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Non-intrusive load identification can improve the interaction efficiency between
the power supply side and the user side of the grid. Applying this technology can
alleviate the problem of energy shortage and is a key technique for achieving
efficientmanagement on the user side. In response to the cumbersome process of
manually selecting load features and the low accuracy of identification in
traditional machine learning algorithms for non-intrusive load identification,
this paper proposes a method that transforms the one-dimensional reactive
electric signal of the load into a two-dimensional image using Gram coding
and utilizes the Residual Attention Network (RAN) for load classification and
recognition. By transforming the one-dimensional electrical signal into a two-
dimensional image as the input to the RAN network, this approach retains the
original load information while providing richer information for the RAN network
to extract load features. Furthermore, the RAN network effectively addresses the
poor performance and gradient vanishing issues of deep learning networks
through bottleneck residual blocks. Finally, experiments were conducted on a
public dataset to verify the effectiveness of the proposed method.
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1 Introduction

The current energy shortage problem is extremely severe, and the proportion of
electricity consumption by urban and rural residents has been increasing year by year in
our country (Lianwei and Wen, 2021; Linna et al., 2023). In this context, improving the
efficiency of electricity usage for urban and rural residents can partially solve the energy
shortage problem and bring significant economic benefits (Xing Nan, Xu Feng, 2017; Teng
Jialun, Li Hongzhong, 2023). To optimize the efficiency of electricity utilization, non-
intrusive load monitoring (NILM) technology can be considered. NILM is a technique that
decomposes household electrical data to obtain specific operating states of appliances.
Studies have shown that this technology can save 10%–20% of electricity for individual users
(Darby, 2006).

NILM mainly consists of three main components: event detection, feature extraction,
and load identification. Among them, the efficient identification of loads is the core issue in
NILM research (Guo et al., 2021). Early NILM mainly applied machine learning algorithms
for load feature extraction and identification classification. Reference (Figueiredo et al., 2012)
proposed an algorithm to identify the step change in the electrical signal by extracting load
features through step changes in active power, reactive power, and power factor. It used
Support Vector Machine (SVM) and 5-nearest Neighbors (5-NN) classification algorithms
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for load classification, showing a certain level of accuracy. However,
this algorithm is limited to triggering the identification process only
when there is a step change in the power signal when the appliance is
turned on or off. Reference (Gillis et al., 2015) introduced a new
concept based on wavelet design and applied it to NILM by finding
wavelet functions matching the load patterns. It used a decision tree
classifier to establish a classification model for wavelet coefficient
energy prediction of loads. However, as the number of loads to be
detected increased, the accuracy decreased. Reference (Wang
Jianyuan, Hou Guangzhu, Zhang Hongming, 2021) used steady-
state current waveforms as features to build a database and
completed the matching identification of household appliances to
be detected through mutual approximate entropy values. These
algorithms mainly used traditional load features such as voltage,
current, and power, or machine learning algorithms like SVM and
decision trees. The process was cumbersome due to manual feature
selection and had certain limitations. Although the computational
workload was small, the recognition accuracy was low in practical
applications.

In recent years, deep learning methods have rapidly developed.
They can autonomously extract key features from databases through
their unique network structure and learning patterns (Kelly and
Knottenbelt, 2015). Because of its outstanding performance in image
classification, some scholars have begun to transform certain one-
dimensional electrical quantity data of loads into two-dimensional
images suitable for deep learning methods and have achieved high
accuracy.

Reference (Liu et al., 2021) first analyzed the electricity usage
patterns of loads, expanded the receptive field through convolutional
operations, simplified the feature extraction process, and extracted
richer features. Finally, load identification was carried out based on
the time convolutional neural network model, achieving satisfactory
recognition accuracy. Reference (De Baets et al., 2018) constructed
grayscale voltage-current (V-I) trajectories, and it was verified that
this construction method improved the recognition accuracy to
some extent. However, due to the lack of color information and the
influence of the granularity of the two-dimensional images, the
recognition accuracy was still not ideal. References (Faustine et al.,
2020; Faustine and Pereira, 2020) used improved recursive graphs as
the two-dimensional images to be recognized, achieving better
recognition results. Reference (Zhao et al., 2023) combined
particle swarm optimization with convolutional neural networks
to establish a load identification model. A load feature library was
built based on pixelated images of V-I trajectories of various
appliances. The model was validated on public datasets, showing
excellent recognition capability. Although the methods based on
deep learning networks have greatly improved the load recognition
effect using the method of recognizing two-dimensional images, the
information carried by two-dimensional images like V-I trajectories
is limited. Additionally, problems such as gradient disappearance
with the deepening of network layers have not been resolved, and
there is still room for improvement in terms of recognition accuracy.

To address these issues and further improve recognition
accuracy, this paper utilizes readily available current data as the
original load information. The one-dimensional current signal of the
load is transformed into Gramian Angular Fields (GAF) through
Gramian matrix encoding to establish a load feature library (Wang
and Oates, 2015). A deep residual network that performs well in the

field of image classification was selected as the recognition model.
The proposed method was validated on the public dataset PLAID
(Plug-Load Appliance Identification Dataset) (Gao et al., 2014). The
harmonic mean reached 98.24%, proving the effectiveness of the
proposed method.

2 Non-intrusive load identification
method overview

2.1 Intrusive load and non-intrusive load

Intrusive load identification involves installing sensors at
various electrical devices to monitor the operational status of the
load, thereby obtaining information about household electricity
usage, as depicted in Figure 1. Intrusive load identification
typically features complex hardware and relatively simple
software. While it provides accurate data, the installation and
maintenance are challenging and resource-intensive, making it
unsuitable for widespread adoption and online applications.

Non-intrusive load identification eliminates the need for
individually installing sensors on each electrical device. Instead, a
single smart meter installation allows for the monitoring of the
operational status of various electrical devices. In comparison to
intrusive methods, non-intrusive identification offers relatively
lower economic costs, higher reliability, simpler implementation,
and greater controllability. It can effectively protect data integrity,
making it a convenient, efficient, and universally applicable
monitoring method, as illustrated in Figure 2.

2.2 Non-intrusive load identification process

NILM primarily consists of four steps: data acquisition and
preprocessing, event detection, feature extraction, and load
identification. The algorithmic process is briefly depicted in Figure 3.

The algorithm proposed in this paper begins by utilizing a data
acquisition device, namely, a smart meter, to gather load data. The
obtained load data undergoes preprocessing, involving the extraction
of the reactive power component from the current data. Subsequently,
the reactive power component is transformed into a two-dimensional
image using a Gramian Angular Field. A pre-trained RANnetworks is
then employed to extract the load features from the two-dimensional
image. Finally, the load is classified and identified based on different
device categories, and the results are transmitted to the smart
monitoring terminal for load monitoring.

3 Event detection

Event detection is a crucial step in implementing NILM. Its
purpose is to determine the exact occurrence time and basic
characteristics of load-switching events. Concise and efficient
event detection is a prerequisite for the successful classification in
subsequent steps. To achieve this goal, this paper implements event
detection based on the significant fluctuation in the root mean
square (RMS) current during load-switching events. The process of
event detection is illustrated in Figure 4.
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FIGURE 1
Intrusive load.

FIGURE 2
Non-intrusive load.

FIGURE 3
Overall process of load identification.
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To determine whether an event has occurred, the calculation is
performed using Eqs (1)-(3).

Is �
��������
1
N
∑N

t�1i
2
t

√
(1)

ΔI � Is+1 − Is| |> δ (2)
ΔI < γ (3)

In the equation:

- Is represents the RMS current of the current cycle.
- Is+1 represents the RMS current of the next cycle after Is.
- δ is the threshold used to determine event occurrence. The
value of δ is determined by the load with the minimum power
in the load under detection. During normal operation, there
are disturbances in the power variation of the electrical load.

To allow for a certain margin for load switching, a threshold of
δ � 0.6I min is chosen, where I min is the RMS current of the
load with the minimum power when it is in use.

- ΔI is used to determine the end of the event, and its threshold is
denoted as γ. Empirically, γ is set to 0.01A.

4 Two-dimensional image encoding

4.1 Data extraction and preprocessing

Firstly, the current data captured by the smart meter terminal for
individual electrical appliances is separated. Then, based on the
Fryze power theory, the steady-state current of a single unit of
electrical data is split into active and reactive components within one
unit cycle (Teshome et al., 2016). As the waveform of the reactive
component of the load current varies with different loads and the
waveform of the active component is close to a sine wave and similar
for different loads, the load label is set based on the reactive
component of the load current signal. Finally, the reactive
component of the load current signal is normalized, encoded into
GAF matrices, and assigned color information to complete the
transformation from one-dimensional electrical signals to two-
dimensional image signals.

Smart meters on the residential side can capture the electricity
usage data of all user appliances, including total power, voltage,
current, etc. The fluctuations in total power and total current
typically indicate the occurrence of load-switching events. It is
assumed that when one appliance is turned on or off, other
appliances remain unchanged, maintaining a steady state before
this moment. By analyzing the data fluctuations, appliances being
turned on or off can be identified. Due to the stable power supply
provided by the electrical grid, the voltage signals of various
appliances can always remain stable and approximate a sine
wave. However, the current signals are affected by different
types of load-switching events, leading to distortion in the
waveforms, meaning they deviate from a sine waveform.
Therefore, load labels can be calibrated based on the distorted
state of the current signal waveforms caused by different load-
switching events.

Let’s denote the current data for a single load-switching event
before and after separation by ion and iof f respectively. Ensuring that
the phases of ion and iof f are consistent, the load current can be
defined as i(t) � iof f − ion.

After obtaining the current data of the load switching event, to
further extract distinguishing characteristics of different appliances,
the acquired current data is decomposed into active and reactive
components based on the Fryze power theory. The active
component is positively correlated with the stable power supply
voltage waveform, whereas the reactive component reflects the non-
resistive information of the load and has no positive correlation with
the power supply voltage waveform. Therefore, the reactive
component can be used as the load label for identification. The
decomposition process is as follows:

i t( ) � ia t( ) + if t( ) (4)
ia t( ) � Pactive

V2
rms

t( ) (5)

FIGURE 4
Event detection flowchart.
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Pactive � 1
T
∫T

0
v t( )•i t( )dt (6)

if t( ) � i t( )− v t( )
V2

rmsT
∫T

0
v t( )•i t( )dt (7)

In the equations:

- ia(t) represents the active component.
- if (t) represents the reactive component.
- Pactive represents the active power.
- Vrms represents the root mean square voltage.
- v(t) represents the root mean square voltage of the load at that
moment.

- T represents the source voltage cycle.

The input for constructing the GAFimages ultimately represents
the reactive current component of the electrical load under steady-
state operation, and Eqs 4–7 illustrate the decomposition of the
reactive current component of the electrical load.

4.2 Transformation of GAF images

GAF encoding was initially applied in the field of computer
vision for classifying time series data (Wang, Z., and Oates, T.J.a.e.-

p, 2015). Electrical signals are typical examples of time series data.
Therefore, GAF encoding can be applied to the reactive current
signals of loads, adding color information. This process transforms
the data into richer two-dimensional images for classifier
recognition and classification. The specific encoding process is as
follows:

1) X = {x1, x2, . . ., xn} represents a time series of load-reactive
current signals. X is standardized to the range [−1,1], as shown in
Eq. 8, where i = 1, 2, . . ., n:

~xi � xi −max X( ) + xi −min X( )( )( )
max X( ) −min X( ) (8)

2) Encode the processed reactive current signal in a polar
coordinate system, as shown in Eq. 9:

ϕ � arccos ~xi( ),−1≤ ~xi ≤ 1, ~xi ∈ ~X

r � i
n

⎧⎪⎪⎨⎪⎪⎩ (9)

Therefore, the range of ϕ is [0, π]. The function cos(ϕ )
monotonically decreases in this interval, indicating that this
mapping relationship in the polar coordinate system is a one-to-
one correspondence, satisfying the bijective relationship, as
illustrated in Figure 5.

3) GAF Encoding

After completing the polar coordinate encoding, the one-
dimensional time series of reactive power signals are transformed
into two-dimensional images using GAF through a Gramian matrix.
The GAF matrix is defined as Eq. (10).

G � cos ϕi + ϕj( )[ ]
�

cos ϕ1 + ϕ1( ) cos ϕ1 + ϕ2( ) . . . cos ϕ1 + ϕn( )
cos ϕ2 + ϕ1( ) cos ϕ2 + ϕ2( ) . . . cos ϕ2 + ϕn( )

..

.

cos ϕn + ϕ1( ) cos ϕn + ϕ2( ) . . . cos ϕn + ϕn( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

Utilizing GAF to transform one-dimensional reactive power
signals into two-dimensional images offers two advantages:

1) Rich Image Information: The mapping between one-dimensional
reactive power signals and two-dimensional GAF images is ideal. It
preserves all the information from the original one-dimensional
signal while enriching the feature information among different
appliances. This enrichment makes it easier to distinguish between
different appliances, enhancing the recognition process.

2) Invariance: The temporal correlation of the one-dimensional
reactive power signal is preserved. Regardless of whether the
input signals have the same phase, the resulting two-dimensional
images corresponding to the same type of appliance exhibit
similar texture features. This invariance reduces the impact of
signal phase changes on classification results, improving the
robustness of the model.

In the subsequent steps, a residual network model will be
employed to achieve load recognition and classification,

FIGURE 5
Polar coordinate encoding of current and reactive power
components.
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leveraging the enriched and invariant features obtained through
GAF encoding.

5 The load recognition model

The input to the load recognition model comprises two-
dimensional Gramian Angular Field (GAF) images with rich
texture and color information. In order to enable the model to
swiftly extract more image features and make accurate identification
classifications, classic image recognition networks such as the
Convolutional Neural Network (CNN) series and AlexNet are
often employed. To meet the aforementioned requirements, these
networks often adopt the strategy of increasing the depth of the
network layers. However, it is not guaranteed that increasing the
depth of the network layers will necessarily improve accuracy; on the
contrary, it may lead to a decline in network performance (K. He
et al., 2016). This approach evidently has limitations and may not
adequately address the varied appliance classifications faced in
practical applications within NILM field, where more image
features are required.

5.1 The residual attention network

To address the issue of gradient disappearance that occurs as the
network depth increases, this study is based on the pre-trained RAN
(Wang et al., 2017), which has demonstrated outstanding
performance in the field of computer vision. RAN combines

multiple attention modules within a residual network framework,
comprising two main components: the backbone and the soft mask.

The backbone consists of bottleneck residual blocks, which are
the core residual operations. The schematic diagram of the structure
is shown in Figure 6:

In the description provided, x represents the input to the
residual block, and F(x) represents the residual mapping
function. W1 to W3 are network layers.

- W1: It utilizes a 1 × 1 convolutional layer with 64 filters. This
operation controls the number of channels, reducing the input
channels to decrease computational complexity. This
reduction allows the network model to be deeper while
preventing overfitting issues.

- W2: It employs a 3 × 3 convolutional layer with 64 filters. This
operation performs convolution to extract features, increasing
the nonlinearity of the network and enhancing accuracy.

- W3: It uses a 1 × 1 convolutional layer with 256 filters. This
operation increases the output channels, restoring the number
of channels to the original size, and enhancing the model’s
expressive power and discriminative ability.

ReLU (Rectified Linear Unit) serves as the activation function.
ReLU is a nonlinear activation function that is faster computationally
compared to other activation functions like sigmoid and tanh, as it does
not involve complex exponential computations.

The identity mapping involves adding the input directly to the
output of the final convolutional layer. This process avoids
information loss and ensures that the current network layer can
always learn the training results from any preceding layer through
identity mapping, facilitating effective cross-layer propagation.

The soft mask component is used to generate attention factors,
enabling the selective capture of essential features from the input

FIGURE 6
Schematic diagram of bottleneck residual block.

FIGURE 7
The receptive field comparison between mask branch and trunk
branch.
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image while ignoring redundant information. Unlike the
conventional stacking of attention blocks, this study adopts the
concept of residual learning, where the output of the backbone is
added to the result combined with attention. Here, the output of the
backbone is considered the identity mapping x, and the result of
multiplying the soft mask output with the backbone output is
considered the residual mapping F(x). This approach results in a
stack of attention modules, as illustrated in Figure 7.

The softmask component consists of fast feedforward scanning and
top-down feedback steps. In the soft mask part, an expanded receptive
field is utilized to quickly capture more image features while collecting
information from the entire image. This process mimics the behavior of
the human eye, where one first scans the entire object to gather overall
information and then focuses on specific local features. Subsequently,
the scanned and collected information is combined with the original
image, which contains labeled information.

5.2 Evaluation metrics

The harmonic mean, often used to evaluate the classification
accuracy of binary models, is also widely applied in the NILM
domain. As shown in Eqs (11)-(13).

Fscore � 2PreRecall

Pre + Recall
(11)

Pre � TP

TP + FP
(12)

Recall � TP

TP + FN
(13)

In the equation:

- Pre represents precision, which is the ratio of true positives to
all instances identified as positive by the model.

- Recall represents recall, which is the ratio of true positives to all
actual positive instances.

- TP represents true positives, indicating instances correctly
identified as the actual class.

- FP represents false positives, indicating instances incorrectly
identified as the actual class.

- FN represents false negatives, indicating instances incorrectly
identified as other classes.

6 Experimental results and analysis

6.1 Experimental conditions

The method proposed in this paper is based on offline system
testing. It employs the TensorFlow 2.0 deep learning framework on
the Python 3.8 platform. The hardware platform utilized consists of
a 2.70 GHz Intel® Core™ i5-10210U CPU with 16 GB RAM.

According to the preprocessing of the collected bus current data,
which converts one-dimensional reactive power signals into two-
dimensional images as described in Section 4, and the pretraining
using the RAN detailed in Section 5.

The processing of input in our study is based on the Fryze power
theory, which involves handling the current in PLAID and extracting

the non-active component sequences of the current for one steady-state
cycle (500 sampling points) after the device starts. This sequence is used
to construct a two-dimensional Gramian Angular Field (GAF) plot,
which serves as the final input to the RAN network.

In this study, the effectiveness of the proposed algorithm is
validated using the publicly available dataset PLAID. This dataset
comprises current and voltage data from household appliances,
including energy-saving lamps, washing machines, air
conditioners, microwave ovens, and other common appliances
used in 55 households in Pittsburgh, Pennsylvania, United States.
The dataset was collected in 2014, consisting of 1,074 samples with a
sampling frequency of 30 kHz. Due to its high sampling frequency, it
captures richer information about the original current and voltage
changes compared to low-frequency sampling. Hence, this dataset is
commonly used in the NILM field to evaluate the effectiveness of
non-intrusive load recognition methods. Methods for detecting
appliance switching moments and separating them have been
extensively discussed in practical applications; therefore, this
paper does not delve into these discussions.

6.2 Experimental results of PLAID

According to the Fryze Power Theory described in Section 4, the
steady-state current of each household appliance load is
decomposed into active and reactive components within one
electrical cycle. Subsequently, the reactive power components are
normalized, as illustrated in Figure 8.

From Figure 8, it is evident that there is a certain degree of
distinction between loads. However, there are still some appliances
that are easily confused. For instance, air conditioners, incandescent
lamps, and fans are challenging to differentiate, as are energy-saving
lamps and laptops. Therefore, further feature extraction is required.
Consequently, the one-dimensional reactive power signals of
household appliances are transformed into two-dimensional
images. The transformation of the 11 types of household
appliances in PLAID into their respective GAF images is
illustrated in Figure 9.

FIGURE 8
Visualization of the reactive component of the current.
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From Figure 9, it can be observed that the GAF images
corresponding to different household appliances exhibit distinct
patterns and significant differences. This leads to a considerable

improvement in recognizability compared to single-dimensional
reactive power signals. Although there is a slight overall similarity in
the color layout of GAF images for a few household appliances, such as

FIGURE 9
GAF diagram of 11 electrical appliances in PLAID.

FIGURE 10
Confusion matrix based on one-dimensional reactive electrical signal.
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incandescent lamps and water heaters, they can still be distinguished
based on detailed patterns. Moreover, the attention factors included in
the soft mask part of the pre-trained RAN contribute to detailed
recognition. The experimental results on PLAID are presented
through confusion matrices. Figure 10 shows the results based on

one-dimensional reactive power signals, while Figure 11 displays the
results based on GAF images. In the confusion matrices, the row labels
represent the predicted appliance category labels, the column labels
represent the actual appliance category labels, and the values on the
main diagonal represent the number of appliances correctly recognized.

FIGURE 11
Confusion matrix Based on 2D GAF Graph.

FIGURE 12
The evaluation results of RAN network.
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The off-diagonal values correspond to the number of appliances
incorrectly classified as other appliance categories.

Taking the example of air conditioners from Figure 11: TP = 64,
FP = 2, FN = 1. Therefore, the accuracy of air conditioners is
approximately 96.97%, the recall rate is about 98.46%, and the Fscore

is 97.69%. Table 1 displays the Fscore for all 11 appliances under
different features.

From Table 1, it can be observed that the F-scores for air
conditioners, vacuum cleaners, washing machines, energy-saving
lamps, incandescent lamps, fans, and laptops have all been
improved. Among them, the F-scores for vacuum cleaners, energy-
saving lamps, fans, and laptops are 100.00%. This demonstrates that
non-intrusive load recognition based on feature extraction from two-
dimensional GAF, images outperforms recognition based on a single
feature, the reactive power component.

The relatively low F-scores for certain household appliances
such as refrigerators, hairdryers, water heaters, and air conditioners,
even after integrating the features from two-dimensional GAF
images with the one-dimensional reactive power signals, can be
attributed to the fact that these four types of household appliances
often operate in multiple different states alternately. This variation
in load characteristics leads to confusion with other appliances.
Consequently, there is a need for further research into classifiers
capable of recognizing loads with multiple state transitions.
Currently, this area of research is still under development and
has not reached maturity.

The smaller the loss value, the better the model’s performance
in the task. As observed from Figure 12, the training set curve
exhibits a relatively smooth descending trend, and the similarity
between the testing set curve trend and the training set descent
indicates that the model demonstrates favorable generalization
performance. The precision value steadily increases with the
number of training iterations, eventually stabilizing. Notably,
there is no evidence of overfitting, and the overall performance
is deemed satisfactory.

6.3 Comparative analysis of different
methods

To compare the performance of different methods in NILM, this
study conducted a comparison using the same PLAID dataset, as
shown in Table 2:

In the comparison, Reference (Liu et al., 2021) utilized weighted
pixel images of V-I trajectories as input data for Convolutional Neural
Networks (CNNs), allowing for the automatic extraction of key load
classification features. However, this method achieved a relatively low
recognition accuracy. Reference (De Baets L et al., 2018) used one cycle
of current and voltage data for each load and applied Recurrence Graph
(RG) techniques to generate Weighted Recurrent Graphs (WRG) as
input for CNNs. Compared to V-I trajectories, this significantly
improved the classification performance. Still, optimizing the relevant
hyperparameters forWRGproved to be tedious in practical experiments.
Reference (Faustine A et al., 2020) further proposed Adaptive Weighted
Recurrence Graph Blocks (AWRG) based on the work of (De Baets L
et al., 2018), optimizing hyperparameter selection and enhancing
recognition accuracy.

In comparison, the method employed in this paper, utilizing
GAF encoding, is simpler and more efficient. It avoids the
complexity of hyperparameter selection while ensuring rich load
characteristic information for the RAN model to extract. On the
same dataset, it achieved higher recognition accuracy compared to
the methods (De Baets L et al., 2018; Faustine A et al., 2020).

7 Conclusion

The proposedmethod addresses the challenges in the field of NILM
related to insufficient information in two-dimensional image data,
performance degradation in network optimization, and the issue of
gradient disappearance. This approach combines GAF encoding and
RAN to enhance non-intrusive load recognition. By transforming one-

TABLE 1 The Fscore values of 11 electrical appliances based on different feature extraction.

Device One-dimensional reactive force GAF chart Device One-dimensional reactive force GAF chart

Air conditioner 91.06 97.69 fridge 97.06 94.29

Microwave 99.64 99.64 hairdryer 98.10 94.69

Vacuum 98.67 100.00 heater 98.55 97.06

Washing kettle 93.88 98.12 fan 97.78 97.06

Compact fluorescent lamp 98.55 100.00 laptop 98.52 100.00

Incandescent light bulb 95.59 99.13

TABLE 2 Comparison of different methods.

Literature Load characteristic Treatment Recognition model Fscore

Liu et al. (2021) V-I trajectories Weighted pixelation CNN 77.6

De Baets L et al. (2018) current, voltage RG + WRG CNN 91.0

Faustine A et al. (2020) voltage AWRG CNN 97.4

Methodology of the paper current GAF RAN 98.2
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dimensional reactive power signals into two-dimensional images using
GAF matrices, the method effectively integrates NILM with computer
vision, thereby improving the information content in two-dimensional
images. The inclusion of attention factors in the RAN network, coupled
with GAF images, enables accurate recognition of household appliance
loads. The bottleneck residual blocks effectively mitigate network
performance degradation and gradient disappearance issues.

However, the accuracy of the proposed method decreases when
identifying loads with multiple state transitions. Future research will
focus on studying the electrical quantity variations during the state
transitions of such loads, aiming to further enhance the recognition
accuracy in these scenarios LIU et al., 2023, Tu et al., 2018.
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