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Mobile fNIRS for exploring
inter-brain synchrony across
generations and time
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While still relatively rare, longitudinal hyperscanning studies are exceptionally

valuable for documenting changes in inter-brain synchrony, which may in turn

underpin how behaviors develop and evolve in social settings. The generalizability

and ecological validity of this experimental approach hinges on the selected

imaging technique being mobile–a requirement met by functional near-infrared

spectroscopy (fNIRS). fNIRS has most frequently been used to examine the

development of inter-brain synchrony and behavior in child-parent dyads. In

this position paper, we contend that dedicating attention to longitudinal and

intergenerational hyperscanning stands to benefit the fields of social and cognitive

neuroscience more broadly. We argue that this approach is particularly relevant

for understanding the neural mechanisms underpinning intergenerational social

dynamics, and potentially for benchmarking progress in psychological and social

interventions, many of which are situated in intergenerational contexts. In line

with our position, we highlight areas of intergenerational research that stand to be

enhanced by longitudinal hyperscanning withmobile devices, describe challenges

that may arise from measuring across generations in the real world, and o�er

potential solutions.
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1 Introduction

Intergenerational interactions form a rich part of human experience, be it a teacher
instructing his pupils, a grandmother reading with her grandson, or a baby boomer and a
Gen Z architect collaborating on a building project. The dynamics of how intergenerational
social interactionsmay change over time and their relationship with cognition andwellbeing,
from a neuroscientific perspective, are both interesting and challenging to examine. To
date, most studies have focused on behavioral, educational, and health-related outcomes
of intergeneration interactions (e.g., Knight et al., 2014; Fingerman et al., 2020; Zhong
et al., 2020). We take the stance that a deeper understanding of the behavioral and neural
mechanisms underlying intra- and inter-generational social interactions will lead to the
development and implementation of more effective interventions for social, psychological,
and physical wellbeing. The challenge lies in striking the right balance between ecological
validity and experimental control. The spontaneity and flow of natural social interaction
are quashed by endless questionnaires and cognitive tasks, particularly when such tasks are
undertaken in the unnatural and controlled environments required by functional magnetic
resonance imaging (fMRI) or magnetoencephalography (MEG). One potential path forward
is to use mobile functional near-infrared spectroscopy (fNIRS) to record activity from two or
more brains simultaneously, a technique called “hyperscanning” (Montague, 2002; Hasson
et al., 2012). Using hyperscanning, we can gain insight into shared patterns of brain activity
between two or more people, referred to here as interpersonal neural synchrony (INS).
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Here, we first outline the importance of ecologically valid
approaches to social interaction research within and between
generations, the role that hyperscanning with mobile fNIRS devices
can play in advancing this work, and the value of longitudinal
observations. Next, we consider potential challenges and future
directions associated with mobile intergenerational neuroimaging
over repeated sessions. Our aim is to review the state of the art while
also signposting areas where cognitive and social neuroscientists
maywish to delve further into the social phenomena emerging from
intra- and intergenerational dyads.

2 Ecologically valid measurements of
social interaction

2.1 Two-brain neuroscience

The field of social neuroscience has sought to measure
behavioral and neural responses to real social interactions in

situ via an approach called “second-person” or “two-brain”
neuroscience (Schilbach et al., 2013). The primary mandate is
to ensure that measurements of “social interactions” are in fact
gathered from an individual involved in a real, spontaneously
unfolding social interaction, rather than observing a pre-recorded
social interaction from a third-person perspective. Third-person
perspectives of social stimuli, while still common in social
neuroscience research, are limited in terms of how much they
can inform our understanding of lived, as opposed to observed,

social dynamics (Schilbach et al., 2013; Hasson and Frith, 2016;
Redcay and Schilbach, 2019). This first recommendation is couched
in a broader recommendation to increase ecological validity, i.e.,
generalizability to real life, of the experiments we design (Hasson
and Honey, 2012; Schilbach et al., 2013; Shamay-Tsoory and
Mendelsohn, 2019).

To conduct two-brain neuroscience is to grapple with new
ways of maintaining control over the experimental context. One
consideration is the added complexity of real-world environments
relative to classic lab settings (e.g., sterile, sound-proofed,
temperature-controlled, electrically shielded, optimally lit, etc.).
For some designs, a table-based conversation or activity may still be
run in larger lab spaces, while other designs may require participant
pairs to interact within more complex environments. Researchers
have adapted to this challenge in different ways. Some researchers
generate variable, but highly controlled environments using virtual
reality (Park et al., 2018), while others record parallel streams of
data from different modalities (e.g., video, motion tracking, eye
tracking, heartrate, respiration, etc.), which help researchers link
relevant environmental stimulation to changes in brain activity
(Kellihan et al., 2013; Pinti et al., 2015, 2018; Ladouce et al., 2022).

The unpredictable nature of spontaneous interaction is also
a relevant consideration. For some designs, a trained researcher
who adheres to a strict script can curate a specific social context
with high consistency across participants (e.g., Lu and Hao,
2019; Moffat et al., 2022). The two-brain approach can enable
researchers to record brain activity from each dyad member
involved in an interaction to illuminate shared and individual-
specific neural activity underpinning the interaction (e.g., Dumas
et al., 2011; Dikker et al., 2017; Liu et al., 2021). We will return to

the technicalities of hyperscanning–collecting simultaneous neural
recordings from two or more people–in Section 3.

2.2 Interactive brains between and within
generations

As in the opening examples (Section 1), many of our daily
activities feature interactions with individuals across generations.
Hyperscanning studies commonly investigate social interaction in
adult-adult, parent-child, and student-teacher dyads (for reviews
see: Wang et al., 2018; Nguyen et al., 2020; De Felice et al.,
2023). While the latter two are most strongly represented (Dikker
et al., 2022), and involve intergenerational dyads, these are typically
limited to young people (i.e., infants, children) paired with adults
who have yet to reach middle age. However, many other real-world
settings exist where elderly adults interact with younger adults
(with their children, in assisted living, when seekingmedical care, in
community programs) and with children (grandchildren, through
volunteer work or community programs). We thus propose that
the fields of social and cognitive neuroscience stand to benefit
from closer examination of social interactions spanning wider
combinations of generational pairings.

What does social neuroscience stand to gain? From a basic
science perspective, the field will be enriched by gaining insight into
the cognitive and psychological phenomena underpinning social
interaction between generations, and whether such interaction can
improve social and psychological wellbeing, potentially reducing
so-called generational divides (Rubin et al., 2015; Anderson S.
et al., 2017; Lokon et al., 2020; Jenkins et al., 2021; Dikker
et al., 2022). Further, this work should reveal whether such
interactions are supported by shared or individual-specific neural
mechanisms (Dikker et al., 2022). From this, we can explore
the behavioral and neural mechanisms to maximize social or
cognitive outcomes within and across generations. These outcomes,
including improving intergenerational communication (Dikker
et al., 2022), reducing experiences of loneliness (Tsai et al., 2013;
Zhaoyang et al., 2018), identifying social deficits (Schilbach, 2016),
and developing interventions (Pan and Cheng, 2020; Chen et al.,
2021b), are discussed further in Section 4.

2.3 Longitudinal perspectives on
interpersonal neural synchrony

To date, hyperscanning studies tend to provide a snapshot of
INS (i.e., shared brain activity) between two or more people at
one moment in time. Consequently, little is known about how
INS changes over time. Evidence suggests that the nature of a
dyad’s relationship may influence INS (Bevilacqua et al., 2019;
Djalovski et al., 2021; Dikker et al., 2022; Long et al., 2022), and
one could reason that INS may change over the course of a budding
relationship. However, many open questions remain, including
how INS develops across time and the factors that influence its
development (similarity/differences between interactants in terms
of age, gender, culture, length, and quality of relationship, etc.).
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A handful of studies have collected longitudinal hyperscanning
data with a variety of methods, but to date, none have examined
changes in INS over time. These have focused on student-teacher
and clinician-patient dyads. Dikker et al. (2017) used EEG to
measure INS between 12 high-school students in a classroom
setting in 11 sessions spread over 3 months, and reported that
INS between students reflected their engagement with the lesson.
Bevilacqua et al. (2019) measured INS between 12 high-school
students and one teacher over six sessions, finding that teacher-
student INS was associated with engagement in the lesson and
self-reported closeness to the teacher. Neither of these studies
(one intergenerational) delved into how INS develops or changes
across sessions. Using fMRI, Grahl et al. (2021, 2023) examined
clinician-patient INS after six electro-acupuncture treatments for
pain across 2 weeks, and promise to present INS results in the
future (Ellingsen et al., 2022). Finally, in the only longitudinal
hyperscanning study operationalizing time, Sened et al. (2022)
measured changes in INS between 8 patient-psychotherapist
dyads over six therapeutic sessions using fNIRS. Cautioning the
need for replication, the authors report increasing INS between
therapists and patients over time, as well as an association between
increasing INS and reduced symptoms, improved wellbeing and
perceived quality of session in inferior frontal gyrus (Sened
et al., 2022). Considered together, these studies demonstrate
the feasibility of collecting the longitudinal hyperscanning data
required to explore the development of INS cross-generationally
over repeated interactions.

Researchers studying children’s development (Noreika et al.,
2020; Turk et al., 2022) and spoken communication (Kelsen et al.,
2022) have also signaled that longitudinal hyperscanning could
advance their research. Moreover, others suggest that fNIRS would
be a suitable technique to address the lack of longitudinal data
pertaining to the development of cognition in infants and children
(Miguel et al., 2019; Sato et al., 2021), neurodegenerative diseases
(Bonilauri et al., 2020; Srinivasan et al., 2023), psychiatric disorders
(Kumar et al., 2017; Ho et al., 2020), hearing after receiving a
cochlear implant (McKay et al., 2015; Anderson C. A. et al., 2017;
Zhou et al., 2022), and use of psychedelic substances (Scholkmann
andVollenweider, 2022).While these authors do not explicitly refer
to hyperscanning as their technique of choice, INS recorded with
fNIRS over multiple sessions could address several methodological
aspirations (i.e., ecological validity, two-brain design, longitudinal
assessment) at once.

3 Hyperscanning with mobile fNIRS:
challenges and paths forward

If we imagine a mother and child are reading a book
together, we could record the mother and child’s brain activity
simultaneously and subsequently assess the similarity of the
recorded signal from pre-selected brain areas. Signal similarity is
also referred to as coherence, coupling, or synchrony (for review see
Scholkmann et al., 2013; Liu and Pelowski, 2014; Minagawa et al.,
2018; Czeszumski et al., 2020; Kingsbury and Hong, 2020; Dumas
and Fairhurst, 2021; Holroyd, 2022).

Hyperscanning can be achieved with any neuroimaging
technique, yet certain techniques lend themselves to studying

social interaction better than others: Whereas fMRI and
magnetoencephalography (MEG) require participants to be seated
or lie down in the scanners, fNIRS and EEG devices are usually
easier to position so that interacting individuals can take their
natural positions relative to one and other (e.g., Liu and Pelowski,
2014; Dikker et al., 2017). fNIRS is less sensitive to movement
than other techniques, making it (more) suitable for measuring
brain activity while participants interact (more) naturally (Pinti
et al., 2020; Ayaz et al., 2022; Bazán and Edson, 2022; Czeszumski
et al., 2022). Even with larger table- or trolley-bound fNIRS
systems, fNIRS signals can be recorded while participants engage
in movements such as drumming or walking on the spot (Liu
et al., 2021; Guérin et al., 2023). The recent advent of mobile
fNIRS (lightweight systems with power sources in backpacks, on
armbands or entirely encompassed in the cap, as well as lighter
cabling or fibreless optodes) are enabling fNIRS recordings during
whole body movements in real world environments (e.g., Pinti
et al., 2015, 2018; McKendrick et al., 2016; Carius et al., 2020; Joshi
et al., 2020; Dybvik and Steinert, 2021).

3.1 Recruitment for multi-brain
longitudinal studies

Participant attrition over the course of a longitudinal study is
to be expected (Matta et al., 2018). Recruitment and attendance
challenges may result in missing data from certain individuals
or participant pairs, especially when data collection extends over
many days or weeks. Researchers must not ignore missing data
(Mignogna et al., 2023), which can reduce statistical power and
lead to biased parameter estimates if not addressed properly
(Matta et al., 2018). Matta et al. (2018) offer evidence-based
and scientifically responsible guidelines for dealing with missing
data in longitudinal studies. The authors encourage researchers
to (1) consider the mechanism causing the missing data (i.e., to
consider adding explanatory variables to models), (2) exploit all
the available data rather than only complete data sets, and (3)
choose an appropriate analysis model (Matta et al., 2018). Krogh-
Jespersen et al. (2022) provide additional practical examples of
the implementation of these recommendations. The missing values
may be estimated using multiple imputation for small amounts of
missing data, and interested researchers should take into account
the multidimensionality of the missing data before doing so
(Molenberghs et al., 2014). To maximize the generalizability of the
findings and the benefit of participants’ efforts, researchers must
plan protocols for addressing missing data, and where possible,
include these in the preregistration protocol (Schroeder et al.,
2023).

3.2 Mobile fNIRS recordings across multiple
sessions

During mobile fNIRS recordings in the real world, we must
account for environmental factors that may also diminish signal
quality (for review see: Pinti et al., 2015, 2018). First, if collecting
data outside, excess sunlight could saturate the detectors, but can be
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avoided using a shading capmade of dark fabric worn over themain
cap (Pinti et al., 2015, 2018; McKendrick et al., 2016). Next, warm
ambient temperatures could cause the scalp to sweat, leading to
absorption of some photons by the sweat (Bronkhorst et al., 2019),
the potential for optodes to shift during the recording, and reduced
signal quality (Bronkhorst et al., 2019; Perrey, 2022; Doherty et al.,
2023). To manage this, study design and session scheduling should
account for the expected ambient temperature and added warmth
of the fNIRS system with shading cap, as well as the intensity of
movements or emotional arousal expected during the recording.
Further, extreme body movements could also cause the optodes to
shift—particularly when using cabled fNIRS devices. Minimizing
such movements via study design and/or participant instructions is
advised (Noah et al., 2015; Perrey, 2022).

In a longitudinal context, consistent placement of optodes
on the scalp is an aspiration that must be met with reasonable
solutions. The optimal scenario would be to position the fNIRS
cap according to specific landmarks each time (e.g., Collins-Jones
et al., 2021), and to digitize the location of optodes on the scalp
(Ayaz et al., 2022). However, where the available equipment, time
constraints, or simple biological changes, such as growth, make
this impossible, group-level analyses may be the way forward:
Collins-Jones et al. (2021) demonstrated with infant data (i.e.,
head circumference increasing from session to session) that group-
level analyses using regions of interest in the channel-space can
yield stable estimates. The stability of estimates reflects the level
test-retest reliability over time. Studies examining fNIRS test-
retest reliability reveal that researchers should incorporate spatial
information about location of measurement (Novi et al., 2020; Wu
et al., 2021; De Rond et al., 2023) and ensure that physiological
components of the signal are handled adequately (Wiggins et al.,
2016; Xu et al., 2023).

While a good signal-to-noise-ratio (SNR) is desirable for all
fNIRS studies, fNIRS data submitted to INS analyses should have
comparable SNRs to reduce the risk of spurious correlations
(Noreika et al., 2020). However, when measuring from two
or more people, potentially of very different ages, individual
differences in hair color and thickness, or scalp thickness may
result in substantially different SNRs despite researchers’ best
efforts. For example, some cultural phenotypes are associated
with thicker or darker hair, and it is often the case that young
adults tend to have more hair than younger children or older
adults, resulting in a noisier signal should this hair slip back
under the optodes and obscure the emission of light onto the
scalp (Kwasa et al., 2023). In a recent perspective paper, Kwasa
et al. (2023) suggest that participant’s phenotypic information
should be recorded and included in analyses as needed to ensure
inclusive sampling in future fNIRS studies. Another consideration
is that skull thickness changes with development, with gradual
increases in thickness stabilizing from approximately 19 years of
age (De Boer et al., 2016; Domenech-Fernandez et al., 2021). This
means pairing adolescent (or younger) participants with older
partners will likely contribute to differences in SNR (Brigadoi and
Cooper, 2015). Calculating the appropriate differential pathlength
factor for each participant’s age to be used during preprocessing
should help (Scholkmann and Wolf, 2013; Nguyen et al.,
2021).

3.3 Analysis of INS measured with mobile
fNIRS

As with most measures of brain activity, INS can be calculated
in more than one way. Dumas and Fairhurst (2021) review the
different methods, their assumptions, and the type of values they
return. However, as a concrete starting point for those wishing
to analyze hyperscanning data collected from an intergenerational
pair, i.e., parent-child, we recommend beginning with Nguyen
et al.’s (2020) guide, for a tutorial of preprocessing steps, wavelet
transform coherence (WTC) to obtain INS values, and subsequent
group-level analyses in R. Alternatively, see Reindl et al. (2019) or
Hu et al.’s (2020) video guides, as well as the purpose-built HyPyP
package (Ayrolles et al., 2021).

Regardless of one’s preferred method of calculating INS,
the first step is to preprocess the fNIRS data per individual
participant. Optical intensity signals are first converted to optical
density using an age-appropriate differential pathlength factor
(Scholkmann and Wolf, 2013; Nguyen et al., 2021). Next, motion
artifacts are corrected using algorithms built into one’s chosen
analysis software, and the SNR may be subject to a threshold
(although no standard value exists for the field). For real-world
data collected while participants move freely, visual inspection of
the signal is particularly important to ensure that motion artifacts
are truly minimized (Pinti et al., 2018). Given the importance
of motion correction, we refer readers to Huang et al. (2022)
review of algorithms for motion correction, as well as the role of
accelerometers in correcting head motion, or Delgado Reyes et al.
(2018) comparison of algorithms implemented on children’s data.
Participant age is a relevant consideration when choosing a motion
correction algorithm, as infants and children tend to make more
frequent and larger movements than adults, meaning that certain
algorithms may be more suitable than others (Di Lorenzo et al.,
2019; Fishburn et al., 2019; Hu et al., 2020). After correcting for
motion artifacts, the signal is typically subjected to filtering (e.g., a
bandpass filter between 0.01 and 0.5Hz) to minimize physiological
confounds and, finally, converted to concentrations of oxygenated
and deoxygenated hemoglobin using the modified Beer-Lambert
law (Hu et al., 2021; Nguyen et al., 2021). Physiological or systemic
confounds also require substantial consideration. Best practice is
to use short channels (i.e., channels <15mm) wherever possible
to isolate and regress out extracerebral signal components (Yücel
et al., 2021). Heart-rate and respiration can also be recorded, for
example using a heart-rate monitor and a respiration belt, and
regressed out of the fNIRS signal, demonstrably yielding an fNIRS
signal with fewer systemic confounds (Scholkmann et al., 2022). For
further details on filter selection and the order in which these steps
can and should be applied, we refer interested readers to a review
by Pinti et al. (2019) and an associated commentary (Bizzego et al.,
2020).

For fNIRS data, WTC is a commonly used measure of INS,
as it is not strongly influenced by differences in the shape of the
hemodynamic response between individuals or brain regions (Sun
et al., 2004). Correlations between participants (e.g., Nastase et al.,
2019) may show high correlations where little to no change is
measured, offering misleading estimates of INS for those regions
(Nguyen et al., 2021). To explore questions such as “whose brain
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is leading, or shows the pattern of activation first, and at which
latency is the other brain following?”, one may consider time-
shifting analyses such as Granger causality (Leong et al., 2017;
Dumas and Fairhurst, 2021). Exploring potential changes in leader-
follower dynamics will also be relevant to gain a full understanding
of the development of intergenerational interactions. Regardless
which measure of INS is selected, it is advisable to calculate
INS for shuffled dyads who never interacted, thereby removing
any components of the INS value stemming from true social
interaction (Hirsch et al., 2021; Nguyen et al., 2021). This yields a
“baseline” or “chance level” of INS with which INS in real dyads can
be contextualized.

Finally, we would like to urge that these processes be embedded
in open science practices (Ayaz et al., 2022; Kelsey et al.,
2023), beginning with preregistration where explicit intentions
are established for the research prior to collecting data (for
recommendations see: Schroeder et al., 2023). Following analysis,
datasets should be publicly archived to promote transparency
and re-use of data. These small steps will allow future work
to build upon previous methods and findings more easily while
also addressing current challenges facing hyperscanning research
(Kelsey et al., 2023).

3.4 Interpreting changes in INS in
longitudinal intergenerational datasets

Responsible data interpretation requires well-designed
experiments to isolate social features or dynamics of interest. If not
carefully controlled for, measures of INS can reflect the communal
perception of external environmental changes or perturbations
(Czeszumski et al., 2020; Hamilton, 2021; Holroyd, 2022) rather
than synchrony stemming from the inter-brain mechanisms
under examination. Researchers should employ an active control
condition (i.e., not resting state) that matches the test condition
as closely as possible to enhance the likelihood of uncovering
mechanistic explanations for synchrony (Moreau and Dumas,
2021; Novembre and Iannetti, 2021). For example, comparisons
of INS while participants complete the task together and alone, or
between conditions such as verbal agreement and disaggreement
(Hirsch et al., 2021) are preferable to an active condition vs. resting
state. Researchers should additionally account for each dyad’s social
closeness and the amount of eye contact, as both can influence
synchronization of spontaneous cortical activity and could be
epiphenomenal confounds to targeted explanatory phenomenon
(e.g., Bevilacqua et al., 2019; Djalovski et al., 2021; Dikker et al.,
2022; Guglielmini et al., 2022; Long et al., 2022; Koul et al., 2023).
Social closeness may be measured using behavioral scales, such as
the inclusion of self-in-other scale (Aron et al., 1992), for example.
Eye contact could be explicitly controlled using physical barriers
or, perhaps more elegantly, recorded using eye-tracking glasses and
included in the analysis of fNIRS signal (Hirsch et al., 2017).

As intergenerational perspectives on INS remain limited, the
influence of physiological, social, and cognitive changes relating
to maturation on INS remain unknown. Dikker et al. (2022)
predict that changes in cognitive processing speeds over the
lifespan may evoke forms of interpersonal compensation. We agree

with Dikker and colleagues and suggest that this compensation
is likely represented in INS, and that careful consideration
should be given to how this information can be quantified,
to establish field standards. Further, the interpretation of data
collected in longitudinal hyperscanning studies, particularly with
an intergenerational focus, stands to be enriched by weaving both
qualitative and quantitative measures into the design (Deschepper
et al., 2017; Dikker et al., 2021).

4 Future directions

4.1 Socially-centered interventions

Aligned with the concept of two-brain neuroscience, insight
into shared and idiosyncratic aspects of neural activity in the
context of everyday social interactions also hold promise for
elucidating potential origins of atypical processing in some
disorders (Schilbach, 2016; Redcay and Schilbach, 2019). Further,
changes in INS may be useful to benchmark progress in
interventions for social, psychological, and physical wellbeing. As
Sened et al. (2022) recently demonstrated, changes in patient-
therapist INS can be observed across as few as six psychotherapy
sessions. While this study remains a proof of concept, warranting
replication with a greater sample size, similar studies could probe
INS between clinicians and patients experiencing a wider variety
of ailments (e.g., chronic pain, loneliness, anxiety, and perhaps
even reading difficulties or cognitive deficits, etc.) or between these
patients and their primary caregivers or frequent social contacts
(Kruppa et al., 2021; Short et al., 2021; Deng et al., 2022; Tucek et al.,
2022; Provenzi et al., 2023; Wei et al., 2023). The latter would be
instrumental for family-centered and community-based care (Short
et al., 2021; Provenzi et al., 2023).

Community care, interpreted more broadly, can include
social programs promoting wellbeing across the lifespan. Some
evidence suggests that intergenerational activities enhance social
cohesion between generations and older individuals’ wellbeing,
with enhancement accruing over repeated interactions (Rubin
et al., 2015; Anderson S. et al., 2017; Lokon et al., 2020;
Jenkins et al., 2021). Similarly, programs that pair youths with
non-parent mentors can positively influence youths’ emotional
wellbeing, resilience, as well as academic and career achievement
(Van Dam et al., 2018; Raposa et al., 2019; Goldner and Ben-
Eliyahu, 2021). A neural perspective on the development of
such intergenerational relationships could help concretize their
value, providing an additional stream of empirical evidence. In
addition to learning about INS over time, we could potentially
offer these intergenerational dyads a readout of how “in sync”
their brains are–a novel activity with the potential to enrich
relationship development.

4.2 Neurofeedback

An emerging technique called “neurofeedback” could also be
integrated with fNIRS hyperscanning data (Kohl et al., 2020).
Neurofeedback involves giving explicit feedback about brain
activity to the participant in real time with the aim of assessing

Frontiers inNeuroergonomics 05 frontiersin.org

https://doi.org/10.3389/fnrgo.2023.1260738
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Mo�at et al. 10.3389/fnrgo.2023.1260738

changes in behavior and/or brain function (Thibault et al., 2016;
Orndorff-Plunkett et al., 2017; Sitaram et al., 2017; Kadosh and
Staunton, 2019). We propose that real-time INS between a patient
and relevant partner (e.g., clinician, family member, support
person) could be presented to the dyad as the stimulus for learning
or changing social behaviors. The success, or potential lack of
success, of hyperscanning neurofeedback studies would open new
avenues for studying social learning.

Dikker et al. (2021) describe a particularly elegant
implementation of hyperscanning neurofeedback, run over
5 years in museums, wherein participants sat face-to-face in
chairs with large canvas shells behind them, and the relative
degree of a dyads’ INS was projected on the canvas in real
time. In a sample of 363 dyads, the authors demonstrated that
explicitly cueing participants to the degree or changes in their INS
using a light display could increase INS, plausibly as a result of
increased motivation and attention (Dikker et al., 2021). Further
research using hyperscanning to provide neurofeedback has also
demonstrated success in guiding behavior (Duan et al., 2013;
Chen et al., 2021a,b; Müller et al., 2021), albeit always within same
generation dyads. As an aside, Dikker et al. (2019) operationalized
neurofeedback using EEG to bring generations together in the
form of interactive art installations–a possible avenue yet to be
explored with mobile fNIRS.

To date, only Duan et al. (2013) have used fNIRS hyperscanning
in a neurofeedback paradigm, in which they demonstrate the
feasibility of fNIRS in a dual-brain neurofeedback loop. Mobile
fNIRS devices have yet to be used in hyperscanning neurofeedback
settings, but should ensure participants’ comfort and the feasibility
of integrating neurofeedback into real world settings and social
interactions (Nazneen et al., 2022). Given the portability and
suitability of mobile fNIRS devices for use with all populations
(Ayaz et al., 2022), we expect to see more neurofeedback
interventions involving two or more brains embedded in the
real world, while keeping ethical concerns about the use of
such technologies front and center (UNESCO, 2022). Further
we recommend that future research explores the value of
neurofeedback in intergenerational dyads, such as parent-child or
clinician-patient (child or senior) dyads, to determine the true
generalizability of such tools in clinical practice.

5 Concluding remarks

The increasing availability of mobile fNIRS devices alongside
the growing technical knowledgebase offers a promising avenue

for investigating the development of INS over time. We encourage
researchers to take advantage of these to help characterize
the mechanisms underpinning social interactions within and
across generations.
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