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Signal transducer and activator of transcription (STAT) proteins, pivotal

regulators of signaling cascades, undergo activation in response to the

stimulation of cytokines and growth factors, and participate in biological

processes, including inflammation, immune responses, cell proliferation, and

differentiation. During the process of pregnancy, STAT signaling is involved in

regulating embryonic implantation, endometrial decidualization, and

establishing and maintaining maternal-fetal immune tolerance. Increasing

evidence suggests that aberrant STAT signaling contributes to the

occurrence and development of pregnancy disorders, including repeated

implantation failure (RIF), preeclampsia (PE), recurrent spontaneous abortion

(RSA), preterm birth (PTB) and gestational diabetes mellitus (GDM).

Elucidating the molecular mechanisms of the STAT signaling pathway

holds promise for further understanding the establishment and

maintenance of normal pregnancy, and thereby providing potent targets

and strategic avenues for the prevention and management of ailments

associated with pregnancy. In this review, we summarized the roles of the

STAT signaling pathway and its related regulatory function in embryonic

implantation, endometrial decidualization, and maternal-fetal immune

tolerance. In conclusion, in-depth research on the mechanism of the STAT

signaling pathway not only enhances our understanding of normal

pregnancy processes but also offers STAT-based therapeutic approaches

to protect women from the burden of pregnancy-related disorders.
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1 Introduction

Pregnancy refers to the process of normal growth and

development of the embryo within the mother’s uterus. Normal

pregnancy relies on successful embryo implantation, endometrial

decidualization, placental formation, and immune balance at the

maternal-fetal interface. In early pregnancy, trophoblast cells

proliferate and implant into the endometrium, while

endometrial decidualization increases endometrial receptivity,

facilitating embryo implantation (1). As the embryo carries

paternal genetic information and is considered a semi-allograft

similar to successful organ transplantation, the development and

preservation of maternal-fetal immune tolerance are crucial for

embryo implantation and development. During this process, the

immune mechanisms of the organism play a complex and precise

regulatory role (2). Therefore, exploring the regulatory

mechanisms of various aspects of the maternal-fetal interface

will further elucidate the mechanisms underlying the

establishment and maintenance of successful pregnancy,

presenting innovative targets and insights for the prevention

and management of pregnancy-associated disorders.

Signal transducer and activator of transcription (STAT)

proteins are DNA-binding proteins that participate in signal

transduction and control of gene transcription. The STAT

protein family comprises seven members, namely STAT1,

STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6.

Structurally, STATs consist of an amino-terminal domain, a

coiled-coil domain, a DNA-binding domain, an SH2 domain

and a carboxy-terminal transactivation domain (3). The amino-

terminal domain facilitates the dimerization of STATs, the DNA

binding domain discriminates the DNA motifs, and the SH2

domain recognizes the phosphorylated tyrosine on the

intracellular domain of the receptors. They can be activated by

extracellular molecules, especially hormones, and cytokines,

including interferons (IFNs), interleukins (ILs), and growth

factors. Upon binding to the corresponding transmembrane

receptors of such extracellular ligands, Janus kinases will be

recruited and activated, which then phosphorylate tyrosine

residues on the receptor’s catalytic domain. This further leads to

the recruitment and phosphorylation of STAT proteins.

Phosphorylated STAT proteins form homo- or heterodimers

upon activation and subsequently translocate into the nucleus,

where they function as regulators of gene transcription to regulate

biological and pathological processes (4). Finally, STATs undergo

dephosphorylation in the nucleus and returned to the cytosol to

terminal the signal and keep homeostasis of related cells.

The STAT signaling pathways has been found to govern various

cellular processes including proliferation, differentiation, and

migration (5). Growing body of research suggests that the STAT

signaling pathway regulates endometrial stromal cel l

decidualization, trophoblast proliferation and implantation, spiral

artery remodeling, and maternal-fetal immune tolerance.

Aberrations in the STAT signaling pathway have been implicated
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in the pathogenesis of diverse pregnancy-related disorders (6).

Therefore, in-depth research on the STAT signaling pathway is of

significant importance for understanding normal pregnancy

establishment and the prevention and treatment of pregnancy-

related disorders.
2 The function of the STAT signaling
pathways in normal pregnancy

2.1 Regulation of endometrial
decidualization and proliferation by the
STAT signaling pathways

The process of endometrial decidualization involves the

activation of multiple signaling pathways of the uterine

endometrial stromal cells, stimulated by hormones, growth

factors, and other factors. This stimulation prompts the

proliferation and differentiation of the endometrial cells into

enlarged, rounded, cytoplasm-rich, and multinucleated

decidual cells. The normal expansion and differentiation of

endometr ia l ce l l s are cruc ia l for success fu l embryo

implantation (7). Research has revealed that the STAT

signaling pathway plays a significant role in the processes of

decidual cell proliferation and differentiation. During early

p r egnancy , th e hormone s , i n c lud ing e s t r og en and

progesterone, activate the ERK1/STAT3 signaling pathway in

the endometrial stroma, thereby promoting the expression of

the transcription factor CCAAT/enhancer binding protein b (C/

EBPb) and stimulating decidualization of human endometrial

stromal cells (8, 9). Simultaneously, decidual cells secrete

prolact in (PRL), which faci l i tates the progression of

decidualization. Besides, PRL secretion levels can serve as an

indicator of the degree of decidual cell differentiation (10).

Interleukin-6 (IL-6) and -11 (IL-11) can promote endometrial

decidualization through the activation of STAT3 signaling

pathway, with IL-11 primarily mediating this process through

increased PRL expression (11, 12). Additionally, leukemia

inhibitory factor (LIF) triggers the activation of STAT3

signaling pathway in decidual cells, promoting the expression

of Early Growth Response 1 (EGR1) and enhancing uterine

receptivity (13). Moreover, placental growth hormone (GH)

acts on the JAK2/STAT5 pathway in decidual cells, increasing

the expression of integrin b3, which is associated with

receptivity, and promoting uterine receptivity for pregnancy

(14). Furthermore, high levels of hormonal stimulation may

induce increased STAT5 expression, subsequently promoting

the activation of the PRL promoter and facilitating endometrial

decidualization (15). In summary, various cytokines and

hormones activate the STAT signaling pathway within

decidual cells, regulating cell proliferation and differentiation

to promote endometrial decidualization and maintain a healthy

pregnancy (Figure 1).
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2.2 Regulation of trophoblast cell function
by the STAT signaling pathways

Trophoblast cells refer to non-embryonic cells with nourishing

functions. Research has demonstrated that the STAT signaling

pathway is involved in the regulation of various processes such as

trophoblast cell implantation and spiral artery remodeling. During

early pregnancy, moderate level of interferon g (IFN-g) activates JAK/
STAT1 signaling pathway, promoting E-cadherin expression to

prevent excessive migration and invasion of trophoblast cells.

Additionally, IFN-g stimulates trophoblast cells to secrete vascular

endothelial growth factor (VEGF-C), which aids in spiral artery

remodeling (16, 17). Furthermore, in the chorionic tissue and

serum of early pregnant women, high levels of IL-11 and

oncostatin M (OSM) have been observed. These molecules activate

the STAT3 signaling pathway of trophoblast cells, enhancing Matrix

Metallopeptidase 2 (MMP2) and 9 (MMP9) expression while

suppressing E-cadherin expression, thereby promoting trophoblast

cell implantation (18, 19). Moreover, studies have found that STAT3

signaling pathway can be activated by heat shock protein-27, leading

to increased expression of MMP2 and MMP9 and facilitating cell

implantation of trophoblast cells (20). In summary, the regulation of
Frontiers in Immunology 03
trophoblast cell function by the STAT signaling pathway plays critical

roles in normal pregnancy (Figure 2).
2.3 Regulation of the maternal-fetal
interface immune response by the STAT
signaling pathways

During pregnancy, the immune cells found at the interface

between mother and fetus include decidual natural killer cells

(dNK), decidual macrophages (dMj), decidual T cells (dT), and

decidual dendritic cells (dDC). These immune cells play crucial

roles in regulating immune tolerance (21, 22). The STAT signaling

pathways participate in maintaining the balance of immune

tolerance by regulating the functions of these immune cells,

which is essential for a successful pregnancy (Figure 3).

2.3.1 Regulation of NK cell differentiation and
activity by STAT

dNK cells, accounting for 70% of decidual immune cells, are

mainly composed of CD56+/CD16- NK cells. They possess unique

surface receptors and can induce immune tolerance through the
FIGURE 1

The STAT signaling pathway promotes the decidualization of the endometrium. LIF promotes the expression of EGR1 through stimulating STAT3
signaling pathway, enhancing uterine receptivity. Hormones upregulate the expression of transcription factor C/EBPb by activating ERK1/STAT3
pathway in endometrial stromal cells, promoting endometrial decidualization. Besides, hormones activate the JAK2/STAT5 pathway in decidual cells,
increasing the expression of receptivity-related gene integrin b3 and improving uterine receptivity. IL-11 activates STAT3 in decidual cells, promoting
the expression of PRL, accelerating the process of decidualization.
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secretion of granules (23, 24). Research has indicated that the JAK/

STAT signaling pathway plays a role in controlling the development

and function of NK cells (25). In human primary first-trimester

decidual tissue, decidual cells bind to collagen proteins on the

surface of dNK cells, inhibiting the activation of JAK1, JAK2, and

downstream STAT1 and STAT4, thereby suppressing the

expression of T-bet, reducing transcription of IFN-g of dNK cells,

and inducing maternal-fetal immune tolerance (26). In addition,

human leukocyte antigen-G1 (HLA-G1) inhibits the STAT3

signaling pathway in dNK cells, reduces perforin expression, and

induces immune tolerance (27). Furthermore, conditioned medium

of trophoblast cells suppressed IL-15 induced JAK3/STAT5

signaling pathway in dNK cells, leading to decreased expression

of perforin, granzyme B, and IFN-g, and thus favoring pregnancy

(28). In summary, STAT-mediated signaling pathways regulate NK

cell function and induce immune tolerance.

2.3.2 Regulation of macrophage differentiation
and function by STAT

dMj cells, accounting for 20% of decidual immune cells, mainly

consist of M1-type (dMj1) and M2-type (dMj2) decidual

macrophages. dM1 cells secrete pro-inflammatory cytokines like

TNF-a, IL-12, IL-23, as well as reactive oxygen species (ROS), while

dM2 cells primarily secrete regulatory cytokines such as IL-10 and

transforming growth factor beta1 (TGF-b1) (29, 30). Recent studies
also revealed that the STAT signaling pathways play pivotal roles in

dMj differentiation. Compared to the abortion group, dMj
isolated from normal pregnant mice show increased expression of

B7-H4, which mediates inhibition of M1 polarization through

suppression of the JAK2/STAT1 signaling pathway (31). Besides,

elevated expression of miR-103 in human dMj cells can inhibit the

differentiation of M1 macrophages and induce immune tolerance
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by interacting with the non-coding region of STAT1 and

suppressing the expression of transcription factor IRF1 (32). It

has also been found that IL-6 secreted by trophoblasts is capable of

activating the STAT3 signaling pathway in dMj cells, thereby

promoting M2 polarization and induce immunosuppression (33,

34). Additionally, IL-10 derived from trophoblasts activates dMj
cells via JAK/STAT3 signaling, inducing M2 macrophage

differentiation and protecting pregnancy (35). Moreover, LIF

secreted by dNK cells inhibits IFNg/STAT1 and GM-CSF/STAT5,

while activating STAT3 through binding to surface receptors on

dMj cells, thereby reducing inflammation mediated by M1

macrophages during pregnancy (36). In conclusion, STAT-

mediated signaling pathways are involved in macrophage

polarization and functional regulation, playing a significant role

in preserving immune tolerance at the interface between the mother

and fetus.

2.3.3 The role of STAT-mediated regulation of
helper T cell differentiation and function
in pregnancy

The dynamic equilibrium of the adaptive immune system

allows for an immune response against invading pathogens

while maintaining tolerance toward the semi-allogeneic fetus,

which is crucial for successful pregnancy. Helper T (Th) cells

comprise mainly of Th1, Th2, Th17, and regulatory T cells

(Treg). The STAT signaling pathways play vital roles in

maintaining immune balance during pregnancy by regulating

the differentiation of helper T cells through the modulation of

the expression of transcription factors (37). It has been revealed

that IL-35 derived from trophoblast cells activates STAT1 and

STAT3 through binding to T cell surface receptors, which

subsequently inhibits conventional T cell proliferation and
FIGURE 2

The function of STAT signaling pathway in trophoblast invasion and migration is critical for normal pregnancy. IFN-g prompts the expression of E-
cadherin by activating the STAT1 signaling pathway, which prevents excessive cell migration. OSM promotes the expression of MMP2 and MMP9 by
activating the STAT3 signaling pathway, which promotes migration. IL-11 promotes cell invasion and migration by activating STAT3 signaling
pathway. HSP27 promotes the expression of MMP2 and MMP9 by activating the STAT3 signaling pathway.
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facilitates the initial differentiation of T cells into regulatory T

cells, thereby inducing immune tolerance (38). Researchers have

also found that the addition of interleukin-23 (IL-23) to

extracted human decidual immune cells increases the

proportion of Th17 cells and induces inflammation by

activating the STAT3 signaling pathway. Conversely, the

addition of IL-23 antibodies inhibits STAT3 activation,

increases the proportion of Treg cells, promotes IL-10

expression, and induces immune tolerance (39). Furthermore,

IL-2 can activate the JAK/STAT5 signaling pathway by binding

to receptors on T cells, leading to FOXP3 expression and
Frontiers in Immunology 05
promoting Treg differentiation (40). Additionally, high levels

of zeta inhibitory peptide (ZIP) in the peripheral blood of early-

stage pregnant women can reduce Th1 cell polarization by

inhibiting the JAK3/STAT5 signaling pathway, which helps in

reducing of pro-inflammatory cytokines, and inducing immune

tolerance to support normal pregnancy (41). In summary, the

STAT signaling pathways play crucial roles in governing the

differentiation and function of T cell subsets in maintaining

maternal-fetal immune tolerance. However, the specific

regulatory mechanisms are not fully understood and require

further exploration.
FIGURE 3

The STAT signaling pathway regulates the differentiation and function of immune cells, maintaining normal pregnancy. In early pregnancy, IL-35
activates STAT1 and STAT3 to promote Treg differentiation, while ZIP inhibits STAT5 activation to promote Th1 differentiation. In myeloid derived
suppressor cell of first trimester, HLA-G binds to the receptor ILT4 to activate STAT3, promoting the secretion of IDO1 and inducing immune
tolerance. Meanwhile, estradiol and progestational hormone can also promote its proliferation through activation of STAT3. In macrophages of early
gestation, IL-6, IL-10, and LIF activate STAT3 to promote Mj2 polarization, while LIF can also inhibit STAT1 and STAT5 to inhibit Mj1 polarization.
Besides, miR-103 inhibits Mj1 polarization by suppressing STAT1 and IRF1. In pDC of first pregnancy stage, miR-6875-5p inhibits STAT3 and E2-2,
leading to a suppression of immune tolerance. In mature DCs, lnc-DC activates STAT3, suppresses the invasion capability of trophoblast cells, and
thus inhibits normal pregnancy. In decidual NK cells of human primary first-trimester, collagen suppresses STAT1 and STAT4, inhibiting the excessive
expression of T-bet and the secretion of IFN-g., In late stage of pregnancy, HLAG1 inhibits STAT3 activation, leading to suppressed secretion of
perforin. In pregnancy early, inhibiting the activation pathway induced by IL-15 can reduce the secretion of Granzyme B, perforin and IFN-g. All of
the above factors contribute to immune tolerance.
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2.3.4 The modulation of dendritic cell
differentiation and function by STAT

Accumulative evidence has shown that the STAT signaling

pathways also participate in regulating the differentiation and

function of dendritic cell (DC) subsets during pregnancy

establishment and maintenance. In dDCs, it has been found that

downregulation of miR-6875-5p activates the STAT3/E2-2

pathway, promoting the differentiation of plasma-like dendritic

cell (pDCs), which is crucial for normal pregnancy (42). Besides,

in vitro experiments have demonstrated that inhibition on lnc-DC

in mature DCs reduces STAT3 activity, inhibits the expression of

tissue inhibitor of metalloproteinase-1 (TIMP1) and -2 (TIMP2),

but enhances MMP9 and MMP2 to ensure normal pregnancy

progression (43–45). Furthermore, inhibition of the STAT5/ID2

signaling pathway in decidual tissue hinders the differentiation of

classical DCs and induces maternal-fetal immune tolerance (46).

Overall, the regulatory role of STAT in DC function is advantageous

for preserving immune tolerance at the maternal-fetal interface

during pregnancy.

2.3.5 The regulation of myeloid-derived
suppressor cells (MDSCs) differentiation and
function by STAT

MDSCs, which originated from the myeloid lineage, are highly

immunosuppressive and can be classified into polymorphonuclear

MDSCs (PMN-MDSCs) and monocytic MDSCs (M-MDSCs).

MDSCs express the receptor for HLA-G, known as

immunoglobulin-like transcript 4 (ILT4). Research has

demonstrated that HLA-G can activate STAT3 through ILT4,

inducing the production of indoleamine 2,3-dioxygenase (IDO),

which in turn promotes immune tolerance to maintain normal

pregnancy (47, 48). In early pregnancy, elevated levels of estradiol

and progesterone in women’s serum activate the ILT4/STAT3

signaling pathway to promote the expansion of MDSCs.

Moreover, in vitro experiments have also found that decidual-

derived IL-6 promotes the differentiation of peripheral blood

neutrophils into PMN-MDSCs by stimulating STAT3 signaling

pathway, thus contributing to immune tolerance (47, 49–51).

Overall, STAT3 is critically involved in the regulation of MDSCs

differentiation and contributes to the maintenance of

immune tolerance.
3 The role of the STAT signaling
pathway in pregnancy-
related diseases

The STAT signaling pathways are important in establishing/

maintaining maternal-fetal immune tolerance. Aberrant expression

or over-activation of the STAT signaling pathway can lead to

pregnancy-related diseases such as repeated implantation failure

(RIF), preeclampsia (PE), recurrent spontaneous abortion (RSA),

preterm birth (PTB), and gestational diabetes mellitus (GDM).

Therefore, investigating the mechanisms by which the STAT

signaling pathways contribute to pregnancy-related diseases can
Frontiers in Immunology 06
provide targets and evidence for the diagnosis and treatment of

pregnancy-related diseases.
3.1 The role of the STAT signaling
pathways in RIF

RIF refers to the failure of successful embryo implantation after

multiple embryo transfers (52). Successful embryo implantation

relies on embryo competence, endometrium receptivity, and

immune tolerance at the interface between the embryo and the

maternal environment. Studies have shown the involvement of

STAT3 signaling pathway in RIF. For instance, it has been found

that RIF patients exhibit decreased expression of LIF and STAT3 in

endometrial cells, resulting in reduced uterine receptivity, and

inhibiting embryo implantation. Studies in mouse models further

confirmed that LIF/STAT3 signaling pathway inhibition

contributes to embryo implantation failure (53–55). Moreover, it

also suggests that downregulation of miR-30d-5p in endometrial

cells of RIF patients can increase the level of suppressor of cytokine

signaling 1 (SOCS1), which inhibits the LIF/STAT3 signaling

pathway, and lead to failure of embryo implantation (56).

Additionally, in endometrial cells of RIF patients, downregulation

of progesterone-induced blocking factor 1 (PIBF1) inhibits the

expression of IL-6, impedes STAT3 activation, reduces the

expression of proliferation-related and decidualization-related

genes, and ultimately disrupts the decidualization process (11). In

conclusion, enhancing endometrial receptivity through

decidualization is crucial for successful embryo implantation, and

STAT3, as a key regulatory factor, could potentially be targeted

therapeutically to treat RIF.
3.2 The role of the STAT signaling pathway
in preeclampsia

Preeclampsia is a common, but severe pregnancy complication

characterized by maternal high blood pressure, proteinuria, and

endothelial dysfunction. Placental ischemia and hypoxia caused by

impaired remodeling of trophoblast function are the main

pathogenic causes for preeclampsia. The STAT signaling

pathways regulate the functions of trophoblast cells and

inflammatory responses involved in the development of

preeclampsia. Therefore, deep understanding of STAT

pathological roles can help prevent the occurrence and provide

targets for the treatment of preeclampsia.

3.2.1 The role of STAT in regulating cellular
function in preeclampsia

The STAT signaling pathways primarily contribute to the

development of preeclampsia by modulating the function of

trophoblast cells. It has been reported that the expression of

ribosomal protein S4 is elevated in placental tissues of patients

with preeclampsia, while the phosphorylation level of STAT3 in

serum is decreased. In vitro experiments have demonstrated that

ribosomal protein S4 silencing up-regulates the expression of
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STAT3 in HTR8/SVneo trophoblast cells and increases the levels of

N-cadherin and vimentin proteins, thereby promoting the invasion

of trophoblast cells (57–59). Additionally, it has been discovered

that down-regulation of Annexin7 in placenta of preeclampsia

patients inhibits the JAK1/STAT3 pathway in trophoblast cells,

leading to a decrease in BCL2 protein levels and induction of cell

apoptosis, thus contributing to the development of preeclampsia

(60). Moreover, increased expression of RAR-related orphan

receptor A (RORA) has been observed in placenta of

preeclampsia patients and HTR-8/SVneo cells. Suppression of

RORA enhances the migration, invasion, epithelial-mesenchymal

transition, proliferation, and angiogenesis of HTR-8/SVneo cells

subjected to hypoxia treatment. Mechanistically, RORA activates

the JAK2/STAT3 signaling pathway to exacerbate preeclampsia

(61). Furthermore, it has been found that miR-125b is up-

regulated in the serum of preeclampsia patients, which inhibits

the STAT3 pathway and suppresses the migration and invasion of

extravillous trophoblast cells (62). In summary, the suppression of

the STAT3 signaling pathway in trophoblast cells may lead to cell

apoptosis and impaired cell migration, thus facilitating the onset

of preeclampsia.

3.2.2 The role of STAT in regulating inflammation
in preeclampsia

STAT can also participate in the development of preeclampsia

by regulating inflammatory responses. Clinical data have revealed

that nuclear factor of activated T cells-1 (NFAT-1), STAT1, and

activator protein-1 (AP-1) were over-activated in monocytes of

early-onset preeclampsia. Conversely, NFAT-1, STAT-1, and AP-1

are down-regulated in T cells of early-onset preeclampsia. This

suggests that innate immunity is excessively activated while

adaptive immunity is suppressed during the development of

early-onset preeclampsia, and NFAT-1, STAT1, and AP-1 may

serve as core transcription factors maintaining the equilibrium

between innate and adaptive immune responses in the

pathogenesis of early-onset preeclampsia (63). In addition, LIF

can induce inflammation and endothelial dysfunction by

increasing the expression of intercellular adhesion molecule-1

(ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1)

through the JAK/STAT3 pathway. Therefore, understanding the

link between LIF and the pathogenic mechanisms of preeclampsia

may contribute to the development of effective treatments for

preeclampsia (64). Additionally, studies have shown that elevated

expression of STAT4 in the serum of preeclampsia patients could

act as a diagnostic indicator for the severity of the disease (65).
3.3 Research on the STAT signaling
pathway in RSA

Clinically, the occurrence of two or more consecutive

spontaneous abortions within 20 weeks of gestation is called

recurrent spontaneous abortion (RSA). The causes for RSA

pathogenesis are complex, and except for known factors such as

chromosomal abnormalities, endocrine disorders, and uterine
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patients. Cumulative evidence has demonstrated that the STAT

signaling pathways are involved in regulating the processes of

trophoblast proliferation, implantation, spiral artery remodeling,

and immune tolerance, which participates in the pathogenesis

of RSA.

3.3.1 The role of STAT in modulating trophoblast
function of RSA

Multiple studies have demonstrated that abnormal expression

of STAT in trophoblast cells contributes to cell proliferation and

implantation dysfunction, resulting in the occurrence of diseases

such as RSA. In early pregnancy, the expression of Sprouty 4

(SPRY4) is markedly increased in the trophoblast layer of RSA

patients, accompanied by up-regulation of STAT1 and

phosphorylated STAT1 (p-STAT1). Mechanistically, IFN-g
promotes SPRY4 expression and STAT1 phosphorylation through

the PI3K/AKT pathway, thereby inhibiting trophoblast cell

proliferation and accelerating apoptosis. So, elevated levels of

SPRY4 and STAT1 potentially contribute to the onset and

advancement of RSA, and could serve as targets for therapeutic

intervention. Other studies have reported a substantial decrease in

trophoblast cell numbers in early RSA patients, along with down-

regulation of STAT3 and its downstream target genes cyclin D1

(CCND1) and vascular endothelial growth factor A (VEGF) in

miscarriage tissues (chorionic villi and decidua). In addition,

inhibition of the STAT3 signaling pathway in vitro can impede

trophoblast cell growth and promote apoptosis (66–68).

Furthermore, reduced expression of fascin in placental

trophoblasts has been observed in early-stage RSA patients.

Knockdown of fascin inhibits cell proliferation and increases

apoptosis, which may be partially attributed to the down-

regulation of STAT3 activity (69). Additionally, high expression

of nerve injury-induced protein 1 (NINJ1) in villous tissues of RSA

patients has been found to inhibit STAT3 activation in trophoblasts,

leading to decreased cell proliferation, migration, and invasion, and

ultimately resulting in RSA (70). Overall, both STAT1 and STAT3

affect cell migration through the regulation of genes associated with

proliferation and migration, which is consistent with clinical

observations. These findings provide a basis for further

exploration of their feasibility as clinical targets.

3.3.2 The role of STAT in regulating immune
tolerance in RSA

The successful establishment of pregnancy relies on the immune

tolerance balance maintained by various immune cells at the

maternal-fetal interface. Research has shown that activation of the

JAK2/STAT1 pathway in decidual natural killer (dNK) cells by IFN-g
significantly increases the expression of CX3CL1, inducing the

homing of CD49b+ NK cells to the uterus and ultimately leading to

RSA (71). Moreover, IL-6 and IL-23 activation of STAT3 in RSA

patients promotes the expression of retinoic acid-related orphan

receptor gamma T (RORgt), facilitating Th17 differentiation and

the release of inflammatory factors while inhibiting the proliferation

of decidual Treg cells, disrupting maternal-fetal immune tolerance
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and resulting in RSA (72, 73). In peripheral blood from RSA patients,

downregulated expression of IL-2 inhibits STAT5 activation, thereby

reducing FOXP3 expression and hindering Treg differentiation,

disrupting immune balance and causing miscarriage (74). In

peripheral blood natural killer cells (pNK), the IL-4/STAT6

signaling pathway promotes the surface expression of Tim3,

facilitating the generation of anti-inflammatory cytokines and

inducible regulatory Treg cells through a mechanism that depends

on TGF-b1, which helps reduce the occurrence of miscarriage (72,

75). Furthermore, as formerly mentioned, dys-regulated miRs also

causes RSA pathogenesis. For instance, diminished expression of

miR-103 in decidual macrophages can promote M1 macrophage

polarization by activating STAT1, while elevated expression of miR-

6875-5p in decidual tissue inhibiting pDC differentiation and leading

to RSA (32, 42). Overall, STATs play crucial roles in regulating the

differentiation and function of immune cells, making it a key target

for RSA treatment and prevention.
3.4 The role of the STAT signaling
pathways in preterm birth

Preterm birth refers to premature delivery within 28 to 37 weeks

of pregnancy. The occurrence of preterm birth is associated with

excessive activation of inflammatory signaling pathways in

maternal-fetal interface. Compared to women with normal

pregnancies, elevated expression of IL-27 in the decidua tissue

can bind to T-cell surface receptors, activating the JAK1/STAT1/

STAT3 signaling pathway, promoting the expression of

transcription factor T-bet, and enhancing the expression of

chemokine 11 (CXCL11), chemokine 2 (CXCL2), and chemokine

1 (CXCL1), thereby facilitating the infiltration of Th1 cells into the

decidua and leading to PTB (76). Additionally, the inflammatory

cytokine IL-6 activates the JAK2/STAT3 signaling pathway in

trophoblast cells, suppressing the expression of B-cell lymphoma-

2 (BCL2), promoting the expression of BCL2-associated X (BAX),

and apoptosis mediated PTB (77). In summary, effective

interventions targeting Th1 cell response and inflammation are of

significant importance for the prevention and management of PTB.
3.5 Research on the STAT signaling
pathway in gestational diabetes mellitus

Gestational diabetes mellitus (GDM) is characterized by impaired

glucose tolerance that occurs in the early stages of pregnancy. Studies

on GDM mouse models have found that hepatocyte growth factor

(HGF) can promote insulin secretion in pancreatic b cells by

activating STAT5, while IL-6, IL-1b, and IL-33 inhibit insulin

secretion by activating the JAK2/STAT3 signaling pathway,

contributing to the development of the disease (78). Research on

GDM rat models has shown that activation of the STAT1 and STAT5

signaling pathways in b cells participate in lowering sugar in blood

(79, 80). Additionally, through testing the serum, placenta, and

umbilical cord blood of GDM patients, researchers have found that

elevated expression of STAT3 is involved in regulating metabolic
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pathways and the occurrence of gestational diabetes (81, 82). These

studies provide a basis for exploring the pathogenesis and prevention/

treatment of gestational diabetes.
4 The role of the STAT signaling
pathways in the prevention and
treatment of pregnancy-
related disorders

Currently, some pharmaceutical drugs have been used to

target the STAT protein-related signaling pathways for the

treatment of pregnancy-related diseases (Table 1). Sulfasalazine

inhibits STAT3 activation and induces the reduction of soluble

Fms-like tyrosine kinase-1 (sFlt-1) and endothelial growth factor

receptor-1 in placental tissue, thereby decreasing the risk of

preeclampsia (87). Additionally, montelukast plays an anti-

inflammatory and antioxidant role by inhibiting the JAK2/

STAT3 signaling pathway in placental cells of preeclampsia

mice, thereby improving the pathological condition of

preeclampsia (86, 96). Moreover, in a preeclampsia rat model,

silencing Annexin A1 in placental cells can inhibit the expression

of TNF-a, IL-1b, IL-6, and IL-8 by inhibiting the JAK2/STAT3

signaling pathway. This can help alleviate inflammation and

inhibit cell apoptosis by decreasing BAX levels and increasing

BCL-2 expression, and Annexin A1 can be considered as a target

for treating preeclampsia (88). In addition, injection of heme

oxygenase-1 (HO-1) activates the ERK/STAT3 signaling pathway

and inhibits the JNK/STAT1 signaling pathway in placental cells,

promoting cell survival and alleviating symptoms in a

preeclampsia rat model (89). Furthermore, IL-37 inhibits

excessive inflammatory response by suppressing the STAT3

signaling pathway in human amniotic cell lines, thus preventing

degradation of the extracellular matrix and the occurrence of

preterm birth (91). Human placenta-derived mesenchymal stem

cells promote migration, repair, and improvement of endometrial

glandular cells by activating the JAK2/STAT5 signaling pathway.

Additionally, they also stimulate the JNK/Erk1/2-STAT3-VEGF

pathway to promote proliferation and migration of human

endometrial stromal cells (83). Moreover, in a preeclampsia

mouse model, Alpha-1 antitrypsin (AAT) injection inhibits the

STAT1 signaling pathway in placental cells, reduces the

expression of reactive oxygen species (ROS), increases the

expression of superoxide dismutase (SOD), and reduces

oxidative stress for the treatment of preeclampsia (84, 85).

On the other hand, certain Chinese herbal medicines and

related therapeutic methods can intervene and treat pregnancy-

related diseases through the STAT signaling pathway. Clinical

trials have shown that vitamin D can inhibit the STAT1/STAT4

signaling pathway in human decidual tissue’s naive T cells,

suppress the expression of transcription factor T-bet, thereby

inhibiting Th1 differentiation, while activating the STAT6

signaling pathway and promoting the transcription factor

GATA-3, thus promoting Th2 differentiation (94). In a mouse

model of GDM, baicalein inhibits the STAT3 signaling pathway in
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beta pancreatic cells, thereby promoting cell proliferation and

insulin secretion, exerting a therapeutic effect on GDM (90).

Curcumin can inhibit the IL-6-mediated STAT3 signaling

pathway in mouse decidual cells, suppress the expression of

inflammatory factors, and prevent inflammation-induced

preterm birth (97). Electroacupuncture treatment activates the

LIF/STAT3 signaling pathway in mouse endometrial cells,

regulates the surface glycan structure of uterine epithelial cells

to improve uterine receptivity, and increase the success rate of

pregnancy (98). Studies have also shown that silymarin inhibits

the STAT3 signaling pathway in naive T cells, suppresses the

expression of RORg, and inhibits Th17 differentiation, while

activating the STAT5 signaling pathway and promoting the

expression of FOXP3, which is beneficial for Treg differentiation
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(95). In a mouse model of miscarriage, recombinant adiponectin

regulates STAT5 to induce FOXP3 expression and reduce the

expression of RORg at the maternal-fetal interface, thus

promoting Treg di fferent ia t ion and inhibi t ing Th17

differentiation, ultimately reducing the rate of miscarriage in

mice (93). Additionally, our previous research has shown that

baicalin can inhibit the differentiation of conventional DCs in

decidual tissue through the STAT5/ID2 pathway, reducing the

rate of miscarriage in mice (46). In a mouse model of miscarriage,

Cho-kyung-jong-ok-tang (CKJOT) promotes NK2 cell

differentiation and improves miscarriage by activating the

STAT6/GATA3 signaling pathway (92). Vitamin D and

silymarin can prevent preterm birth by regulating the

differentiation of T cell subsets.
TABLE 1 The mechanism for drug treatment of pregnancy-related disorders targeting STATs.

Drug
Species,
tissues,
or cells

Disease STATs Mechanism Reference

Hyaluronic acid
hydrogel-encapsulated
human placental
mesenchymal stem cells

–
Infertility
or RSA

STAT5

Activation of JAK2/STAT5 signaling pathway promotes migration, repair, and
improvement of endometrial glandular cells. Activation of JNK/Erk1/2-
STAT3-VEGF pathway promotes proliferation and migration of human
endometrial stromal cells.

(83)

Alpha-1 antitrypsin
Mouse
placental
cells

Preeclampsia STAT1
Inhibition of STAT1 signaling pathway in placental cells, reducing reactive
oxygen species expression, increasing superoxide dismutase expression, and
decreasing oxidative stress

(84, 85)

Montelukast
Mouse
placental
cells

Preeclampsia STAT3 Inhibition of IL-6/JAK2/STAT3 signaling pathway in placental cells (86)

Lnitroarginine
sulfonamide pyridine

Mouse
placental
cells

Preeclampsia STAT3
Inhibition of STAT3 activation and reduction of soluble Fms-like tyrosine
kinase-1 (sFlt-1) expression in placental tissue

(87)

Silencing Annexin A1
Mouse
placental
cells

Preeclampsia STAT3
Inhibition of JAK2/STAT3 signaling pathway, suppressing TNF-a, IL-1b, IL-
6, IL-8 expression, reducing inflammation, and inhibiting apoptosis by
downregulating Bax and upregulating Bcl-2

(88)

HO-1 – Preeclampsia STAT3
Activation of ERK/STAT3 signaling pathway and inhibition of JNK/STAT1
signaling pathway

(89)

Calycosin b-Islet cells GDM STAT3
Inhibition of STAT3 signaling pathway in b-islet cells, promoting cell
proliferation and insulin secretion

(90)

IL-37
Mouse
placental
cells

PTB STAT3
Inhibition of NF-kB and IL-6/STAT3 signaling pathways in placental cells,
suppressing excessive inflammation, ECM remodeling, and apoptosis

(91)

Cho-kyung-jong-
ok-tang

Mouse
decidua

RSA STAT6
Activation of STAT6/GATA3 signaling pathway to promote transformation
of NK2 cells in mice

(92)

Recombinant
adiponectin

Mouse
decidua

RSA STAT5 Regulation of STAT5 signaling pathway to maintain Th17/Treg balance (93)

Baicalin
Mouse
decidua

RSA STAT5
Inhibition of STAT5/ID2 pathway in conventional dendritic cells of decidua,
suppressing their differentiation

(46)

Vitamin D
Human
decidua

PTB
STAT1/
STAT4,
STAT6

Inhibition of STAT1/STAT4 signaling pathway in naïve T cells, suppressing
the expression of transcription factor T-bet and inhibiting Th1 differentiation.
Activation of STAT6 signaling pathway, promoting transcription factor
GATA-3 and Th2 differentiation

(94)

Silymarin
Human
decidua

Preeclampsia
STAT3,
STAT5

Inhibition of STAT3/RORgt signaling pathway in naïve T cells, suppressing
Th17 differentiation. Activation of STAT5/FoxP3 signaling pathway,
promoting Treg differentiation

(95)
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5 Conclusion and perspectives

Pregnancy is a complex process of exogenous embryo

implantation in the mother’s body, including endometrialization

of the uterus, invasion and migration of trophoblast cells, and

maternal-fetal immune tolerance, all of which are necessary for

maintaining a normal pregnancy. In this article, we first reviewed

the role of STATs signaling pathway in regulating the differentiation

and function of endometrial cells, trophoblast cells, and immune

cells during normal pregnancy. Moreover, increasing evidence

suggests that abnormal expression and function of the STATs

signaling pathway are involved in the occurrence and

development of various pregnancy-related disorders such as

recurrent embryo implantation failure, preeclampsia, preterm

birth, recurrent miscarriage, and gestational diabetes. Therefore,

targeting the STATs signaling pathway could be an effective

approach for preventing and treating pregnancy-related disorders.

Currently, several drugs targeting the STATs pathway have been

used for the treatment of pregnancy-related diseases. Although the

specific mechanisms are not fully understood, it is reasonable to

believe that a deeper understanding of the STATs signaling pathway

will not only help clarify the occurrence of normal pregnancy but

also facilitate the development of targeted therapies for pregnancy-

related disorders. However, there is still a long way to go in order to

thoroughly understand the functions of STATs in pregnancy and

explore immune-based treatments for pregnancy-related disorders

based on STATs.
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