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Background: Hepatocellular carcinoma (HCC) is a malignant tumor with a

high rate of recurrence andmmetastasis that does not respond well to current

therapies and has a very poor prognosis. Disulfidptosis is a novel mode of cell

death that has been analyzed as a novel therapeutic target for HCC cells.

Methods: This study integrated bulk ribonucleic acid (RNA) sequencing

datasets, spatial transcriptomics (ST), and single-cell RNA sequencing to

explore the landscape of disulfidptosis and the immune microenvironment

of HCC cells.

Results: We developed a novel model to predict the prognosis of patients

with HCC based on disulfidptosis. The model has good stability, applicability,

and prognostic and immune response prediction abilities. N-myc

downregulated gene1 (NDRG1) may contribute to poor prognosis by

affecting macrophage differentiation, thus allowing HCC cells to evade the

immune system.

Conclusion: Our study explores the disulfidptosis of HCC cells through

multi-omics and establishes a new putative model that explores possible

targets for HCC treatment.
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1 Introduction

Liver cancer is the third most common cause of cancer deaths

worldwide, accounting for 8.3% of the overall cancer mortality (1).

Hepatocellular carcinoma (HCC) accounts for about 85%-90% of

all primary liver malignancies (2). Although new therapies have

emerged, like immunotherapy, targeted therapy, and radiation

therapy, the five-year survival of advanced HCC is less than 15%

(3). New immune checkpoint inhibitors, such as Nivolumab,

Atezolizumab, and Ipilimumab, are currently on the market, but

their therapeutic efficacy is not promising, possibly due to immune

escape (4). A lack of effective treatment has prompted a search for

new biomarkers.

Programmed cell death is associated with numerous

pathophysiological processes, including tumor progression and

alterations in the surrounding immune microenvironment (5).

Several new cell death models have recently arisen: apoptosis,

cuproptosis, ferroptosis, necroptosis, lysosome-dependent cell

death, immunogenic cell death, and autophagy-dependent

cell death (6, 7). Liu et al. recently discovered a new mode of

cell death: disulfidptosis. In glucose-starved cells overexpressing

solute carrier family 7 member 11 (SLC7A11), disulfidestress

caused by excessive intracellular cystine accumulation can cause

rapid cell death (8). Normal disulfide bonds between cytoskeletal

proteins are disrupted by accumulation of disulfide material,

leading to collapse of the histone skeleton and cell death.
Frontiers in Immunology 02
Glucose transporter inhibitors trigger disulfidptosis and suppress

tumor proliferation.

The bulk ribonucleic acid (RNA) sequencing is the average

messenger RNA (mRNA) expression in all cells, which does not

reflect the state of single cells in the tissue. Single-cell RNA sequencing

(scRNA-seq) enables a detailed analysis of the tumor

microenvironment heterogeneity at the single-cell resolution level (9,

10). However, scRNA-seq fails to preserve the tissues’ spatial

structures. The complicated cellular interactions that transpire

across the entire tissue space cannot be accurately deciphered. The

advent of spatial transcriptomics (ST) technology facilitates the spatial

exploration of gene expression and preserves cell arrangements during

multicellular tissue analysis. Thus, combining single-cell technology

with ST may detect details regarding heterogeneous cell populations

and provide insight into spatial tissue organization (11, 12).

In our study, we employed a multi-omics strategy to investigate

the landscape ofdisulfidptosis in HCC. We constructed a survival

prognostic model using bulk RNA sequencing and confirmed the

model has good prognostic and immune response prediction

abilities. Importantly, our findings revealed elevated expression

levels of N-myc downregulated gene1 (NDRG1) was expressed

more in tumor macrophages and promoted Polarization of M2-

type macrophages. These findings provide a theoretical basis for

exploring effective biomarkers in HCC and improving the efficacy

of anti-tumor immune therapy. Outline of the study design is

shown in Figure 1.
FIGURE 1

Study flow chart.
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2 Results

2.1 The expression of disulfidptosis related
genes in pan-cancer

We established a protein-protein correlation network with 15

DRGs (Figure 2A), which was derived from previous research (8)

and identified SLC7A11 as a key player within this network.

Furthermore, we employed the Single-sample Gene Set

Enrichment Analysis (ssGSEA) algorithm to assess the

disulfidptosis score in pan-cancer. The results revealed a positive

normalized enrichment score, indicating upregulation of

disulfidptosis. In bladder urothelial carcinoma (BLCA), the

normalized enrichment score was negative and disulfidptosis was

downregulated (Figure 2B). In HCC, the expression levels of

SLC7A11, inverted formin 2 (INF2), myosin heavy chain 9

(MYH9), CD2 associated protein (CD2AP), filamon B (FLNB),

actinin alpha 4 (ACTN4), capping actin protein of muscle Z-line

subunit beta (CAPZB), actin B (ACTB), PDZ and LIM domain 1

(PDLIM1), filamin A (FLNA), myosin light polypeptide 6 (MYL6),

talin 1 (TLN1), and destrin (DSTN) were remarkably higher than

the normal tissues. MYH10 and Ras GTPase-activating-like protein

(IQGAP1) (Figure 2C) were not higher, although this difference was

not statistically significant. We then evaluated the expression of

DRGs in tissue sections using ST analysis. Generally, DRGs were

highly expressed around and in tumors, except for MYH9 and

MYH10 (Figure 2D). To investigate their mutations, we

downloaded copy number variation (CNV) and single nucleotide
Frontiers in Immunology 03
variants (SNV) data from the The Cancer Genome Atlas (TCGA)

database. Figure 2E displays the positions of CNV changes in DRGs

on their corresponding chromosomes. Despite the high frequency

of deletions in MYH10 and FLNA, CNVs were still common and

mostly involved in amplification (Figure 2F). We then analyzed the

prevalence of SNV in 15 DRGs and found that 31 (8.54%) of 367

liver hepatocellular carcinoma (LIHC) samples showed mutations

in the DRGs. Among them, IQGAP1, FLNB, and TLN1 had the

maximum mutation frequency (2%), followed by MYH10, INF2,

and FLN1, while others displayed no obvious mutations

(Figure 2G). Thus, our results suggest that DRGs may act in pan-

cancer onset and progression.
2.2 Methylation levels and drug sensitivity
of DRGs

Figure 3A shows the methylation levels of DRGs in pan-cancer.

CD2AP had the lowest methylation level in uterine corpus

endometrial carcinoma (UCEC), and IQGAP1 had the highest

methylation level in UCEC. Except for ACTB in Thymoma and

Ovarian Cancer, the methylation levels of DRGs in pan-cancer had

different degrees of negative correlation with mRNA expression

(Figure 3B). Drug sensitivity prediction against DRGs using two

drug sensitivity databases revealed that the drugs with the strongest

predictive sensitivity in the GDSC were FK866, WZ3105, Ispinesib

Mesylate, and SB52334. In the Cancer Therapeutics Response Portal

(CTRP) database, the drugs with strong predictive sensitivity were
B

C

D

E

F

G

A

FIGURE 2

Landscape of DRGs in pan-cancer. (A) The correlation network of the 15 DRGs. (B) The enrichment score of DRGs in pan-cancer. (C) The different
expression of DRGs between HCC and normal tissue. (D) Spatial expression levels of DRGs in HCC tissue sections. (E) The location of the CNV
alteration of the changes in DRGs in 23 chromosomes. (F) The frequency of CNV variation in DRGs (blue: CNV deletion; red: CNV amplification).
(G) Analysis of SNV in DRGs. ns, not statistically significant; *P< 0.05; **P< 0.01; ***P< 0.001; ****P< 0.0001.
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CR-1-31B, belinostat, Palmitoyl-DL-carnitine hydrochloride

(PDMP), Repligen 136, and triptolide (Figures 3C, D).
2.3 Identification and exploration of DRGs
in HCC

An unsupervised consistent cluster analysis of patients with

HCC based on the expression of DRGs yielded two disulfidptosis

subgroups (Figures 4A–D). We performed principal component

analysis (PCA) and uniform manifold approximation and

projection (UMAP) analyses and observed that the two clusters

were separated in space (Figures 4E, F). Survival analyses for both

groups of patients indicated a significant difference in their survival

time (Figure 4G), with cluster1 showing a better prognosis. Similar

clustering modes were noted in the TCGA dataset (Supplementary

Figure 1A–D). The results of different datasets were highly

consistent, further demonstrating the reliability and stability of

our typing.
2.4 Disulfidptosis score and weighted gene
co-expression network analysis

We utilized the “gene set variation analysis (GSVA)” R package

to apply the “gsva,” “plage,” “zscore,” and “ssgsea” algorithms to

score gene expression in the metadata associated with disulfidptosis.

The average value of these scores was calculated. Pearson’s

correlation method and the mean linkage method were employed

to correlate the dendrograms of the samples with disulfidptosis

score traits (Figure 5A). To construct co-expression networks, we
Frontiers in Immunology 04
performed co-expression analysis with a soft threshold of 18 (scale-

free R2 = 0.9) to ensure a scale-free network. The dendrograms of all

differentially expressed genes were clustered based on the

differential measure (1-TOM) (Figures 5B, C). Through

hierarchical clustering, a total of nine units were identified.

Among these units, we selected the blue module, which exhibited

the highest correlation with the disulfidptosis score, as the clinically

significant module for further analysis. Within the blue module, we

identified 753 phenotypic genes (Figure 5D).
2.5 Construction and verification of the
blue module-based prognostic signature

We performed a univariate Cox regression analysis on 753

phenotypic genes and screened 507 candidate genes with prognostic

values (Supplementary Figure·2). After performing a LASSO

regression analysis (Figures 6A–C) and multivariate Cox

regression analysis, we obtained a six-gene model. G protein

nucleolar 2 (GNL2), NDRG1, transmembrane and coiled-coil

domains 3 (TMCO3), tribbles pseudokinase 3 (TRIB3), carbonyl

reductase 4 (CBR4), and SEC31 homolog B, COPII coat complex

component (SEC31B) were the prognostic indicators for

establishing a risk model with a C-index of 0.717. Based on the

median risk score, we classified patients into low- (n = 223) and

high-risk groups (n = 222).

We plotted and compared survival analysis and recipient work

characteristic curves to determine the accuracy of the prognostic

characteristic predictions. According to the Kaplan-Meier analysis,

overall survival (OS) was considerably longer in the low-risk group

versus the high-risk group (Figure 6D). The results of the study
B
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A

FIGURE 3

(A) The differences in methylation of DRGs in each cancer. (B) The correlation between methylation across different cancer types and the mRNA
expression of DRGs. (C, D) A drug-sensitive analysis aimed at DRGs based on GDSC and CTRP.
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indicated that in the metadata cohort, the area under the receiver

operating characteristic (ROC) curve of the risk model for one-,

three-, and five-year OS was 0.739, 0.757, and 0.712, respectively.

(Figure 6E). According to the decision curve analysis (DCA), the

risk model predicted favorable net clinical benefits for OS at one,

three, and five years in patients with HCC (Figures 6G–I). To
Frontiers in Immunology 05
further verify the model’s general applicability, we conducted DCA

analysis, ROC analysis, and Kaplan-Meier analysis on the model

with the validation set TCGA-LIHC and GSE144269. The

validation TCGA-LIHC process demonstrated the model’s

robustness and applicability. Notably, the survival analysis

conducted using the model revealed a significant difference in
B C D

E F G

A

FIGURE 4

(A) An unsupervised consensus clustering heatmap. (B) The plot of the relative area changes from k = 2 to 9 under the cumulative distribution
function (CDF) curve. (C) Consistent CDF plot. (D) Tracing plot of the clustered samples. (E) Principal Component Analysis. (F) Uniform Manifold
Approximation and Projection Analysis. (G) The OS curves between clusters.
B

C D

A

FIGURE 5

Weighted gene co-expression network analysis (WGCNA). (A) The cluster dendrogram of co-expression genes in HCC. The red boxes are
dendrogram regions corresponding to disulfidptosis. (B) Cluster analysis of HCC samples to detect outliers (the white-to-red linear gradient color is
associated with the disulfidptosis score, and the grey color indicates missing data). (C) Determination of soft-thresholding power in the WGCNA.
(D) Module–trait relationships in HCC. Each cell contains the corresponding correlation and P-value.
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survival between the high and low-risk groups (P = 0.00091)

(Supplementary Figure 1E). Furthermore, the model ’s

performance was evaluated using ROC curves in the validation

set. The area under the curve (AUC) values for 1, 3, and 5 years were

determined to be 0.721, 0.650, and 0.656 (Supplementary

Figure 1F), respectively. These results indicate the model’s ability

to accurately predict patient outcomes. Additionally, the decision

curve analysis demonstrated that the model can provide substantial

net clinical benefits in the validation set (Supplementary Figure 1G).

To further validate the model’s effectiveness, we obtained a new

dataset, GSE144269, from the Gene Expression Omnibus (GEO)

and conducted another round of validation. Remarkably, the results

from this validation set confirmed the previous findings, showing a

significant difference in survival between the high and low-risk

groups (P = 0.029) (Supplementary Figure 1H). The ROC curves for

the model in this validation set yielded AUC values of 0.681, 0.644,

and 0.586 for predicting patient survival at 1, 3, and 5 years

(Supplementary Figure 1I), respectively. Moreover, the DCA

decision curve analysis indicated that the model can provide

substantial net clinical benefits to patients (Supplementary

Figure 1J). Overall, these validation efforts reinforce the reliability

and clinical utility of the prognostic model.

By drawing forest plots of the multifactorial Cox regression

analysis (Figure 6C), we identified SEC31B and CBR4 as the

prognostic protective factors for HCC, whereas the other

prognostic markers were risk factors. To characterize the protein
Frontiers in Immunology 06
expression levels of the signature gene in patients with HCC, we

compared the protein expression profiles identified via

immunohistochemical staining in the HPA database. These

findings suggest that four of the factors in the prognostic profile

(NDRG1, GNL2, TRIB3, and TMCO3) were overexpressed in HCC

tissues (Figure 6J). High expression of SEC31B and CBR4 indicates

a positive prognosis for HCC patients. We included pathologic

staging in the risk score model and developed a nomogram model

to predict one-, three-, and five-year OS (Figure 6F). These findings

indicate that the model has favorable discriminatory power.
2.6 Tumor immune infiltration and
GSVA analyses

To investigate the immune status of various risk groups and

their immunotherapy response, we examined the association

between risk models and infiltrating immune cells. We assessed

differences in the immune status between risk groups by applying

the “xCell” and inverse convolution algorithms. The high-risk

group had relatively higher levels of Th2 cells, Th1 cells, iDC,

neutrophils, Macrophages_M1 cells, and CD4 memory T cells.

Levels of the CD8 naive T cells, CD4 Tcm, CD4 naive T cells,

Macrophages M2, and CD8 Tem cells were lower (Figure 7A).

The tumor immune dysfunction and exclusion (TIDE) scores

(Figure 7B, P< 0.0001) and exclusion scores (Figure 7D, P< 0.0001)
B C
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FIGURE 6

(A) Identification of optimal variables through LASSO regression with 10-fold cross-validatio. (B) The solution path was plotted according to
coefficients against the L1 norm. (C) The forest plot shows the hazard ratios and 95% confidence intervals of signature genes from the multivariate
Cox regression analysis. (D) We plotted the OS curves between high-risk and low-risk groups based on the prognostic signature. (E) The time-
dependent ROC curves. (F) We constructed a nomogram model to predict the one-year, three-year, and five-year OS of HCC patients. (G–I) DCA
for the one-year (G), three-year (H), and five-year (I) OS of the risk model. (J) Representative immunohistochemical staining images of GNL, NDRG1,
TMCO3, TRIB3, CBR4, and SEC31B in normal and tumor tissues were retrieved from the HPA (https://www.proteinatlas.org/, accessed:
January 2023).
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were notably higher, and the dysfunction scores (Figure 7C, P<

0.0001) and microsatellite instability (MSI) scores (Figure 7E, P<

0.0001) were lower in the high-risk group versus the low-risk group.

These outcomes suggest that risk scores in patients with HCC may

indicate lower immune checkpoint blockade therapy efficacy. High-

risk patients may become resistant to immunotherapy. Risk score

may potentially be associated with overexpression of other immune

checkpoint genes (ICGs), rather than the well-known PD-1 or

CTLA4. Figure 7F shows the positive association between risk

scores and CD209, CD47, CD86, LGALS9, TNFSF4, and TNFSF9.

There was a negative association between risk and TDO2, and

TNFSF14. Moreover, GSVA analysis indicated that the high-risk

group had increased “HOMOLOGOUS_RECOMBINATION,”

“MISMATCH_REPAIR,” “RNA_DEGRADATION,” and

“RNA_DEGRADATION” pathways (Figure 7G).
2.7 ScRNA and pseudotime analyses

We generated 21 subgroups through UMAP-based hierarchical

clustering of GSE166635 and performed cell annotation using the

“singleR” R package, resulting in the identification of 10 distinct cell

subgroups (Figure 8A). By examining the expression of six genes

across various cell types, we observed a significant differential

expression of NDRG1 specifically in macrophages (Figure 8B).

Furthermore, employing RNA rate-based trajectory analysis, we

discovered that macrophages in GSE166635 differentiated into two

distinct types. Notably, cluster 1 exhibited an initial high expression

of NDRG1, as evident from the gradient heatmap (Figure 8C). The
Frontiers in Immunology 07
trajectory diagram (Figures 8D, E) revealed that cluster 1

differentiated into a subtype of macrophages. These findings

suggest that the elevated expression of NDRG1 contributes to the

polarization of macrophages.

To explore the immune landscape of disulfidptosis in different

tissues, we selected the GSE149614 dataset. Following strict quality

control, we analyzed samples from advanced patients and performed

UMAP-based hierarchical clustering, resulting in the identification

of 15 cell subgroups. Using the “singleR” R package and CellMarker,

we annotated these subgroups as “NK cells, B cells, Endothelial cells,

T cells, Tissue stem cells, Monocytes, Macrophages, Hepatocytes,

and induced pluripotent stem (iPS)” (Figures 9A, B). Analysis of cell

ratios in different tissue sources from patients with advanced HCC

revealed that natural killer (NK) cells were predominant in normal

tissues, while hepatocytes, monocytes, T cells, and iPS cells were

predominantly present in tumor tissues. These results reflect the

malignant, highly differentiated, and immune infiltrative

characteristics of tumors (Figure 9H). Notably, NDRG1 exhibited

differential expression across different tissues, with minimal

expression in any cell subtypes of normal tissues and higher

expression in macrophages of tumor tissues, lymphoid tissues, and

portal carcinoma plugs (Figures 9C–G). These findings further

validate our observations in GSE166635.
2.8 Cell-to-cell communication

Conventional bulk RNA sequencing data is limited in its ability

to analyze cellular communication between different cell types. To
B C

D E
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A

FIGURE 7

Correlation between risk model and immune function. (A) The box diagram displays the difference in immune infiltration between the high-risk and
low-risk groups via the Cibersort Algorithm. (B–E) Response to immunotherapy in high- and low-risk patients. TIDE score, Dysfunction score,
Exclusion score, MSI score. (F) Comparison of the expression relevance between risk score and immune checkpoint genes. (G) Comparison of the
GSVA between the high- and low-risk groups.
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overcome this limitation, we employed the “cellchat” R package to

investigate the pathways involved. Our analysis revealed replicative

crosstalk between cells in the GSE166635 dataset (Figures 8F–H).

Notably, hepatocytes and macrophages exhibited close intercellular

connections and sent secreted phosphoprotein 1 (SPP1) signals to

nearly all other cell types (Figure 8I). Additionally, hepatocytes,

macrophages, monocytes, smooth muscle cells, and T-cells

transmitted macrophage migration inhibitory factor (MIF) signals

to monocytes, macrophages, and B cells (Figure 8J). Furthermore,

endothelial cells, epithelial cells, and hepatocytes conveyed Midkine

(MK) signals to all other cells (Figure 8K).

Next, we aimed to investigate the differential expression of

NDRG1 in macrophages and its role in macrophage activation

during cellular communication. To achieve this, we utilized the

“AUCell,” “UCell,” “singscore,” “ssgsea,” and “AddModuleScore”

algorithms (implemented through the “AUCell,” “UCell,” “irGSEA,”

and “GSVA” R packages) to compute disulfidptosis scores for

advanced tumor tissues in the GSE149614 dataset. Subsequently,

we classified the macrophages within the tumor tissue based on the

median disulfidptosis score, resulting in two groups: Disulfidptosis

score high macrophages (DSThighM) and Disulfidptosis score low

macrophages (DSTlowM). DSThighM macrophages exhibited a

close association with endothelial cells in terms of IL6-IL6ST,

MFNG-NOTCH1, OSM-IL6ST, ADAM17-NOTCH1, VEGF1-
Frontiers in Immunology 08
FLT1, VEGF2-FLT1, and PDGFC-FLT1 ligand-receptor linkages.

Furthermore, DSThighM macrophages and endothelial cells

displayed a tight relationship in IGF1-INSR, CXCL12-CXCR4, and

MFNG-NOTCH1 ligand-receptor pairs (Figure 9I). In terms of

signaling pathways, DSThighM macrophages and hepatocytes

exhibited high activity in Toxoplasmosis, Th17 cell differentiation,

and EGFR tyrosine kinase inhibitor resistance. Conversely, the

MAPK signaling pathway and focal adhesion were highly active in

DSThighM macrophages and endothelial cells. Pathogenic

Escherichia coli infection, non-alcoholic fatty liver disease, and

human cytomegalovirus infection were closely associated with the

autocrine level of DSThighM macrophages. Moreover, the Janus

kinase (JAK)-signal transducer and activator of transcription

(STAT) signaling pathway and chemokine signaling pathway were

highly active in both DSThighM and DSTlowM macrophages

(Figure 9J). Figure 9K illustrates the strength of cellular

connections among different cell types.
2.9 Disulfidptosis landscape at the spatial
transcriptome level

Based on the expression or non-expression of NDRG1, we

classified macrophages into two groups: NDRG1+Macrophages
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FIGURE 8

Analysis based on the GSE166635 dataset. (A) A UMAP of GSE166635. (B) The expression of NDRG1 in different cell clusters. (C) The trajectory
inference was obtained by a monocle using the RNA velocities method. (D, E) A pseudotime analysis of macrophages. These graphs contain cells
displayed in a trajectory dimensionality reduction algorithm, colored by group. (D) The heatmap showed gene expression (evaluated by the Z-value)
as the transition during pseudotime dynamics. (E) The circle plots show the overview of cell-cell interaction numbers among cells. (F) The circle plot
also shows the interaction strength among cells. (G) In the tumor tissues, broader arrows indicate stronger interactions. (H) An overview of cell-cell
communication at the legend-receptor level. (I-K) A heatmap shows communication between different cell types in SPP1 (I), MIF (J), and MK (K)
tumor signals. The hierarchy plots of the SPP1 (I), MIF (J), and MK (K) signaling pathway network show the sources and targets.
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and NDRG1-Macrophages. To annotate the spatial patches, we

examined the DRGs of each cluster and HE-stained sections,

resulting in the identification of eight major clusters: tissue stem

cells, endothelial cells, monocytes, T-cells, iPS cells, hepatocytes,

NDRG1-Macrophage cells, and NDRG1+Macrophage cells

(Figures 10A, B). Notably, T-cells, monocytes, and macrophages

exhibited increased accumulation within tumors. Comparatively,

NDRG1+Macrophage cells were predominantly located in the

tumor center, indicating that this subpopulation has a tendency

to target the tumor center through chemotaxis. This observation,

combined with previous single-cell typing, supports the notion that

NDRG1+Macrophage subpopulations specifically migrate towards

the tumor center (Figure 10C). To assess active metabolism within

the tumor region at the ST level, we employed the “scMetabolism” R

package, revealing metabolic activity patterns (Figure 10D).

Furthermore, through scoring the co-expression of ligand-

receptor pairs, we discovered a close association between NDRG1

+Macrophages, liver-type cells, and tissue stem cells. Notably, three

immunologically relevant ligand-receptor pairs, including major

histocompatibility complex, class I, A-amyloid beta precursor-like

protein 2 (HLA-A_APLP2), biglycan-toll-like receptor 4

(BGN_TLR4), and b2 microglobulin-human leukocyte antigen-F

(B2M_HLA-F), were significantly co-expressed in the tumor centers

and at the junction of tumors and normal tissues (Figure 11B). This

finding highlights the existence of cellular communication between

different cell types at the spatial transcriptional level. Specifically,

tissue stem cells (defined as tumor cells through tissue sections)
Frontiers in Immunology 09
exhibited close communication with NDRG1+Macrophages and

hepatocytes (Figure 11A).
2.10 Prognostic gene expression

To validate the robustness of our prognostic model, we

performed an in-depth investigation into the potential relevance of

NDRG1 in HCC. We meticulously examined the expression levels of

this prognostic gene in human tissue samples. Through qRT-PCR

analysis, we observed significantly elevated NDRG1 expression in

tumor tissues (Figure 12A). Furthermore, to corroborate these

findings at the protein level, we conducted Western blotting and

IHC analyses, both of which confirmed the heightened protein

expression of NDRG1 in tumor tissues (Figures 12B–E). These

compelling results unequivocally demonstrate the upregulation of

NDRG1 in HCC tissues, further emphasizing its potential

significance in the context of HCC prognosis.
2.11 Co-expression of NDRG1,
macrophages, and tumor cells

To elucidate the role of NDRG1 in the immune

microenvironment, we collected specimens from patients with

HCC. Multicolor immunofluorescence results demonstrated a

significant elevation and co-localization of CD206 and NDRG1
B

C D E F G

H I J K

A

FIGURE 9

Analysis based on the GSE149614 dataset. (A) The UMAP of GSE149614. (B) The UMAP of GSE149614 is split by tissues. (C–G) The expression of
NDRG1 in different tissues. (H) Cell infiltration level in various tissues inferred by scRNA-seq. (I) Heatmap of ligand-receptor pairs of immune
pathways among different cell types in tumor tissues. (J) Dot plot of signaling pathways among different cell types in tumor tissues. (K) Circle plots
showing the overview of cell-cell interaction numbers in tumor tissues.
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expression in hepatocellular carcinoma tissues compared to

paracancerous tissues (Figures 12F–H). These findings suggest

that the high expression of NDRG1 in tumor tissues may induce

the concentration of M2-type macrophages towards the tumor

center, thereby facilitating immune escape and ultimately

resulting in a poorer prognosis for patients with HCC.
3 Discussion

Recent developments in immunotherapy, molecularly targeted

agents, and neoadjuvant chemotherapy have resulted in improved

treatments for HCC. However, the prognosis for the long-term
Frontiers in Immunology 10
survival of patients continues to be poor. There is an urgent need for

more sensitive and reliable prognostic indicators to monitor the

progression of HCC and assess patient survival.

Disulfidptosis is a new method of controlling tumor cell

development (8). To investigate disulfidptosis in HCC, we carried

out a comprehensive analysis of ST, sc-RNA seq, and bulk RNA

sequencing. First, we obtained 15 DRGs from Liu’s study and

performed unsupervised consensus clustering, PCA, and UMAP.

We then divided patients with liver cancer into two clusters and

performed a survival analysis to find cluster 2, which had a poorer

prognosis. Next, we used four algorithms to score disulfidptosis in

patients with liver cancer andWGCNA to calculate the score for the

blue modules most strongly related to disulfidptosis.
B

C

DA

FIGURE 10

Expression of selected genes in the tissue sections. HE-stained images of HCC tissue sections labeled with eight cell clusters. (A) Dimensionality
reduction clustering of spots on tissue slices. (B) Spatial distribution and expression levels of different cell types on tissue sections. (C) Spatial
expression levels of different cell types in HCC tissue sections. (D) The metabolic status of different cell clusters.
BA

FIGURE 11

Intercellular cmmunication and ligand-rceptor analysis. (A) Intercellular communication at the ST level. (B) Ligand-receptor analysis at the ST level,
including HLA-A_APLP2, BGN_TLR4, and B2M_HLA-F.
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We then subjected the genes within the modules to multivariate

Cox regression, LASSO regression, and univariate Cox regression

analyses. Through these analyses, we identified six genes that are

closely associated with liver cancer prognosis and constructed a

prognostic model. Based on the median score, we categorized

patients into low- and high-risk groups. The performance of the

model was assessed using survival analysis, receiver operating

characteristic analysis, and decision curve analysis, demonstrating

its robustness and accuracy. In the study by Li (13), a prognostic

model was constructed using different disulfidptosis modes to

analyze differentially expressed genes. The AUC values under the

ROC curve of the model were only 0.689 and 0.659 for 3-year and 5-

year predictions, respectively. Additionally, in Yang’s study,

although they utilized the WGCNA algorithm to construct a

prognostic model, it only focused on identifying modules most

correlated with clinical features and did not thoroughly analyze the

expression patterns of disulfidptosis in liver cancer patients and the

AUC values of the model’s 3-year and 5-year ROC curves are 0.739

and 0.685, respectively, which are also not as good as our model’s

(14). In our study, for the first time, we calculated the disulfidptosis

scores of liver cancer patients using four different algorithms from

the ssGSEA package. We then identified the module with the

highest correlation to the average disulfidptosis score using

WGCNA (Figure 5). The prognostic model constructed based on

this module exhibited better clinical predictive ability, with AUC

values of 0.739, 0.757, and 0.712 for 1-year, 3-year, and 5-year

predictions, respectively. Furthermore, we conducted an immune
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infiltration analysis and observed that the high-risk population

exhibited upregulation in various cell types, including CLP,

epithelial cells, iDC, osteoblasts, type 1 T helper (Th1) cells, and

the type 2 T helper (Th2) cell pathway. Conversely, CD4 memory T

cells, Th1 cells, Th2 cells, Macrophages_M1 cells, and neutrophils

were more likely to infiltrate the high-risk groups. Notably, CD4 T

cells have the ability to produce significant amounts of IL-22

cytokines (15), which have been implicated in driving HCC

progression by promoting tumor cell proliferation (16).

Additionally, cancer cells can influence memory CD4 T cells to

express and release IL-1 in an IL-22-dependent manner, thereby

facilitating tumor growth (17). Regulatory T cells (Tregs), a subset

of immunosuppressive T cells, are commonly enriched in various

cancer types and contribute to immune evasion by tumors. In the

context of human breast cancer (BC), Tregs predominantly

originate from naive CD4 T cells. The presence of Tregs is closely

associated with an abundance of naive CD4 T cells, which serves as

a prognostic indicator for poor outcomes in BC patients (18).

The lack of effector memory T cells (CD8 Tem) and central

memory T cells (CD4 Tcm) explains immune incompetence and

exhaustion in high-risk patients (19). Interestingly, high-risk

patients are infiltrated with a higher number of M1, Th1, and

Th2 macrophages. M1 macrophages secrete multiple inflammatory

factors to sustain a prolonged inflammatory environment and

recruit and initiate T cells early in tumor progression (20). We

noted that high-risk patients were more prone to immune escape

and immune rejection by TIDE analysis. We derived some potential
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FIGURE 12

Validation of NDRG1 Expression in Hepatocellular Carcinoma. (A) NDRG1 mRNA expression profile in Patients with Hepatocellular Carcinoma.
(B) NDRG1 protein expression profile in Patients with Hepatocellular Carcinoma. (C) Bar chart of relative expression levels of NDRG1 protein.
(D, E) Immunohistochemical staining analysis of NDRG1 in tumor and normal liver tissues. (F–H) Immunofluorescence confocal microscopy analysis
of CD206 and NDRG1 expression in HCC tissue.
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immunotherapy targets by analyzing the relationship between the

immune checkpoints and risk score.

Research has revealed that hepatocytes and macrophages

frequently signal MIF and SPP1 to associate with other cell types.

SPP1 is a sialic acid-rich chemokine-like glycoprotein that is

overexpressed in a variety of cancers, including pancreatic cancer

(21). Studies have demonstrated that an interaction between CD44

and SPP1 induces cell signaling and modulates tumor cell

activation, motility, and adhesion, resulting in cancer progression

and metastasis (22). MIF acts as a critical player in cell proliferation,

tumorigenesis, and metastasis. MIF can activate the PI3K and

MAPK pathways and modulate apoptosis, differentiation,

proliferation, cell survival, and cancer progression (23). Midkine

(MK), a cancer mediator that is highly expressed in a wide range of

human malignancies, modulates cell growth, survival, migration,

metastasis, and angiogenesis (24).

We performed scRNA-seq and spatial transcriptional analysis

and found that the disulfidptosis score was higher in tumor cells and

endothelial cells. NDRG1 was barely expressed in the normal tissues

and highly expressed in the macrophages of metastatic lymph

nodes, portal vein tumor thrombus (PVTT), and primary tumors.

NDRG1 may promote tumor progression by affecting macrophage

differentiation, as observed by pseudotime analysis, and is mostly

involved in immune and oncogenic pathways. We validated this

via ST.

NDRG1, commonly referred to as a metastasis suppressor

protein, is expressed across various tumor types. This intracellular

protein is composed of 394 amino acids, weighs 43 kD, and exhibits

multiple isoforms (25). NDRG1 is actively involved in various

cellular processes, such as DNA repair, immunity, and stress

response. Additionally, NDRG1 plays pleiotropic roles depending

on the type of cancer (26). In recent years, cancer immunotherapy

has made significant progress, providing new opportunities for the

treatment of liver cancer. However, the immune tolerance

characteristics of the liver and the immunosuppressive tumor

microenvironment (TME) in HCC have collectively hindered the

development of effective anti-tumor immune responses against

HCC. The presence of an immunosuppressive TME in liver

cancer may be attributed to the accumulation of cells with

negative regulatory immune activity, such as M2-polarized

tumor-associated macrophages (27). Research has shown that

tumor-associated macrophages (TAMs) in the tumor

microenvironment are primarily composed of M2-type

macrophages, which promote the expression of IL-1a, IL-1b,
VEGF-A, and VEGF-C, thereby facilitating tumor growth and

tumor angiogenesis/lymphangiogenesis (28). Additionally, several

studies have confirmed that NDRG1 is highly expressed in

macrophages within the tumor microenvironment (29).

Observations have been made of a significant decrease in the

serum levels of macrophage colony-stimulating factor (M-CSF)

and macrophage-related cytokines in NDRG1 knockout mice

(30). The deficiency of NDRG1 has been shown to attenuate the

differentiation of macrophage lineage cells, leading to a suppression

of bone remodeling and inflammatory angiogenesis (30).

Mechanistically, NDRG1 interacts with the orphan nuclear

receptor Nur77 and inhibits the transcriptional activity of NF-kB
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(nuclear factor Kappa B) (31). However, the loss of NDRG1

activates the NF-kB pathway, leading to the induction of

epithelial-mesenchymal transition in prostate cancer (32). In their

study, Chang et al. found that NF-kB activity is typically

upregulated in classical M1 macrophages, while M2 macrophages

are believed to have lower NF-kB activity and exhibit strong

immunosuppressive effects (33). These findings indicate that

NDRG1 may regulate macrophage polarization through the NF-

kB pathway, ultimately leading to immune evasion. CD206, also

known as an alternative activated macrophage marker, is a

membrane glycoprotein expressed on the surface of macrophages,

par t i cu lar ly M2 macrophages (34) . Our mul t i co lor

immunofluorescence results have revealed a significant elevation

and co-localization of CD206 and NDRG1 in hepatocellular

carcinoma tissues. This further supports the close relationship

between NDRG1 expression and macrophage differentiation.

Tumor-associated macrophages (TAMs) account for more than

50% of all cells in tumors and play a crucial role as immune cells

within the tumor microenvironment (35). Therapeutic strategies

that incorporate or target TAMs have emerged as a promising and

novel approach for anticancer therapy (36). On the other hand, one

of the challenges in immunotherapy is the presence of immune

suppressor cells in the tumor microenvironment, which can

counteract the immune system’s attack on tumor cells. Research

has found that tumor cells also induce immune tolerance by

manipulating cells of the innate immune system, including

polarizing macrophages into tumor-friendly M2 phenotypes and

neutrophils into N2 phenotypes (37). Based on the findings from

these studies, combined with our own research results, we speculate

that NDRG1 may have a potential role in enhancing the efficacy of

immunotherapy and reducing immunotherapy resistance. We aim

to advance gene diagnosis and gene therapy into the early stages of

cancer treatment, discovering more effective combination or

sequential treatment strategies. Through future clinical research,

we hope to gradually refine prognostic models to identify high-risk

patients with poor prognosis in HCC. Targeted gene testing will be

conducted on high-risk patients, and gene technology will be

utilized for personalized treatment, either through specific

knockout of NDRG1 or the design of NDRG1-targeted inhibitors.

This approach may potentially reduce the M2/M1 ratio of tumor-

associated macrophages in the tumor microenvironment, thereby

preventing immune escape of cancer cells and improving the

efficacy of immunotherapy and patient prognosis. However,

further experimental validation is needed to confirm this

hypothesis and extend it to other types of cancer.

In terms of limitations, our research lacks clinical data to evaluate

the correlation between NDRG1 and immune therapy response as

well as survival rates. Furthermore, the specific mechanisms

underlying the interaction of NDRG1 with target genes and

downstream signaling events require further investigation. These

gaps will impede the translation of our findings into clinical

applications, limiting the potential to provide valuable insights for

personalized treatment and patient stratification.

In summary, the immediate research priorities following from

these findings would involve further mechanistic studies, validation

in preclinical models, identification of therapeutic targets,
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exploration of combination therapies, and clinical translation.

These efforts could potentially lead to the development of novel

therapeutic strategies for improving immune responses and

treating HCC.
4 Conclusion

Our study provides the first comprehensive analysis of a

disulfidptosis pattern in HCC in a large sample of the

transcriptome, s ingle-cel l t ranscr iptome, and spat ia l

transcriptomics levels. We constructed a novel putative model

that suggests high expression of the key factor NDRG1 may

contribute to macrophage polarization, infiltration into the tumor

center, and ultimately lead to a poor prognosis.
5 Materials and methods

5.1 Data acquisition and preprocessing

We obtained clinical information and bulk RNA sequencing data

of HCC patients from various sources. The GEO14520, GSE144269,

International Cancer Genome Consortium-Liver Cancer in Japan

(ICGC-LIRI-JP), and TCGA Liver Hepatocellular Carcinoma

(TCGA-LIHC) datasets were downloaded from the Gene

Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/

), the ICGC data portal (https://dcc.icgc.org/), and TCGA data portal

(https://www.cancer.gov/tcga/), respectively. For single-cell RNA

sequencing (scRNA-seq) data of HCC, we downloaded the

GSE149614 and GSE166635 datasets from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/). The GSE166635 dataset

contains tumor scRNA-seq data from two HCC patients, while the

GSE146914 dataset includes four relevant sites from 10 patients with

different stages of PVTT, primary tumor, non-tumor liver, and

metastatic lymph node. To acquire spatial transcriptome (ST)

information for HCC tissue sections, we accessed the Single-Cell

Colorectal Cancer Liver Metastases (CRLM) Atlas web portal (http://

www.cancerdiversity.asia/scCRLM). The DRGs were obtained from

Liu’s article (https://doi.org/10.1038/s41556-023-01091-2). After

addressing batch effects, we integrated the GSE14520 and ICGC-

LIRI-JP datasets, resulting in the formation of metadata. This

metadata was used as the training set, while the TCGA-LIHC and

GSE144269 datasets served as independent validation sets. All of the

bulk transcriptome data were transformed logarithmically and

transformed to transcripts per million (TPM) before analysis.
5.2 Expression analysis of disulfidptosis
related genes in pan-cancer

We investigated the expression patterns of DRGs across a

diverse range of tumor types using the Gene Set Cancer Analysis

dataset (GSCALite) (http://bioinfo.life.hust.edu.cn/web/GSCALite/

). Specifically, we examined the genomic locations of CNV

mutations in DRGs on the 23 chromosome pairs, as well as CNV
Frontiers in Immunology 13
mutations and SNV in liver cancer. To visualize these findings, we

employed R (Version 4.2.0) to generate graphical representations

for 15 selected DRGs. Furthermore, we retrieved the protein-

protein interaction network of the DRGs from the STRING

database (https://string-db.org/cgi/input.pl) and visualized it using

Cytoscape 3.9.
5.3 Methylation and drug sensitivity
of DRGs

We conducted an analysis of DNA methylation levels in the

pan-cancer using the GSCALite website, specifically focusing on the

DNA methylation levels of DRGs. Additionally, we investigated the

correlation between mRNA expression and DRG methylation levels

across different tumor types. Furthermore, we performed a drug

sensitivity analysis of DRGs using two databases: the Cancer

Therapeutics Response Portal (CTRP) and the Genomics of Drug

Sensitivity in Cancer (GDSC) databases.
5.4 Unsupervised consensus clustering for
DRGs on patients with
hepatocellular carcinomas

To explore the different disulfidptosis patterns of HCC, we

applied the “ConsensusClusterPlus” R package to determine the

subgroups of patients with HCC based on DRGs. We also verified

the discriminatory degree of the categorization using the UMAP

and PCA dimensionality reduction. Then, we subjected clusters to a

survival analysis by applying the “survival” R package.
5.5 Disulfidptosis score and the weighted
gene co-expression network analysis for
the disulfidptosis-related module

In our study on HCC, we initially utilized four scoring methods

from the “GSVA” R package to assess the disulfidptosis status. The

average value of these scores was then used to represent the

disulfidptosis characteristics of liver cancer patients (38, 39).

Subsequently, we employed the WGCNA method to identify gene

modules that were highly correlated, as well as the interconnections

between these modules and their associations with disulfidptosis

scores. This analysis aimed to identify potential therapeutic targets

or candidate biomarkers. To construct the gene co-expression

network, we utilized the “WGCNA” R package and selected

modules that exhibited the strongest correlation with

disulfidptosis in HCC (39). Prior to the analysis, we pre-

processed the sample data and removed any outliers. We then

constructed a correlation matrix using the “WGCNA” R package.

By determining the optimal soft threshold, we transformed the

correlation matrix into an adjacency matrix and subsequently built

a topological overlap matrix (TOM). Through hierarchical

clustering based on the TOM dissimilarity metric, genes with

similar expression patterns were grouped into gene modules using
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average association. The module that exhibited the strongest

correlation with disulfidptosis was selected as the critical module

for further analysis.
5.6 Construction and verification of the
DRG-based prognostic signature

We constructed and verified the prognostic characteristics of

patients with HCC for key module genes from the WGCNA that are

closely associated with disulfidptosis. First, we screened the

prognosis-associated genes in the metadata training set by applying

univariate Cox regression (“survival” R package). We then conducted

a multivariate Cox regression and least absolute shrinkage and

selection operator (LASSO) regressions (“glmnet” R package) to

minimize the candidate genes and create a prognostic signature.

We calculated the risk score by multiplying the regression coefficient

(b) from the multivariate Cox regression by a linear combination of

gene expression levels. The risk score calculation formula is:

Risk   Score =o
n

i=1
Coefficient(bi) ∗ xi

Per the median risk score, we classified patients with HCC into

low- and high-risk groups. We then drew time-dependent ROC

curves (“pROC” R package) and Kaplan-Meyer survival curves

(“survival” and “survminer”) to detect the clinical model’s

prognostic value. We validated the new model’s robustness and

assessed the prognostic value with TCGA-LIHC and GSE144269.

Using the Human Protein Atlas database (HPA) (https://

www.proteinatlas.org), we compared the protein expression patterns

of the signature HCC genes to normal tissue. We built a predictive

nomogram model (“survival” and “rms” R packages) incorporating

tumor Tumor, Node, Metastasis (TNM) pathologic staging to predict

the one-, three-, and five-year OS probability of patients with HCC

based on the multivariate Cox regression analysis results. In addition,

we conducted a DCA to determine the model’s net clinical benefits on

OS at one, three, and five years for patients with HCC.
5.7 Tumor immune infiltration and
GSVA analyses

To assess the tumor microenvironment across different risk

groups, we employed the xCell algorithm (40). Furthermore, we

obtained exclusion scores, dysfunction scores, and TIDE scores

from the TIDE website (http://tide.dfci.harvard.edu/) (41). In order

to evaluate the response to immunotherapy in the high- and low-

risk groups, we compiled a list of 40 ICGs based on the literature

(42). We then conducted a correlation analysis between the risk

scores and the ICGs using the “corrplot” R package. Additionally,

we utilized the “GSVA” R package to examine the expression

patterns of different risk profiles in the Kyoto Encyclopedia of

Genes and Genomes (KEGG) signaling pathway. For this analysis,

we retrieved the C2 (C2.cp.Kegg.v7.4.symbols.gmt) gene set from

the Molecular Signatures Database and generated a heatmap to

visualize the results.
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5.8 Analysis of scRNA-seq data

First, we utilized the “Seurat” package to generate objects and

performed quality control measures to filter out lower-quality cells.

Specifically, we applied the following criteria: cells with fewer than

200 or more than 4000 expressed genes were excluded, and cells

with more than 10% of unique molecular identifiers (UMIs)

mapped to mitochondrial genes were also excluded. We retained

only genes that were expressed in at least three cells. Next, we

normalized the data and identified the top 3000 highly variable

genes using the “FindVariableFeatures” function. Principal

component analysis (PCA) was then performed on the scRNA-

seq data using these 3000 genes. For visualization and clustering

purposes, we retained the first 16 and 22 principal components for

GSE149614 and GSE166635, respectively, and applied the UMAP

algorithm. To address batch effects between samples, we employed

the harmony method (v0.1.0) to remove these effects and integrate

the Seurat objects into a single dataset. Subsequently, we performed

cell clustering using the “FindClusters” function in the “Seurat”

package, with a resolution parameter set to 0.7. To annotate the

cells, we utilized the “singleR” package and CellMarker 2.0 (http://

bio-bigdata.hrbmu.edu.cn/CellMarker).
5.9 Cell-cell interaction and pseudotime
analyses at single-cell level

To investigate cell-cell interactions, we employed the “CellChat”

R package (43) and utilized its “cellchat” function. Our analysis

involved utilizing ScRNA-seq count files and cell type-specific

markers as input data. Using this approach, we examined the

expression of receptors in one cell type and ligands in another. By

assessing the presence of ligand-receptor interactions, we quantified

the enrichment of such interactions between pairs of cell types. This

analysis provided insights into the extent of communication and

signaling between different cell types. To evaluate the cell-type

specificity of a particular ligand-receptor complex, we identified P-

values based on the proportion of mean values greater than or equal

to the actual mean. We utilized a P-value threshold of< 0.05 to select

important cell-cell interactions.

In parallel, we employed a pseudotime analysis of the scRNA-

seq data to measure the evolutionary trajectory of macrophages in

GSE166635. This analysis entailed mapping the high-dimensional

gene expression data onto a one-dimensional quantity called

pseudotime. We inferred cell fates and revealed the cellular

trajectories. We utilized the “Monocle” R packages (Version

2.26.0) (44, 45), which can provide insight into the cellular

developmental trajectory but cannot accurately determine the

origin and direction of this developmental process.
5.10 Spatial transcriptomics data analysis

We processed and visualized the ST data using the “Seurat” R

package. To ensure data comparability, we integrated the ST data

using the SCT approach and subsequently performed clustering of
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similar ST sites using PCA. Specifically, we established filtering

criteria, including a gene count between 300 and 6000, a

mitochondrial ratio below 15%, and the exclusion of genes

expressed in fewer than 10 spots. Then, we used the sctransform

normalization method and PCA dimensionality reduction is

performed first, and then the top 20 dimensions are selected for

clustering and umap dimensionality reduction. Cell clusters were

annotated based on hematoxylin and eosin (HE) staining sections

and genes exhibiting high variability within each cluster. The spatial

expression of DRGs was visualized using the SpatialDimPlot

function. Furthermore, we conducted deconvolution using the

“spacexr” package and utilized the “spotlight” R packages to

identify cell types at specific spatial spots. Subsequently, we

employed the “scMetabolism” R package to evaluate the

metabolic activity of the spatial transcriptional data on slices (46)

Additionally, we utilized the Python “stlearn” package to visualize

and analyze cell-cell interactions, as well as score the co-expression

of ligand-receptor pairs in the tissue slice.
5.11 Human specimens

We obtained 19 HCC pairs and adjacent non-cancerous

specimens from the Department of Hepatobiliary-pancreatic &

Hernia Surgery at Guangdong Second Provincial General

Hospital. The study was authorized by the Medical Research

Ethics Committee of Guangdong Second Provincial General

Hospital, and all of the participants provided written informed

consent. Following specimen isolation, we rapidly froze the liver

tissue in liquid nitrogen and stored it at a temperature of -80°C to

ensure preservation and prevent degradation.
5.12 Quantitative reverse transcription
polymerase chain reaction

We extracted the total RNA with Trizol reagent (Invitrogen,

Carlsbad, CA, USA), and synthesized the cDNA through the ABI

7500 Fast System (Applied Biosystems, Rockville, MD, USA). We

used a-Tubulin as the reference gene. The relative expression level

of the relevant gene was 2- [(Ct of gene) – (Ct of a-tubulin)], in
which Ct stands for the threshold cycle. Primer sequences for

amplification were as below: NDRG1 (47), forward primer, 5’-

CTGCACCTGTTCATCAATGC-3’ and reverse primer, 5’-

AGAGAAGTGACGCTGGAACC-3’.
5.13 Western blotting

Th e HCC t i s s u e s amp l e s w e r e l y s e d u s i n g a

radioimmunoprecipitation assay buffer containing 1%

phenylmethylsulfonyl fluoride (PMSF, Beyotime, Shanghai,

China). Western blotting was performed following a previously

described protocol. Primary antibodies specific to NDRG1 (1:5000,

T57079S, Abmart) and an anti-glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) antibody (1:5000, Proteintech) were
Frontiers in Immunology 15
used, with GAPDH serving as a control. The obtained results

were subjected to semi-quantitative analysis using ImageJ software.
5.14 Immunocytochemistry

To evaluate the expression of NDRG1 protein, we performed

immunohistochemistry (IHC) experiments. Fresh human tissues

were fixed overnight in 10% formalin, followed by dehydration,

embedding in paraffin, and sectioning. The sections were then

dewaxed and hydrated accordingly. Antigen retrieval was

performed using citrate, and peroxidase activity in liver samples

was blocked with 3%H2O2. The primary antibodies against NDRG1

(1:500, T57079S, Abmart) were incubated overnight at 4°C.

Subsequently, the slides were incubated with a secondary

antibody at 37°C for one hour. A 3,3’-diaminobenzidine (DAB)

color development kit was employed, followed by hematoxylin

restaining. Finally, the slides were dehydrated, rendered

transparent, and sealed with neutral treacle. We then viewed the

slides under a microscope, and two experienced pathologists

conducted double-blind readings to identify the staining intensity

and the percentage of positive cells, which was scored as follows:<

5% was scored as 0, 5%-25% was scored as 1, 26%-50% was scored

as 2, 51%-75% was scored as 3, and 76%-100% was scored as 4.

Moreover, we assessed staining intensity as follows: 0, 1, 2, and 3 for

colorless, light yellow, tan, and brown, respectively. Lastly, We

acquired the final score by multiplying the staining intensity score

by the percentage of positive cells. Scores of 0, 1-4, 5-8, and 9-12

were negative (-), weakly positive (+), positive (++), and strongly

positive (++++), respectively.
5.15 Immunofluorescence

For immunofluorescence staining, we utilized a multiplex

immunofluorescence staining kit (abs50012, absin, Shanghai,

China) and followed the instructions provided by the

manufacturer. Antibodies against NDRG1 (1:500, T57079S,

Abmart) and CD206 (1:500, TD4149S, Abmart) were incubated at

room temperature for one hour. Subsequently, the slides were

incubated with anti-rabbit/mouse IgG conjugated with HRP for 15

minutes at room temperature, followed by incubation with

fluorophore-conjugated tyramine molecules (PPD 650, PPD 570, or

PPD 520) for 15 minutes. Finally, the nuclei were stained using DAPI.
5.16 Statistical analysis

We conducted data analysis and visualization using the R

software (Version 4.2.0, https://www.r-project.org/) and Python

software (Version 3.9.0, https://www.python.org/). To compare

two groups and two or more groups, we employed the Wilcoxon

rank-sum test and the Kruskal-Wallis test, respectively. Categorical

variables were compared using Fisher’s exact test or the chi-square

test. Differences in survival curves were assessed using the log-rank

test. We performed a Spearman’s correlation test to determine the
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correlations between the two variables. Statistical significance was

determined at a significance level of P< 0.05.
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Validation of the putative model. (A–D) Unsupervised consensus clustering.
TCGA-LIHC (E)We plotted the OS curves between the high-risk and low-risk

groups based on the prognostic signature. (F) The time-dependent ROC
curves. (G) DCA for the validation data. GSE144269 (H) We plotted the OS

curves between the high-risk and low-risk groups based on the prognostic
signature. (I) The time-dependent ROC curves. (J) DCA for the

validation data.

SUPPLEMENTARY FIGURE 2

The forest plot shows the hazard ratios and 95% confidence intervals of the
signature genes from the univariate Cox regression analysis.
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