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Partial Deletion of Perk Improved High-Fat Diet-Induced 
Glucose Intolerance in Mice
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Although pancreatic endoplasmic reticulum kinase (PERK) is indispensable to beta cells, low-dose PERK inhibitor improved glu-
cose-stimulated insulin secretion (GSIS) and hyperglycemia in diabetic mice. Current study examined if partial deletion of Perk 
(Perk+/-) recapitulated the effects of PERK inhibitor, on the contrary to the complete deletion. Perk+/- mice and wild-type controls were 
fed with a high-fat diet (HFD) for 23 weeks. Glucose tolerance was evaluated along with serum insulin levels and islet morphology. 
Perk+/- mice on normal chow were comparable to wild-type mice in various metabolic features. HFD-induced obesity was not influ-
enced by Perk reduction; however, HFD-induced glucose intolerance was significantly improved since 15-week HFD. HFD-induced 
compromises in GSIS were relieved by Perk reduction, accompanied by reductions in phosphorylated PERK and activating transcrip-
tion factor 4 (ATF4) in the islets. Meanwhile, HFD-induced islet expansion was not significantly affected. In summary, partial dele-
tion of Perk improved glucose tolerance and GSIS impaired by diet-induced obesity, without changes in body weights or islet mass.
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INTRODUCTION

Pancreatic endoplasmic reticulum kinase (PERK) is a protein in 
the endoplasmic reticulum (ER) and plays critical roles in pan-
creatic beta cells. Genetic compromise of PERK induced pan-
creatic atrophy and insulin insufficiency, along with early diabe-
tes [1,2].

In contrast to ablation of Perk expression, chronic treatment 
of PERK inhibitors GSK2606414 and GSK2656157 at low dos-
es rather improved glucose-stimulated insulin secretion (GSIS) 
in mouse and human islets [3], improving hyperglycemia in a 
mouse model of type 2 diabetes [4]. Meanwhile, the PERK in-
hibitors may have unexpected targets besides PERK: they were 

proposed to repress receptor-interacting serine/threonine kinase 
1 (RIPK1) kinase activity, independently on PERK [5]. There-
fore, it is unclear if the anti-diabetic effects of PERK inhibitors 
were mediated by attenuation of PERK or RIPK1 or both.

Therefore, we examined if partial reduction of Perk leading to 
attenuation of PERK activity would recapitulate effects of syn-
thetic PERK inhibitors in mice.

METHODS

Animal study
We used male Perk+/-mice (from Dr. John C. Bell, University of 
Ottawa) and the wild-type littermates, with mixed background 
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of C57BL/6 and BALB/c. Genotyping by polymerase chain re-
action (PCR) demonstrated the wild-type allele and mutant allele 
as bands of 231 and 302 bp, respectively (primer sets in Supple-
mental Table S1) [6]. High-fat diet (HFD) was fed for 23 weeks 
from 5 weeks of age. Insulin levels were measured using an en-
zyme-linked immunosorbent assay (ELISA) kit (80-INSMS-
E01, ALPCO, Salem, NH, USA), from serum obtained before 
and after intraperitoneal glucose injection (1 g/kg weight). All 
the animal studies were performed in accordance with the Insti-
tutional Animal Care and Use Committee (SNU-190808-1, 22-
0281-S1A1).

Islet expression of unfolded protein response markers
Mouse islets were isolated as previously, and total RNA or pro-
tein were extracted for reverse transcription PCR and Western 

blotting (Supplemental Tables S2, S3) [4].

Islet morphology
After 23-week HFD, pancreas was harvested and embedded in 
paraffin. Microscopic examination was conducted after hema-
toxylin and eosin staining and immunohistochemical staining 
(Supplemental Table S3) using Aperio Digital Pathology and 
ImageScope (Leica Biosystems, Wetzlar, Germany).

Statistical analysis
Data are expressed as mean±standard error of the mean. Statis-
tical analyses were executed using Prism (GraphPad, San Di-
ego, CA, USA). P values <0.05 were considered statistically 
significant.

Fig. 1. Metabolic phenotypes and islet morphology of pancreatic endoplasmic reticulum kinase (Perk)+/- mice. Adult male Perk+/- mice and 
male wild-type littermates were compared after confirmation of the genotypes and Perk expression. Intraperitoneal glucose tolerance test (1 
g/kg weight) and insulin tolerance test (regular insulin 0.5 U/kg weight) were performed after overnight fasting at 20 weeks old. (A) Pictures 
of reverse transcription-polymerase chain reaction (left) and Western blotting (right) using isolated islets. (B) Body weights. (C) Fed blood 
glucose levels. (D) Glucose tolerance test. (E) Insulin tolerance test. (F) Serum insulin levels before and after glucose loading. (G) Pancreas 
weights. (H) Representative pancreatic sections of hematoxylin and eosin staining. For (B-E), two-way repeated-measures analysis of vari-
ance was used. Paired t test for (F) and Student’s t test for (G) were applied. No statistical differences were found. Animal numbers=10 to 
16 for each genotype. Gapdh, glyceraldehyde-3-phosphate dehydrogenase.
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RESULTS

Characteristics of Perk+/- mice
Reduction of Perk expression was confirmed by RNA and pro-
tein levels in islets (Fig. 1A). Body weights, blood glucose lev-
els, glucose tolerance, insulin tolerance, and GSIS were compa-
rable between the genotypes during age of 9 to 18 weeks (Fig. 
1B-F). Reduction of Perk did not affect pancreatic weights and 
islet morphology (Fig. 1G, H).

Changes in glucose levels by HFD 
HFD-induced weight gain without difference between the geno-
types (Fig. 2A). HFD-induced hyperglycemia in the wild-type 
mice (P<0.001) (Fig. 2B). Perk+/- mice showed significantly 
lower glucose levels compared to the wild-type since 17 weeks 
of HFD (9.2 mM vs. 11.5 mM in average, P<0.05). HFD-in-
duced glucose intolerance was not affected by Perk reduction 
after 5-week HFD (Fig. 2C); however, it was significantly im-
proved after 15-week HFD (by 46% of HFD-induced increment 
in area under the curve, P<0.01) (Fig. 2D).

Changes in insulin levels by HFD 
The HFD-induced hyperinsulinemia without significant differ-
ence between the genotypes (Fig. 2E). Insulin stain intensities 
on the pancreas sections were also comparable (Fig. 2H). When 
the plasma insulin levels were adjusted by the corresponding 
glucose levels, either HFD or Perk reduction did not influence 
insulin-to-glucose ratio at fasting, while HFD suppressed the ra-
tio after glucose loading, by 20% (P<0.01) (Fig. 2F). It was re-
covered by Perk reduction (P<0.05). Fasting insulin multiplied 
by glucose levels suggesting insulin resistance significantly in-
creased by HFD in the control mice by 2-fold, and it was slight-
ly lower in Perk+/- mice than in the wild-type (P<0.05) (Fig. 2G). 

Changes in unfolded protein response markers in the islets 
by HFD
According to the immunohistochemical staining, HFD-induced 
phosphorylated PERK (P-PERK) was significantly down-regu-
lated in the Perk+/- mice. However, cleaved caspase-3 was not 
induced by HFD in the islets of either genotype (Fig. 2H), indi-
cating that adapted unfolded protein response had prevented ER 
stress. Nuclear activating transcription factor 4 (ATF4) stain in 
the islets seemed slightly down-regulated in the Perk+/ mice 
compared to the wild-type. Reductions in the P-PERK along 
with phosphorylated eukaryotic translation initiation factor 2A 
(P-EIF2A) and ATF4, with no significant changes in the final 

index of ER stress C/EBP homologous protein (CHOP), were 
reproduced in the Perk+/ islets exposed to chronic lipotoxicity in 
vitro (Supplemental Fig. S1).

Changes in islet morphology by HFD 
HFD increased average islet sizes in both the genotypes by 65% 
(Fig. 2I). HFD increased islet numbers in the wild-type (0.64 vs. 
1.11/mm2 pancreas, P<0.05) (Fig. 2J). Despite a tendency to 
decrease in the numbers by Perk+/- reduction (0.92/mm2), there 
was no statistical difference between the genotypes. Next, islet 
numbers according to islet sizes revealed that frequency of small 
islets (<1,000 μm2) was different from that of the other sizes: 
more islets in the HFD-fed wild-type, which was significantly 
inhibited in the Perk+/- mice (P<0.001) (Fig. 2K). Finally, islet 
area relative to the pancreas area increased in wild-type mice by 
HFD by 2-fold with an insignificant tendency to decrease by 
Perk reduction (Fig. 2L).

 
DISCUSSION

In this study, reduction of Perk relieved HFD-induced P-PERK 
in the islets (Fig. 2H) and impairment of GSIS in mice (Fig. 
2F), just like administration of low-dose PERK inhibitor [4]. 
These findings were accompanied by improvement of glucose 
intolerance, only after prolonged HFD (Fig. 2B-D), suggesting 
beta cell exhaustion which could not be reproduced in vitro 
(Supplemental Fig. S2) [7].

Initially, Perk+/- mice were reported slightly glucose intolerant 
[6]. However, Wang et al. [8] found that Perk+/- mice exhibited 
hyperinsulinemia during neonatal development, causing tran-
sient hypoglycemia. They observed that Perk reduction in pan-
creas, but not in the liver, decreased blood glucose levels. Dif-
ferent genetic backgrounds and ages might explain the conflict-
ing results. In a pathologic environment, Gupta et al. [9] ob-
served that a reduction of Perk dosage in Akita mice with insu-
lin deficient diabetes increased pancreatic insulin contents and 
improved hyperglycemia, compatible with our current study.

Expansion of beta cell mass is caused by altered balance be-
tween beta cell death and generation [10]. Current study repro-
duced HFD-induced increases in islet sizes and numbers [11]. 
Because PERK is critical to beta cells generation [2], the sup-
pression of HFD-induced small islets in Perk+/- mice (Fig. 2K) 
might reflect inhibition of islet neogenesis due to low PERK ac-
tivity, and/or secondary to less severe insulin resistance (Fig. 
2G). Down-regulation of ATF4 (Fig. 2H, Supplemental Fig. S1) 
may have a role in the changes in the function and generation of 
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Fig. 2. Changes in the metabolic phenotypes and islet morphology by high-fat diet (HFD) in pancreatic endoplasmic reticulum kinase (Perk)+/- 
mice. Mice of either genotype were given a HFD at age 5 weeks for 23 weeks, and compared to wild-type (WT) mice on chow-diet. Body 
weights (A) and random blood glucose levels (B) were monitored. After 5 and 15 weeks of HFD, intraperitoneal glucose tolerance tests were 
performed (1 g/kg weight) (C, D). Serum insulin levels were measured before and 15 minutes after the glucose loading after 15-week HFD 
(E), and were subject to assess insulin secretion by adjustment with glucose levels (F). Insulin resistance was estimated by multiplying fasting 
insulin and glucose levels (G). Representative pictures of immunohistochemical stains in the pancreas (islets marked by broken lines) extract-
ed after 23-week HFD or normal chow (H), pooled analysis for average islet sizes (I), islet numbers on each section adjusted by the pancreas 
area (J), islet size distribution after pooling the islets in each group (K), and relative islet area adjusted by the pancreas area (L). For (A-D), 
two-way repeated-measures analysis of variance (ANOVA) and Bonferroni posttests were performed. For the others, one-way ANOVA and 
Bonferroni posttests were applied, except for (K) where qui-square test was applied. Animal numbers, 7 to 17 for each group; pancreas area, 
37.7±2.5 mm2/section; islet numbers, median 35/section from a mouse. IPGTT, intraperitoneal glucose tolerance test; NS, no significant dif-
ference; LN, logarithmus naturalis; P-PERK, phosphorylated PERK; c-CAS3, cleaved caspase-3; ATF4, activating transcription factor 4. 
aP<0.05; bP<0.01; cP<0.001 between the indications.
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Perk+/- islet. Intriguingly, partial Perk reduction has been report-
ed to increase mature beta cell mass under physiologic condi-
tion [8]. PERK inhibitor at low doses did not influence beta cell 
apoptosis and mass in diabetic mice [4], suggesting that beta 
cell generation did not change significantly. Further studies are 
required to answer these complicated questions. 

We also observed that HFD-induced insulin resistance partial-
ly improved in the Perk+/- mice (Fig. 2G). P-PERK significantly 
increased in the liver of obese mice [12], which may decrease 
insulin sensitivity through forkhead box protein O1 (FOXO1) 
[13]. Blocking of PERK activity has attenuated fatty acid-in-
duced insulin resistance in hepatocytes [14]. Therefore, the im-
proved insulin resistance might have contributed to the improved 
glucose intolerance in the Perk+/- mice.

There are several weak points in this study. Glucose loading 
did not induce significant insulin levels (Fig. 2E), which reflects 
inappropriate dose of glucose and/or the measurement time [15]. 
However, GSIS calculated by insulin-to-glucose ratio could 
support our hypothesis, instead. Another point is that islet cell 
composition was not evaluated. Critically, this study cannot tell 
contribution of RIPK1 in the effects of PERK inhibitors. It re-
quires animal models with RIPK1-insufficient islets. Indeed, in-
hibition of RIPK1 is known to enhance islet function [16]; 
therefore, PERK inhibitors might have anti-diabetic effects 
through attenuation of both PERK and RIPK1.

In conclusion, attenuation of PERK activity by genetic sup-
pression improved GSIS and hyperglycemia in a mouse model 
of obesity-induced diabetes, supporting PERK as a new target 
for diabetes therapy.
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