracting the t-f functional connectivity features, we perform the preprocessing
stage of Laplacian filtering, fixing channel Cz as reference [112]. Nevertheless, the in-
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fluential non-stationarity nature of EGG data rules a high variability between trial sets,
fluctuating on multiple time-scales that range from milliseconds to seconds [113]. To meet
this condition, the estimator in Eq. (2.4) is performed by adjusting the short-time window
to a small length, τζ=0.1 s as presented in [114]. Of note, all connectivity assessments are
computed using the FielTrip toolbox [115].

l l′

f\∆T ∆T1 ∆T2 ∆T3 ∆T4 ∆T5 ∆T1 ∆T2 ∆T3 ∆T4 ∆T5
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S
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[20-24]

[24-28]

Figure 3.4: Labeled brain neural dynamics, θφ(f, τ |λ), extracted by the functional connectivity
method using wPLI and performed by the representative literate individuals: B08T (upper plots)
and S14 (lower plots).

Figure 3.4 displays the dynamic of t-f features extracted from B08T (upper plots) and
S14 (lower plots) that explain a high inter-subject variance of the performed FC patterns.
Also, a considerable number of acting nodes is achieved by either individual within the
segment before onset, ∆T1. This background FC activity has been previously associated
with some resting-state networks (overlapping the primary motor, visual and auditory
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networks, the default mode network, and higher-order attention networks), which are
distributed over the frontal, central, parietal, and occipital areas [116]. The FC activity
presents a similar behavior over the neighboring interval (∆T3 and ∆T4), including the
ending of each MI task and the break period.

In the representative MI interval, ∆T3, the FC patterns performed by B08T and S14
differ between both classes, covering multiple cortical regions. Thus, neural connectiv-
ity is more powerful over the corresponding contralateral hemisphere associated with the
parameter-parietal network, as detailed in [117]. Specifically, as stated in [118], the Sup-
plementary motor area, the Premotor cortex, and the posterior parietal cortex are inter-
connected. An additional aspect to highlight is the evenness of FC dynamics performed
by individuals belonging to DB-I due to the lower number of electrodes, yielding lower
resolution than the one assessed in DB-II.

3.5 Single-subject Dynamics Extracted by Event-Re-

lated De/Synchronization

Further, we extract the ERD/S dynamics from the filtered trial matrix Xλ
NfNτ

by fixing

the following parameter values: τζ=0.004 s (i.e., time window equals the sample rate),
the reference interval ∆T0=0.5-1.5 s, and the significance value is chosen as 1% in z -score
approach (see Eq. (2.6)), as suggested by [119]. Figure 3.5 presents the t-f patterns of
ERD modulation performed individually, marking with a red line the cue onset time at
2 s, and with gray dotted line the MI segment, ∆T3.

The rhythm modulation of ERD/S patterns allows interpreting the experimental para-
digm of MI tasks, as seen in Fig. 3.5 that displays the representative changes of t-f patterns
estimated for several representative individuals. In the case of literate subjects (B08T,
B01T , S43, S14, and S46), the modulation amplitudes are placed over the sensorimotor
cortex area. The contralateral electrode power (i.e., electrode C3 for right-hand and C4
– left-hand) decreases stepwise, just before the task onset (marked with a red line) then
gradually increases after the corresponding task ends. This behavior holds within the
MI interval and is significant in [8-12] Hz and [16-24] Hz bandwidths. Nevertheless, the
synchronization patterns are different from each other regardless of their achieved very
close accuracy, confirming the widely reported inter-subject variability in practicing MI
tasks [76].

For the illiterate subset (B02T, S01, S38, S27), the ERD/S dynamics have weak ampli-
tudes clustered in irregular shape patterns so that the difference in time-locked responses
between contralateral and ipsilateral tends to disappear, as it is the case for B06T and
B02T for which the neural synchronization effect can be barely observed because of their
high inter-subject variability.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.5: ERD/S maps of channels placed above the sensorimotor cortex areas (C3, Cz, and
C4) performed by each subject. The rhythm modulation amplitudes are presented for label l –
left hand (upper row) and l′ – right hand (bottom row). (a) B08T, (b) B01T, (c) B02T, (d)
S43, (e) S14, (f) S46, (g) S01, (h) S38, and (i) S27.

Another result is the variational increase in the ERD modulation that can be perceived
on either electrode of the sensorimotor cortical area. As observed in Fig. 3.5, a robust
right-hand modulation appears at the contralateral C3 electrode in most of the individuals.
The higher the accuracy, the more intense the modulation amplitudes. This effect may be
linked to left hemisphere dominance, which is commonly reported for motor sequencing
tasks [120]. Alternatively, the left-hand modulation located at C4 is less evident at µ and
β bands, appearing in S38 and S27. In some cases, the modulation is also presented at the
ipsilateral C3 electrode, lessening the ERD/S mechanism, which probably leads to poor
accuracy.

As seen in Fig. 3.6, while there is no neural activity measured before the cue ∆T1

regardless of the frequency band and performed tasks. The main dynamics take place
over the interval ∆T3, showing a higher contribution of MI-related bands (namely, [8-12],
[16-20], and [20-24] Hz), as reported for hand movement tasks [121]. Afterward, the ERDS-
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based dynamics decrease over time (∆T4 and ∆T5). Note the asymmetrical contribution
of the contralateral electrodes for each label.

l l′

f\∆T ∆T1 ∆T2 ∆T3 ∆T4 ∆T5 ∆T1 ∆T2 ∆T3 ∆T4 ∆T5

B
0
8
T

[8-12]

[16-20]

[20-24]

[24-28]

S
1
4

[8-12]

[16-20]

[20-24]

[24-28]

Figure 3.6: ERD/S analysis. Topoplots of the extracted dynamics θζ(f, τ ; c|λ), showing the
dominance to different extents, performed by B08T (class l left side) and (class l′ right side)
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Chapter 4

Experiments and Results of
Complexity-Based Estimation of
Event-Related De/Synchronization

We validate the proposed VQEnt approach for estimation of event-related De/Synchro-
nization experimentally on a public collection of EEG signals recorded in a 22-electrode
montage (see D-I description in Section 2.3 for details). The entropy-based approach
includes the following stages: (i) Tuning of Entropy-based estimators: short-time window,
Embedding dimension, and tolerance. (ii) Estimation of time-series for Event-Related
De/Synchronization, aiming to explore their interpretation ability, and (iii) Activation of
the sensorimotor area in distinguishing between MI tasks. Of note, tuning and validation
are carried out within the MI interval, that is, [2.5− 4.5] s.

4.1 Preprocessing of EGG signals

The stage comprises data filtering, segmentation of MI intervals, and data referencing
since we only validate the labeled trials, having removed artifacts provided by the database.
Initially, for selecting the discriminant information of MI responses, each raw EEG channel
xc∈RT is sampled at 250 Hz (i.e., at sample rate ∆t=0.004 s) and passed through a five-
order bandpass Butterworth filter within Ω=[4, 40] Hz. Afterwards, the MI time window
TMI=2 s is segmented. Then, we deal with the volume conduction effect that produces
a low signal-to-noise ratio of EEG data by applying the Laplacian spatial filter [122].
The preprocessing procedures are implemented using a tailor-made software in Phyton.

4.2 Parameter Tuning of Compared Entropy-based

Estimators

Generally, every parameter influences the Entropy-based assessments of ERD/S, but con-
tributing differently to two main aspects of performance: discriminability and physiological
interpretability. A first decisive parameter is a short-time window that must be adjusted

30



4. EXPERIMENTS AND RESULTS OF COMPLEXITY-BASED ESTIMATION OF
EVENT-RELATED DE/SYNCHRONIZATION

to extract the EEG dynamics over time accurately [123]. Related to building the sample-
based alphabets, we investigate the following values of τ reported in MI tasks [124, 125]:
τ∈{1, 1.5, 2} s with 90% overlapping. Further, we explore the importance of the complex-
ity parameters on building the embedded alphabets: threshold tolerance ρ, measuring the
regularity of pattern similarity, and the embedding value M . In terms of distinguishing
between different MI tasks, we assess the parameter contribution, employing the bi-class
accuracy that is computed by the Linear Discriminant Analysis algorithm under a 10-fold
validation strategy. Thus, to generate the embedded alphabets, both complexity param-
eters (ρ and M) are heuristically established to reach the best classification rate. To this
end, we search within the interval of embedding dimension, M={1, 2, 3} and tolerance
ρ={0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

Table 4.1 displays the accuracy performed by every tested subject. Note that for
interpretability purposes, the individuals are ranked in decreasing order of the performed
accuracy to rate the BCI literacy. So, a previous MI study defined the BCI-literacy
threshold at 70% [126]. In the following, this level will be marked with dashed lines on the
plots. So, we rank all subjects by the accuracy achieved by SampleEnt, as follows: BO9T,
BO8T, BO3T, BO1T, BO5T, BO6T, BO7T, BO2T, and BO4T.

Table 4.1: Influence of the short-time window on the bi-class classifier accuracy performed by
each tested Entropy-based estimator. Notation ∗ stands for the values of τ reaching the best
accuracy of MI tasks. Note that individuals are ranked in decreasing order to rate the BCI
literacy. The best individual scores are underlined while the best values performed between the
estimators are marked in black.

# SampleEnt FuzzyEnt VQEnt

τ [s] 2 1.5 1∗ 2 1.5∗ 1 2 1.5 1∗

B09T 94.9±8.3 95.7±6.8 94.1±5.21 94.2±7.1 95.1±7.2 95.0±5.4 96.8±5.2 96.6±6.7 97.4±4.0
B08T 94.4±8.9 94.3±8.3 92.0±10.0 96.9±3.8 96.1±5.4 92.7±8.7 97.6±3.6 95.4±6.2 92.4±3.2
B03T 94.9±3.4 91.3±7.0 88.2±6.4 89.7±5.9 88.9±6.8 86.1±6.5 94.1±5.4 92.0±6.1 89.2±8.6
B01T 81.2±12.4 80.2±14.7 78.2±11.1 79.6±11.1 81.1±8.7 80.4±11.6 81.9±7.9 80.4±9.2 81.1±7.5
B05T 71.7±11.4 73.7±12.9 74.8±12.4 73.0±10.7 79.3±6.9 75.5±8.6 68.4±10.2 71.4±15.2 72.1±10.3
B06T 70.3±16.3 75.4±12.8 72.9±10.9 69.5±11.2 73.9±13.8 75.9±6.2 69.6±14.1 74.8±12.2 77.5±7.3
B07T 66.9±11.9 67.7±14.7 71.0±10.7 67.8±14.9 70.0±14.3 70.1±13.1 72.7±13.8 71.9±16.5 74±10.1
B02T 59.4±13.8 61.3±8.7 68.5±11.7 56.6±7.7 60.9±10.9 67.5±16.8 65.7±12.2 67.5±11.0 73.5±11
B04T 60.5±11.8 62.1±15.5 62.9±11.0 58.1±10.9 64.2±6.5 65.1±8.9 65.8±14.3 73.2±12.0 71.2±10.7

Mean 77.1±10.9 78.0±11.3 78.0±9.9 76.2±9.3 78.8±9.0 78.7±9.5 79.2±9.7 80.4±10.6 80.9±8.1

As seen, the value of τ=2 s provides the lowest accuracy regardless of the evaluated
Entropy-based estimator. Though the statistical differences are not high to be significant
between the small windows, the choice of the shortest window τ=1 s seems to be the best
option since it gives the highest mean accuracy with lower dispersion. To strengthen this
selection, we highlight the fact that five of the individuals reach the best performance in
this window (see the underlined scores).

Besides, the comparison between estimators shows that SampleEnt and FuzzyEnt have
similar accuracy, while VQEnt outperforms a bit with the benefit of supplying the lowest
dispersion. Moreover, the majority of subjects perform the best result using the sample-
based VQ Entropy.
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Table 4.2: Tuning of complexity values, threshold tolerance ρ and embedding value M ,
performed at τ=1 s, fixing Q=250-M . Notation Q′ stands for the reduced size of VQ alphabets.

SampleEnt FuzzyEnt VQEnt

# M ρ M ρ M ρ Q′

B09T 2 0.9 2 0.3 2 0.3 83
B08T 1 0.9 1 0.3 3 0.6 47
B03T 3 0.9 3 0.6 2 0.1 116
B01T 1 0.8 1 0.2 2 0.2 86
B05T 1 0.8 3 0.6 2 0.1 110
B06T 3 0.9 1 0.9 2 0.6 47
B07T 1 0.5 1 0.6 3 0.9 32
B02T 2 0.8 1 0.05 2 0.3 72
B04T 2 0.6 1 0.5 3 0.9 30

Median 1 0.8 2 0.5 2 0.3

For illustrating the parameter tuning, Table 4.2 displays the values fixed for each es-
timator to achieve the best individual classifier performance. In the case of quantized
stochastic patterns, the value M=2 appears to be enough, while by adjusting ρ∼0.3 leads
to accurate estimates of accuracy. The impact of the investigated dynamics becomes ev-
ident from Figure 4.1 that illustrates the parameter variability for the proposed VQEnt.
For better visualization, the tested subjects are split into three groups due to the dif-
ferentiable behavior reported for their brain activity dynamics evoked in practicing MI
tasks [127]. As widely-known, therefore, the optimal parameter setting depends on the
complexity measured for each subject group.

4.3 Interpretability of Time-courses Estimated for -

Event-Related De/Synchronization

To have a better understanding, Figure 4.2 presents the ERD/S time-series of the Entropy-
based methods computed for the best individual of each group within the MI interval
[2.5–4.5] s. All ERD/S time-courses are estimated for the representative sensorimotor
channels (that is, C3 and C4) as a response to either performed MI task. For the sake of
comparison, the top raw displays the corresponding ERD/S trajectories calculated by the
variational percentage in EEG signal power, as described by Equation (2.6). In this case,
each trajectory is averaged across the whole trial set, providing a resolution that is much
bigger than the one resulted from the tested Entropy-based methods since ∆t�τ .
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For the right-hand task, the Entropy time-series of the contralateral electrode, C3,
starts decreasing from the maximal value at a time sample close to 2s (after the cue onset)
and reaches the lowest point at 3s. Further, the MI brain response begins increasing.
As expected, the Entropy of electrode C4 behaves with the same pattern for the left-hand
task, as detailed in [128]. At the same time, the time-courses of the ipsilateral electrode
(C4 for the right hand, C3 – left-hand) holds high values over the MI interval. Therefore,
the ERD/S patterns performed by each evaluated Entropy-based estimator fulfills the MI
paradigm. That is, the ERD/s evolves more firmly on the electrodes located contralaterally
to the hand involved in each task when a subject imagines the movement of its right/
left hand.

BT08 BT01 BT07

C3 C4 C3 C4 C3 C4
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Figure 4.2: Individual ERD/S time-course of channels C3 and C4 performed by each tested
Entropy-based estimator, averaging over all single trials for the right hand task (green color) and
left hand (reed). Solid line τ=1 s, dash-dotted line τ=1.5 s, and dash line τ=2 s.

Nonetheless, the de/synchronization model is more evident for τ=1 (solid line), but the
responses weaken and tend to be smoother as the time window elongates. Furthermore,
the ability to learn MI tasks also influences: the higher the BCI literacy, the more evi-
dent the ERD/S patterns. While the subject B08T (performing the best) presents brain
responses with marked differences between tasks, the time-series set of BT07 (achieving a
very low classifier accuracy) is far from being a synchronization pattern within the trial
timing. This finding follows some clinical studies, evidencing that BCI-illiterate subjects
manifest a lack in event-related desynchronization, which is of keen importance to perform
MI tasks satisfactorily [35].

On the other hand, the averaged time-courses seem to be similar at each validating set-
up (i.e., by fixing the same time window and BCI literacy), and therefore, explaining the
proximity of accuracy provided by the Entropy-based estimators. Still, there are subtle
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differences between them. For investigating this aspect in more detail, the trial-wise
relationship is calculated through the following distance of similarity [129]:

d(n, n′) = exp
(
−||H {Xnm(·, ·); ·} −H {Xn′m′(·, ·); ·} ||22/σ2

X

)
,∀n, n′ ∈ N,

where σX is the variance averaged across the trial set for each validated Entropy-based
estimator m,m′∈{SampEnt, FuzzyEnt, VQEnt}.

C3 C4

Figure 4.3: Asymmetric connection matrix of similarity between SampEnt, FuzzyEnt,
and VQEnt performed by subjects with different rate of BCI literacy, and estimated across
all trial set at τ=1 s. All entries above the main diagonal reflect the right label, while the lower
triangular is for left label.
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In the case of subjects with average rates of BCI literacy over 70%, the top and middle
rows of Figure 4.3 display the connection matrix of similarity, calculated at τ=1 s, showing
that the MI brain response of SampEnt and FuzzyEnt algorithms are very close in shape.
However, the ERD/S time-courses performed by VQEnt differs from other estimators in
all cases of τ . Otherwise, each Entropy-based method becomes more separate from others,
as depicted in the button row for BT07 with BCI illiteracy. In terms of the performed MI
tasks, the lower and upper triangular parts of the connectivity matrix hold very subtle
distinctions in each one of representative channels (C3 and C4) and regardless of the
employed Entropy-based estimator.

4.4 Statistical Analysis

Intending to evaluate the contrasted methods, we perform the non-parametric permuta-
tion test commonly used in evaluating different effect types of evoked responses in EEG
applications [130]. To estimate the p-value, the Monte-Carlo permutation partitions are
chosen by clustering of all adjacent time-samples that exhibit a similar difference. In each
subject-based permutation, we cluster the spatial and temporal adjacency across the trial
set, for a fixed value of p < 0.02. Figure 4.4 depicts the obtained topographical plot of two
representative individuals (literate subject B08T and illiterate B01T), showing the chan-
nels that hold discriminant information in performing the MI task, which are computed
within five non-overlapped time windows of interest: before task ([0.5–1.5] s), during MI
task ([2.5–3.5] s and [3.5–4.5] s) and at the trial timing end ([4.5–5.5] s and [5.5–6.5] s).

[0.5− 1.5] [2.5− 3.5] [3.5− 4.5] [4.5− 5.5] [5.5− 6.5]s [0.5− 1.5] [2.5− 3.5] [3.5− 4.5] [4.5− 5.5] [5.5− 6.5]s
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BO8T BO1T

Figure 4.4: Statistical analysis of two representative individuals (literate subject B08T and
illiterate B01T), showing the channels that hold discriminant information in performing the
MI task.

As expected, there is no information about the MI task in the interval before the
stimulus. Instead, discriminant information is mostly localized within both MI segments,
but the estimates have very changing behavior in [4.5–5.5] s. Note that the discrimi-
nate information fades at the trial timing end when either subject is performing a break.
In the case of B08T, the discriminating activity involves the Centro-lateral primary motor
area, supplementary motor area, frontoparietal, and primary somatosensory area, that is,
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the regions typical in hand MI practicing [111]. B01T shows a weak contribution in those
areas also, but excluding the critical frontoparietal region [73].

4.5 Contribution of Sensorimotor Area to Distingui-

shing Between MI Tasks
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Figure 4.5: Sensorimotor electrode contribution in classifying MI tasks estimated through
Entropy-based ERD/S time-series. Relevance weights of uncolored electrodes are not consid-
ered.

Figure 4.5 displays the relevance of each sensorimotor channel that is computed as the
Euclidean distance between the activities of labeled trials [131]. As seen in the top row,
BT08 has high values of relevance in channels C3 and 18 (left hemisphere), as well as in C3
and 14 (right hemisphere), meaning that both regions contribute alike. At the same time,
either channel belonging to the longitudinal fissure area produces a little contribution.
The relevance sets provided by all Entropy-based estimators are very similar and agree
with the MI paradigm. Nonetheless, the C3 electrode is weaker than the 14 one (left
hemisphere). Figure 4.6 displays the time-courses of VQEnt-based ERD/S, showing the
differences in IM responses between the ipsilateral channels. As seen, electrode 14 is
more potent than the representative C3, while electrode 18 is more potent than C4. This
situation can be explained because of the volume conduction effect of EEG signals, which
hold a low spatial resolution, and thus, lead to inaccurate measures of brain activity [132].
In the case of B01T, the assessed relevance set is comparable to those obtained by BT08,
as shown in the middle row. However, the contribution from the left-hemisphere channels
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(C3 and 14) is higher than provided by the right hemisphere (C4 and 18), suggesting a
right-hand dominance [133].

Left Rigth

Figure 4.6: Detailed illustration of estimated ERD/S time-series: C3 vs ch14(dashed line),
and C4 vs ch18(dashed line).

Using the estimated Entropy-based ERD/S time-series, we investigate the increased
activity of the sensorimotor area that is related to the motor imagery paradigm, assessing
the electrode contribution (or relevance) in terms of distinguishing between the labels.
Namely, the following channels are considered: left hemisphere (C3, 9, 14, and 15), right
hemisphere (C4, 11, 18, and 17), as well as the longitudinal fissure area (10, 16).

In the case of BT07, the relevance set redistributes across the whole sensorimotor
area, increasing in value at each electrode. Moreover, the contribution of longitudinal
fissure area starts growing, though these electrodes are assumed to have very modest
participation in motor imagery activation. Thus, this subject with low performance shows
fewer prominent features than those who perform better, as already has been reported in
similar cases [108].

(a) Whole set (b) Sensorimotor area

Figure 4.7: Classifier performance of subjects achieved by feeding each channel ranked by
relevance. (a) Entropy-based relevance computed for all electrodes. (b) Entropy-based relevance
of the sensorimotor electrodes.
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(a) Before Spatial filte (b) After Spatial filter

Figure 4.8: Example of Laplacian filtering to reduce the volume conduction effect on
Entropy estimation.

One more aspect to consider is the resulting accuracy due to the assessed electrode
contribution after using the estimated Entropy-based ERD/S time-courses. In this regard,
two different scenarios are considered: a) Addition of the whole EEG channel set, b) Incor-
poration of just the sensorimotor channels. In either case, training is conducted by adding
every channel ranked in decreasing order of relevance. As displayed inFigure Fig. 4.7a,
the individuals B01T and B08T deliver high values of accuracy. Moreover, in both cases,
the VQEnt estimator presents the most accurate outcomes at a lower amount of elec-
trodes. A similar situation takes place with the individual B07T, for which our proposed
method remarkably increases the accuracy in comparison to the other tested Entropy
estimators. In the latter scenario, Figure Fig. 4.7b reveals that the reduced channel set
directly involved with the MI paradigm is enough to discriminate between tasks, providing
an accuracy similar to the performed by the whole electrode set.

Nevertheless, though the VQEnt estimator allows enhancing the performance of the
best literate subjects, our proposal fails in the case of B07T. One factor that may account
for this result is the volume conduction effect since it also may affect the Entropy-based
estimators, as referred in [134]. A detailed analysis of the relevance performed in the all-
channel scenario shows that this individual redistributes his values all over the excluded
neighboring frontal area.

Another point to highlight is the influence of noise on the entropy calculation. Specif-
ically, to address the volume conduction problem, we perform a Laplacian filter that
improves the spatial resolution of EEG recordings, avoiding the influence of noise from
neighboring channels [135]. Figure 4.8 shows the cases of the entropy computation of
channel C3 with (and without) spatial filtration. As seen, the entropy calculated from the
raw data (left) does not present any de/synchronization related to elicited neural responses
regardless of the tasks (left hand / right hand). Instead, the Laplacian filter reduces the
effect of noise coming from neighboring channels, making clear the changes related to the
stimulation of motor imagination.
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4.6 Discussion

The proposed method is sample-based and builds the probabilistic priors by assessing
the Gaussian similarity between the input EEG measurements and their reduced vector-
quantized representation. Nevertheless, the following aspects are to be considered:

Parameter tuning of Entropy estimators : A first decisive parameter is a short-time
window that must be adjusted to extract the dynamics over time from MI data accu-
rately. The value τ=1 is fixed that gives the highest mean accuracy with lower dispersion,
providing similar performance for all tested Entropy-based estimators. This choice is re-
ported to be generally appropriate for most time-series that have dynamics with rapidly
decaying autocorrelation function.

Besides, we explore the influence of complexity parameters (threshold tolerance ρ and
embedding value M) on building the embedded alphabets. According to the complexity
values fixed to achieve the best classifier performance of each individual, SampEnt and
FuzzyEnt demand symbols with more elements to encode more precise the rapid dynamics
because of the relatively small value tuned for τ=1. However, for dynamic systems that
have long-range correlation, the choice of different delays can have a significant impact
on the calculation of Sample-based algorithms, leading to inconsistencies in the pairwise
evaluation of the relative complexity between time-series, as discussed in [136]. As a
result, the similarity pattern count calculation in Eq. (2.11) will necessitate more statistics,
which are supplied with the trial set. Instead, to encode dynamics, VQEnt relies on
a quantized version that yields alphabets with a high compression ratio, and therefore,
requiring symbols with more extensive representations (M=2, 3). In other words, each
symbol encodes not one, but several neighboring samples.

Furthermore, the fact that VQEnt alphabets have a high compression ratio avoids a
significant impact of noise on the time-series, and it reduces in complexity the choice of
ρ. In contrast, the fuzzy and sample methods tend to be more susceptible to the noise
effect, resulting in larger values of ρ. Overall, the parameter tuning of Entropy estimators
depends on the BCI literacy rate. Of note, we test three Entropy-based methods that
have as a significant advantage that they do not need any reference power value, which is
far from being easy to adjust while highly influences the ERD/S estimation.compression
ratio, and therefore, requiring symbols with more extensive representations (M=2, 3). In
other words, each symbol encodes not one, but several neighboring samples.

Interpretability of estimated ERD/S time-series : Generally, the ERD/S dynamics, per-
formed by each considered Entropy-based estimators, fulfills the experimental paradigm of
practiced MI tasks. However, due to inherent nonstationarity and a poor signal-to-noise
ratio of EEG signals, location and amplitudes of brain activity sources have substantial
variability in patterns across trials. For understanding the causes of inter- and intra-
subject variability in performance, the database subjects split into groups with the differ-
entiable behavior of brain dynamics in MI tasks. As a pivotal parameter, the short-time
window is fixed to τ=1 to achieve a higher classifier accuracy. The first finding is that the
complexity parameters that quantify the EEG data dynamics vary for each subject group,
resulting in a differentiated optimal parameter setting. Moreover, the ability to learn MI
tasks also influences, meaning that the higher the BCI literacy, the more consistent the
ERD/S patterns of motor imagery. Besides, the connection matrix of similarity confirms
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that the ERD/S time-series performed by VQEnt are different in shape from the ones
build by SampEnt and FuzzyEnt algorithms.

Activation of the sensorimotor cortex during motor imagery : We assess the contri-
bution to distinguish between MI labels and prove that the relevance sets, provided by
the left and right hemispheres, are similar despite the estimated Entropy-based ERD/S
time-series. However, in individuals with the illiteracy rate, the relevance set spreads and
increases abnormally across the whole sensorimotor area. As a result, literate individu-
als deliver high values of accuracy. Moreover, the VQEnt estimator presents the most
accurate outcomes at a lower amount of electrodes so that reduced channel set directly
involved with the MI paradigm is enough to discriminate between tasks, providing an
accuracy similar to the performed by the whole electrode set.

Nonetheless, some issues remain to improve the effectiveness of the developed VQEnt
approach for the estimation of ERD/S. Firstly, the extraction of VQ alphabets should be
improved, by instance, using more elaborate distances for their construction. Moreover,
it would be of benefit to incorporate other types of stochastic embedding to relax the
parameter tuning of the used complexity representations. However, by increasing efficiency
of the extracted symbols, the computational burden must also be examined. So far, the
implementing cost of VQEnt exceeds more than 50% other sample-based algorithms. Also,
the concept of illiteracy faces several pitfalls in BCI research so that alternative criteria
should be considered [137].

Parameter tuning of Entropy estimators : A first decisive parameter is a short-time
window that must be adjusted to extract the dynamics over time from MI data accu-
rately. The value τ=1 is fixed that gives the highest mean accuracy with lower dispersion,
providing similar performance for all tested Entropy-based estimators. This choice is re-
ported to be generally appropriate for most time-series that have dynamics with rapidly
decaying autocorrelation function.

Besides, we explore the influence of complexity parameters (threshold tolerance ρ and
embedding value M) on building the embedded alphabets. According to the complexity
values fixed to achieve the best classifier performance of each individual, SampEnt and
FuzzyEnt demand symbols with more elements to encode more precise the rapid dynamics
because of the relatively small value tuned for τ=1. However, for dynamic systems that
have long-range correlation, the choice of different delays can have a significant impact
on the calculation of Sample-based algorithms, leading to inconsistencies in the pairwise
evaluation of the relative complexity between time-series, as discussed in [136]. As a
result, the similarity pattern count calculation in Eq. (2.11) will necessitate more statistics,
which are supplied with the trial set. Instead, to encode dynamics, VQEnt relies on
a quantized version that yields alphabets with a high compression ratio, and therefore,
requiring symbols with more extensive representations (M=2, 3). In other words, each
symbol encodes not one, but several neighboring samples.

Furthermore, the fact that VQEnt alphabets have a high compression ratio avoids a
significant impact of noise on the time-series, and it reduces in complexity the choice of
ρ. In contrast, the fuzzy and sample methods tend to be more susceptible to the noise
effect, resulting in larger values of ρ. Overall, the parameter tuning of Entropy estimators
depends on the BCI literacy rate. Of note, we test three Entropy-based methods that
have as a significant advantage that they do not need any reference power value, which is
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far from being easy to adjust while highly influences the ERD/S estimation.compression
ratio, and therefore, requiring symbols with more extensive representations (M=2, 3). In
other words, each symbol encodes not one, but several neighboring samples.

Interpretability of estimated ERD/S time-series : Generally, the ERD/S dynamics, per-
formed by each considered Entropy-based estimators, fulfills the experimental paradigm of
practiced MI tasks. However, due to inherent nonstationarity and a poor signal-to-noise
ratio of EEG signals, location and amplitudes of brain activity sources have substantial
variability in patterns across trials. For understanding the causes of inter- and intra-
subject variability in performance, the database subjects split into groups with the differ-
entiable behavior of brain dynamics in MI tasks. As a pivotal parameter, the short-time
window is fixed to τ=1 to achieve a higher classifier accuracy. The first finding is that the
complexity parameters that quantify the EEG data dynamics vary for each subject group,
resulting in a differentiated optimal parameter setting. Moreover, the ability to learn MI
tasks also influences, meaning that the higher the BCI literacy, the more consistent the
ERD/S patterns of motor imagery. Besides, the connection matrix of similarity confirms
that the ERD/S time-series performed by VQEnt are different in shape from the ones
build by SampEnt and FuzzyEnt algorithms.

Activation of the sensorimotor cortex during motor imagery : We assess the contri-
bution to distinguish between MI labels and prove that the relevance sets, provided by
the left and right hemispheres, are similar despite the estimated Entropy-based ERD/S
time-series. However, in individuals with the illiteracy rate, the relevance set spreads and
increases abnormally across the whole sensorimotor area. As a result, literate individu-
als deliver high values of accuracy. Moreover, the VQEnt estimator presents the most
accurate outcomes at a lower amount of electrodes so that reduced channel set directly
involved with the MI paradigm is enough to discriminate between tasks, providing an
accuracy similar to the performed by the whole electrode set.

Nonetheless, some issues remain to improve the effectiveness of the developed VQEnt
approach for the estimation of ERD/S. Firstly, the extraction of VQ alphabets should be
improved, by instance, using more elaborate distances for their construction. Moreover,
it would be of benefit to incorporate other types of stochastic embedding to relax the
parameter tuning of the used complexity representations. However, by increasing efficiency
of the extracted symbols, the computational burden must also be examined. So far, the
implementing cost of VQEnt exceeds more than 50% other sample-based algorithms. Also,
the concept of illiteracy faces several pitfalls in BCI research so that alternative criteria
should be considered [137].
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Chapter 5

Experiments and Results of
Intra-subject Neural Response
Variability

5.1 Experiments and Results of Multi-subject Dyna-

mic Models

Validation of the proposed approach for common-dynamics modeling of brain neural ac-
tivity comprises three stages (see the pipeline in Fig. 5.1): i) Decomposition of input EEG
time-series into a frequency-specific temporal representation; ii) Subject-level feature ex-
traction of t-f dynamics, encoding the electrode contribution (explained in Section 2.1),
iii) Extraction of multi-subject t-f dynamics. We performed the pairwise distance be-
tween individuals on the subject-level and group-level stages during the evaluation. Also,
visual inspection of the obtained extracted t-f dynamics is presented, stressing on the
physiological interpretability of results. All the experiments were perfomed form datasets
DI and DII described in Section 2.3.

5.1.1 Parameter Set-up

We compute the collective task-related dynamics extracted from the t-f feature patterns
{θ(m)

η (f, τ |λ):∀f∈Ω, τ∈Nτ} with η={J, ζ, φ} using a time-window length, fixed for each
extraction method differently. Namely, τJ=1s, τφ=0.1s, and τζ=0.004s, resulting in the
following volumes of time samples: J→Nτ=60, φ→Nτ=66, ζ→Nτ=1751. Then, we assess
the similarity of each accomplished model of collective dynamics with the corresponding
subject-level dynamics. However, for interpretability purposes, the similarity measure is
computed just over the primary motor area as the most representative in motor imagery
tasks [138].
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Figure 5.1: Scheme illustrating the stages of common dynamic modeling proposed for brain
neural activity in motor imagery tasks. The evaluated t-f feature extraction methods are
contained in the dashed box.

5.1.2 Clustering of Subject-Level Efficiency

To manage the significant impact of inter-subject variability on the reached accuracy, we
employ a neurophysiological predictor of BCI performance to divide the evaluated subjects
into two clustered assemblies: BCI-literacy, or users with the ability to produce reliable
and reasonably robust differences in neural activity between distinct MI tasks (e.g., left-
hand vs. right-hand) [108], and BCI-illiteracy, or individuals who are not accurate enough
to control the MI application.

As suggested in [1], we cluster the entire subject set into two mutually exclusive assem-
blies by removing points of the sample that have the 10% largest Malahanobis distance
to the data center. For each tested database, Fig. 5.2 presents the obtained scatter plots
using the neurophysiological predictor. As input data, the average values of the mean and
standard deviation are computed for each case of τJ . To clarify the clustering results, we
rank the subject set in decreasing order of the average discrimination accuracy in Fig. 3.1a
(D-I) and Fig. 3.1b (D-II), where a dashed vertical line separates both assessed assemblies,
displaying the individual performance estimated at different window lengths. As a result,
the D-I collection holds five BCI-literacy subjects and four BCI-illiterate. In turn, D-II
contains 15 BCI-literacy subjects, and the remaining 35 are BCI-illiterate.

5.1.3 Results of CSP-based Multi-subject Model

The topographic representation in Fig. 5.3 shows that the CSP-based multi-subject model
does not vary remarkably along with µ and β oscillations, within the MI interval ∆T3.
Although the RQ relation resumes the influence of both labels into a single value, the
neural activation is reflected over the primary motor and parietal areas, which should be
strongly activated in MI tasks.
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(a) D-I

(b) D-II

Figure 5.2: Division into BCI-literacy and BCI-illiteracy. Scatter plots performed by the
neurophysiological predictor for each database.

In the case of the Rayleigh Quotient, the topographic representation shows that the
multi-subject model of extracted CSP dynamics for dataset D-I changes remarkably along
with µ and β oscillations, within the MI interval ∆T3, as seen in Fig. 5.5. Also, neural
activation is reflected in the primary motor and parietal areas, which should be strongly
activated in MI tasks. For database D-II, the contribution is placed in the sensorimotor
area too, but the β oscillation influences the most.

5.1.4 Results of Functional Connectivity based Multi-subject
Model

The calculated topograms of the common functional connectivity dynamics (see top row
in Fig. 5.4) reveal perceptible differences between tasks. Fig. 5.4 (second row) shows
the influence of stepwise removing the subjects with lower accuracy from the performed
group analysis. As observed, the multi-subject model of DI (see the second row) changes
significantly, meaning that the RQ time-series does not preserve enough the observed
relationship between the subject-level dynamics (see the bandwidths [16-20] and β). This
finding can be better understood in the third row, which displays the scatter plots of
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D-I D-II
µ β µ β

[8-12] [16-20] [20-24] [24-28] [βt] [8-12] [16-20] [20-24] [24-28] [βt]

Figure 5.3: Common neural dynamics of Rayleigh Quotient, estimated over the subject set
within the MI interval ∆T3. a) Topographic t-f representation of multi-subject model. b)
Pairwise distances estimated by desegregating individuals from the multi-subject model.
c) scatter plot of normalied distances values of assessed group dynamics.

D-I D-II
µ β µ β

[8-12] [16-20] [20-24] [24-28] [βt] [8-12] [16-20] [20-24] [24-28] [βt]

Figure 5.4: Common neural dynamics of Functional connectivity, estimated over the sub-
ject set within the MI interval ∆T3. a) Topographic t-f representation of multi-subject
model. b) Pairwise distances estimated by desegregating individuals from the multi-
subject model. c) scatter plot of normalized distances values of assessed group dynamics.

the performed similarity measure estimated for the resulting groups. Several reasons may
account for this result: the low number of subjects, the low resolution of EEG montage,
and the high heterogeneity between their dynamics, as previously reported. In the case of
DII, the procedure of the subject’s removal reveals that their influence gathers into several
groups depending on the spectral bandwidth.
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5.1.5 Results of Event-related De/Synchronization based Multi-
subject Model

D-I D-II
µ β µ β

[8-12] [16-20] [20-24] [24-28] [βt] [8-12] [16-20] [20-24] [24-28] [βt]

Figure 5.5: Common neural dynamics of Event-related De/Synchronization, estimated
over the subject set within the MI interval ∆T3. a) Topographic t-f representation of
multi-subject model. b) Pairwise distances estimated by desegregating individuals from
the multi-subject model. c) scatter plot of normalied similarities values of assessed group
dynamics.

For the multi-subject models of ERD/S-based dynamics, the topograms of both data-
sets in Fig. 5.5 show a relevant contribution that is located in the primary motor area,
supplementary motor cortex, and parietal cortex. These facts may have a physiologi-
cal interpretation related to MI practice. Thus, channels present a notable neural ac-
tivity through the considered frequencies, excluding the highest bandwidth [20-24] and
[24-28] Hz.

Extracted from the ERD/S-based dynamics, the applied inter-subject similarity mea-
sure allows identifying the presence of subgroups very accurately, having a close resem-
blance between their produced neural connectivity patterns (see second-row of Fig. 5.5).
Thus, the subjects with the highest accuracy gather the first subdivision, while those with
lower accuracy are the last ones. Moreover, the scatter plots (third row) make evident of
subgroups for the bandwidths [8-12], [16-20], and [20-24] Hz for bot datasets. Therefore,
the multi-subject performed by ERD/S-based dynamics are effective in reducing subject
aggregation. Thus, the group-level model preserves the main properties of similarity, even
after removing subjects with lower accuracy in discriminating between MI tasks. However,
the efficiency depends on the frequency bandwidth.

5.1.6 Discussion

Here, we develop a dynamic model for estimating the common neural activity across
subjects to provide new insights into the evolution of collective mental imagery processes.
After the preprocessing stage, the t-f EEG signal set is fed into a feature extraction
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algorithm to improve the efficiency of triggering activity representation. Then, we employ
a statistical thresholding algorithm to extract a multi-subject model that provides a set
of confident estimates contributing the most to discriminating between MI tasks. We
compare three feature extraction methods for making group inferences from subject-level
dynamic information of neural activity. The obtained validation results indicate that the
estimated collective dynamics reflect the flow in sensorimotor cortex activation differently.
Therefore, the common model addresses inter-subject and inter-trial variability sources
individually, depending on the engaged extraction method.

The developed group dynamic model can be considered a valid approach to infer the
main properties of multi-subject datasets; however, the following remarks should be high-
lighted.

The multi-subject model enables inferring collective task-related dynamics from ex-
tracted subject-level feature sets. For better interpret the results, we evaluate the effec-
tiveness of gathering data from collective sources by introducing two assumptions: i) a
nonlinear assessment of the similarity between multi-subject data originating subject-level
dynamics, instead of the widely used correlation index, as in [129]. ii) an assessment of
brain network development though the ranking of subject accuracy in performing the MI
task classification. As a result, the presented dynamic common model proves the ability
to preserve the spatial distribution of brain neural activity throughout time and spectral
domains, obtained from each one of the single-subject models. The attained multi-subject
model allows spatial patterns that accommodate essential individual differences in sources.

However, some issues affect the ability to collect latent structures from sources. The
employed collective framework extracts the latent components consistently expressed in
the population, implying that they perform under the same conditions. In practice, this
premise seems to be far from being right. Thus, several subjects systematically complete
the MI tasks in the wrong way, misleading the group analysis. Hence, due to differences in
individual MI literacy, the intra-subject heterogeneity reduces the estimated multi-subject
models considerably. To illustrate, the presence of ERD/S mechanisms activated at the
ipsilateral electrode in several subjects results in incorrect estimated values of hemisphere
contribution. Thus, the subject triad performing the worst (probably, with modest motor
imagery abilities) should be aggregated in a different group.

Besides, the employed latent component decomposition is unsupervised, and one might
be interested in extracting the most discriminating dynamics to avoid the influence of some
background neural activity. One more concern is the raised computational burden related
to the t-f dynamic modeling, reducing to a small number of analyzed subjects.

5.2 Experiments and Results of Regression Analysis

between Classifier Performance and Electrophys-

iological Indicators

Related to MI tasks, the methodology for evaluating the efficiency of neurophysiological
indicators was performed using dataset D-II described in Section 2.3 and embraced the
following stages: (i) extraction of a pre-training learning ability indicator, evaluating two
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scenarios of resting data for computation: (a) baseline inverval, ∆T1, lasting τ= 1.5 s;
and (b) resting-state, lasting τ=55 s. (ii) Extraction of an initial training phase indicator
from the Motor Imagery interval of the trial timing, (iii) regression and further clustering
analysis between each electrophysiological indicator and the performance response of in-
dividuals. To this end, the accuracy classifier is estimated using the CSP-based features,
maximizing the class variance to improve the system accuracy. Additionally, Spearman’s
correlation coefficient is used to assess the effectiveness of each electrophysiological indi-
cator considered in predicting the bi-class accuracy response.

5.2.1 Preprocessing of EEG signals

Every raw EEG channel was band-pass filtered within the frequency range f∈ [4-40] Hz,
covering both considered sensorimotor rhythms, µ and β. With the aim of providing a
physiological interpretation of the implemented experimental paradigm, the MI dynamics
pictured in Figure Figure 2.2 are segmented. For purposes of evaluation, we employ the fol-
lowing two intervals of interest: ∆T1=[0-2] s (termed baseline interval) and ∆T2=[2.6-4.6] s
(motor imagery interval). We only employ two intervals of interest during evaluation: ∆T1,
which contains the baseline interval, and ∆T2, which reflects the most representative brain
neural response. The length of either interval is selected to be comparable to the values
that were reported for similar MI databases, like in [1]. Furthermore, for addressing the
volume conduction problem, the indicators are assessed after performing the Laplacian
filter over the input EGG data to improve the spatial resolution of EEG recordings 1,
avoiding the influence of noise coming from neighboring channels [107]. Of note, the first
five seconds are removed from resting data because of measured variations [139].

In practice, extraction from fewer sensorimotor area is achieved in order to reduce the
computational complexity without affecting the BCI system performance [26]. To this
end, we select the EEG recordings measured over the sensorimotor area, evaluating two
configurations of scalp positions: (a) narrow electrode arrangement (noted as 2Ch) that
includes two channels (C ′=2): C3 (left motor cortical region) and C4 (right), (b) wide
arrangement (6Ch) that holds six surrounding electrodes (C ′=6): C3 and P3 (left motor
cortex), Cz and Pz (middle cortex), and C4 and P4 (right cortex).

5.2.2 Bi-Class Accuracy Estimation as a Response Variable

We perform the individual accuracy in distinguishing either MI class as the performance
response in order to validate the proposed data-driven estimator approach. The classifier
accuracy is computed using the sliding short-time feature set extracted by the algorithm
of CSP, fixing the surrogate space variance to the first three eigenvectors by class, as
carried out in [140]. It is worth noting that the short-time window must be adjusted for
extracting the subject EEG dynamics over time accurately. To reflect this influence, we
test four different lengths of the sliding window: δτ=[0.5, 1.0, 1.5, 2.0] s, having an overlap
of 50%.

1This filtering procedure was carried out using Biosig Toolbox, freely available at http://biosig.

sourceforge.net
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Figure 5.6: Individual accuracy in distinguishing either MI class performed by the CSP-based
time-frequency feature set, using different window lengths: – δτ=2, –δτ=1.5, –δτ=1, –δτ=0.5.
Bottom row: Accuracy for the trial timing using different windows S14 (marked with color –)
and S17(–).

The top row in Figure 5.6 displays the classification accuracy achieved by each individ-
ual at different δτ , employing the Linear Discriminant Analysis algorithm and applying the
regularized selection strategy over the extracted CSP feature set together with a 10×10-
fold cross-validation scheme, as carried out in [140]. For purposes of interpretation, all of
the individuals are ranked in decreasing order according to the achieved CSP-based accu-
racy, showing that the less the classifier performance, the higher the dispersion between
accuracy estimates extracted at different window lengths δτ . However, the subjects per-
forming the best have better accuracy at length δτ=2, while the worst individuals achieve
better at the shorter window δτ=0.5, which means that the dynamics of neural responses
may cluster into different groups in terms of the utilized extraction length δτ .

As an illustration, the bottom row in Figure Figure 5.6 draws the time-varying classifi-
cation accuracy achieved by two representative subjects: the individual labeled as S14 that
reaches very high scores across the whole MI interval and the subject S17 that presents
the lowest distinguishing ability, performing the highest accuracy unusually late (after the
expected ∆T2 interval).

5.2.3 Computation of Pre-Training Desynchronization Indicator

For extracting the PSD-fitting values in Equation (2.16a), the power spectral density s(f)
of each Laplacian-filtered channel, {xc}, is computed through the nonparametric Welch’s
method. To this, we use a set of smooth-time sliding windows of length 1 s, fixing an
overlap of 50% in order to overcome the non-stationary nature of EEG data. Further, we
perform a single estimate of ξ1 as the mean value averaged across the tested scalp electrode
configuration.

Figure 5.7 depicts the curve-fitting model obtained, respectively, by the baseline in-
terval (outlined in black color) and resting-state (gray color). The PSD estimate is drawn
by a continuous line, the curve-fitting–by an asterisk line, and the hyperbolic fitting of
noise–by a dashed line. In the case of subject # 14 reaching high accuracy, the top row
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presents the performed curve-fitting with a high indicator value, showing a big match
between the modeled and PSD estimated from the resting-state in each one of the six con-
sidered channels. As expected, the spatial configuration 2Ch provides the best values of
ξ1, which are large enough when compared with the remaining channels. On the contrary,
the subject S17 with a very low accuracy performs a small indicator because of a poor
fitting agreement (see the bottom row), also having no distinguishable activity at µ and
β rhythms, regardless of the channel. The values of curve-fitting adjustment are shown
beneath the plots, resulting in very close estimates for the pre-training desynchronization
indicator despite the resting data extraction interval.

Figure 5.8 displays the indicator that was calculated by Equation (Equation (2.16a))
according to the achieved CSP-based accuracy that is ranked in decreasing order. As seen
in the top row, the baseline inverval estimates extracted from 2Ch configuration (colored
with blue squares) have a behavior that is comparable to the values that were recomputed
by expanding to 6Ch the number of MI channels (green squares). A similar situation
holds for the resting state indicator computed, as observed in the bottom row. It is worth
noting that, although there is a high resemblance between both individual assessments
(close to 50%), either calculated version of ξ1 barely follows the ranked accuracy sequence
of individuals.

P3 C3 Cz Pz C4 P4

S
1
4

ξ1=6.3(9.79) ξ1=13.40(10.98) ξ1=6.09(12.35) ξ1=9.46(8.64) ξ1=15.79(4.60) ξ1=3.88(11.79)

S
1
7

ξ1=2.66(2.29) ξ1=3.68(0.54) ξ1=2.79(2.80) ξ1=2.79(4.83) ξ1=2.68(1.72) ξ1=2.82(3.96)

Figure 5.7: Examples of pre-training power spectral density (PSD)-fitting computed within
resting data: baseline inverval (black line) and resting (gray line). Values of ξ1 are reported for
the sensorimotor area of baseline inverval and (resting) states.
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Figure 5.8: Pre-training desynchronization indicator ξ1 computed for baseline inverval (top plot)
and resting data (bottom row) while using either electrode arrangement: 2Ch (blue color) and
6Ch (green color). Individuals are ranked according with the achieved accuracy response.

5.2.4 Initial Training Synchronization Assessment

Here, we extract the ERD/ERS dynamics over the entire filtered trial matrix, fixing the
time window to the sample rate (0.004 s). Additionally, the reference interval is fixed
to the range 0.5–1.5 s while using the significance value of 1% in z -score approach, as
performed in [119].

Figure 5.9 displays the individual pattern changes extracted from the electrode ar-
rangement Ch6, holding the cue onset interval (shadowed area) and the MI segment ∆T2.
As seen, the induced synchronization mechanisms are represented through the increase or
decrease of energy at the post-stimulus period. For illustration purposes, the correspond-
ing time series are presented for a couple of representative subjects: S14 that performs high
accuracy and S17, achieving a low accuracy. The former individual provides distinctive
modulation amplitudes all over the sensorimotor area, while the latter subject presents a
weak synchronization behavior, as observed in the top row.
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Figure 5.9: Exemplary ERD/ERS time-courses performed by subjects S17 and S14 for left-hand
class (colored in red line) and right-hand class (in yellow) at the evaluated scalp electrodes, while
using the back resting state (shadowed area) as the reference segment.

Further, Figure 5.10 displays the assessments of individual synchronization that are
computed while using the labeled-related distance in Equation (Equation (2.17)) within
the sensorimotor rhythms, for which the electrical brain activity prompted by motor tasks
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is frequently associated. The computed values of initial training synchronization ξ2 hardly
follow the accuracy sequence of individuals, as observed in the previous indicator.

µ
β

µ
+
β

Figure 5.10: Individual values of initial training synchronization ξ2 computed within subband
combinations: µ, β, µ+β.

One more aspect to consider is the indicator’s capacity to characterize the training
session’s synchronization mechanism. To this end, we extract ξ2 while using a sequence
of 30 trials ordered in time. Fixing a significance value of 5%, Figure 5.11 displays the
results of the Wilcoxon signed-rank test, revealing that the first 30 trials are different from
the second run. Likewise, the second run differs from the last one (only three runs are
considered, since not all subjects have the same number of trials). Moreover, the mean
value of ξ2 decreases over the runs, which suggests that the synchronization mechanism
can be evaluated as the training sessions increases in number. Overall, these outcomes
in Figure Figure 5.11 agree to the results in [141], evidencing the difficulty of quantifying
a significant change in ERD/ERS across the training sessions, even for either channel C3
or C4.
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Figure 5.11: Differences in initial training synchronization ξ2 performed at each trial partition
during the training sessions.
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5.2.5 Drn-Based Indicator Extraction and Regression

Aiming at assessing the effectiveness of the pre-training desynchronization indicator ξ1,
Table 5.1 displays Spearman’s correlation coefficient, r∈R, which is reported under two
different regression assumptions: linear (noted as LC) and linearized (DRN). In the case
of extracting ξ1 by Equation (Equation (2.16a)) from the baseline inverval, the linear
correlates with the responses yield a minimal value of r, regardless of the associated accu-
racy response. The efficiency for predicting the subject accuracy remains not significant
(r<0.23), even though the expanded electrode arrangement increases the Spearman coeffi-
cient a little. Further, the values of r are performed through the linearizing DRN estimator
while using the same scalar-valued PSD-fitting indicator set (noted as DRN ξ̃∗=ξ1), which
is obtained by concatenating all of the trials before carrying out the short-time vector ex-
traction, as implemented in [1]. As a result, the correlation with the MI performance raises
to r<0.37, but this indicator poses still not meaningful for prediction. Lastly, the use of
the DRN framework for joint indicator extraction and regression (noted as DRN ξ∗) leads
to a notable increase of the Spearman coefficient up to r<0.88, allowing for an adequate
predictive interpretation of the data-driven pre-training desynchronization indicator.

When extracting ξ1 by Equation (Equation (2.16a)) from a single resting-state record,
the linear assumption increases almost by two the values of r as compared to the pre-
vious baseline inverval extraction. This result may point out that the resting-state data
enable a more confident estimation of the desynchronization indicator. Nonetheless, for
these scalar-valued estimates, the DRN estimator cannot further improve their predictive
ability with the accuracy responses (r < 0.40). However, the joint model of DRN-based
indicator extraction and regression leads to a definite rise in the correlation coefficient,
outperforming all of the tested scenarios of resting data (r < 0.93).
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Table 5.1: Biserial Spearman correlation coefficient quantified between the ξ1 indicator, ex-
tracted within different scenarios of resting data, and the accuracy response, estimated at each
window length of δτ . Notations LC, DRN, and LOO stand for Linear Correlation [1], Deep
Regression Network, and leave-one-out-cross validation strategy, respectively. The best value
per row is marked in bold.

Resting Data
Electrode δτ [s] ψ(·)
Configuration 0.5 1.0 1.5 2.0 Mean PCA1

Baseline inverval

2Ch(LC) 0.15 0.15 0.17 0.16 0.13 0.15
6Ch(LC) 0.07 0.04 0.11 0.13 0.05 0.07
2Ch(DRN ξ∗=ξ1) 0.15 0.16 0.18 0.16 0.14 0.15
6Ch(DRN ξ∗=ξ1) 0.07 0.04 0.12 0.14 0.06 0.08
2Ch(DRN ξ∗) 0.86 0.85 0.96 0.97 0.83 0.87
2Ch(DRN ξ∗) LOO 0.76 0.79 0.82 0.80 0.78 0.86
6Ch(DRN ξ∗) 0.92 0.86 0.95 0.97 0.83 0.88
6Ch(DRN ξ∗) LOO 0.83 0.87 0.85 0.87 0.89 0.91

Resting-state

2Ch(LC) 0.30 0.31 0.31 0.27 0.29 0.31
6Ch(LC) 0.25 0.31 0.26 0.26 0.28 0.28
2Ch(DRN ξ∗=ξ1) 0.31 0.31 0.31 0.28 0.30 0.32
6Ch(DRN ξ∗=ξ1) 0.25 0.31 0.26 0.27 0.30 0.30
2Ch(DRN ξ∗) 0.79 0.80 0.92 0.94 0.78 0.82
2Ch(DRN ξ∗) LOO 0.85 0.87 0.83 0.82 0.79 0.84
6Ch(DRN ξ∗) 0.86 0.77 0.91 0.93 0.75 0.80
6Ch(DRN ξ∗) LOO 0.85 0.83 0.88 0.86 0.80 0.77

The linear correlation values of (r<0.39) performed by the initial training synchro-
nization ξ2 are comparable to the ones of ξ1, including both evaluated rhythm bandwidths
µ+β and the wide electrode arrangement, as presented in Table 5.2. By feeding the DRN
estimator with the scalar-valued ξ2 (noted as DRN ξ̃∗=ξ2), similar low significant correla-
tion values are obtained, regardless of the evaluated rhythms. The fact that the proposed
DRN estimator is not benefiting from a scalar-valued indicator set implies that involved
Wide&Deep neural network demands a higher volume of information from predictors to
perform learning of deep patterns.

On the other hand, the characterization of evoked MI activity poses a challenging task,
because of the difficulty in quantifying the trial-to-trial variability accurately, increasing
the complexity in assessing the distance ξ2 between both labeled ERD/ERS time-series
by Equation (Equation (2.17)). It should be noted that the indicators perform the best
linear estimates of r at a distinct window length (δτ=0.5 by ξ1 while δτ=0.5 by ξ2), which
means that this extraction parameter must be tuned differently for each indicator.

Once again, the DRN framework of joint indicator extraction and regression (DRN
ξ∗) enables an increase of the Spearman coefficient up to r<0.89, concatenating both
labeled ERD/ERS time series at the estimator input. Therefore, for increasing the predic-
tive interpretation of either considered electrophysiological indicator, the proposed DRN
framework should incorporate the joint extraction and regression procedures, intending to
extract more distinguishing information between subjects from the indicators.
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Table 5.2: Computed values of r for the indicator of initial training synchronization within the
evaluated rhythm bandwidths: µ, β, µ+β. Notations LC, DRN, and LOO stand for Linear Cor-
relation [1], Deep Regression Network, and leave-one-out-cross validation strategy, respectively.
The best value per row is marked in bold.

Rhythm Electrode τ [s] ψ(·)
Subband Configuration 0.5 1.0 1.5 2.0 Mean PCA1

µ

2Ch(LC) 0.12 0.064 0.04 0.003 0.6 0.05
6Ch(LC) 0.23 0.08 0.10 0.04 0.11 0.11
2Ch(DRN ξ∗=ξ2) 0.13 0.064 0.13 0.17 0.06 0.17
6Ch(DRN ξ∗=ξ2) 0.23 0.12 0.10 0.04 0.11 0.11

β

2Ch(LC) 0.11 0.06 0.08 0.02 0.07 0.06
6Ch(LC) 0.14 0.04 0.006 0.016 0.11 0.07
2Ch(DRN ξ∗=ξ2) 0.16 0.15 0.20 0.23 0.16 0.20
6Ch(DRN ξ∗=ξ2) 0.19 0.05 0.23 0.25 0.21 0.20

µ+ β

2Ch(LC) 0.06 0.05 0.05 0.01 0.04 0.04
6Ch(LC) 0.11 0.07 0.03 0.04 0.11 0.08
2Ch(DRN ξ∗=ξ2) 0.08 0.06 0.10 0.18 0.11 0.09
6Ch(DRN ξ∗=ξ2) 0.11 0.11 0.19 0.21 0.15 0.21
2Ch(DRN ξ∗) 0.84 0.80 0.94 0.91 0.78 0.83
2Ch(DRN ξ∗) LOO 0.15 0.17 0.24 0.19 0.18 0.21
6Ch(DRN ξ∗) 0.87 0.77 0.93 0.95 0.82 0.82
6Ch(DRN ξ∗) LOO 0.20 0.44 0.40 0.28 0.26 0.40

5.2.6 Clustering of Subject-Level Efficiency

Here, we assume the rationale by which the higher the accuracy in distinguishing between
MI tasks, the more efficient the individual brain network. Therefore, the sets of the
extracted indicator values, together with the accuracy series, are employed to infer the
distinctiveness between the subject assemblies, each having a similar variability level.

In the beginning, we determine the number of partitions considering the intra and inter-
subject variability of responses as an important factor affecting the regression analysis
that was conducted by Equation (2.19). Thus, an adequate group number is found to be
three, which we estimate through the k-means algorithm fed by the four accuracy sets
accounting for the performance variability, because of the extraction window length, δτ
(see Figure 5.6), and introducing the cluster inertia and the Silhouette score to minimize
the objective function.

The top row in Figure 5.12 displays the maximal accuracy that was performed by
each subject within the extraction window set and his assigned group (left plot). The
corresponding right plot depicts the resulting cluster by the colored dots into the following
three partitions of individuals:

(i) A group that holds the individuals performing the best accuracy with very low
variability (yellow color).

(ii) A group that contains the subjects that reach important values of accuracy, but
performing with some fluctuations.
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(iii) A group with modest accuracy performed with high unevenness.

In the following, each group is assumed to have distinguishable skills in practicing
Motor Imagery tasks.
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(b) DRN-based pre-training desynchroniation indicator ξ∗=ξ1 extracted within resting data ∆T1
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(c) DRN-based pre-training desynchroniation indicator ξ∗=ξ1 extracted within resting data ∆TR
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(d) DRN-based pre-training desynchroniation indicator ξ∗=ξ1 extracted from (µ+ β) rhythms

Figure 5.12: Extracted assessments using the proposed DRN estimator (left-side column)
and performed clustering of subjects (right-side column).

The rows (b)–(d) in Figure 5.12 present the indicators that were extracted by the
proposed DRN in Equation (2.19) that perform the best Spearman correlation r, meaning
that they provide a high ability to predict the bi-class accuracy response. It is worth
noting the high linearity between each indicator and the performance response set ranked
in decreasing order, as displayed in the left column. The right column depicts the three
subject partitions that were accomplished by the DRN extracted indicators, which are
evidently separated, regardless of the involved indicator. Furthermore, the similarities
between 2Ch (colored with blue squares) and 6Ch (green squares) arrangements are not
noticeable, meaning that the clustering is scarcely affected by the fluctuations of neural
activity coming from neighboring electrodes.
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Nonetheless, as seen at the end of the left-side plots, several subjects (namely, #7, #40,
#33, #8, and #17) do not follow the trend, and they are out of the regression (right plots),
which implies that the DNR framework is not able to linearize the indicators extracted from
this group of subjects. Besides their lowest performed bi-class accuracy, the main reason
accounting for this discrepancy is the implied variability in their response that exceeds the
performed values by the remaining subject set, as explained before in Figure 5.6a. In fact,
the outlier subject set’s classification performance increases atypically at the end of the
MI interval, so that some subjects do not provide distinguishable activity between µ and
β rhythms. This issue seems to be relevant, since it proves that, along with the measured
indicator variability, the response behavior also changes influence the resulting data-driven
regression analysis. Consequently, the number of subject partitions is increased by one, and
the appearing fourth group contains the outlier subject set for which the DRN estimator
cannot infer any predictive ability because of their intra-subject variability.

Another concern is how few subjects can exchange the assigned clusters when account-
ing for each extracted indicator’s influence. To illustrate this fact, in Figure 5.13 we display
the matrix that spans the cells colored according to the individual group assigned by the
DRN-based estimator. The top row shows that the just a couple of subjects downgrades
from the group I to II, when utilizing the extracted by DRN-based indicator assessments
(see the pictured sets of (b)–(d) in Figure 5.12). It is worth noting that either electrode
arrangement performs the same clustering if it involves the entire trail set of EEG data.
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Figure 5.13: Clustering of individuals according to the DRN-based indicator extraction
and regression. In first row, notations a),b), c), and d) stand for the corresponding items
in Figure 5.12. The last two rows show the cluster of the DRN-based indicator ξ∗=ξ2

extracted from (µ + β) rhythms, removing 10 trials consecutively in six runs with 2CH
and 6CH electrode configuration, respectively.

5.2.7 Discussion

To provide a better understanding of the BCI-inefficiency, we develop a data-driven esti-
mator, termed Deep Regression Network (DRN), which jointly extracts and performs the
regression analysis to assess the efficiency the individual brain networks in practicing MI
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tasks. To deal with the high inter- and intra-subject variability of elicited neural activity,
the estimator performs learning of deep patterns, allowing to infer the distinctiveness be-
tween subject assemblies having similar variability. The results, which were obtained on
real-world MI data, prove that the DRN estimator fosters the ability of the pre-training
neural desynchronization and initial training synchronization to predict the bi-class accu-
racy response and, thus, providing a better understanding of the user’s intent of action
upon imagination tasks. The regression-based evaluation of the tested neurophysiological
indicators for predicting the subject’s ability to practice motor imagery tasks implies the
following aspects:

Electrophysiological indicators in evaluation efficiency. We appraise the ability of pre-
training neural desynchronization to predict the system response, showing that the com-
putation by the baseline PSD-fitting may result in low significant correlates to the bi-
classification accuracy (r < 0.23), at least, if performing extraction from the back-resting
state. By extracting from resting-state data, the correlation with the MI performance
raises to r < 0.37, remaining still not meaningful for prediction. Besides, the initial train-
ing synchronization indicator is assessed while using a proposed distance between both
labeled Event-related De/Synchronization time-series that hardly follows the accuracy,
sequence of individuals, resulting in low significant correlation values, regardless of the
evaluated rhythms. However, other approaches of ERD/ERS calculation are to be evalu-
ated, like event-related spectral perturbation technique [142].

Classifier accuracy as a response variable. In order to assess the efficiency of individ-
ual brain networks, the accuracy in distinguishing between MI tasks is widely employed,
which is frequently computed while using the sliding short-time feature set extracted by
the algorithm of Common Spatial Patterns. However, to deal with the intra inter-subject
variability, the short-time length must be adjusted for each subject properly (see Fig-
ure 5.6). Furthermore, the individuals performing the worst are more susceptible to this
choice, degrading the regression analysis highly. As a result, either indicator’s predictive
ability depends differently on this extracting parameter, at least, using linear regression
(see Tables 5.1 and 5.2). This result may lead to a restriction when gathering several
electrophysiological indicators into a common regression framework to improve efficiency
evaluation of subjects.

Joint model of indicator extraction and regression analysis. For increasing the predic-
tive interpretation of either considered electrophysiological indicator, we develop a Deep
Regression Network framework that, first, extracts from neural activity indicators the
most salient patterns that allow evaluating the BCI inefficiency, and then performs lin-
earization of the indicator assessments towards the accuracy response. As a result, there is
high linearity between the extracted sets for either indicator and the ranked performance
response values of subjects. To include the accuracy variability because of window extrac-
tion, we test the mean accuracy weighted across the subject variance and the first PCA
eigenvalue of the accuracy vectors, both performing similarly and outperforming notably
the results that were obtained by each particular window length. Nonetheless, the pro-
posed DRN estimator does not benefit from scalar-valued indicator sets, since the included
Wide&Deep neural network demands a larger amount of information from predictors to
perform learning of deep patterns.

One more aspect to remark is that the developed prediction model is subject-dependent
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and has to be validated with trial sets acquired under similar conditions from a represen-
tative number of individuals. As a rule, publicly available motor imagery databases are
small, unusually exceeding several dozens because of their associated cost of implementa-
tion. We also need to validate the resting-state data that are less present in MI collections,
since their capture demands a different paradigm, increasing the acquisition complexity.
Here, we use the leave-one-out-cross validation strategy (LOO) to reduce the variability
derived by splitting into two groups the validating data (training and test), enhancing the
generalizing ability of the developed predictor and the model reproducibility, even under
such an amount of examined individuals, aiming to understand why some subject groups
show different performances in the same system.

Cluster of subject efficiency. The extracted indicator assessments, together with the
accuracy series, are employed to infer the distinctiveness between the subject groups with
a comparable variability level, that is, having similar skills in practicing MI tasks. As
a result, the DRN estimator provides three subject partitions with the predictive ability
regardless of the involved indicator and barely affected by the fluctuations of neural ac-
tivity coming from neighboring electrodes. One more group with nonpredictive ability is
obtained that holds the subjects with the lowest and most variable estimates of accuracy.
The DNR framework is not able to linearize this group, which confirms that the changes
in the response behavior also influence the resulting data-driven regression analysis.

Nonetheless, some issues remain to enhance the BCI-inefficiency evaluation through
the developed data-drive DRN estimator. Firstly, the extraction of indicators should be
improved; for instance, the assessment of the initial training synchronization must be per-
formed using more elaborate labeled-based distances. Generally, the `2 loss function tends
to limit the generalization ability due to its susceptibility to outliers. Instead, using the
combined `2,1-norm concept loss (or even `∞-norm), the curve-fitting indicator in Equa-
tion (2.16a) can be improved. Further, the DRN framework should be enhanced in order
to include the joint extraction of several indicators, taking into account the differences in
the de/synchronization mechanism between both brain hemispheres. Additionally, there
is a need to develop a more powerful mapping function to include the system response’s
stochastic behavior. Another aspect of improving is the Deep Network architecture to
enhance the interpretation of spatial brain neural patterns that mainly contribute to eval-
uating indicators’ efficiency in practicing MI tasks.
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Chapter 6

Conclusions

This work presents four main contributions. Firstly, to build up the subject-level fea-
ture sets, a common representation space is proposed that encodes the electrode (spatial)
contribution, evolving through time and frequency domains. To address sources of inter-
subject variability of individuals, a t-f feature set is extracted, for which the domain
parameters (time window length and filter bandwidth setup) are selected to be the more
relevant in discriminating between MI tasks, yielding a distinct dimensionality of each
extracted characteristic set. Because of the difference in the captured dynamics, each
engaged extraction method differently reflects the flow of sensorimotor cortex activation
during the analyzed representative MI intervals.

Secondly, we present the Entropy-based method, termed VQEnt, for estimation of
Event-Related De/Synchronization using a dynamic description through quantized stochas-
tic patterns, aiming to improve discriminability and physiological interpretability of mo-
tor imagery tasks. The validating results, obtained on the widely used database, show
thatVQEnt outperforms others sample-based approaches while providing adequate inter-
pretability in Motor Imagery tasks. The proposed method is sample-based and builds
the probabilistic priors by assessing the Gaussian similarity between the input EEG mea-
surements and their reduced vector-quantized representation. As a concluding remark, we
propose to enhance the entropy-based estimation by extracting more information about
amplitudes of time-courses that show more differences in distinguishing between MI tasks.
We hypothesize that by extracting a more reliable representation of the stochastic pat-
terns, the discriminability of labeled tasks can be increased while preserving elicited brain
neural activity’s physiological interpretation.

Thirdly, we develop a dynamic model for estimating the common neural activity across
subjects to provide new insights into the evolution of collective mental imagery processes.
After the preprocessing stage, the t-f EEG signal set is fed into a feature extraction
algorithm to improve the efficiency of triggering activity representation. Then, we employ
a statistical thresholding algorithm to extract a multi-subject model that provides a set
of confident estimates contributing the most to discriminating between MI tasks. We
compare three feature extraction methods for making group inferences from subject-level
dynamic information of neural activity. The obtained validation results indicate that the
estimated collective dynamics reflect the flow in sensorimotor cortex activation differently.
Therefore, the common model addresses inter-subject and inter-trial variability sources
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individually, depending on the engaged extraction method.
Lastly, to provide a better understanding of the BCI-inefficiency, we develop a data-

driven estimator, termed Deep Regression Network (DRN), which jointly extracts and
performs the regression analysis to assess the efficiency the individual brain networks in
practicing MI tasks. To deal with the high inter- and intra-subject variability of elicited
neural activity, the estimator performs learning of deep patterns, allowing to infer the
distinctiveness between subject assemblies having similar variability. The results, which
were obtained on real-world MI data, prove that the DRN estimator fosters the ability of
the pre-training neural desynchronization and initial training synchronization to predict
the bi-class accuracy response and, thus, providing a better understanding of the user’s
intent of action upon imagination tasks.
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