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Coefficient of variation method
combined with XGboost
ensemble model for wheat
growth monitoring
Xinyan Li1, Changchun Li1*, Fuchen Guo1, Xiaopeng Meng1,
Yanghua Liu2 and Fang Ren2

1School of Surveying and Land Information Engineering, Henan Polytechnic University,
Jiaozuo, China, 2PIESAT Information Technology Co., Ltd, Beijing, China
Introduction: Obtaining wheat growth information accurately and efficiently is

the key to estimating yields and guiding agricultural development.

Methods: This paper takes the precision agriculture demonstration area of

Jiaozuo Academy of Agriculture and Forestry in Henan Province as the

research area to obtain data on wheat biomass, nitrogen content, chlorophyll

content, and leaf area index. By using the coefficient of variation method, a

Comprehensive Growth Monitoring Indicator (CGMI) was constructed to

perform fractional derivative processing on drone spectral data, and

correlation analysis was performed on the fractional derivative spectra with a

single indicator and CGMI, respectively. Then, grey correlation analysis was

carried out on differential spectral bands with high correlation, the grey

correlation coefficients between differential spectral bands were calculated,

and spectral bands with high correlation were screened and taken as input

variables for the model. Next, ridge regression, random forest, and XGboost

models were used to establish a wheat CGMI inversion model, and the

coefficient of determination (R2) and root mean squared error (RMSE) were

adopted for accuracy evaluation to optimize the wheat optimal growth

inversion model.

Results and discussion: The results of the study show that: using the data of

wheat biomass, nitrogen content, chlorophyll content and leaf area index to

construct the comprehensive growth monitoring indicators, the correlation

between the wheat growth monitoring indicators and the spectra was

calculated, and the results showed that the correlation between the

comprehensive growth monitoring indicators and the single indicator

correlation had different degrees of increase, and the growth rate could reach

82.22%. The correlation coefficient between the comprehensive growth

monitoring indexes and the differential spectra reached 0.92 at the flowering

stage, and compared with the correlation coefficient with the original spectra at

the same period, the correlation coefficients increased to different degrees,

which indicated that the differential processing of spectral data could effectively

enhance the spectral correlation. The three models of Random Forest, Ridge

Regression and XGBoost were used to construct the wheat growth inversion

model with the best effect at the flowering stage, and the XGBoost model had the

highest inversion accuracy when comparing in the same period, with the training
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and test sets reaching 0.904 and 0.870, and the RMSEs were 0.050 and

0.079, so that the XGBoost model can be used as an effective method of

monitoring the growth of wheat. To sum up, this study demonstrates that the

combination of constructing comprehensive growth monitoring indicators

and differential processing spectra can effectively improve the accuracy of

wheat growth monitoring, bringing new methods for precision

agriculture management.
KEYWORDS

wheat, comprehensive growth monitoring indicators, fractional order differentiation,
grey correlation analysis, XGBoost
1 Introduction

Accurately and timely understanding of crop growth is the key

to regulating national agricultural structure and ensuring national

food security. Remote sensing technology has the advantages of

wide coverage, short revisit cycles, and low data acquisition costs,

and it plays an important role in crop growth monitoring and yield

estimation (Rasti et al., 2022). The commonly used methods for

monitoring crop growth include artificial observation, machine

vision and digital image processing, remote sensing monitoring,

etc. In recent years, drone remote sensing has achieved good results

in monitoring crop growth in the field because it is efficient, non-

destructive, and accurate. Many scholars have adopted drone

technology to conduct a series of monitoring studies on different

crops (Impollonia et al., 2022; Wu et al., 2022; Nduku et al., 2023;

Wu et al., 2023).

The spectra of ground objects are often affected by factors such

as lighting, occlusion, climate conditions, and shooting

environment. Therefore, obtaining purer spectra has always been

a major concern for scholars. Fractional differentiation, as a spectral

transformation method that can deeply explore the potential

information of spectra, has been widely studied. For instance, Lv

et al. (2021) took the tobacco SPAD (Soil and Plant Analyzer

Development) value as the research object and employed the

random forest method to establish a model after fractional

differential pretreatment of the original spectrum, which can

effectively estimate the SPAD value of tobacco; Zheng et al.

(2023) calculated the spectral fractional differentiation of 0-2

orders with a step size of 0.2 and analyzed its correlation with the

SPAD value of maize canopy. The results indicated that the absolute

value of the correlation coefficient reached the maximum at 689nm

in the 0.6 order, demonstrating that the spectral correlation with

SPAD could be greatly improved after fractional differentiation

treatment; Liu et al. (2020) took potatoes as the research object and

calculated 0-2 order differential spectra with a step size of 0.2. They

conducted a correlation analysis between differential spectrum and

aboveground biomass at each order, and the results indicated that

compared to integer order differentiation, fractional order
02
differentiation can better improve the correlation between spectra

and biomass. In summary, fractional differentiation has small

interval changes, which can ensure slow signal-to-noise ratio

transformation and provide more features for detecting certain

spectral curve signals, making the model more stable.

In recent years, ensemble learning, as a new machine learning

paradigm, has been widely applied to solve various regression

problems by increasing the number of learners to improve their

generalization ability. The XGBoost model adds regularization

terms to the loss function based on the gradient lifting tree

algorithm, which performs well in preventing overfitting and

improving generalization ability. Liu (2022) compared four

classification methods in his experiment on monitoring wheat

stripe rust, and the study showed that the XGBoost model can

effectively improve the accuracy of early and mid-term monitoring

of winter wheat stripe rust; Li (2023) studied wheat and constructed

a wheat yield prediction model based on six machine learning

algorithms, including Least Absolute Convergence and Selection

Operator Algorithm (LASSO), Ridge Regression (RIDGE), Support

Vector Machine Regression (SVR), Random Forest (RF), Extreme

Gradient Enhancement Algorithm (XGBoost), and Light Gradient

Enhancement Algorithm (Light GBM). The results showed that the

prediction accuracy of XGBoost model was much higher than the

other five prediction models; Yang et al. (2022a) used jointing wheat

as the research object and constructed a total nitrogen content

inversion model under different soil fertility conditions using the

XGBoost algorithm. The results showed that the XGBoost

algorithm had high inversion accuracy in constructing a nitrogen

content inversion model. These studies indicate that the XGBoost

model has the advantages of strong generalization ability and high

stability in the application of regression problems.

In the process of monitoring crop growth, single parameters

such as chlorophyll content, biomass, leaf area index, and nitrogen

content are often selected as key evaluation indicators. Taking rice

chlorophyll content as the research object, He et al. (2023) analyzed

the inversion ability of eight spectral parameters on rice chlorophyll

content. The results demonstrated that the red edge area and red

edge amplitude were highly correlated with chlorophyll content
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using rice chlorophyll content as the research object; Zhang et al.

(2021) used Landsat-8 OLI images as the data sources and found

that the partial least squares model, which integrates multi-band

spectral information, has a good inversion effect on the

aboveground biomass of vegetation crops and crops in the study

area; Guo et al. (2022) employed three machine learning methods,

namely, least partial quadratic regression (PLSR), support vector

machine (SVM), and random forest (RF), to retrieve the wheat leaf

area index. The results indicated that the combination of global

sensitivity analysis and machine learning could enhance the

accuracy of LAI estimation; Guo et al. (2023) used four machine

learning regression methods, namely BP neural network, RF,

Adaboost, and support vector machine (SVR), to invert plant

nitrogen content. But using a single indicator for growth

monitoring cannot accurately reflect and identify the growth

status of crop populations with large morphological structures but

low physiological activities, or small morphological structures but

high physiological activities. Therefore, it is necessary to investigate

new crop growth monitoring methods that can reflect both the level

of physiological activities and the size of morphological structures.

Pei (2022) used MLR, PLSR, and RF methods to construct inversion

models for biomass, leaf area index, and growth monitoring

indicators of different growth stages of wheat, and compared

them. The results indicated that compared with the biomass and

leaf area index, the comprehensive growth monitoring indicators

(CGMI) can more accurately reflect the growth status of wheat;

Based on the principle of equal weight, Pei et al. (2017) constructed

a comprehensive index for five indicators: leaf area index (LAI), leaf

chlorophyll content, plant nitrogen content, plant water content,

and biomass. They combined spectral index with partial least

squares regression to establish an inversion model for this

comprehensive index. However, neither of them considers the

contribution rate of different growth indicators to the CGMI.

Simply, each indicator is evenly allocated to the CGMI.

Meanwhile, considering the different importance and dimensions

of each indicator in the CGMI, different weights are assigned to

each indicator, and a comprehensive growth monitoring indicator

is constructed based on variable weights, Xu et al. (2021) used

biomass, plant height, chlorophyll content, and plant moisture

content data to construct CGMI by adopting the variable weight

method. The research results demonstrated that compared with a

single indicator, the correlation between CGMI and spectral

characteristics was improved substantially. These studies indicate

that when determining the growth status of wheat, it is possible to

more accurately estimate wheat growth by dividing the weights of

individual growth monitoring indicators.

In this paper, to reduce background influence and improve the

correlation between growth monitoring indicators and spectral

features, a comprehensive growth monitoring indicator that can

reflect both the physiological activity level and population

morphological structure size of wheat is constructed. The

fractional order differential method is employed to process the

hyperspectral data of UAV, and the wheat biomass, nitrogen

content, chlorophyll content, and leaf area index are used to

construct the comprehensive growth monitoring index CGMI by

using the coefficient of variation method. The correlation coefficient
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between the fractional order differential spectrum and CGMI is

calculated, and the differential spectrum with a strong correlation is

selected as the model input variable. Finally, ridge regression, RF,

and XGboost (Extreme Gradient Boosting) models are used to

construct the inversion model of the comprehensive growth

monitoring index of wheat, thereby realizing the monitoring of

wheat growth.
2 Materials and methods

2.1 Overview of the research area

The research area is located in the precision agriculture

demonstration base of the Agricultural Science Research Institute

in Jiaozuo City, Henan Province. The specific location is 35.18° N

and 113.03° E. Located in the piedmont plain, the terrain is high in

the west and low in the east, high in the north and low in the south,

and the altitude ranges from 80 to 480 meters. The average annual

temperature is 12.8 to 15.5°C, and the average annual precipitation

is about 600 millimeters, belonging to a temperate monsoon

climate. The experimental area consisted of 48 plots, with a single

plot area of 48 m2 (6 m × 8 m), one replication per 16 plots; there

are four fertilizer levels: 0, 195, 390, and 585 kg/hm2, and the rest

were operated according to the actual management in the field. The

specific geographical location of the study area is shown in Figure 1.
2.2 Data acquisition and preprocessing

2.2.1 Drone data acquisition
Taking the eight-rotor electric UAV as the carrying platform,

the Cubert UHD-185 airborne high-speed imaging spectrometer

(Zheng, 2021) manufactured in Ulm, Germany was synchronously

used to obtain the remote sensing data of the UAV. The camera has

a spectral coverage of 454~950 nm and a spectral resolution of 4nm.

With the simple characteristics of the camera and the precise

characteristics of the hyperspectral, it is the lightest high-speed

imaging spectrometer so far. In the jointing, flag raising, and

flowering stages of wheat in 2020, data collection was performed

in clear and windless weather conditions. The specific time of

collection was from 11:00 to 14:00, the flight altitude was set at

50 m, and the overlap between heading and lateral directions

was 80%.

The hyperspectral data processing of UAV images mainly

involves radiation correction, rapid image stitching, and

extraction of average spectral reflectance of small canopy. Firstly,

based on the center wavelength and half wavelength width of

UHD185, a radiometric calibration system was designed using

MATLAB software to realize radiometric calibration from image

DN values to surface reflectance. Then, the images of the survey

area were filtered and processed, and the images were quickly

stitched together using Agisoft PhotoScan software. Finally, in

ArcGIS, the vector blocks and standard vector attribute

information of several samples with uniform growth in the

research community were drawn, and then IDL programming
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was employed to extract the average spectrum of 125 bands in each

research community. In the extraction process, pixel aggregation

was performed to resample the image and export it to the CSV

format file for subsequent data analysis.

2.2.2 Ground measurement data
2.2.2.1 Leaf area index

The LAI-2200 plant canopy analyzer (Li et al., 2022) was used to

collect wheat LAI data. Three sample points were randomly selected

in the area with uniform growth in each plot, and the LAI values

were measured four times respectively. Then, the arithmetic mean

value was taken as the LAI value of the sample point. Finally, the

average LAI value at three sample points was calculated as the LAI

value for the cell.

2.2.2.2 Chlorophyll content

Three wheat plant samples were randomly collected from areas

with uniform growth in each community, and they were brought

back to the laboratory. The chlorophyll content of wheat was

measured using spectrophotometry (Du et al., 2017). In the

measurement, a punch with a diameter of 0.8 cm was first used

to remove 18 circular leaves from each leaf; then, the leaves were

weighed using a balance with an accuracy of 0.001 g; finally, they

were cut into fine filaments and placed in a test tube containing 95%

ethanol. Next, in a sealed state, the leaves were placed in a dark

environment for 7 days until they turned white. Finally, a
Frontiers in Plant Science 04
spectrophotometer was used to measure the absorbance of the

chlorophyll solution at spectral wavelengths of 655 and 649 nm,

and the chlorophyll content of the leaves was calculated based on

the extinction coefficient of pigment molecules at that wavelength.

2.2.2.3 Nitrogen content

Synchronized with drone spectral measurement, a small

number of wheat leaves from each plot were chopped and placed

in an aluminum box and dried in an oven for 1 hour. Then, they

were turned into an air-drying oven to dry until their quality

remained unchanged. The dried samples were ground and

screened. The Kjeldahl method (Sun Hye et al., 2020) was

adopted to measure the nitrogen content of the wheat leaves. The

calculation formula is shown in Equation 1:

X =
V1 − V2 � c � 0:0140

m� V3=100
� F� 100% (1)

where, X is the nitrogen content, c is the solution concentration,

V1 is the volume of sulfuric acid consumed by sample titration, V2 is

the volume of sulfuric acid consumed by blank sample titration, V3

is the volume of the digestion solution, m is the sample mass, and F

is the coefficient for converting nitrogen to protein.

2.2.2.4 Biomass

Wheat biomass data were obtained using a drying method (Zhu,

2022). During data collection, 10 samples were randomly selected from
FIGURE 1

The overview of the research area.
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areas with uniform wheat growth in each community and brought

back to the laboratory. After organ (stem, leaf, and ear) separation and

other operations, they were placed in paper bags. When drying, the

temperature was first set to 105°C for green killing (about 30 minutes),

and then the temperature was set to 75°C for drying until the weight of

wheat leaves no longer changed (about 48 hours). Finally, the dry mass

of each organ was measured, and the biomass per unit area (kg/m2)

was calculated based on the number of plants and tillers.
2.3 Research methods

2.3.1 Fractional order differentiation
Differential transformation is a spectral transformation method

that can improve the signal-to-noise ratio of spectral data and

weaken environmental noise. Integer order differentiation is a

commonly used differential transformation method, while

fractional order differentiation (Wang et al., 2022) is a

mathematical extension of integer order differentiation and has

the advantages of “memory” and “globality”. Compared to integer

order differentiation, it can explain more subtle changes and overall

information in data. It mainly has three forms, namely Caputo,

Riemann Liouville, and Grünwald Letnikov forms. The specific

calculation formula is shown in Equation 2:

daf(l)
dla ≈f(l) + ( − a)f(l − 1) +

( − a)( − a + 1)
2

f(l − 2) +⋯

+
G( − a + 1)

n !G( − a + 1)
f(l − n) (2)

where, f(l) is the spectral reflectance; l is the corresponding

band; G is the gamma function; a is of any order; n is the difference

between the upper and lower limits of differentiation. a = 0, 1, or 2

corresponds to the original spectrum, first-order differentiation, or

second-order differentiation, respectively; When a is a decimal, it

corresponds to a fractional derivative spectrum.
2.3.2 Construction of comprehensive
growth indicators

To obtain more accurate information on the growth status of

wheat in the study area, four single indicators, namely leaf area index,

chlorophyll content, nitrogen content, and biomass, were constructed

as CGMI to obtain wheat growth information in the study area (Liu

et al., 2022). The key issue in constructing CGMI is to determine the

weight of each indicator. The traditional weighting method does not

consider the contribution rate of different indicators of winter wheat

to the CGMI and simply reconstructs each indicator into a

comprehensive indicator based on equal weight. Considering the

different importance of leaf area, chlorophyll, nitrogen content, and

biomass in wheat growth monitoring, the coefficient of variation

method is adopted to determine the weights of each indicator. The

specific formulas can be found in Equations 3–6.

Vi =
si

�xi
(3)
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Wi =
Vi

on
i=1Vi

(4)

Ui =
Xi

max(Xi)
(5)

CGMI =o4
i=1WiUi (6)

where, Vi is the coefficient of variation of the ith indicator, si is

the standard deviation of the ith indicator, �xi is the mean of the ith

indicator, Wi is the weight of the ith indicator, Ui is the normalized

indicator of type i, Xi represents the original indicator of type i, and

max(Xi) is the maximum value in the original indicator of type i.

2.3.3 Modeling methods
Ridge regression, RF, and XGBoost ensemble models were

selected to construct a comprehensive growth monitoring model

of wheat. Ridge regression (Kai and Zhang, 2017) is a biased

estimation regression method specifically designed for collinear

data analysis. Essentially, it is an improved least squares

estimation method that abandons the unbiased characteristic of

the least squares method and obtains regression coefficients at the

cost of information loss and reduced accuracy, making it a more

practical and reliable regression method; RF (Jiao et al., 2021) is a

sampling method based on bootstrap (self-help sampling method).

It takes multiple samples from the original samples that have been

put back to form a training set, uses decision tree modeling for each

bootstrap sample, averages the prediction results by combining

decision trees, and finally determines the final prediction results

through voting. In this method, two parameters are considered: the

number of decision trees and the number of segmentation nodes;

XGBoost is an efficient gradient-boosting decision tree algorithm

(Miao et al., 2022). As a forward addition model, its core is to

integrate multiple weak learners into a strong learner using

ensemble thinking. Multiple trees are utilized to make decisions

together, and the results of each tree are the difference between the

target value and the predicted results of all previous trees. Then, all

the results are accumulated to obtain the final result, thereby

improving the overall model effect.

2.3.4 Model evaluation method
The coefficient of determination (Chicco et al., 2021) and Root-

mean-square deviation (Hodson, 2022) (RMSE) were used to

evaluate the model’s accuracy. The coefficient of determination

indicates the closeness between the estimated value of the model

and the measured value, and its value ranges between 0 and 1. The

larger the value of R2, the higher the accuracy of the model. The

specific calculation method is shown in Equation 7. The RMSE

reflects the error between the estimated value of the model and the

measured value. The smaller the RMSE, the higher the estimation

accuracy of the model. The specific calculation method is shown in

Equation 8.

R2 = o
n
i=1(yi − �y)2

on
i=1(xi − �y)2

(7)
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1,j=1(xi − yi)
2

n

s
(8)
3 Results and analysis

3.1 CGMI construction

Taking leaf area index, nitrogen content, biomass, and

chlorophyll content as single growth monitoring indicators, the

coefficient of variation method was adopted to determine the

weights of the four growth monitoring indicators, and then a

CGMI was constructed. The calculation formulas of CGMI in the

jointing, flag picking, and flowering stages are as follows, where the

weights of the wheat growth monitoring indicators are represented

by rounding.

CGMIjointing = 0:330U1 + 0:180U2 + 0:335U3 + 0:155U4 (9)

CGMIflag picking = 0:416U1 + 0:136U2 + 0:311U3 + 0:138U4 (10)

CGMIflowering = 0:413U1 + 0:136U2 + 0:311U3 + 0:141U4 (11)
A B

DC

FIGURE 2A

The correlation between a single growth monitoring indicator and the origin
(D) leaf area index).
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where, U1 is the normalized leaf area index, U2 is the

normalized nitrogen content, U3 is the normalized biomass, and

U4 is the normalized chlorophyll content.
3.2 Correlation analysis

3.2.1 Correlation analysis between original
spectra and single growth monitoring indicators

In the jointing stage, flag-picking stage, and flowering stage,

correlation analysis was performed on the denoised hyperspectral

data with a single indicator, and the correlation coefficient rj j was
calculated. The correlation coefficient curves for different growth

stages were plotted and shown in Figure 2A:
3.2.2 Correlation analysis between original
spectra and CGMI

In the jointing stage, flag picking stage, and flowering stage,

correlation analysis was carried out between the denoised

hyperspectral data and CGMI, and the correlation coefficient rj j
was calculated. The correlation coefficient curves for different

growth stages were plotted and shown in Figure 2B.
al spectrum (A) nitrogen content (B) biomass (C) chlorophyll content
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Analysis of Figures 2A, B shows that: In the jointing stage, the

maximum correlation coefficient between the original spectrum and

CGMI was 0.65. It exhibited an increase of 0.12, 0.03, 0.14, and 0.12

compared to the maximum correlation coefficients between the

original spectrum and nitrogen content, biomass, chlorophyll, and

leaf area index, respectively. In the flag-picking stage, the maximum

correlation coefficient between the original spectrum and CGMI was

0.69, with an increase of 0.10, 0.05, 0.22, and 0.04 compared to the

maximum correlation coefficients between the original spectrum and

nitrogen content, biomass, chlorophyll, and leaf area index,

respectively. In the flowering stage, the maximum correlation

coefficient between the original spectrum and CGMI was 0.82,

which was lower than the maximum correlation coefficient between

the original spectrum and biomass of 0.84. Compared with the

maximum correlation coefficient between the original spectrum and

nitrogen content, chlorophyll content, and leaf area index, there was

still an increase of 0.21, 0.37, and 0.03, respectively. The above analysis

indicates that CGMI can effectively improve the correlation between

the original spectrum and a single growth monitoring indicator.

3.2.3 Correlation analysis between differential
spectroscopy and single growth
monitoring indicators

Fractional order differential transformation was performed on

the original hyperspectral reflectance data, with the order range set

to 0 to 2 and step size set to 0.1, to obtain 20 groups of differential

spectral reflectance of different orders. Then, correlation analysis

was performed between nitrogen content, biomass, leaf area index,

and chlorophyll content with fractional order differential spectra,

and a correlation coefficient matrix diagram was drawn. The results

are illustrated in Figure 2C.

Comparing Figures 2A, C, it can be seen that in the jointing

stage, the maximum correlation coefficients between fractional

differential spectra and nitrogen content, biomass, chlorophyll

content, and leaf area index were 0.65, 0.74, 0.69, and 0.81,

respectively. Compared with the maximum correlation

coefficients of the original spectra and the corresponding growth
Frontiers in Plant Science 07
monitoring indicators, there was an increase of 0.12, 0.12, 0.18, and

0.28, respectively. In the flag-picking stage, the maximum

correlation coefficients between fractional differential spectra and

nitrogen content, biomass, chlorophyll content, and leaf area index

were 0.77, 0.83, 0.73, and 0.83, respectively. Compared with the

maximum correlation coefficients of the original spectra and the

corresponding growth monitoring indicators, there was an increase

of 0.18, 0.19, 0.26, and 0.18, respectively. In the flowering stage, the

maximum correlation coefficients between fractional differential

spectroscopy and nitrogen content, biomass, chlorophyll content,

and leaf area index were 0.76, 0.89, 0.66, and 0.88, respectively.

Compared with the maximum correlation coefficients of the

original spectrum and corresponding growth monitoring

indicators, there was an increase of 0.15, 0.05, 0.21, and

0.09, respectively.

Based on the above analysis, fractional differential processing of

the original spectrum can effectively improve the correlation

coefficient between the spectrum and growth monitoring indicators.
3.2.4 Correlation analysis between differential
spectroscopy and CGMI

Correlation analysis was carried out between the CGMI and

fractional differential spectra, and a correlation coefficient matrix

diagram was plotted. The results are shown in Figure 2D.

Comparing Figures 2B, D, it can be seen that in the jointing

stage, flag-picking stage, and flowering stage, the maximum

correlation coefficients between fractional differential spectroscopy

and CGMI were 0.82, 0.89, and 0.92, respectively. Compared with

the maximum correlation coefficients between the original

spectrum and CGMI, there was an increase of 0.17, 0.20, and

0.10, respectively. Therefore, fractional differential processing of

the original spectrum can effectively improve the correlation

between the spectrum and CGMI.

Comparing Figures 2C, D, it can be seen that in the jointing

stage, the maximum correlation coefficient between chlorophyll and

fractional differential spectra was 0.69, and the bands with high

correlation were concentrated in the second-order band of 700 nm.

The maximum correlation coefficient between nitrogen content and

the fractional-order differential spectrum was 0.65, and the bands

with high correlation were concentrated in the first-order band of

774nm. The maximum correlation coefficient between leaf area

content and the fractional differential spectrum was 0.81, and the

bands with high correlation were concentrated around the 730nm

band of 1.1 orders. The maximum correlation coefficient between

biomass and fractional derivative spectra was 0.74, and the bands

with high correlation were concentrated in the second-order band

of 710 nm. The maximum correlation coefficient between the

comprehensive growth monitoring index constructed by the

coefficient of variation method and the fractional order

differential band was 0.82, and the bands with high correlation

were concentrated in the first-order band of 750 nm. Compared

with the single growth monitoring indicators of chlorophyll,

nitrogen content, leaf area, and biomass, the maximum

correlation coefficients between the CGMI and the fractional

order differential spectrum increased by 18.84%, 26.15%, 1.23%,
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FIGURE 2C

The correlation coefficient matrix diagram between single growth monitoring indicators and differential spectra of wheat (A) jointing stage, (B) flag
picking stage, (C) flowering stage.
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and 10.81%, respectively, demonstrating a stronger correlation

between the CGMI and the fractional order differential spectrum.

In the flag-picking stage, the maximum correlation coefficient

between chlorophyll and fractional differential spectra was 0.73, and

the bands with high correlation were concentrated around the 730

nm band of 1.1 orders. The maximum correlation coefficient

between nitrogen content and fractional order differential
Frontiers in Plant Science 08
spectrum was 0.77, and the bands with high correlation were

concentrated in the first-order band of 750 nm. The maximum

correlation coefficient between leaf area content and the fractional

differential spectrum was 0.83, and the bands with high correlation

were concentrated in the first-order band of 750 nm. The maximum

correlation coefficient between biomass and fractional derivative

spectra was 0.83, and the bands with high correlation are
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FIGURE 2D

The correlation coefficient matrix of CGMI and differential spectra at different growth stages. (A) jointing stage (B) flag picking stage (C)
flowering stage.
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concentrated in the first-order band of 750nm. The maximum

correlation coefficient between the comprehensive growth

monitoring index constructed by the coefficient of variation

method and the fractional order differential band was 0.89, and

the bands with high correlation were concentrated in the first-order

band of 750 nm. Compared with the single growth monitoring

indicators of chlorophyll, nitrogen content, leaf area, and biomass,

the maximum correlation coefficients between the CGMI and the

fractional order differential spectrum increased by 21.92%, 15.58%,

7.23%, and 7.23%, respectively, showing a stronger correlation

between the CGMI and the fractional order differential spectrum.

In the flowering stage, the maximum correlation coefficient

between chlorophyll and fractional differential spectra was 0.66, and

the bands with high correlation were concentrated around the 730

nm band of 1.1 orders. The maximum correlation coefficient

between nitrogen content and fractional order differential

spectrum was 0.76, and the bands with high correlation were

concentrated in the 750 nm bands of the first and 1.1 orders. The

maximum correlation coefficient between leaf area content and the

fractional differential spectrum was 0.88, and the bands with high

correlation were concentrated in the first-order band of 750 nm.

The maximum correlation coefficient between biomass and

fractional derivative spectra was 0.89, and the bands with high

correlation were concentrated in the first-order band of 750 nm.

The maximum correlation coefficient between the comprehensive

growth monitoring index constructed by the coefficient of variation

method and the differential band was 0.92. The bands with higher

correlation values were concentrated in the first-order band of 750

nm, and there were 1669 bands with correlation coefficients higher

than 0.8. Compared with the single growth monitoring indicators of

chlorophyll, nitrogen content, leaf area, and biomass, the maximum

correlation coefficients between the CGMI and the fractional-order

differential spectrum increased by 39.39%, 21.05%, 4.55%, and

3.37%, respectively, indicating a stronger correlation between the

CGMI and the fractional order differential spectrum.
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The above analysis indicates that compared with a single growth

monitoring indicator, the correlation between CGMI and

differential spectroscopy has significantly increased.
3.3 Model variable screening

Based on the correlation analysis results, twenty highly correlated

differential spectral bands were selected from each order of

differential spectral bands. To prevent the strong correlation

between spectral bands from affecting the stability of the model

and construct a regression model with strong stability and practical

significance, gray correlation coefficients were calculated for the

twenty selected differential spectral bands, and the correlation

degree r between elements was calculated. Then, the degree of

correlation between the characteristic behavior sequence of the

system and the behavior sequence of various related factors was

quantified, and a matrix diagram is plotted and shown in Figure 2E.

According to the results of the grey correlation calculation and

considering the simplicity of the model, ten differential spectra with

less correlation were selected as independent variables, and the CGMI

was taken as the dependent variable. In the jointing stage, the 1.1th-

order band of 726 nm, the first-order band of 754 nm, the 1.1th-order

band of 722 nm, the first-order band of 750 nm, the 1.1th-order band

of 730 nm, the first-order band of 746 nm, the 1.9th-order band of

702 nm, the 1.8th-order band of 702 nm, the 1.3th-order band of 706

nm, and the 1.2th-order band of 706 nm were selected as input

independent variables; in the flag picking stage, the first-order band

of 746 nm, the first-order band of 742 nm, the 1.1th-order band of

726 nm, the 1.1th-order band of 730 nm, the first-order band of 738

nm, the 1.9th-order band of 654 nm, the 1.1th-order band of 654

nm, the 1.8th-order band of 614 nm, the 1.9th-order band of 614 nm,

and the 1.7th-order band of 614 nm were selected as the input

independent variables; in the flowering stage, the first-order band of

754 nm, the first-order band of 746 nm, the first-order band of 730
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FIGURE 2E

The grey correlation coefficient matrix diagram between the top 20 highly correlated differential bands screened for different growth stages. (A)
jointing stage (B) flag-picking stage (C) flowering stage.
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nm, the 0.9th-order band of 866 nm, the 1.1th-order band of 730 nm,

the 0.9th-order band of 854 nm, the 0.8th-order band of 866 nm, the

0.9th-order band of 822nm, the 0.9th-order band of 818nm, and

the 0.7th- order band of 866nm were selected as the input

independent variables.
3.4 Establishment of the inversion model

3.4.1 Model inversion results based on a single
growth index

For different growth stages of wheat, using differential spectra as

the model independent variable, 38 samples were randomly selected

as the training set and 10 samples as the test set. Four estimation
Frontiers in Plant Science 10
models for single growth monitoring indicators were constructed

using three methods: random forest, ridge regression, and xgboost

set model. The results are shown in Table 1.

Analyzing the modeling results in Table 1, it can be seen that the

maximum R2 values of the training and testing sets for the inverted

nitrogen content model are 0.755 and 0.717, the maximum R2

values of the training and testing sets for the inverted leaf area index

model are 0.858 and 0.753, the maximum R2 values of the training

and testing sets for the inverted chlorophyll content model are 0.684

and 0.614, and the maximum R2 values of the training and testing

sets for the inverted biomass model are 0.865 and 0.812. Except for

the chlorophyll content inversion model, which had the highest

accuracy during the flag picking period, the nitrogen content, leaf

area index, and biomass all had the highest inversion accuracy
TABLE 1 Inversion results of single growth monitoring indicators for different growth stages.

Growth period Growth indicators
RF RE XGBOOST

Train Test Train Test Train Test

Jointing stage

nitrogen content 0.493 0.449 0.597 0.527 0.630 0.562

leaf area index 0.610 0.546 0.724 0.608 0.787 0.667

chlorophyll content 0.444 0.402 0.625 0.584 0.655 0.643

biomass 0.520 0.511 0.611 0.506 0.684 0.561

Flag picking stage

nitrogen content 0.631 0.615 0.755 0.717 0.720 0.645

leaf area index 0.583 0.623 0.788 0.718 0.790 0.785

chlorophyll content 0.535 0.511 0.643 0.602 0.684 0.614

biomass 0.667 0.658 0.767 0.690 0.792 0.690

Flowering stage

nitrogen content 0.622 0.602 0.744 0.675 0.753 0.711

leaf area index 0.721 0.659 0.838 0.747 0.858 0.753

chlorophyll content 0.471 0.392 0.550 0.510 0.559 0.527

biomass 0.771 0.676 0.833 0.721 0.865 0.812
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during the flowering period. Moreover, when constructing a single

growth monitoring index inversion model, the XGBoost model had

the best modeling effect.

3.4.2 Model inversion results based on
comprehensive growth monitoring indicators

By randomly sampling CGMI sample points constructed from

48 measured values, 38 samples were selected as the training set and

10 samples as the test set. Based on ten selected differential spectral

bands, the CGMI of different growth stages was inverted. In the

training process, the maximum number of iterations was limited to

avoid the overfitting problem. To compare the accuracy of different

model-building methods, RF, ridge regression, and XGboost

methods were used to construct CGMI inversion models at

different growth stages of wheat. The results of each model on the

training set and test set are shown in Table 2.

Analysis of the modeling results in Table 2 shows that the

accuracy of the CGMI inversion model gradually improves with

the growth of the reproductive period. In the flowering stage, the

accuracy of the three models on the training and testing sets are

all above 0.75. In the three growth stages, the modeling results of

XGboost are better than those of RF and RE. In the flowering

period, the XGboost model achieves the best inversion

performance, with R2 values of 0.904 and 0.870 and RMSE values

of 0.050 and 0.079 on the training and testing sets, respectively.

Comparing the modeling results in Tables 1, 2, it can be seen

that during the jointing stage, the leaf area index inversion results of

four single growth monitoring indicators of wheat were the best

when using different modeling methods, The inversion accuracy of

the comprehensive growth monitoring indicators was higher than

the optimal inversion accuracy of a single growth indicator. When

using the random forest method, the training and testing sets R2

increased by 3.77% and 10.07%, respectively; The R2 of the training

and testing sets increased by 1.80% and 2.47% when using the ridge

regression method; the R2 of the training and testing sets increased
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by 6.10% and 18.29% when using the XGboost method. During the

flag picking period, using the random forest and XGboost models to

invert the biomass of four single growth monitoring indicators of

wheat showed the best results, while using the ridge regression

method to invert the leaf area index showed the best results, The

inversion accuracy of the comprehensive growth monitoring

indicators was also higher than the optimal inversion accuracy of

a single growth indicator. When using the random forest method,

the training and testing sets R2 increased by 11.54% and 10.18%,

respectively; The R2 of the training and testing sets increased by

6.09% and 8.50% when using the ridge regression method; the R2 of

the training and testing sets increased by 6.06% and 17.25% when

using the XGboost method. During the flowering period, when

using the random forest and XGboost models to invert the biomass

of four single growth monitoring indicators of wheat, the best

results were obtained, when using the ridge regression method,

the leaf area index was the best, The inversion accuracy of the

comprehensive growth monitoring indicators was higher than the

optimal inversion accuracy of a single growth indicator. When

using the random forest method, the training and testing sets R2

increased by 2.72% and 15.24%, respectively; The R2 of the training

and testing sets increased by 5.49% and 4.55% when using the ridge

regression method; the R2 of the training and testing sets increased

by 4.51% and 7.14% when using the XGboost method. Based on the

above analysis of results, it can be concluded that when using three

modeling methods to invert growth monitoring indicators at

different growth stages, the modeling results of CGMI are always

better than those of a single growth monitoring indicator.
4 Discussion

Hyperspectral remote sensing data are important for remote

monitoring of crop growth. By analyzing reflectance spectral data in

different bands, differences in the spectra of wheat under different
TABLE 2 The inversion results of CGMI for different growth stages.

Jointing stage Flag picking stage Flowering stage

RF Train R2 0.633 R2 0.744 R2 0.792

RMSE 0.075 RMSE 0.076 RMSE 0.071

Test R2 0.601 R2 0.725 R2 0.779

RMSE 0.087 RMSE 0.081 RMSE 0.086

RE Train R2 0.737 R2 0.836 R2 0.884

RMSE 0.061 RMSE 0.056 RMSE 0.052

Test R2 0.623 R2 0.779 R2 0.781

RMSE 0.082 RMSE 0.085 RMSE 0.073

XG Train R2 0.835 R2 0.840 R2 0.904

RMSE 0.056 RMSE 0.063 RMSE 0.050

Test R2 0.789 R2 0.809 R2 0.870

RMSE 0.051 RMSE 0.060 RMSE 0.079
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fertility periods can be observed, and these differences provide rich

information for growth monitoring. In order to reduce the

interference of background noise on the vegetation spectra and

highlight the subtle changes in the spectral curves, differential

processing can be applied, which can enhance the spectral curves

on the slope, thus better presenting the essential characteristics of

the crop. Compared to the original reflectance spectra, the spectra

after differential processing can reflect the wheat growth condition

more sensitively. However, the integer order differentiation method

may cause signal missing while eliminating the noise because it

ignores the gradual change information of the spectrum. To solve

this problem, the fractional order differentiation method can be

used. Fractional order differentiation is an extension of the integer

order differentiation method, which differentiates hyperspectral

data at the fractional order. By using fractional order

differentiation, the subtle information of the spectrum can be

highlighted, the small differences between the spectral data can be

described, and the absorption characteristics of the weak spectrum

can be enhanced to a certain extent, so that more effective

information can be retained and the effect of wheat growth

monitoring can be improved. Xu et al. (2021) selected the

characteristic bands of red band, green band, red edge band, and

near-infrared band in the original spectrum to construct vegetation

indices as model input variables, but the results were not

satisfactory, and the maximum value of the correlation coefficient

between their constructed vegetation indices and each growth

monitoring index of wheat was only 0.580. In this paper, the

fractional-order differential method was adopted to process the

raw spectra, extract sensitive spectral information, and calculate

the correlation between differential spectra and wheat growth

monitoring indexes. The results indicated that the maximum

correlation coefficient between differential spectra and different

growth monitoring indexes could reach 0.92 in different growth

stages, and all had different degrees of improvement compared with

the original spectra, with a minimum improvement of 0.05 and a

maximum improvement of 0.28. This is also consistent with the

findings of Li et al. (2023).

Compared with a single monitoring indicator, comprehensively

considering various growth monitoring indicators provides a new

method for crop growth monitoring. As a breakthrough point, Pei

et al. (2017) applied the equal weight method to construct CGMI

and establish a wheat growth inversion model. However, the

contribution rates of different growth monitoring indicators to

wheat growth conditions inevitably differ. The researchers ignored

the contribution rates of growth monitoring indicators and

synthesized the indicators with equal proportions, which cannot

accurately determine wheat growth. The R2 of the optimal inversion

model is only 0.78. To address this issue, this paper proposes to use

the coefficient of variation method to calculate the weights of

various growth monitoring indicators for wheat at different

growth stages. Following this, CGMI was constructed, and the

contribution rate of each growth monitoring indicator to wheat

growth was maximized. According to Equations 9–11, it can be seen

that the leaf area index ranks first in the evaluation of the

importance of growth monitoring, accounting for a proportion

between 0.33 and 0.42, and the reason for its larger proportion may
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be that the leaf area index is an important index reflecting the size of

the life vitality of the crop population, and within a certain range,

the yield of the crop will be increased with the increase of the leaf

area index. Biomass ranked second in the assessment of the

importance of growth monitoring, with a proportion between

0.31 and 0.33. Biomass, as the material basis for the formation of

wheat yield, is able to judge the total amount of dry matter per unit

area of wheat in a given period. Nitrogen content ranked third in

the assessment of the importance of growth monitoring, accounting

for between 0.14 and 0.18, accounting for a smaller proportion,

probably because the nitrogen in wheat is mainly present in the

seeds, and is mainly expressed in the growth of roots, stems and

leaves during the development of wheat, with a particularly

significant effect on the increase in leaf area. Chlorophyll content

ranked fourth in the assessment of the importance of growth

monitoring, with a proportion between 0.14 and 0.16, probably

because chlorophyll is an indicator for evaluating the

photosynthetic capacity and nitrogen nutritional status of the

crop, and its effect on yield is not as direct as that of the other

growth monitoring indicators. Based on the results of the above

weight allocation a comprehensive growth monitoring index was

constructed at different fertility periods, and the four single growth

monitoring indicators and the CGMI and differential spectral

correlation coefficients were calculated separately. The results

demonstrated that the maximum correlation coefficients between

CGMI and differential spectra were 0.82, 0.89, and 0.92 in the

jointing, flag-picking, and flowering stages, respectively. Compared

with the maximum values of biomass, leaf area index, nitrogen

content, chlorophyll content, and differential spectral correlation

coefficient, the correlation coefficient increased by 10.81%, 1.23%,

26.15%, and 18.84% respectively in the jointing stage, increased by

7.23%, 7.23%, 15.58%, and 21.92% respectively in the flag-picking

period, and increased by 3.37%, 4.55%, 19.48%, and 26.03%

respectively in the flowering stage. Compared with the maximum

correlation coefficient obtained by Pei et al. (2017) in the

corresponding stages, it increased by 30.16%, 28.99%, and

29.58%, respectively. The research results indicate that the CGMI

constructed using the variable weight method can effectively

improve the effectiveness of wheat growth monitoring. In

summary, different indicators have different impacts on the

growth process of wheat, and it is necessary to allocate weights to

monitor growth.

Comparing the correlation analysis and modeling results of

different growth stages, the correlation between CGMI and

differential spectra in the flowering stage is higher, and the

modeling results are also better. In the growth process of wheat,

jointing to flowering is a rapid growth period, and a large amount of

nutrients is accumulated in this period. The correlation between

CGMI and differential spectra shows an overall increasing trend,

and the modeling results of the flowering stage are significantly

better than those of the jointing and flag-picking stages. Compared

with the jointing and flag-picking stages, in the flowering stage on

the training and testing sets, the values of the RF model increased by

25.12%, 29.62%, and 6.45%, 7.45%, respectively; the values of the RE

model increased by 19.95%, 25.36%, and 5.74%, 0.26%, respectively;

the values of the XGboost model increased by 8.26%, 10.27%, and
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7.62%, 7.54%, respectively. Comparing the modeling results of the

three models, it is found that the XGboost model inverts CGMI with

higher accuracy and better stability than the RF and RE models.

Yang et al. (2022b) pointed out that the XGboost algorithm divides

the original dataset into multiple subsets, and each subset randomly

allocates the prediction and predicts the result according to the

weight. Also, the algorithm can be parallelized to improve the

running speed. As an integrated model, the XGboost algorithm is

able to adapt to complex nonlinear relationships and has stronger

parallel processing capability. By integrating multiple decision tree

models, the overfitting problem can be reduced and the

generalization ability of the model can be improved. XGboost

solves the overfitting problem mainly through regularization,

introducing regularization terms to control the complexity of the

model and prevent overfitting. By adding regularization terms to

the objective function, such as L1 regularization (Lasso) and L2

regularization (Ridge), the growth of the tree can be limited to avoid

overly complex fitting. In the modeling process, to achieve high-

precision monitoring of wheat growth, the fitting ability and

prediction accuracy of the model is improved by adjusting

hyperparameters as follows. The maximum tree depth max_depth

was set to 5, and the default gamma value was set to 0. The

regularization parameter lambda value controls the complexity of

the model, and the greater the limit, the less likely the model is to

overfit. It was set to 30. The subsample was set to 0.8 to randomly

collect training samples. Besides, the learning rate eta value was set

to 0.1, and the maximum number of iterations num_round was set

to 100. According to the CGMI modeling results, the R2 values of

the training and testing sets of the XGboost model during the

jointing period increased by 13.30% and 26.65% respectively

compared to the RE model, and 39.91% and 31.28% respectively

compared to the RF model; The R2 values of the training and testing

sets of the XGboost model during the flag picking period increased

by 0.48% and 3.85% respectively compared to the RE model, and by

12.90% and 11.59% respectively compared to the RF model; The R2

values of the training and testing sets of the XGboost model during

the flowering period increased by 2.26% and 11.40% respectively

compared to the RE model, and increased by 14.14% and 11.68%

respectively compared to the RF model. By using regularization

techniques and adjusting parameters, the XGboost model can

improve its generalization ability and ultimately achieve good

estimation accuracy.
5 Conclusion

In this study, the precision agriculture demonstration area of

Jiaozuo Academy of Agriculture and Forestry Sciences in Henan

Province was taken as the research area, and the leaf area index,

chlorophyll content, biomass, and nitrogen content of wheat in

different growth stages were taken as the research object. A

comprehensive growth monitoring index was constructed by

using the coefficient of variation method, and then the differential

spectrum after fractional subdivision processing was employed to

build a CGMI inversion model combined with RF, ridge regression,
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and XGboost algorithms to effectively monitor wheat growth in the

research area. By comparing the above methods, the following

conclusion can be drawn: the correlation between the original

spectrum and the monitoring indicators of wheat growth is

relatively low, and its correlation can be greatly improved

through fractional differentiation processing; Considering the

different contribution rates of a single growth monitoring

indicator to the comprehensive growth of wheat, the coefficient of

variation method was used to construct a comprehensive growth

monitoring indicator. The results demonstrated that constructing a

comprehensive growth monitoring indicator can effectively

improve spectral correlation; Comparing the modeling results

using different modeling methods in different growth stages, the

XGboost model in the flowering stage achieved the best modeling

results, and it can be used as an effective method for monitoring

wheat growth.

However, there are still limitations in the research that need to

be overcome. The growth monitoring indicators used are not

comprehensive, and plant height, vegetation moisture content,

etc., also reflect the growth status of wheat. In the future, more

single indicators can be incorporated to obtain more accurate and

comprehensive wheat growth monitoring results; The experimental

area is small, and larger experimental areas can be selected in the

future to enlarge the model dataset and further verify the robustness

of the model.
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