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Background: Cancer-associated fibroblasts (CAFs) contribute to the

progression and treatment of breast cancer (BRCA); however, risk

signatures and molecular targets based on CAFs are limited. This study

aims to identify novel CAF-related biomarkers to develop a risk signature

for predicting the prognosis and therapeutic response of patients with BRCA.

Methods: CAF-related genes (CAFRGs) and a risk signature based on these

genes were comprehensively analyzed using publicly available bulk and

single-cell transcriptomic datasets. Modular genes identified from bulk

sequencing data were intersected with CAF marker genes identified from

single-cell analysis to obtain reliable CAFRGs. Signature CAFRGs were

screened via Cox regression and least absolute shrinkage and selection

operator (LASSO) analyses. Multiple patient cohorts were used to validate

the prognosis and therapeutic responsiveness of high-risk patients stratified

based on the CAFRG-based signature. In addition, the relationship between

the CAFRG-based signature and clinicopathological factors, tumor immune

landscape, functional pathways, chemotherapy sensit ivity and

immunotherapy sensitivity was examined. External datasets were used and

sample experiments were performed to examine the expression pattern of

MFAP4, a key CAFRG, in BRCA.

Results: Integrated analyses of single-cell and bulk transcriptomic data as

well as prognostic screening revealed a total of 43 prognostic CAFRGs; of

which, 14 genes (TLN2, SGCE, SDC1, SAV1, RUNX1, PDLIM4, OSMR, NT5E,

MFAP4, IGFBP6, CTSO, COL12A1, CCDC8 and C1S) were identified as

signature CAFRGs. The CAFRG-based risk signature exhibited favorable
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1307588/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1307588/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1307588/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1307588/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1307588/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1307588/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1307588/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1307588&domain=pdf&date_stamp=2024-01-03
mailto:taoyijie94@smmu.edu.cn
mailto:huweicj@163.com
mailto:zhaoliyuankitty@163.com
https://doi.org/10.3389/fimmu.2023.1307588
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1307588
https://www.frontiersin.org/journals/immunology


Li et al. 10.3389/fimmu.2023.1307588

Frontiers in Immunology
efficiency and accuracy in predict ing survival outcomes and

clinicopathological progression in multiple BRCA cohorts. Functional

enrichment analysis suggested the involvement of the immune system, and

the immune infiltration landscape significantly differed between the risk

groups. Patients with high CAF-related risk scores (CAFRSs) exhibited

tumor immunosuppression, enhanced cancer hallmarks and hyposensitivity

to chemotherapy and immunotherapy. Five compounds were identified as

promising therapeutic agents for high-CAFRS BRCA. External datasets and

sample experiments validated the downregulation of MFAP4 and its strong

correlation with CAFs in BRCA.

Conclusions: A novel CAF-derived gene signature with favorable predictive

performance was developed in this study. This signature may be used to

assess prognosis and guide individualized treatment for patients with BRCA.
KEYWORDS

breast cancer, cancer-associated fibroblast, prognostic signature, ScRNA-seq,
tumor microenvironment
1 Introduction

Breast cancer (BRCA) is one of the most common cancers globally,

with 2.3 million new cases being reported in 2020, and the leading

cause of cancer-related death among women (1). Advancements in

diagnostic approaches and surgery-based comprehensive treatments

(such as neoadjuvant chemoradiotherapy, hormonal therapy, and

targeted therapy) have reduced the mortality rate of BRCA.

However, some patients still have a poor prognosis owing to tumor

metastasis, recurrence and poor therapeutic responsiveness (2). With

more attention being paid to immunotherapies, novel therapeutic

approaches involving immune checkpoint blockade (ICB) therapy,

adoptive cell therapy (ACT), immunomodulatory agents and tumor

vaccines have been developed for the treatment of several complex and

advanced cancers such as BRCA, lung cancer and melanoma (3–5).

Although immune checkpoint inhibitors such as pembrolizumab and

atezolizumab have some therapeutic benefits in clinical practice, the

proportion of responsive patients remains low. In addition, reliable

tools for predicting the treatment response of patients are limited,

necessitating the identification of novel therapeutic targets for BRCA

and novel biomarkers that can be used to assess the prognosis and

treatment response of patients with BRCA (6–8).

The tumor microenvironment (TME) is mainly composed of

infiltrative immune cells, stromal cells and secretory signaling

factors that are closely associated with the biological behavior of

tumors (9, 10). Numerous recent studies have demonstrated that

TME components such as cancer-associated fibroblasts (CAFs) and

macrophages can limit the intra-tumoral infiltration of effector

immune cells directly by forming a spatial barrier-like structure,

leading to immunotherapeutic resistance (11). Furthermore, these

cells can interact with tumor cells and induce a suppressive
02
microenvironment, thereby promoting cancer progression

indirectly (12, 13). Therefore, investigating the components of

TME and their interactions with BRCA cells is important for

elucidating tumor–immune regulatory mechanisms and

identifying promising therapeutic targets.

CAFs are the predominant members of the stromal population

in TME. They could regulate various biological processes such as

extracellular matrix remodeling, secretory signaling, and the

crosstalk between multiple cell types (10, 13, 14). Studies have

shown that CAFs could promote the malignant characteristics of

BRCA, including proliferation, angiogenesis, metastasis and

treatment resistance, further resulting in an unfavorable prognosis

(14–16). For example, CAF-derived secreted factors such as

transforming growth factor-b (TGF-b), hepatocyte growth factor

(HGF), fibroblast growth factor 5 (FGF5), and even interleukins

(ILs) and chemokines, could facilitate BRCA progression and

treatment resistance through different mechanisms (15). In

addition, CAFs could also influence the spatial distribution and

limit the function of effector immune cells, to indirectly promote

survival of tumor cells (15). A recent study based on pan-cancer

bulk and single-cell transcriptomic analyses identified the CAF-

derived secreted protein BGN as a poor prognostic factor for BRCA,

and the associat ion between its high expression and

immunotherapy resistance was validated in samples from a real-

world ICB cohort (17). Consequently, targeting CAFs and CAF-

related genes has emerged as a promising therapeutic strategy

for BRCA.

Although some studies have focused on the function of CAFs in

BRCA, studies addressing the prognostic value of CAF-related

genes and their relationship with TME and therapeutic response

in BRCA are limited. The emergence of single-cell RNA sequencing
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(scRNA-seq) has dramatically improved the precision of studies on

TME, enabling the acquisition of deeper cellular and molecular

information (18). Therefore, we speculated that integrating single-

cell and bulk transcriptomic analyses might help to develop a

reliable CAF-based risk signature for predicting the prognosis and

therapeutic response of patients with BRCA.

In this study, we comprehensively analyzed scRNA-seq and

bulk transcriptomic data to screen for CAF-related genes (CAFRGs)

associated with the prognosis of BRCA and developed a novel risk

signature based on these CAFRGs. The predictive performance and

clinicopathological relevance of the risk signature were validated in

multiple patient cohorts. In addition, the utility of the signature in

profiling the TME landscape, immune function and therapeutic

susceptibility was assessed. The overall protocol of this study is

illustrated in Figure 1.
2 Materials and methods

2.1 Data sources and processing

The bulk RNA-seq and clinical data of 1109 BRCA samples and

113 normal samples were extracted from The Cancer Genome Atlas

(TCGA) database (https://portal.gdc.cancer.gov/) (TCGA-BRCA

cohort). After duplicates and cases with an overall survival of<60

days were removed, 1023 BRCA samples were subjected to

subsequent analysis. A quality-controlled scRNA-seq dataset of

primary BRCA tissues based on the 10x Genomics platform,

EMTAB8107 (containing data on 33,043 cells from 14 untreated

patients), was obtained from Tumor Immune Single-cell Hub 2

(TISCH2, http://tisch.comp-genomics.org/home/) (19, 20). The

“Seurat” package was used for data analysis, and after data

normalization (log normalization with a scale factor of 10000),

2000 highly variable genes were selected for principal component

analysis (PCA) using the “FindVariableFeatures” and “runPCA”

functions (21). Cell clusters were identified based on the first 20

principal components (PCs) using the t-SNE algorithm, with the
Frontiers in Immunology 03
resolution set to 0.5. Differentially expressed genes between the cell

clusters were identified using the ‘FindAllMarkers’ function, and

cell populations were annotated using the “SingleR” algorithm and

reference-based annotation in the CellMarker2.0 database. Two

independent BRCA datasets, namely, GSE96058 (N = 3273) and

METABRIC (N = 1896), were used for external validation of the

risk signature, and their clinical information was integrated to

assess the clinicopathological relevance of the risk signature.
2.2 Assessment of CAF abundance
and survival analysis

Data on the abundance of tumor-infiltrating immune cells in

TCGA-BRCA samples were extracted from the “immune

estimation” module of the TIMER2.0 database (http://

timer.cistrome.org/). In addition, abundance data of CAFs

quantified using the xCELL and MCPcounter algorithms were

extracted for subsequent grouping (22). The ‘survminer’ and

‘survival’ R packages were used to evaluate the optimal cutoff

value of the abundance of CAFs for survival analysis.

Subsequently, Kaplan–Meier curves were plotted to demonstrate

differences in survival between CAF groups.
2.3 Identification of CAF-related genes
with prognostic value

CAF-related genes (CAFRGs) were identified through single-

cell and bulk transcriptomic analyses. After cell annotation, the

marker genes of CAF populations were retained. Weighted gene co-

expression network analysis (WGCNA) was performed to screen

for modules and genes most relevant to CAFs. After samples were

clustered and outliers were removed, a soft-thresholding value was

determined to achieve optimal operational efficiency. Genes were

divided into different modules, with the number of genes in each

module being >50. Subsequently, correlation analysis was
FIGURE 1

Flowchart demonstrating the protocol of this study.
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performed to screen for modules that were most relevant to CAFs.

The genes obtained from the most relevant modules were

intersected with the marker genes of CAFs obtained from scRNA-

seq data to screen for reliable CAFRGs. Univariate Cox analysis was

performed to identify CAFRGs with prognostic value (P< 0.05)

using the “survival” package.
2.4 Development and validation of a CAF-
related risk signature

Prognostic CAFRGs were subjected to multivariate Cox and

LASSO regression analyses in the TCGA-BRCA cohort to

determine the ideal CAFRGs and their coefficients for establishing

a risk signature. Each sample was assigned a CAF-related risk score

(CAFRS) using the following formula:

CAFRS =o
n

i=1
½coefficient (CAFRGi) * expression (CAFRGi)�

Patients in each cohort were stratified into a high-CAFRS group

and a low-CAFRS group based on the median CAFRS as previously

described (23). The “pheatmap” package was used to visualize the

distribution of risk scores and the expression profiles of signature

CAFRGs. Survival differences between the two CAFRS groups were

demonstrated utilizing the same packages as mentioned above.

Additionally, signature CAFRGs were also subjected to consensus

clustering analysis.
2.5 Clinicopathological relevance analysis
and establishment of a nomogram

Multi-index and time-dependent receiver operating characteristic

(ROC) curves were plotted to evaluate the accuracy of CAFRSs in

predicting the survival of patients. Multiple clinicopathological

parameters were compared between the two CAFRS groups to

examine the re la t ionship be tween CAFRSs and the

clinicopathological parameters. Univariate and multivariate Cox

regression analyses were performed to assess whether CAFRSs and

the clinicopathological parameters served as independent indicators

of prognosis in BRCA cohorts. Subsequently, a nomogram

integrating CAFRSs and clinicopathological parameters was

developed using the “nomogram” function to predict risk and

survival quantitatively. The “rms”, “timeROC”, “ComplexHeatmap”

and “ggplot2” packages were used for the abovementioned analyses.
2.6 Characterization of
functional phenotypes

Gene set enrichment analysis (GSEA) was performed to screen

for biological processes and pathways associated with CAFRGs in

BRCA. For Gene Ontology (GO) and Kyoto Encyclopedia of Genes
Frontiers in Immunology 04
and Genomes (KEGG) enrichment analyses, gene sets were

obtained from the MSigDB. GSEA was performed using the

“org.Hs.eg.db” and “clusterProfiler” packages (24). The screening

criteria for significantly enriched items included a |normalized

enrichment score (NES)| > 1, a p-value< 0.05, and a false

discovery rate (FDR)< 0.25.
2.7 Assessment of the tumor
immune landscape

To assess the immune characteristics of the two CAFRS groups,

the abundance of tumor-infiltrating immune cells (TIICs) was

evaluated, and microenvironmental scores, tumor stemness scores

and tumor immunity-related signature scores were calculated. The

CIBERSORT and ImmunecellAI algorithms were used to quantify

the intra-tumoral abundance of immune cells (25, 26). The

CIBERSORT analysis was performed according to the officially

recommended parameters and repeated 1000 times. Results of

ImmunecellAI were obtained using the function of immune cell

abundance analysis on the ImmunecellAI platform (http://

bioinfo.life.hust.edu.cn/ImmuCellAI#!/), following the official

tutorials. The correlation between the expression of signature

CAFRGs and the infiltration levels of immune cells was assessed

using the Spearman method. Additionally, the ESTIMATE

algorithm was used to evaluate immune scores, stromal scores,

ESTIMATE scores and tumor purity. The immunological profiles of

patients in the two CAFRS groups were assessed using the GSVA

algorithm and the scoring system based on the IOBR package (27).

Differences between the two CAFRS groups were visualized on heat

maps and box plots.
2.8 Therapeutic response analysis
and drug screening

Based on the results of functional enrichment and immune

infiltration analyses, immune regulatory molecules (such as

antigen-presenting molecules and immune checkpoint molecules)

and immunotherapy response scoring systems (Tumor Immune

Dysfunction and Exclusion [TIDE] scores and immunophenoscores

[IPSs]) were integrated to examine the relationship between CAFRS

and immunotherapy response (28, 29). In addition, transcriptomic

and survival analyses were performed to validate the results in a

real-world patient cohort undergoing anti-PD-1 ICB therapy

(GSE78220) (30).

The “pRRophetic” package was used to evaluate the half-

maximal inhibitory concentration (IC50) of common clinical

chemotherapeutic or targeted drugs, such as cisplatin, docetaxel

and axitinib, to compare drug sensitivity between the high- and

low-CAFRS groups (31). Transcriptomic differences between the

two CAFRS groups were assessed and submitted to the Connectivity
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Map (Cmap, https://clue.io/) platform to identify promising drugs

for treating high-CAFRS BRCA (32).
2.9 Screening and validation of
key CAFRGs

To screen for CAFRGs with biological significance in BRCA, the

expression of signature CAFRGs was compared between BRCA and

normal tissue samples, and key CAFRGs were further identified via

clinicopathological and proteomic analyses (33). Two independent

scRNA-seq datasets (GSE176078 and GSE114727) from the

TISCH2 database were used to verify the expression of key

CAFRGs in different cell populations (19). To validate the

expression of key CAFRGs at the protein level, publicly available

immunohistochemical (IHC) images and proteomic data were

obtained from the Human Protein Atlas (HPA) and Clinical

Proteomic Tumor Analysis Consortium (CPTAC) databases,

respectively (34). The KM Plotter was used to examine the role of

key CAFRGs in prognosis in external BRCA cohorts (35). The Gene

Expression Profiling Interactive Analysis (GEPIA) database and a

transcriptomic dataset (GSE22820) including 176 primary BRCA

tissue samples and 10 normal breast tissue samples were used to

examine the expression of microfibrillar-associated protein 4

(MFAP4), a key CAFRG (36, 37). For dataset GSE22820,

differential expression analysis was performed following the

descriptions of previous studies, with thresholds for differences

defined as |log2FC| > 1 and the p-value< 0.01 (38).
2.10 In vitro assays for assessing the
expression and tissue distribution
of MFAP4

Real-time quantitative reverse transcription polymerase chain

reaction (qRT-PCR) and IHC analysis were performed to evaluate

the expression of MFAP4 in BRCA and adjacent normal tissues.

Briefly, seven pairs of fresh BRCA tissue samples and corresponding

paracancerous tissue samples were obtained from the Department

of Thyroid and Breast Surgery, the First Affiliated Hospital of Naval

Medical University. Informed consent was obtained from all

patients. The fresh tissues were rapidly frozen and stored in

liquid nitrogen until RNA extraction. Total RNA was extracted

from tissues using the TRIzol reagent according to the

manufacturer’s instructions. The reverse transcription and real-

time PCR experiments were performed as described previously (39).

The mRNA expression of MFAP4 was evaluated and normalized to

that of GAPDH. The primers used for PCR were synthesized by

Sangon Biotech (Shanghai, China), and the sequences are listed in

Supplementary Table 1. IHC staining was performed using primary

antibodies against MFAP4 (GB113768-100) and alpha-smooth

muscle actin (a-SMA) (GB111364-100) (Servicebio, Wuhan,

China) as described previously (39).
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2.11 Statistical analysis

The R software (version 4.1.2) and several online tools such as

TISCH, TIMER2.0 and Cmap, were used for statistical analysis. The

“limma”, “ggplot2”, “Seurat”, “WGCNA”, “survival”, “pheatmap”,

“GSVA” and “pRRophetic” packages were used in this study, and

their application situations have been described in respective

sections. The Student’s t-test and chi-square test were used to

compare continuous and categorical variables, respectively. The

Wilcoxon test was used to compare gene expression between

groups. In addition, Spearman analysis was performed to assess

the correlation between different variables. A p-value of< 0.05 was

considered statistically significant.
3 Results

3.1 Dual WGCNA for the identification of
CAFRGs in BRCA

The MCPcounter and xCELL algorithms were used to quantify

tumor-infiltrating immune cells (TIICs) in TCGA-BRCA cohort.

Patients were divided into high- and low-CAF-infiltration groups

for survival analysis. As anticipated, patients with a high abundance

of tumor-infiltrating CAFs had significantly shorter survival

(P< 0.01 and P< 0.001, Figures 2A, B). These results suggest that

CAFs play a role in the prognosis of BRCA. Furthermore, dual

WGCNA was performed to identify modules and genes most

closely associated with CAFs in BRCA. Based on the optimal soft-

thresholding power of 7 (Figures 2C, D), several gene modules were

identified (Figures 2E, F). The green-yellow and dark-green

modules were found to be most closely associated with the

abundance of CAFs calculated by MCPcounter and xCELL,

respectively (correlation = 0.61, P< 0.001; correlation = 0.51,

P< 0.001; Figures 2G, H; Supplementary Figure 1). A total of

1990 genes in the green-yellow module and 3029 genes in the

dark-green module were extracted for subsequent analyses.
3.2 ScRNA-seq data analysis to identify
marker genes of CAFs

The Seurat package was used to normalize the scRNA-seq data.

As shown in the t-SNE map in Figure 3A, a total of 33,043 cells were

grouped into 23 clusters based on the top 2000 highly variable genes

and the top 20 PCs. Based on common cell markers, the 23 clusters

were annotated into nine cell types, including T cells, malignant

cells, fibroblasts, monocytes/macrophages, endothelial cells, B cells,

plasma cells, myofibroblasts and mast cells, using the SingleR

algorithm (Figure 3B). Clusters 3 and 9 were identified as

fibroblasts, that is, CAFs. The expression of marker genes in

different cell types was visualized on a violin plot, bubble plot, t-

SNE map and heat map (Figures 3C, D; Supplementary Figures 2A,
frontiersin.org
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B). Eventually, 1154 marker genes of CAFs were selected by

comparing gene expression among the nine cell types.
3.3 Screening for prognostic CAFRGs and
development of a CAFRG-based
risk signature

The 1990 genes in the green-yellow module, 3029 genes in the

dark-greenmodule and 1154 marker genes of CAFs were intersected to

obtain 570 CAFRGs (Figure 4A). Univariate Cox regression analysis
Frontiers in Immunology 06
revealed 1650 genes associated with the prognosis of BRCA. These

genes were intersected with the 570 CAFRGs to obtain 43 prognostic

CAFRGs (Figure 4B; Supplementary Table 2). These prognostic

CAFRGs were primarily enriched in cellular components such as

collagen and extracellular matrix and related biological processes as

well as molecular functions such as integrin binding and growth factor

binding (Figure 4C). Based on the results of LASSO regression analysis,

14 prognostic CAFRGs and their respective coefficients were used to

establish a CAF-related risk signature (Figures 4D, E; Table 1).

The 14 CAFRGs used to construct the CAF-related risk

signature included C1s, CCDC8, COL12A1, CTSO, IGFBP6,
B

C D

E F

G H

A

FIGURE 2

Prognostic value of CAFs and screening of modular genes most relevant to CAF infiltration using two algorithms. (A, B) Survival analysis showed
significant differences in prognosis between the high- and low-CAF-infiltration groups. (C, D) The optimal soft-thresholding power was selected as 7
in WGCNA. (E–H) Hierarchical clustering was performed to distinguish different modules and identify modules most relevant to CAFs. The results
displayed on the left panel (A, C, E, G) are based on the MCPcounter algorithm, and those displayed on the right panel (B, D, F, H) are based on the
xCELL algorithm.
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MFAP4, NT5E, OSMR, PDLIM4, RUNX1, SAV1, SDC1, SGCE and

TLN2. The CAFRS of each sample in the TCGA-BRCA cohort was

calculated, and patients were divided into high- and low-CAFRS

groups based on the median risk score (-1.748) (Figure 4F). As

anticipated, the heat map showed that the expression of protective

CAFRGs was higher in the low-CAFRS group, whereas that of

harmful CAFRGs was higher in the high-CAFRS group (Figure 4F).

Subsequently, the CAF-related risk signature was used for survival

analysis. Kaplan–Meier curves revealed that overall survival (OS),

disease-free survival (DFS), disease-specific survival (DSS) and

progression-free survival (PFS) were consistently longer in the

low-CAFRS group than in the high-CAFRS group, suggesting an

improved prognosis for low-CAFRS patients (P< 0.01)

(Figures 4G–J).
3.4 Performance evaluation and external
validation of the CAF-related risk signature

Multi-index and time-dependent ROC curves were plotted to

assess the predictive accuracy of the CAF-related risk signature. The
Frontiers in Immunology 07
area under the ROC curve (AUC) at 1, 5 and 10 years was 0.716,

0.768 and 0.731, respectively, suggesting that the predictive

performance of the risk signature was superior to that of other

clinical indicators (Figure 5A). Univariate and multivariate

regression analyses revealed that CAFRS was an independent

indicator of prognosis in BRCA, with the results being consistent

across multiple types of survival (P< 0.001) (Figure 5B;

Supplementary Figures 3A, B). The predictive accuracy of the risk

signature was validated in two external cohorts, GSE96058 and

METABRIC (Supplementary Figures 3C, D). The expression

profiles of signature CAFRGs in these two groups were consistent

with those in the training cohort. (Figures 5D, F). Patients in the

high-CAFRS group in both cohorts had significantly shorter

survival (P< 0.001) (Figures 5C, E). In addition, ROC curves

demonstrated modest predictive performance of the CAF-related

risk signature in the two external cohorts (Figures 5G, H;

Supplementary Figures 4A, B).

Furthermore, we divided patients into different clinical

subgroups according to their clinicopathologic characteristics to

test whether this signature could continue to be prognostic in each

independent subgroup. Supplementary Figures 5A, B showed that
frontiersin.or
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FIGURE 3

Identification of marker genes of CAFs using scRNA-seq data. (A) t-SNE plot of 23 cell clusters grouped using the Seurat package. (B) The t-SNE plot
of annotated cell types. (C, D) Violin and bubble plots demonstrating the differential expression of marker genes in different cell types.
g

https://doi.org/10.3389/fimmu.2023.1307588
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1307588
high-CAFRS patients still suffered worse OS, regardless of the

clinical subgroup. Altogether, these results suggest that the CAF-

related risk signature is a reliable tool for predicting the prognosis

of BRCA.
3.5 Strong association
between the risk signature and
clinicopathological indicators

This signature correlated well with clinicopathological

indicators of BRCA patients. As shown in Figure 6A, indicators

such as age, survival outcome and tumor TNM stage significantly

differed between the high- and low-CAFRS groups. Notably,
Frontiers in Immunology 08
patients with advanced age, poor survival outcomes and

progressive disease had significantly higher CAFRSs (Figures 6B–

D). Correlation analysis revealed a positive relationship between

CAFRSs and TNM staging indexes, indicating the favorable

clinicopathological relevance of the CAFRS (Figures 6E–H).

These results were validated in the two external cohorts, in which

patients with advanced age, poorer outcomes, larger tumors, higher

tumor grades and more positive lymph nodes detected (LN+) were

found to have higher CAFRSs (Supplementary Figures 4C–I, J, K).

Moreover, high-CAFRS patients in the METABRIC cohort also

experienced significantly shorter relapse-free survival (RFS)

(P< 0.05) (Supplementary Figures 4L). Subsequently, we

combined the CAFRS and the independent prognostic factor

(age) to establish a nomogram for quantitative prediction of

patient survival (Figure 6I).
B C

D E F

G H I J

A

FIGURE 4

Screening of CAF-related genes (CAFRGs) and establishing a CAF-related risk signature in TCGA-BRCA cohort. (A) CAFRGs were identified via
WGCNA and scRNA-seq data analyses. (B) Prognostic CAFRGs were identified by intersecting CAFRGs with prognostic genes. (C) Functional
enrichment analysis of prognostic CAFRGs. (D, E) LASSO analysis was performed to determine candidate CAFRGs and their coefficients for
establishing the risk signature. (F) Distribution of CAF-related scores (CAFRSs) and expression of signature CAFRGs in two groups. (G–J) Analysis of
different survival types showed that patients with high CAFRSs had a worse prognosis.
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3.6 GSEA implied the association of tumor
immunity with the risk signature

GSEA was performed to investigate the underlying causes of

differences in prognosis and clinical characteristics between the

high- and low-CAFRS groups. High-CAFRS tumors were mainly

associated with biological processes and pathways related to

mitochondrial translation, DNA replication, oxidative

phosphorylation and glycolysis (Figures 7A, B; Supplementary

Figure 6A). Low-CAFRS tumors were closely associated with

tumor immunity, including adaptive immune responses, T-cell

activation, interferon-gamma responses, cytokine–receptor

interaction and lymphocyte-mediated immunity (Figures 7C, D;

Supplementary Figure 6B). These results suggest that antitumor

immunity and the tumor immune microenvironment may

contribute to the differential prognosis of patients with BRCA.
3.7 Deciphering the TME landscape in
different CAFRS groups

The TME landscape and immune function of the two risk

groups were analyzed as indicated by the results of GSEA. The

abundance of TIICs was significantly different between the high-

and low-CAFRS groups. In particular, patients in the low-CAFRS

group had a higher abundance of tumor-infiltrating CD8+ T cells

and CD4+ T cells and a lower abundance of macrophages, especially

M2 macrophages (Figures 8A, B). The results of the ImmunecellAI
Frontiers in Immunology 09
algorithm showed an increased abundance of tumor-infiltrating NK

cells in the low-CAFRS group (Figure 8B). In addition, the low-

CAFRS group had higher stromal scores, immune scores and

ESTIMATE scores and lower tumor purity than the high-CAFRS

group (Figures 8C, D). These findings indicated that low-CAFRS

tumors tended to be ‘hot tumors’ with improved immune

cell infiltration.

The CAFRS was significantly correlated with microenvironmental

scores, with a negative correlation with immune scores and a positive

correlation with tumor purity (Figures 8E, F). In addition, the CAFRS

was positively correlated with tumor stemness scores (Figures 8G, H).

Therefore, tumors with lower CAFRSs were characterized by better

immune cell infiltration and lower tumor purity and stemness.

Furthermore, a heat map was plotted to identify signature CAFRGs

that were closely associated with the abundance of TIICs. The

expression of CCDC8, COL12A1, CTSO, IGFBP6, MFAP4,

PDLIM4, RUNX1 and TLN2 was associated with the abundance of

resting mast cells and CD4+ T cells (Figure 8I). The expression of

RUNX1 and COL12A1 was negatively associated with the abundance

of CD8+ T cells, whereas that of C1S, IGFBP6, MFAP4 and PDLIM4

was significantly positively associated with the abundance of CD8+ T

cells (Figure 8I). Eight CAFRGs, namely, COL12A1, CTSO, IGFBP6,

MFAP4, NT5E, OSMR, RUNX1 and TLN2, were significantly

associated with multiple TIICs (Figure 8I).
3.8 Discrimination power of the CAF-
related risk signature for immune
functional phenotypes

Immune function status could also affect the efficacy of tumor

immunotherapy, so we explored the relationship between CAFRS

and immune function phenotypes. Initially, the expression of

immunomodulatory molecules was compared between the high-

and low-CAFRS groups. As shown in Figures 9A–C, the low-

CAFRS group had higher expression of antigen processing- and

presentation-related genes, co-inhibitory molecules and co-

stimulatory molecules. Several immunotherapeutic targets such as

PDCD1 (PD-1), CD274 (PD-L1) and TIGIT were upregulated in

the low-CAFRS group (Figure 9B). Subsequently, GSVA was

performed to quantify the activities of different pathways in each

sample. Apparently, low-CAFRS patients scored higher in multiple

antitumor immunity-related activities such as CD8+ T cell effector,

cancer antigen presentation, trafficking and infiltration of immune

cells into tumors, T-cell mediated tumor killing, chemokines, etc.

than those high-CAFRS individuals, indicating that lower CAFRSs

were associated with better anti-tumor immunity (Figures 9D–F).

As a crucial anti-tumor process, type II interferon response was

significantly stronger in the low-CAFRS group (Figure 9F).

Additionally, patients with low CAFRSs had enhanced

antimicrobial potential, whereas those with high CAFRSs showed

enhanced hypoxia, glycolysis, and epithelial–mesenchymal

transition (EMT) activities (Figures 9G, H).
TABLE 1 Coefficients of CAFRGs used for developing the risk signature.

Gene
symbol

Description
Coefficient

C1S Complement C1s -0.0124

CCDC8 Coiled-coil domain-containing 8 0.0376

COL12A1 Collagen type XII alpha 1 chain 0.0048

CTSO Cathepsin O -0.0248

IGFBP6
Insulin-like growth factor-binding
protein 6

-0.0232

MFAP4 Microfibril-associated protein 4 0.0161

NT5E Ecto-5’-nucleotidase 0.0783

OSMR Oncostatin M receptor 0.0262

PDLIM4 PDZ and LIM domain 4 -0.0430

RUNX1 RUNX family transcription factor 1 -0.0411

SAV1
Salvador family WW domain-containing
protein 1

-0.0785

SDC1 Syndecan 1 0.0015

SGCE Sarcoglycan epsilon -0.0104

TLN2 Talin 2 -0.2146
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3.9 Application of CAFRS in predicting the
immunotherapy response

The differential immune function between the high- and low-

CAFRS groups strongly implied that patients may have varied

responses to immunotherapy. The low-CAFRS group showed

significantly higher CD8+ T-cell scores, CD274 scores, microsatellite

instability (MSI) scores and TIDE scores but lower MDSC scores than

the high-CAFRS group, indicating that patients with higher CAFRSs

were more likely to suffer from immunosuppression and benefit less

from immunotherapy (Figures 10A–E). As expected, the response to

immunotherapy was better in the low-CAFRS group (Figure 10F). In
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addition, the low-CAFRS group had higher IPSs, which indicated a

more immunogenic phenotype regardless of the PD-1 and CTLA4

status (Figure 10G). These results were validated in an external

immunotherapy cohort. Consistently, patients with higher CAFRSs

showed a poor response to immunotherapy and shorter survival

(Figures 10H, I). The AUC values for predicting survival and

therapeutic outcomes were >0.7, demonstrating the good

performance of CAFRS in predicting the therapeutic response and

survival of patients receiving immunotherapy (Figures 10J, K).

Altogether, these results suggest that patients with lower CAFRSs

benefit more from immunotherapy and that CAFRS is an efficient tool

for predicting immunotherapy response.
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FIGURE 5

Evaluation and external validation of the CAF-related risk signature. (A) ROC curves demonstrating the predictive performance of the signature.
(B) Univariate and multivariate analyses of the CAFRS in TCGA-BRCA cohort. (C, E) Kaplan–Meier curves demonstrating a worse prognosis of high-
CAFRS patients in two external BRCA cohorts. (D, F) Distribution of CAF-related scores (CAFRSs) and expression profiles of signature CAFRGs in
GSE96058 (D) and METABRIC (F) cohorts. (G, H) ROC curves demonstrating the predictive performance of the signature in two external
BRCA cohorts.
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3.10 Application of CAFRS in predicting
chemotherapeutic sensitivity and
identifying promising drugs

To examine the utility of CAFRS in guiding the precise

treatment of BRCA, the sensitivity of patients to several clinically

common chemotherapeutic drugs, including natural, platinum-

based, anti-metabolic and molecularly targeted drugs, was

evaluated. Patients with high CAFRSs had elevated IC50 values

for all 12 drugs selected in the analysis, implying the presence of

underlying drug resistance (Figures 11A–L). Accordingly, patients

with low CAFRSs may benefit more from these anticancer drugs,

which may partly explain their better prognosis. Because high-

CAFRS patients had a poor prognosis and less therapeutic benefit,

targeting specific molecules is necessary for expanding therapeutic
Frontiers in Immunology 11
options in this population. Consequently, we analyzed the

differential genes between two CAFRS subgroups and predicted

the small molecule compounds promising to target high-CAFRS

tumors using the Cmap platform. Azacitidine, capsaicin,

sulfafurazole, rosiglitazone and reversine were identified as

promising agents suitable for treating high-CAFRS patients

(Figures 11M–Q).
3.11 Correlation of CAFRG-based
clustering with prognosis
and immunity in BRCA

Consensus clustering analysis was performed to assess the

applicability of the 14 signature CAFRGs as therapeutic targets. Two
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FIGURE 6

Clinicopathological relevance of the CAF-related risk signature. (A) Heat map of patients with different clinicopathological characteristics in the high-
and low-CAFRS groups. (B–H) Histograms and box plots demonstrating the association between the CAFRS and clinicopathological parameters
including age (B), survival status (C), disease progression (D), tumor stage (E), TNM-T stage (F), TNM-N stage (G) and TNM-M stage (H). (I) CAFRS-
based nomogram for predicting patient prognosis quantitatively. (ns: not significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
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stable CAF clusters were identified (A and B) based on the k-value of 2.

(Supplementary Figures 7A, B). As shown in Supplementary Figure 7C,

patients in cluster B had shorter overall survival than those in cluster A

(P< 0.001). In terms of TME, the abundance of M0 and M2

macrophages was higher in cluster B, whereas that of naïve B cells,

CD8+ T cells and gamma delta T cells was higher in cluster A

(Supplementary Figure 7D). As shown in Supplementary Figure 7E,

patients in cluster A with lower TIDE scores may benefit more from

immunotherapy. CAF and MDSC scores were higher and MSI scores

were lower in cluster B than in cluster A, indicating the

immunosuppressive status and poor immunotherapeutic

responsiveness of patients in cluster B (P< 0.001) (Supplementary

Figures 7F–H). These results indicate that the risk signature and

molecular subtypes developed based on the 14 CAFRGs are

favorable tools for predicting the prognosis of BRCA.
3.12 Expression patterns and prognostic
significance of key CAFRGs

To examine the role of signature CAFRGs in a multidimensional

manner, their expression patterns were compared between BRCA

and normal tissues and between patients with different tumor stages.

Consequently, a total of 10 differentially expressed CAFRGs were
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selected for proteomic analysis (Supplementary Figures 8A, B).

Because the expression of six CAFRGs (C1S, COL12A1, IGFBP6,

MFAP4, OSMR and TLN2) was consistent at both mRNA and

protein levels, they were identified as key genes for subsequent

analysis (Supplementary Figure 8C). IHC analyses based on HPA

data further validated the expression patterns of the six CAFRGs in

tissue samples (Supplementary Figures 9A, B). In addition, survival

analysis revealed that the 6 CAFRGs were robust indicators of

prognosis in the external cohorts (Supplementary Figures 9C, D).

In the single-cell dimension, the preferential expression of these six

CAFRGs in CAFs was validated in two external scRNA-seq datasets

(Supplementary Figures 10A–C, 11A–C). This gene signature also

scored higher in CAFs, illustrating its reliability (Supplementary

Figures 10D, S11D). Moreover, bulk transcriptomic analyses also

revealed a strong positive correlation betweenMFAP4 expression and

the expression of common CAF markers including COL1A1,

ACTA2, and FAP (Supplementary Figures 11E).

Among the 6 key CAFRGs, MFAP4 was selected for subsequent

analysis owing to its under-reported status in BRCA. The

expression of MFAP4 was found to be lower in BRCA tissues

than in normal tissues in multiple datasets, and our IHC and qRT-

PCR results consistently confirmed this finding (Figures 12A–D). In

addition, MFAP4 exhibited strong co-localization with CAFs in

BRCA samples (Figure 12E).
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FIGURE 7

Gene set enrichment analysis. Significantly enriched GO terms and KEGG pathways in the high-CAFRS group (A, B) and the low-CAFRS group (C, D).
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4 Discussion

BRCA is the leading cause of cancer-related death among

women and the most common malignancy worldwide (1).

However, effective treatment strategies for advanced or metastatic

BRCA are still limited (2). Recently, numerous clinical trials have

shown that immunotherapy, represented by immune checkpoint

inhibitors, may have improved therapeutic effects against cancer,

especially middle- and advanced-stage cancer when combined with

other therapies (6–8). With in-depth research on immunotherapy,

scholars are increasingly focusing on the role of TME in influencing

prognosis and antitumor immunity (9, 40). As an important

component of TME, CAFs are involved in the remodeling of the

extracellular matrix (ECM) and secrete various cytokines,
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chemokines, and pro-angiogenic factors (41). They actively

participate in the continuous interactions among cancer cells,

endothelial cells and immune cells in the hypoxic TME, which

may lead to immunosuppression (12). For example, a CAF-derived

secreted protein, Biglycan (BGN), was found to be negatively

correlated with CD8+ T cell infiltration, and its high expression

indicated poor prognosis and an immunosuppressive

microenvironment in BRCA (42). In addition, CAFs may

promote the progression of BRCA by inducing angiogenesis and

recruiting bone marrow-derived endothelial cells (16). Recent

studies have reported that CAFs are involved in the development

of resistance to chemotherapy (43).

The abovementioned functions of CAFs indicate their

therapeutic potential in cancer. For example, therapeutic
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FIGURE 8

Assessment of the tumor microenvironment (TME) landscape. (A, B) The abundance of TIICs in the high- and low-CAFRS groups was evaluated
using the CIBERSORT (A) and ImmunecellAI (B) algorithms. (C, D) Microenvironmental scores in the two CAFRS groups were calculated using the
ESTIMATE algorithm. (E, F) Correlation of CAFRSs with immune scores and tumor purity. (G) Differences in stemness scores between the two CAFRS
groups. (H) Correlation between CAFRSs and stemness scores. (I) Heat map demonstrating the correlation between signature CAFRGs and the
abundance of different types of TIICs. (ns: not significant, *P < 0.05, **P < 0.01, ***P < 0.001).
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approaches based on tumor vaccines or chimeric antigen receptor

(CAR) T-cell therapies targeting fibroblast activation protein (FAP),

a surface marker of CAF, have been shown to reactivate antitumor

immune responses and inhibit tumor progression (44, 45).

Reversing CAF-mediated ECM remodeling can promote the

function of immune effector cells (46). However, therapies

targeting CAFs are limited owing to the lack of effective

biomarkers (10). CAF-related prognostic signatures with

favorable predictive performance in BRCA remain underreported

and lack the integration of single-cell and bulk transcriptomic data

as well as the potential for assessing treatment responses. Therefore,

novel valuable CAF-specific targets should be identified and their

significance in assessing prognosis and therapeutic responses in

BRCA should be investigated intensively.
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In this study, our goal is to uncover CAF-associated prognostic

genes using reliable screening strategies, based on which we will

establish novel CAF-associated prognostic biomarkers to provide

new targets and ideas for precision medicine of BRCA. We first

analyzed the effect of CAF levels on the prognosis of BRCA patients,

which showed that patients with more infiltrative CAFs had a

poorer prognosis, indicating the significance of investigating the

role of CAFRGs in BRCA. Consequently, two-step bulk

transcriptomic WGCNA and scRNA-seq analyses were integrated

to develop a CAF-related risk signature for BRCA. Patients with

BRCA were effectively stratified using this signature, and its

favorable performance in predicting prognosis, clinicopathologic

features, immune landscapes, and therapeutic responsiveness was

verified in multiple BRCA datasets. High-CAFRS patients had
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FIGURE 9

Role of the CAF-related risk signature in characterising the antitumor immunity of patients with BRCA. (A–C) Differential expression of antigen
processing- and presentation-related genes (A), inhibitory checkpoint genes (B) and stimulatory checkpoint genes (C) between the high- and low-
CAFRS groups. (D–F) GSVA was used to assess antitumor immune function in the two CAFRS groups. (G, H) GSVA was used to assess cancer
hallmarks in the two CAFRS groups. (ns: not significant, *P < 0.05, **P < 0.01, ***P < 0.001).
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worse clinical outcomes, significant TME immunosuppression and

poor therapeutic responses. In addition, a real-world

immunotherapy cohort also validated the predictive results. These

findings may provide a theoretical reference for the further

application of the CAF-based risk signature in BRCA.

Another important finding of this study is the identification of

novel promising CAF-related therapeutic targets for BRCA. The 14

CAFRGs (C1s, CCDC8, COL12A1, CTSO, IGFBP6, MFAP4, NT5E,

OSMR, PDLIM4, RUNX1, SAV1, SDC1, SGCE and TLN2)

involved in the risk signature were identified as potential

prognostic biomarkers strongly associated with TME and

therapeutic effectiveness. Complement is an important member

involved in inflammation and immunity, and activation of

complement C1 has been associated with the malignant

phenotype and poor prognosis of cancer (47, 48). In addition,

complement C1q and C1s are involved in the formation of an

immunosuppressive TME (49). Insulin-like growth factor-binding

protein 6 (IGFBP6) plays a role in promoting angiogenesis and

metastasis as a result of IGF-independent effects (50). RUNX family
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transcription factor 1 (RUNX1), a tumor suppressor, and RUNX2

have contradictory regulatory effects on EMT in BRCA.

Downregulation of RUNX1 and upregulation of RUNX2 drive

EMT in early-stage BRCA (51). TLN2 encoding talin2 plays an

important role in cancer metastasis by regulating the traction force,

focal adhesion and invadopodia (52). PDZ and LIM domain 4

(PDLIM4), also known as RIL, is thought to be a suppressor of

ovarian, breast and prostate cancers, and its low expression has been

associated with hypermethylation in both primary BRCA and

lymph node metastases (53–55). Dysregulation of CCDC8 occurs

in the early stage of BRCA progression and is associated with tumor

metastasis to the brain and other organs (56). COL12A1 has been

reported as a poor prognostic indicator for cancers including

BRCA, gastric cancer (GC) and cholangiocarcinoma (57–59).

Recently, a study described the mechanism of COL12A1 in

facilitating the generation of a pro-invasive TME conducive to the

metastasis of BRCA (57). Its family member, COL11A1 was also

identified to be a CAF-associated prognostic predictor in BRCA by

an integrated machine learning approach (38). As another CAFRG
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FIGURE 10

Performance of the CAF-related risk signature in predicting immunotherapy sensitivity in patients with BRCA. (A–E) Differences in CD8 T-cell scores
(A), CD274 scores (B), MDSC scores (C), MSI signature scores (D) and TIDE scores (E) between the high- and low-CAFRS groups. (F) Distribution of
responders and non-responders to immunotherapy in the two CAFRS groups. (G) Violin plot demonstrating differences in IPSs between the two
CAFRS groups. (H–K) Comparison of CAFRSs (H), survival analysis (I), ROC curve for survival outcome (J) and ROC curve for therapeutic response
(K) in the external immunotherapy cohort GSE78220. (ns: not significant, *P < 0.05, **P < 0.01, ***P < 0.001).
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with repressed expression resulting from epigenetic mechanisms in

BRCA, MFAP4 has been functionally associated with the damage

and alterations of elastic fibers and its high expression has been

reported to indicate a better prognosis in BRCA (60). SGCE

regulates the accumulation and remodeling of the ECM, and its

knockdown inhibits the self-renewal ability, metastasis and drug

resistance of BRCA stem cells (61). Oncostatin M (OSM)/

oncostatin M receptor (OSMR) signaling regulates the

interactions among CAFs, cancer cells and immune cells, thereby

reprogramming the pro-tumorigenic and pro-metastatic TME (14,

62). Syndecan-1 (SDC1), a member of the syndecan family,

regulates the invasive behavior of BRCA cells, and its
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upregulation is associated with a poorer prognosis, more

advanced clinical stage and more malignant phenotypes in BRCA

(63, 64). Ecto-5´-nucleotidase (NT5E), also known as CD73, is

upregulated in metastatic BRCA and participates in facilitating a

poo r p rogno s i s , c h emo th e r a p eu t i c r e s i s t an c e and

immunosuppression (65–68). CTSO is a cysteine protease that is

involved in the selective activation of macrophage-mediated matrix

remodeling and osteoclast-mediated bone resorption (69). Apart

from these consistent findings, we have further raised the

underlying interactions of these CAFRGs with tumor-infiltrating

immune cells by gene-cell correlation analysis. Certain CAFRGs

included in the risk signature have been reported to affect the
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FIGURE 11

Assessment of chemotherapeutic sensitivity and prediction of candidate drugs. (A–L) Box plots indicate that patients with low CAFRSs tend to
respond better to most chemotherapeutic and targeted drugs including camptothecin (A), cisplatin (B), docetaxel (C), doxorubicin (D), gemcitabine
(E), methotrexate (F), tipifarnib (G), vinblastine (H), axitinib (I), vinorelbine (J), imatinib (K) and bosutinib (L). (M–Q) Structures of five compounds
(azacitidine, capsaicin, sulfafurazole, rosiglitazone and reversine) predicted to be promising drugs for treating patients with high CAFRSs. (*P < 0.05,
**P < 0.01, ***P < 0.001).
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progression and prognosis of BRCA, which partially indicates the

reliability of the risk signature and therapeutic targets screened in

this study. The potential therapeutic value of the 14 CAFRGs

warrants further investigation.

Altogether, we have proposed a new CAF-associated prognostic

gene signature for breast cancer in this study; in terms of

methodology, a novel approach of combining bulk sequencing

with single-cell sequencing to screen genes was implemented;

regarding the prognostic performance, the signature performed

well in terms of survival prediction, clinicopathological relevance,

and therapeutic responsiveness prediction; the key gene MFAP4

was screened, and its expression and prognostic features were

characterized and validated using external datasets and

experimental approaches. However, this study also has some

shortcomings. The application value of this prognostic model

needs to be explored in clinical practice. In addition, the

biological functions of the CAFRGs identified in this study

require more in-depth experiments for validation. Nevertheless,

this study provides a theoretical and preliminary basis for the

identification of novel CAFRGs that may facilitate the

individualized assessment and management of patients with BRCA.
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5 Conclusions

The CAF-derived risk signature developed in this study is a reliable

tool for predicting the prognosis, immune characteristics, and

treatment response of patients with BRCA. In addition, this study

provides valuable insights into the mechanisms underlying the

progression of BRCA and proposes novel therapeutic targets for BRCA.
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FIGURE 12

Validation of the expression pattern of MFAP4 using external datasets and experimental approaches. (A, B) Analyses based on the GEPIA database
and external transcriptomic datasets showed that the expression of MFAP4 was upregulated in normal tissues. (C, D) The expression of MFAP4 in
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SUPPLEMENTARY TABLE 1

Primer sequences used in experiments.

SUPPLEMENTARY TABLE 2

List of 43 prognostic CAFRGs.

SUPPLEMENTARY FIGURE 1

WGCNA was performed to cluster samples and assess the correlation

between modular genes and CAF infiltration. (A, C) Samples were clustered
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and those with branch positions above the red line were removed. (B, D)
Modular genes were strongly positively correlated with CAF infiltration. The

results displayed on the left panel (A, B) are based on the MCPcounter

algorithm, and those displayed on the right panel (C, D) are based on the
xCELL algorithm.

SUPPLEMENTARY FIGURE 2

Feature plots (A) and heat map (B) demonstrating the differential expression

of marker genes among different cell types.

SUPPLEMENTARY FIGURE 3

Assessment of the independent prognostic potential of the CAF-related risk

signature. (A, B) Assessment of the independent prognostic potential of the
CAF-related risk signature in TCGA-BRCA cohort. (C, D) Validation of the

independent prognostic potential of the CAF-related risk signature in two

external cohorts.

SUPPLEMENTARY FIGURE 4

Verification of the clinicopathological relevance of the CAF-related risk

signature in two external cohorts. (A, B) ROC curves demonstrating the
predictive performance of the signature. (C, D) Heat maps of patients with

different clinicopathological characteristics in the high- and low-CAFRS
groups. (E–I) Histograms and box plots demonstrating the relationship

between the CAFRS and clinicopathological parameters including age (E),
grade (F), tumor size (G), survival status (H) and positive lymph node (LN+)

status (I) in the GSE96058 cohort. (J, K) Histograms and box plots

demonstrating the relationship between the CAFRS and clinicopathological
parameters including positive lymph node (LN+) status (J) and age (K) in the

METABRIC cohort. (L) RFS analysis in the METABRIC cohort. The results
shown in (B, D, J-L) are based on the METABRIC cohort, and those shown

in (A, C, E–I) are based on the GSE96058 cohort.

SUPPLEMENTARY FIGURE 5

Survival analyses in different clinical subgroups to test the stability of the
signature. (A) Survival analyses conducted in the TCGA-BRCA cohort. (B)
Survival analyses conducted in the GSE96058 cohort.

SUPPLEMENTARY FIGURE 6

Gene set enrichment analysis based on HALLMARK pathways. Significantly

enriched HALLMARK pathways in the high-CAFRS (A) and low-CAFRS

(B) groups.

SUPPLEMENTARY FIGURE 7

Consensus clustering analysis based on 14 signature CAFRGs. (A, B) Based on

the k value of 2, samples in the TCGA-BRCA cohort were divided into twoCAF
clusters. (C) Patients in CAF cluster B experienced shorter survival than those

in CAF cluster A. (D–H)Differences in the abundance of TIICs (D), TIDE scores

(E), MDSC signature scores (F), CAF signature scores (G) and MSI signature
scores (H) between the two CAF clusters.

SUPPLEMENTARY FIGURE 8

Selection of key CAFRGS. (A, B) Differential expression analyses in tissues and
clinicopathologic subgroups. (C) Proteomic expression of CAFRGs based on

the CPTAC database.

SUPPLEMENTARY FIGURE 9

Validation of the protein levels and prognostic roles of six key CAFRGs. (A, B)
Protein expression of the six key CAFRGs based on IHC images from the HPA

database. (C, D) Survival analysis of the six key CAFRGs in external datasets.

SUPPLEMENTARY FIGURE 10

Validation of the expression profiles of six key CAFRGs in the external scRNA-

seq dataset GSE176078. (A) Annotated cell types. (B, C)Differential expression
of the six key CAFRGs in different cell types. (D, E) Distribution of CAFRSs in
different cell types.

SUPPLEMENTARY FIGURE 11

Validation of the expression profiles of six key CAFRGs in the external scRNA-
seq dataset GSE114727. (A) Annotated cell types. (B, C) Differential expression
of the six key CAFRGs in different cell types. (D, E) Distribution of CAFRSs in

different cell types. (E) Correlation analysis between the key gene MFAP4 and
classical CAF markers.
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