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Background:Hepatocellular carcinoma (HCC) often resists traditional treatments,
necessitating new therapeutic approaches. With immune checkpoint therapy
emerging as a promising alternative, understanding its resistance mechanisms
becomes crucial.

Methods: Using 22 samples from 11 HCC patients, we conducted a
comprehensive transcriptomic and metabolomic analysis of peri-tumoral
hepatic tissues from those treated with Atezolizumab.

Results: We identified significant metabolic alterations and a correlation between
the COMMD3-BMI1 gene and Dephospho-CoA metabolite. Findings suggest
these as potential markers for therapeutic resistance, as evidenced by
upregulated COMMD3-BMI1 and downregulated Dephospho-CoA in non-
responsive patients, with animal models further supporting these observations.

Discussion: The study highlights COMMD3-BMI1 and Dephospho-CoA as critical
actors in immune checkpoint therapy resistance in HCC, providing insights and
potential pathways for more effective therapeutic strategies.

KEYWORDS

hepatocellular carcinoma, immune checkpoint therapy, Atezolizumab, COMMD3-BMI1,
Dephospho-CoA, therapy resistance, transcriptomics, metabolomics

Introduction

Hepatocellular carcinoma (HCC) ranks as the third leading cause of cancer-related
deaths globally, with an alarming incidence rate of approximately 905,677 new cases and
830,180 deaths in 2020 alone (Gao et al., 2023). The incidence is particularly pronounced in
Eastern Asia and sub-Saharan Africa due to the high prevalence of chronic hepatitis B and C
infections, which contribute to approximately 80% of HCC cases (Nordenstedt et al., 2010).
The molecular mechanism underlying HCC is intricate, involving a cascade of genetic and
epigenetic alterations leading to the deregulation of crucial cellular pathways controlling cell
proliferation, apoptosis, and DNA repair (Herceg and Vaissière, 2011). Diagnostics of HCC
primarily relies on a combination of imaging techniques—like ultrasound, CT, and
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MRI—and serum biomarkers, chiefly alpha-fetoprotein (AFP).
Nevertheless, AFP’s sensitivity ranges from 41% to 65%, and
specificity from 80% to 94%, thereby limiting its diagnostic
efficacy, especially in the early stages of the disease (Galle et al.,
2019). Treatment modalities are diverse, ranging from surgery,
radiotherapy, and chemotherapy to targeted therapies and
immunotherapy. Surgical methods, including resection and
transplantation, are often constrained by the tumor’s size and
stage, patients’ liver function, and overall health status. The 5-
year survival rate for localized HCC is approximately 31%, which
plummets to a meager 2% for distant metastasis (Jariwala and
Sarkar, 2016).

In recent years, immunotherapy has burgeoned as a promising
alternative, with agents like Atezolizumab heralding significant
clinical benefits. Immune checkpoint inhibitors (ICIs) function
by revitalizing the host’s immune response against tumor cells.
Agents like Atezolizumab have been at the forefront, heralding
significant clinical benefits by meticulously targeting and
inhibiting the PD-L1 checkpoint receptor. The mechanism
encompasses reinvigorating the immune system, thereby
facilitating the identification and subsequent destruction of
cancer cells, which usually adeptly camouflage themselves from
the body’s immune surveillance (Rizzo et al., 2021).
Atezolizumab, a fully humanized, engineered monoclonal
antibody of IgG1 isotype, is specifically designed to bind to PD-
L1 and block its interactions with both PD-1 and B7.1 receptors
(Cheng et al., 2019). This interference restores anti-cancer immune
responses by enabling the activation of T-cells and the influx of
activated T-effector cells into the tumor microenvironment, thereby
promoting the death of tumor cells. Clinical trials have evidenced
that Atezolizumab improves the overall survival rates and exhibits a
favorable safety profile in a subset of HCC patients.

However, immunotherapy, while groundbreaking, is not devoid
of challenges. One of the prominent hurdles is the heterogeneity in
response rates among patients. Statistics reveal that a significant
proportion of patients—approximately 70%–85%—do not respond
effectively to immune checkpoint inhibitors, including
Atezolizumab (Ganesh et al., 2019). This non-responsiveness
could be attributed to various factors including genetic
mutations, expression levels of PD-L1, and the overall tumor
microenvironment. Moreover, resistance to immune checkpoint
therapy, both inherent and acquired post-treatment, poses a
substantial impediment to the success of immunotherapy in
HCC. The mechanisms underpinning this resistance are complex
and multifaceted, encompassing alterations in antigen presentation,
defects in the interferon signaling pathway, and the expression of
alternative immune checkpoints (Hack et al., 2020; Shukla et al.,
2021). Understanding these mechanisms is paramount as it provides
a foundation for developing strategies to overcome resistance, thus
enhancing the efficacy of immune checkpoint therapy in HCC.

Notably, while prior research endeavors have provided
invaluable insights into the tumor tissues themselves, the peri-
tumoral hepatic tissue—a pivotal yet often overlooked
component—has not been meticulously explored (Tang et al.,
2016). Given its crucial role and dynamic nature, understanding
the molecular and cellular alterations within the peri-tumoral
hepatic tissue is imperative. Our study aims to shed light on this
uncharted territory, offering an in-depth transcriptomic and

metabolomic analysis of peri-tumoral hepatic tissue in HCC
patients resistant to Atezolizumab, thereby unveiling novel
mechanisms of resistance and paving the way for innovative
therapeutic strategies and interventions.

Methods

Sample collection

Initially, 21 patients diagnosed with hepatocellular carcinoma
(HCC) were prospectively enrolled in the study over a 12-month
period. Out of these, 11 patients, providing a total of 22 samples,
were selected for further analysis. Moreover, the study protocol was
reviewed and approved by the Institutional Review Board (IRB) of
our hospital, ensuring adherence to ethical guidelines and standards.
Patient inclusion was meticulously adhered to specific criteria: ages
between 18 and 75, a histopathological confirmed diagnosis of HCC,
no previous exposure to immune checkpoint inhibitors or related
immunotherapy, adequate organ function demonstrated through a
comprehensive metabolic panel, and an expected survival timeframe
extending beyond 12 weeks. Additionally, our experiment received
ethical approval from our hospital’s review board. Concurrently,
exclusion parameters were set to omit pregnant or breastfeeding
women, individuals with autoimmune diseases or
immunodeficiency, and those with malignancies other than HCC.
Upon the application of these stringent inclusion and exclusion
parameters, the initial cohort was refined down to 12 patients who
met the criteria robustly. From these selected participants, peri-
tumoral hepatic tissue samples were diligently collected both prior to
the administration of Atezolizumab and following the manifestation
of resistance to the therapy. The collection timeline was diligently
designed to allow for a nuanced understanding of the molecular
shifts occurring in response to the treatment and subsequent
resistance development. For the preservation of the integrity of
the collected tissue samples, each specimen was immediately
submerged in liquid nitrogen upon extraction. This rapid-
freezing process was crucial for preventing the degradation of
RNA, proteins, and other vital cellular components, thereby
ensuring that the samples would be viable for the subsequent
transcriptomic and metabolomic analyses planned for the study.
Each frozen sample was then carefully transferred and stored in
a −80°C freezer until the commencement of the analysis phase.

Evaluation of immunotherapy response

The response to immunotherapy was meticulously assessed
based on established clinical criteria to discern between
responders (Response) and non-responders (Non-Response) to
the Atezolizumab treatment.

Patients were categorized as responders if they exhibited a
partial or complete response to the treatment, as delineated by
the Response Evaluation Criteria in Solid Tumors (RECIST) version
1.1 (Eisenhauer et al., 2009). Specifically:

Complete Response (CR): Total disappearance of all target
lesions, with no new lesions identified. No evidence of non-target
lesion progression is noted, and tumor marker levels are within the
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normal range. Partial Response (PR): At least a 30% decrease in the
sum of diameters of target lesions, taking as reference the baseline
sum diameters, with no evidence of progression in non-target
lesions or the emergence of new lesions. For Non-Response
Criteria, patients were identified as non-responders in cases of
progressive disease or stable disease as follows: Progressive
Disease (PD): A minimum 20% increase in the sum of diameters
of target lesions, with an absolute increase of at least 5 mm, or the
appearance of one or more new lesions. Alternatively, progression in
non-target lesions also constitutes PD. Stable Disease (SD): Neither
sufficient shrinkage to qualify for PR nor sufficient increase to
qualify for PD, taking as reference the smallest sum diameters
while on the study.

RNA extraction and RNA-seq sequencing

Upon the commencement of sample analysis, RNA extraction
from the meticulously collected peri-tumoral hepatic tissues
initiated, deploying the TRIzol Reagent method due to its efficacy
in yielding high-quality RNA. Each frozen tissue sample was
homogenized in TRIzol, and RNA was subsequently isolated
following a series of centrifugation steps that segregated RNA
from DNA and proteins, thus ensuring the acquisition of pure
RNA. For RNA-seq sequencing, the extracted RNA underwent a
quality check using the Agilent 2100 Bioanalyzer to ascertain the
integrity and concentration of RNA. Following verification, libraries
were prepared using the Illumina TruSeq RNA Sample Preparation
Kit, adhering strictly to the manufacturer’s protocol. The prepared
libraries were then sequenced on the Illumina HiSeq 2000 platform,
which facilitated the generation of paired end reads, providing
comprehensive coverage and depth for accurate transcriptome
profiling.

RNA-seq quantification
For the RNA-seq data quantification, the study employed the nf-

core/rnaseq pipeline, a highly efficient and reproducible tool
designed for the analysis and quantification of high-throughput
RNA-sequencing data (Ewels et al., 2020). This sophisticated
pipeline is open-source and supports the latest tools and formats
which facilitate a flexible and reproducible analysis of the RNA-seq
data. Upon receiving the raw sequencing data, the initial step
involved quality control checks using FastQC to ensure the
integrity and quality of the raw reads (Brown et al., 2017). The
nf-core/rnaseq pipeline was then configured to align the reads to the
reference genome using the STAR aligner due to its high accuracy
and efficiency in mapping reads to a reference genome. The aligned
reads were then quantified at the gene level using the featureCounts
function incorporated within the pipeline (Dobin et al., 2013).
featureCounts is a highly efficient general-purpose read
summarization program that counts mapped reads for genomic
features such as genes, exons, promoter, gene bodies, genomic bins,
and chromosomal locations. Following the quantification, the RNA-
seq count data underwent normalization to adjust for sequencing
depth and RNA composition. Normalization is crucial for removing
biases that could affect the comparison between samples. After
normalization, differential expression analysis was conducted to
identify genes that were expressed differently between sample

groups. The DESeq2 package was utilized for this purpose due to
its robustness in analyzing count data and identifying differentially
expressed genes (Love et al., 2014).

Metabolomic analysis

The process initiated with the meticulous homogenization of the
hepatic tissue samples, employing a 1:3 (v/v) cold methanol-water
mixture from Sigma-Aldrich (St. Louis, MO, USA). This mixture
efficaciously facilitated the extraction of a wide array of metabolites.
Following this, a chloroform (Fisher Scientific, Hampton, NH, USA)
and water phase separation technique was applied, effectively
segregating hydrophilic and lipophilic metabolites. Post-
centrifugation, both aqueous (containing hydrophilic metabolites)
and organic (harboring lipophilic metabolites) layers were isolated
and carefully collected. After the extraction, the acquired layers were
evaporated under nitrogen conditions using a gentle nitrogen
evaporator (Organomation, Berlin, MA, USA). The residues were
then reconstituted meticulously; acetonitrile-water (ACN-H2O)
mixture from Honeywell (Charlotte, NC, USA) was used for
hydrophilic metabolites, while a combination of isopropanol-
acetonitrile (IPA-ACN) from Thermo Fisher Scientific (Waltham,
MA, USA) was employed for lipophilic ones. The liquid
chromatography-mass spectrometry (LC-MS) analysis engaged an
Acquity UPLC system (Waters Corporation, Milford, MA, USA)
paired with a Synapt G2-Si HDMS mass spectrometer (Waters
Corporation, Milford, MA, USA). Hydrophilic metabolites were
channeled through a BEH Amide column (Waters Corporation,
Milford, MA, USA) with a gradient mixture of water and
acetonitrile, each containing 0.1% formic acid from Sigma-
Aldrich (St. Louis, MO, USA). Lipophilic metabolites utilized a
BEH C8 column (Waters Corporation, Milford, MA, USA) with a
gradient of acetonitrile and isopropanol, both containing 0.1%
formic acid. The mass spectrometer operated in both positive
and negative ion modes to ensure a comprehensive detection of
metabolites. The subsequent data processing, including peak
detection and alignment, utilized the Progenesis QI software
(Nonlinear Dynamics, Newcastle upon Tyne, UK). Identified
metabolites were annotated, verified against the Human
Metabolome Database (HMDB) and METLIN, ensuring a
thorough and accurate metabolomic profile for each sample in
the study.

Experimental animals and hepatocellular
carcinoma model

FVB mice were acquired from the Institute of Zoology, Chinese
Academy of Sciences (Beijing, China), and were housed under
specific pathogen-free conditions, with free access to food and
water. All animal experiments were conducted in accordance
with the guidelines approved by the Animal Ethics Committee of
our institution. After a standardized acclimatization period,
hepatocellular carcinoma (HCC) induction commenced. To
induce HCC, mice were subjected to a carefully calibrated dose
regimen of diethylnitrosamine (DEN, Sigma-Aldrich, St. Louis, MO,
USA), a potent hepatocarcinogen. DEN was administered through
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intraperitoneal injection starting with a dose of 20 mg/kg body
weight when the mice were 15 days old, followed by a dose of
30 mg/kg in the third week, and then 50 mg/kg for the last 6 weeks.
For the administration of immunotherapy, the anti-PD-
L1 monoclonal antibody Clone 10F.9G2, Bio X Cell, West
Lebanon, NH, USA was selected, with intraperitoneal injections
of 100 µg per mouse administered twice a week.

RT-PCR analysis

Complementary DNA (cDNA) synthesis was performed with 1 µg
of total RNA using the High-Capacity cDNAReverse Transcription Kit
(Applied Biosystems, Foster City, CA,USA). For the PCR amplification,
specific primers designed for the BMI1 gene were utilized. The forward
primer sequence was 5′-ACTACACGCTAATGGACATTGCC-3′, and
the reverse primer sequence was 5′-CTCTCCAGCATTCGTCAGTCC
A-3′. The PCR conditions were set with an initial denaturation step at
95°C for 3 min, followed by 40 cycles of denaturation at 95°C for 30 s,
annealing at 60°C for 30 s, and extension at 72°C for 30 s, with a final
extension step at 72°C for 5 min. The relative expression levels of
COMMD3-BMI1 were quantified using the 2−ΔΔCTmethod, normalized
to the expression of the housekeeping gene GAPDH, the forward
primer sequence was 5′-CATCACTGCCACCCAGAAGACTG-3′,
and the reverse primer sequence was 5′-ATGCCAGTGAGCTTC
CCGTTCAG-3′.

Statistical analysis

A comprehensive statistical analysis was meticulously
conducted to discern significant differences and patterns within
the accumulated data. The Python3.7 programming language,
renowned for its versatility and the extensive library support for
data analysis and statistics, was deployed for this crucial phase of the
study. PCA was carried out using the HiPlot visualization tool, a
robust Python library designed for high-dimensional data (Li et al.,
2022). PCA facilitated the reduction of dimensionality of our dataset
while retaining the variance in the data. This approach allowed for
the identification and visualization of patterns and clusters within
the data, thereby providing an initial understanding of the
underlying structure and relationships within the observed
variables. HiPlot was selected for its interactive visualization
features, enabling more efficient exploration and interpretation of
PCA results. The paired T-test was chosen for its appropriateness in
analyzing the means of two related groups. The assumption of
normality was tested and confirmed, and subsequently, the T-test
was applied to evaluate whether the mean difference between paired
observations was statistically significant. Variable Importance in
Projection (VIP) Scores were calculated to identify significant
variables contributing to the variation and classification in the
PCA model. The VIP value for each variable was computed as a
weighted sum of the squared correlations between the variable and
the principal components. A variable with a VIP scores greater than
1.0 was considered important for the projection. This calculation
facilitated the prioritization of significant metabolites and genes in
the dataset, providing insight into the elements driving the
separation and classification observed in the PCA plots.

Results

Patient clinical information and
metabolomics

The study incorporated a cohort comprising 22 distinct samples,
originating from 11 patients, with each patient contributing a pair of
samples collected before and after Atezolizumab treatment
(Supplementary Table S1). This cohort featured a varied patient
demographic with ages ranging from 40 to 64 years, involving both
genders (six males and five females). Tumor sizes in these patients were
diverse, ranging from 1.17 to 9.49 cm,with tumor grades spanning from
G2 to G4, indicative of the tumor’s heterogeneity. All patients exhibited
non-responsiveness to Atezolizumab treatment, with varying levels of
PD-L1 expression, ranging from low tomedium, and tumormutational
burden (TMB) ranging from low to high. The microsatellite status
within the cohort predominantly showcased microsatellite stability
(MSS), with a few instances of high microsatellite instability (MSI-
H). Previous treatments the patients underwent before the study were
diverse, including chemotherapy, surgery, radiation, or none, and
comorbidities like diabetes and hypertension were also recorded,
with some patients having a smoking history. In the metabolomic
assessment of peri-tumoral hepatic tissues collected pre- and post-
Atezolizumab treatment, a revealing volcanic plot was elucidated in
Figure 1A, visually representing the significant metabolic alterations
observed. The plot designated metabolites that were upregulated
(depicted in red) and those that were downregulated (illustrated in
blue), providing a clear demarcation of the metabolic shifts post-
treatment. The subsequent categorization of these significantly
altered metabolites, as delineated in Figure 2A, presented a
predominant group of Glycerophospholipids accounting for a
substantial 56.25% of the changes. Carboxylic acids and their
derivatives also held a significant portion, constituting 12.5% of the
altered metabolic profile. Meanwhile, other categories such as Purine
nucleotides, Organoxygen compounds, and Organonitrogen
compounds each comprised 6.25% of the total, collectively
contributing to the intricate metabolic landscape observed in the
hepatic tissues following treatment. In a further nuanced
examination showcased in Figure 1C, the study focused on the
expression profile and Variable Importance in Projection (VIP) of
metabolites. Here, the heatmap vividly displayed the variance in
expression levels, with the three most significant metabolites
emerging as PC (14:0/18:1 (9Z)), PG (18:1 (11Z)/18:1 (12Z)-O
(9S,10R)), and Dephospho-CoA (Supplementary Table S2).

Metabolites PCA and KEGG enrichment
analysis

In the exploratory PCA of metabolites, Figure 2A unveils a SCREE
plot, with the y-axis denoting “ExplainedVariation” and the x-axis listing
15 Principal Components (PCs). The explained variation descends
progressively with each subsequent PC, exhibiting a moderate slope
rather than a sharp decline, indicative of the distribution of variance
across the PCs. Figure 2B presents a Pairs plot incorporating PC1
(explaining 47.83% of the variance), PC2 (25.27%), and PC3 (11.63%).
The plot visually exemplifies the relationships and distribution of data
points in the space defined by these principal components, providing
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insight into the structure and variance within the metabolomic data.
Furthermore, the PCA bi-plot illustrated in Figure 2C identifies the four
metabolites that are most prominent within the principal component
analysis: Dephospho-CoA, PC (14:0/18:1 (9Z)), DL-Glycerol 1-
phosphate, and PC(18:2 (9Z,12Z)/20:4 (8Z,11Z,14Z,17Z)). Figure 2D,
the Loadings plot, graphically represents the importance of each variable
(metabolites) to the principal components, with the y-axis indicating
“Principal Component” and the x-axis signifying “Component Loading”.
The previously mentioned four metabolites maintain their significance
in this representation, further emphasizing their importance in the
observed metabolic alterations. Lastly, Figure 2E delineates the PC

Clinical Correlates, depicting the relationships between the 10 PCs
and various clinical factors including Smoking History,
Comorbidities, Previous Treatments, MSI, TMB, PD-L1 Expression,
Grade, Tumor Size, Sex, and Age. Notably, within PC1, PC2, and PC3,
only MSI and Sex display negative correlations, while the remaining
factors exhibit positive correlations.

The KEGG Topology analysis is depicted in Figure 3A,
presenting a comparative perspective between the pre-treatment
(T1) and post-treatment (P) samples. On the x-axis, the graph
displays the impact value while the y-axis represents −log (p
value). Remarkably, one specific category within the Topology

FIGURE 1
(A) Volcano Plot ofMetabolites: Displays significantmetabolic alterations between pre- and post-treatment samples. Upregulatedmetabolites are in
red, and downregulated ones are in blue, with the x-axis showing fold change and the y-axis depicting −log10 (p-value). (B)Metabolite Classification Pie
Chart: Visual representation of significantly expressedmetabolites, segmented into categories. Glycerophospholipids comprise 56.25%, Carboxylic acids
and derivatives 12.5%, with Purine nucleotides, Organoxygen compounds, and Organonitrogen compounds each constituting 6.25%. (C) Heatmap
of Expression Profile and VIP of Metabolites: Depicts expression profiles and VIP scores of metabolites, emphasizing PC (14:0/18:1 (9Z)), PG (18:1 (11Z)/18:
1 (12Z)-O (9S,10R)), and Dephospho-CoA.
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analysis demonstrates extreme significance, standing out
prominently in the visual representation of the data, signaling its
potential importance and impact on the metabolic changes observed
post-treatment. Following, Figure 3B provides a visual summary of
the KEGG enrichment analysis, spotlighting the pathways that are
most significantly enriched with the identified metabolites. Notably,
the analysis reveals that the most significant pathways enriched are
“Choline metabolism in cancer”, “Glycerophospholipid
metabolism”, and “Retrograde endocannabinoid signaling”.

Transcriptomic analysis of peri-tumoral
hepatic tissues pre- and post-treatment

Through rigorous PCA analysis, a discernible shift in the
transcriptomic landscape of peri-tumoral hepatic tissues from
pre-to post-treatment stages is observed. The SCREE plot
(Figure 4A) sharply delineates a marked explained variation,
predominantly encapsulated within the initial principal
components, illustrating the dynamic alterations occurring in the
transcriptomic profile post-treatment. In our observation from the
Pairs plot (Figure 4B), a massive 92.63% of variance is encompassed
by PC1, with PC2 and PC3 accounting for 1.86% and 1.36%,

respectively. This substantial variance within PC1 significantly
influences the overall transcriptomic landscape, underlining the
pivotal role of elements contributing to PC1 in delineating the
transcriptomic disparities observed. Our findings reveal six
genes—COMMD3-BMI1, FAM72C, TAF1A, LOC101928318,
LOC102546298, and RHCE—emerging as notably significant in
Figure 4C’s PCA bi-plot (Supplementary Table S3). The Loadings
plot (Figure 4D) reaffirms the significance of these six genes,
consolidating their relevance and importance in understanding
the intricate transcriptomic changes unfolding post-treatment.
Finally, an analysis of PC Clinical Correlates (Figure 4E) reveals
intriguing correlations. Within PC1, a positive correlation is noted
with Previous Treatments, MSI, and PD-L1 Expression, while other
factors showcase a negative correlation.

Correlation analysis between significantly
expressed genes and metabolites & animal
experimental validation

In an endeavor to elucidate the relationship between
significantly expressed genes and metabolites, the top
10 significantly expressed genes and metabolites were selected for

FIGURE 2
(A) SCREE Plot: Displays the explained variation across 15 Principal Components (PCs), showcasing amoderate decline in variation explained by each
subsequent PC. (B) Pairs Plot: Illustrates the distribution of data points in the space defined by PC1 (47.83%), PC2 (25.27%), and PC3 (11.63%). (C) PCA Bi-
plot: Highlights four prominent metabolites in the PCA—Dephospho-CoA, PC(14:0/18:1 (9Z)), DL-Glycerol 1-phosphate, and PC(18:2 (9Z,12Z)/20:4
(8Z,11Z,14Z,17Z)). (D) Loadings Plot: Presents the component loadings for each metabolite, with the significant four metabolites still notable in
contributing to PCs. (E) PC Clinical Correlates: Visualizes correlations between 10 PCs and various clinical factors, with only MSI and Sex negatively
correlated in PC1, PC2, and PC3.
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correlation analysis. Figure 5 showcases a chord plot that delineates
the correlations uncovered during this process. A striking positive
correlation was identified between COMMD3-BMI1, one of the
most significantly expressed genes, and Dephospho-CoA, a
prominently expressed metabolite. This compelling association
hinted at potential interplay between these molecular entities in
the context of hepatocellular carcinoma. To further substantiate

these findings, an animal experiment was conducted. For this
purpose, six FVB mice were selected and categorized into two
groups: CDH and CDL. Noteworthy, the CDH group exhibited a
significant overexpression of the BMI1 gene and, conversely, a
marked under expression of Dephospho-CoA (Figures 6A,B).
Post-immunotherapy, a discernible difference in the hepatic
tumors of the subjects from each group was observed.

FIGURE 3
(A) KEGG Topology Analysis: Visualizes a comparison between pre-treatment (T1) and post-treatment (P) samples, with the x-axis indicating the
Impact Value and the y-axis showing −log (p value). A specific category within the Topology analysis is extremely significant, highlighting its potential
importance in the observed post-treatment metabolic changes. (B) KEGG Enrichment Analysis: Presents the pathways significantly enriched with the
identified metabolites, with “Choline metabolism in cancer,” “Glycerophospholipid metabolism,” and “Retrograde endocannabinoid signaling”
emerging as the most significant.
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Specifically, mice within the CDH group demonstrated heightened
sensitivity to immunotherapy (Figures 6C–F).

Discussion

Hepatocellular carcinoma (HCC), a predominant form of liver
cancer, continues to present a formidable challenge to public health
globally due to its intricate pathogenesis and frequently late
diagnosis (Tsuchiya et al., 2015). Immune checkpoint therapies
have emerged at the forefront of innovative treatments, revealing
a newfound hope for patients struggling with this relentless
malignancy (Leone et al., 2021). These groundbreaking therapies
function by reinvigorating the immune system, thereby enabling a
robust and targeted assault on tumor cells.

However, not all sunshine and roses, the therapeutic landscape
of HCC is punctuated by instances of resistance to immune
checkpoint therapies. This phenomenon of immunotherapy
resistance is both intricate and multifaceted, often serving as a
significant bottleneck to realizing the full therapeutic potential of
these novel interventions (Zhang et al., 2021; Aria et al., 2022). It is

within this challenging context that our study attempts to shed light
on the molecular actors that might play pivotal roles in determining
treatment outcomes.

In the realm of liver cancer immunotherapy, TMB and PD-L1
expression have garnered significant attention as potential
predictors of therapeutic response. TMB, quantifying the number
of mutations within tumor genomes, hints at the neoantigen load,
which in turn can influence the ability of the immune system to
recognize and combat cancer cells. A higher TMB often translates to
increased neoantigens, rendering tumors more susceptible to
immune checkpoint therapies. On the other hand, PD-L1
expression serves as a key immune checkpoint molecule, with its
overexpression indicating an immunosuppressive tumor
microenvironment, thereby providing rationale for therapies
targeting the PD-L1 pathway (Li et al., 2019).

Yet, the interplay between TMB and PD-L1 expression is not
straightforward. While both markers can independently predict
response to immunotherapies, their combined predictive power,
especially in the context of HCC, remains an active area of research.
For instance, some patients with high TMB but low PD-L1
expression may still benefit from immune checkpoint therapies,

FIGURE 4
(A) SCREE Plot: This plot visualizes the explained variation by each of the 22 Principal Components (PCs). A precipitous decline in explained variation
is evident, with a steep slope indicating that the major proportion of the variation is captured by the first few components, underscoring the dynamic
changes in the transcriptomic profiles from pre-to post-treatment. (B) Pairs Plot: In (B), a Pairs plot is showcased, highlighting the distribution of variance
with PC1 accounting for a substantial 92.63%, followed by PC2 with 1.86%, and PC3 with 1.36%. The significant concentration of variance within
PC1 illuminates its importance in encapsulating the transcriptomic variations observed. (C) PCA Bi-plot: (C) depicts a PCA bi-plot pinpointing six
significant genes, namely COMMD3-BMI1, FAM72C, TAF1A, LOC101928318, LOC102546298, and RHCE. (D) Loadings Plot: (D) presents a Loadings plot,
reaffirming the significance of the six identified genes. (E) PC Clinical Correlates Plot: (E) elucidates the correlations between ten PCs and various clinical
factors. Within PC1, only Previous Treatments, MSI, and PD-L1 Expression show positive correlations, with all other factors exhibiting negative
correlations.
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while others with low TMB and high PD-L1 might not derive the
expected benefit (Sholl et al., 2020). This underscores the necessity of
a more nuanced understanding and perhaps a combinatorial
approach to predicting treatment response. Our investigation into
the tumor microenvironment and its metabolic intricacies, as
detailed in the present study, adds another layer to this complex
puzzle. We believe that a holistic approach, integrating insights from
TMB, PD-L1 expression, and tumor microenvironmental factors,
will pave the way for a more precise and effective deployment of
immune checkpoint therapies in HCC.

The gene COMMD3-BMI1 has emerged as a figure of interest
within our investigative lens due to its conspicuous upregulation in
the pre-treatment samples (López-Nieva et al., 2019a). COMMD3-

BMI1 is not merely a bystander in the cellular microcosm; it is
implicated in various biological processes, including cell
proliferation and survival. Its overexpression has been previously
documented in different types of malignancies, suggesting its
potential role as an oncogene (López-Nieva et al., 2019b;
Umbreen et al., 2019). The heightened expression of COMMD3-
BMI1 in our cohort might be indicative of its contributory role in
fostering an environment conducive to immunotherapy resistance,
warranting its further exploration as a therapeutic target or
biomarker.

On the other side of the molecular spectrum resides Dephospho-
CoA, a metabolite that has drawn our attention due to its significant
downregulation in the CDH group. Dephospho-CoA is a crucial

FIGURE 5
Chord Plot for Gene-Metabolite Correlation: This plot visually delineates the significant correlations between the top 10 significantly expressed
genes and metabolites.
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player in cellular metabolism, participating actively in fatty acid
synthesis and energy production (Naquet et al., 2020). Its reduced
levels might be reflective of altered metabolic states within the tumor
microenvironment, potentially influencing the efficacy of immune
checkpoint therapies (Longo et al., 2022). The downregulation of
Dephospho-CoA suggests a metabolic reprogramming that might
favor tumor survival and proliferation, providing a shield against the
onslaught of immune cells activated by immunotherapy.

The dance between COMMD3-BMI1 and Dephospho-CoA,
choreographed within the confines of hepatocellular carcinoma
cells, paints a complex picture of immunotherapy resistance. This
delicate molecular tango, unveiled through our study’s lens, offers
tantalizing hints towards understanding the underpinnings of
immunotherapy resistance in HCC. With each step and twirl,
these molecules might be subtly altering the cellular stage,
influencing the unfolding drama of immune-tumor interactions,
and ultimately dictating the climax of therapeutic success or failure.

In conclusion, our study adds valuable brush strokes to the
canvas of HCC immunotherapy, highlighting the roles of
COMMD3-BMI1 and Dephospho-CoA in this intricate tableau.
As we continue to decipher the molecular signatures and stories
penned within tumor cells, it is imperative to acknowledge and

explore the potential of these actors in steering the narrative towards
a finale of therapeutic triumph over hepatocellular carcinoma. The
path is long and winding, yet with each discovery, we inch closer to
understanding and eventually overcoming the challenge of
immunotherapy resistance in HCC.
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FIGURE 6
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groups.
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