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Enhanced corn seed disease
classification: leveraging
MobileNetV2 with feature
augmentation and transfer
learning

Mohannad Alkanan and Yonis Gulzar*

Department of Management Information Systems, College of Business Administration, King Faisal

University, Al Ahsa, Saudi Arabia

In the era of advancing artificial intelligence (AI), its application in agriculture

has become increasingly pivotal. This study explores the integration of AI

for the discriminative classification of corn diseases, addressing the need for

e�cient agricultural practices. Leveraging a comprehensive dataset, the study

encompasses 21,662 images categorized into four classes: Broken, Discolored,

Silk cut, and Pure. The proposed model, an enhanced iteration of MobileNetV2,

strategically incorporates additional layers—Average Pooling, Flatten, Dense,

Dropout, and softmax—augmenting its feature extraction capabilities. Model

tuning techniques, including data augmentation, adaptive learning rate, model

checkpointing, dropout, and transfer learning, fortify the model’s e�ciency.

Results showcase the proposed model’s exceptional performance, achieving an

accuracy of ∼96% across the four classes. Precision, recall, and F1-score metrics

underscore the model’s proficiency, with precision values ranging from 0.949 to

0.975 and recall values from 0.957 to 0.963. In a comparative analysis with state-

of-the-art (SOTA) models, the proposedmodel outshines counterparts in terms of

precision, recall, F1-score, and accuracy. Notably, MobileNetV2, the base model

for the proposed architecture, achieves the highest values, a�rming its superiority

in accurately classifying instances within the corn disease dataset. This study not

only contributes to the growing body of AI applications in agriculture but also

presents a novel and e�ective model for corn disease classification. The proposed

model’s robust performance, combined with its competitive edge against SOTA

models, positions it as a promising solution for advancing precision agriculture

and crop management.

KEYWORDS

deep learning, corn, precision agriculture, image classification, corn seed, corn seed

disease

1 Introduction

Evaluating the quality of agricultural products has long been a significant concern for

various countries. The quality assessment of these products holds immense importance

as it directly impacts various aspects of the agricultural industry and food supply chain

[1]. In recent years, the emergence of precision agriculture has brought about stricter

requirements and advanced techniques for assessing the quality of agricultural products.

Precision agriculture utilizes innovative technologies such as remote sensing, drones, image

classification and data analytics to gather detailed information about crops and their growing

conditions. These advancements have enabled more precise and accurate evaluation of

agricultural product quality [2].
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The assessment of agricultural product quality is crucial for

several reasons. Firstly, it ensures accurate identification and

effective control of seed pests and diseases. By implementing

stringent quality assessment practices, farmers and agricultural

professionals can identify potential issues early on and take

necessary measures to mitigate the spread of pests and diseases,

safeguarding crop health and productivity [2, 3].

Secondly, the quality assessment of agricultural products plays

a vital role in grain storage and distribution management. Precise

evaluation helps in preserving seed quality, ensuring that only

high-quality seeds are stored and distributed. This contributes

to maintaining crop diversity and promoting better yields in

subsequent seasons. Furthermore, evaluating agricultural product

quality is essential in reducing food waste. Accurate assessment

helps identify and separate products that meet the desired quality

standards, minimizing waste throughout the supply chain. This not

only benefits economic efficiency but also addresses environmental

concerns associated with food waste.

Corn, also known asmaize (Zeamays), is one of themost widely

cultivated cereal crops worldwide. It is a staple food for many

populations and plays a vital role in various industries, including

agriculture, animal feed, and biofuel production. United States

Department of Agriculture (USDA) has estimated that the corn

production for the year 2022/23 will be 1,161.86 million metric

tons worldwide. Whereas the corn production of last year was

1,216.87 million tons [4]. So, this year it can be predicted that

there will around 4.52% decrease in corn production worldwide.

Fusarium graminearum, Fusarium cepacia, Fusarium proliferatum,

and Fusarium subglutinans are well-recognized pathogens that

commonly contribute to the development of root, stalk, and cob rot

in maize [5]. The presence of diseased seeds serves as a significant

source of initial infestation, leading to plant diseases and facilitating

the long-distance dissemination of such pathogens. This, in turn,

adversely affects the germination rate of seeds [6]. Moreover,

infected seeds pose challenges for storage, as they can contaminate

other seeds, resulting inmold formation and substantial food losses.

Furthermore, the compromised quality of these seeds renders them

unsuitable for consumption [7].

Traditional approaches for assessing grain quality and

safety often involve laborious and time-consuming microbial

experiments, such as spore counting and enzyme-linked

immunosorbent assays. While these methods exhibit high

accuracy in disease detection, their drawbacks include their

time-consuming nature, labor-intensive requirements, and

destructive nature [8]. Phenotypic seed detection, as a non-

destructive testing method, serves as a fundamental approach

for evaluating seed quality. However, manual testing methods

are subject to subjective factors, resulting in variations in test

results among different individuals and yielding low detection

efficiency, thereby increasing the likelihood of misjudgment

[9, 10]. Consequently, quality inspectors urgently require a rapid

and objective methodology to detect diseases in corn seeds.

Artificial Intelligence (AI), particularly deep learning, has

demonstrated remarkable capabilities in extracting features

efficiently and accurately from complex data [11]. This

transformative technology has found applications across various

domains [12], including healthcare [13–18], education [19, 20],

e-commerce [21], and agriculture [22, 23] and other domains

[24, 25]. Deep learning holds great promise in revolutionizing

disease identification and management in corn crops. With its

ability to efficiently analyze large volumes of data and extract

intricate patterns, deep learning models can assist in the early

detection of diseases, enabling timely intervention and improved

crop health.

From the literature, it is evident that many researchers have

incorporated deep learning in agriculture. Tian et al. [26] have

proposed a deep learning model using wavelet threshold method.

The proposed model is trained on 6 different classes on corn

diseases and has achieved 96.8% accuracy. Mishra et al. [27]

has proposed a CNN model to classify corn leaf diseases and

has achieved 88.46% accuracy. A deep learning model based

on VGG16 was proposed to classify 14 different types of seeds

[28]. The modified CNN model has incorporated many model-

tuning techniques such as transfer learning, model checkpointing

and data augmentation. With the help of these techniques the

proposed model has achieved 99% accuracy. Yu et al. [29] have

performed a comparative study to examine the classification of

three common corn diseases using different CNN models. they

have tested VGG-16, ResNet18, Inception v3, VGG-19 based on

a dataset containing three classes. These models have achieved

accuracy of 84.42%, 83.75%, 83.05% and 82.63% respectively.

Ahmad et al. [30] have proposed a deep learning model for corn

disease identification. They have created a dataset using Unmanned

Aerial System (UAS) imagery and have collected 59,000 images

over three different corn fields. The dataset contains three common

diseases found in corn. They claim that the model achieved

98.85% accuracy. In another study the authors have conducted

a comparative study [31] in which they have compered state-

of-the-art (SOTA) models based on a created dataset. VGG16,

ResNet50, InceptionV3, DenseNet169, and Xception were trained

to identify the corn diseases. They claim that DenseNet169 has

achieved 100% accuracy and has outperformed all other SOTA

models. Albarrak et al. [32] proposed a modified deep learning

model based on MobileNetV2 for classifying eight different types

of date fruit. They incorporated transfer learning and added new

layers to the based model to improve the accuracy. The modified

model achieved 99% accuracy in identifying different types of

date fruits. Fraiwan et al. [33] proposed a deep learning model

for classification of three commonly diseases of corn leaf. They

have incorporated transfer learning and without using any other

feature extraction technique to conduct their experiments. They

have achieved 98.6% accuracy while identifying corn leaf diseases.

In other studies [34–36], the authors tried to classify different types

of fruit using deep learning models. In study [34], author classified

forty different types of fruits by proposing a deep learning model

based on MobileNetV2 and has achieved 99% accuracy. Whereas

in study [35], authors have trained a deep learning model based on

YOLO architecture for classifying oil palm fruit and has achieved

98.7% accuracy.

Masood et al. [37] have proposed a MaizeNet deep learning

model for classifying maize leaf diseases. MaizeNet is based on

ResNet50 and is trained on public dataset called corn disease.

The proposed model has achieved 97.89% accuracy with mAP

value of 0.94. Ahmad et al. [38] have conducted a study in which
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they have trained five SOTA models (InceptionV3, ResNet50,

VGG16, DesneNet169, and Xception) on five datasets containing

the images of corn diseases. They claim that DenseNet169

has achieved highest accuracy of 81.60% among other models

based on all five datasets. Hatem et al. [39] have used a

dataset found on Kaggle containing three common diseases

of found in corn. They have used pretrained models such as

GoogleNet, AlexNet, ResNet50 and VGG16 for experimentations

and claim that these models achieved 98.57%, 98.81%, 99.05%,

and 99.36% accuracy respectively. Divyanth et al. [40] conducted

a study in which they classified different types of corn diseases.

Before classifying they used three models, SegNet, UNet, and

DeepLabV3+ for segmentation. After segmentation they identified

that UNet performed well during segmentation. Based on that they

developed two-stage deep learning model to classify commonly

diseases found in corn. Rajeena et al. [41] proposed a modified

version of EfficientNet model for classifying corn leaf diseases.

The authors claim that they have achieved 98.85% accuracy

during training.

This study presents an innovative approach to corn seed

disease classification in precision agriculture, leveraging

advanced Deep Learning techniques. The primary focus is

on optimizing the MobileNetV2 architecture for enhanced

accuracy in identifying distinct corn diseases, addressing the

challenges of limited dataset size and class imbalances through

strategic model tuning. The contributions of the study are

as follows:

• Tailored MobileNetV2 architecture: the study introduces a

modified MobileNetV2 architecture, incorporating additional

layers like Average Pooling, Flatten, Dense, Dropout, and

softmax. This tailored design optimally captures intricate

features relevant to corn diseases, enhancing the model’s

discriminative capabilities.

• Effective data augmentation: to overcome data limitations, the

research employs data augmentation techniques, generating

diverse images from the original dataset. This process

significantly expands the dataset, contributing to improved

model training and robustness.

• Strategic model tuning techniques: the proposed work

implements adaptive learning rate, model checkpointing,

dropout, and transfer learning to fine-tune the model. These

techniques collectively contribute to preventing overfitting,

expediting training, and enhancing the model’s adaptability to

diverse patterns within the data.

• Comprehensive performance analysis: the study provides

a detailed analysis of the proposed model’s performance,

including accuracy, precision, recall, and F1-score across

various corn disease classes. The results showcase the model’s

efficiency in accurate classification and its ability to generalize

well to unseen data.

• Comparison with state-of-the-art models: the proposed

model’s performance is benchmarked against state-of-the-

art models (SOTA) and existing studies in the literature.

The comparative analysis demonstrates the superiority of

the proposed MobileNetV2-based model, emphasizing its

competitiveness and efficacy in the field of agricultural

disease classification.

2 Materials and methods

2.1 Dataset description

The dataset used in this study is the publicly available Corn

Seeds Dataset [42] provided by a laboratory in Hyderabad, India.

This dataset encompasses a collection of 17,801 images of corn

seeds, which are classified into four distinct categories: pure,

broken, discolored, and silkcut. Among the entire dataset, ∼40.8%

of the seeds are classified as healthy, while the remaining 59.2%

are categorized as diseased seeds. Further breakdown of the

diseased seeds reveals that 32% of them are broken, 17.4% are

discolored, and 9.8% are silkcut. The Corn Seeds Dataset [42]

serves as a valuable resource for researchers and practitioners

in the field of corn disease identification. It provides a diverse

set of seed images, encompassing both healthy and diseased

samples, enabling the development and evaluation of deep learning

models specifically tailored for corn disease classification. The

inclusion of various disease types, such as broken, discolored,

and silkcut seeds, ensures the dataset’s representation of real-

world scenarios and enhances its utility in training accurate

and robust classification models. Furthermore, the distribution

of healthy and diseased seeds within the dataset reflects the

prevalence of these conditions. Figure 1 presents the sample of

corn dataset. Upon scrutinizing the final dataset, the original

training set is composed of 6,972 images representing the pure

class, 5,489 images for the broken class, 2,748 images allocated

to the discolored class, and 1,569 images assigned to the Silkcut

class. Acknowledging the inherent imbalance in the dataset,

a data augmentation approach is introduced, detailed in the

subsequent section.

2.2 Model selection

In the realm of image processing, CNN has garnered

increased attention due to its substantial economic potential

and consistently high accuracy. Recognized CNN architectures,

such as MobileNetv2 [43], EfficientNetV2S [44], VGG19 [45],

and ResNet50 [46], enjoy widespread popularity in image

processing and classification. The convolution operation(s) play

a pivotal role in any computer vision task, albeit contributing

to heightened processing times and costs in larger, deeper

networks like EfficeintNetV2S, VGG19, ResNet etc. In contrast,

MobileNetV2 distinguishes itself through an inverse residual

structure and linear bottleneck configuration, resulting in

reduced convolution calculations. Its preference over other

architectures is attributed to its simplicity and memory-

efficient characteristics. Table 1 outlines the precision, recall,

and F1-score of state-of-the-art (SOTA) models such as

AlexNet, VGG16, InceptionV3, ResNet, and MobileNetV2.

It is crucial to emphasize that all models underwent training

on the Corn dataset without the utilization of any pre-

processing techniques. The classification layer was the sole

modification, adjusted based on the number of classes within

the dataset.
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FIGURE 1

Samples of dataset (A) broken, (B) discolored, (C) silkcut, and (D) pure.

TABLE 1 Di�erent performance matrices of SOTA models trained on corn

dataset.

Models Precision Recall F1-score

EfficeintNetV2S 0.66 0.64 0.65

VGG19 0.64 0.65 0.65

ResNet50 0.67 0.66 0.67

MobileNetV2 0.74 0.76 0.74

In examining the performance metrics of SOTA models

on the Corn Dataset, it is evident that MobileNetV2 emerges

as the standout performer, achieving the highest accuracy

among the models. With a precision of 0.74, recall of

0.76, and an F1-score of 0.74, MobileNetV2 showcases its

exceptional ability to accurately discern and classify features

within the corn dataset. The outstanding performance of

MobileNetV2 can be attributed to its efficient architecture,

featuring an inverse residual structure and a linear bottleneck

configuration. These design elements not only contribute to

reduced computational requirements but also make MobileNetV2

particularly well-suited for resource-constrained environments,

such as mobile devices. It is noteworthy that MobileNetV2’s

superior accuracy makes it an optimal choice as the base model

for further exploration and application in corn-related image

recognition tasks. In light of its high-performance metrics

and efficient design, MobileNetV2 has been selected as the

foundational model for this study, reflecting its capability to

handle the complexities of the Corn Dataset with precision

and effectiveness.

2.3 Proposed model

Our primary goal is the discriminative classification of various

corn diseases. To achieve this objective, we have strategically

selected the optimal model, MobileNetV2, based on initial

screening. To further enhance the model’s efficiency, we have

incorporated additional layers preceding the classification layers.

These layers include (i) Average Pooling layer, (ii) Flatten layer, (iii)

Dense layer, (iv) Dropout layer, and (v) softmax. The addition of

these layers yields several benefits. The Average Pooling layer serves

to down-sample the spatial dimensions, reducing computational

complexity while retaining essential features and it is set to

(7 × 7). The Flatten layer transforms the output from the

preceding layers into a one-dimensional array, facilitating its

input into the subsequent Dense layer. The introduction of a

Dense layer with the activation function set as Relu enhances

the model’s ability to capture complex patterns within the

data. Moreover, the incorporation of a Dropout layer with a

probability value of 0.5 helps prevent overfitting by randomly

deactivating a proportion of neurons during training, promoting

better generalization to unseen data. The subsequent addition

of four nodes within the classification layer further refines

the model’s ability to distinguish between different classes of

corn diseases.

Implementing these modifications has resulted in an enhanced

version of the MobileNetV2 architecture, featuring four distinct

nodes in its final (classification) layer. This configuration proves to

be an optimal and well-suited model for addressing the specified

problem in this study, offering improved efficiency, robustness, and

a heightened capacity for accurate classification of diverse corn

diseases. The proposed model is presented in Figure 2.
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FIGURE 2

Proposed model.

2.4 Model tuning

Within this study, various preprocessing and model tuning

techniques have been incorporated to mitigate the risk of model

overfitting. The following techniques are briefly explained:

• Data augmentation: to address the challenge of limited data

[47, 48], the data augmentation technique has been employed.

This method generates random artificial images from the

source data through processes such as shifts, shears, random

rotations, and flips. In this study, a built-in function in the

Keras library [35] has been utilized to create 10 images from

each original image by applying random zooming of 20%,

adjusting height by 10%, shifting width by 10%, and rotating

by 30% [48, 49]. Figure 3 shows the resulted augmented

images after implementing the transformations on the dataset.

After data augmentation, the total number of images in test set

for corn seed is 1,237 for Broken, 1,414 for Discolored, 5,350

for Pure, and 813 for silk cut. Following the augmentation

process, the augmented dataset now comprises a total of 6,972

images belonging to the pure class, 5,489 images representing

the broken class, 5,494 images for the discolored class, and

4,707 images denoting the silk cut class. The distribution of

the entire dataset follows an 8:1:1 ratio for training, validation,

and testing, respectively.

• Adaptive learning rate: this technique aims to expedite

training and alleviate the burden of selecting a learning rate

and schedule. In this work, the initial learning rate is set

to INIT_LR = 0.001, and a decay of the form decay =

INIT_LT/EPOCHS is implemented.

• Model checkpointing: during model training, a checkpoint

is established to monitor any positive changes in accuracy.

The model’s weights are saved whenever the accuracy reaches

an optimum level. In this research, a model checkpoint of

the form checkpoint = ModelCheckpoint (fname, monitor

= “val_loss,” mode = “min,” save_best_only = True, verbose

= 1) is employed. This callback monitors the validation loss,

overwriting the trained model only when there is a decrease in

loss compared to the previous best model.

• Dropout: the dropout technique is employed to combat

overfitting. During training, neurons are randomly selected

and discarded, temporarily ignoring their contribution to the

activation of downstream neurons. Weight changes are not

applied to these neurons during the backward pass.

• Transfer learning: additionally, transfer learning is utilized as

part of the model tuning process. This involves leveraging pre-

trained models on large datasets before fine-tuning them for

the specific task at hand [48, 50]. Transfer learning allows

the model to benefit from the knowledge gained during

the training on a different but related task, enhancing its

performance in the current context. In this research work,

a hybrid approach has been adopted for transfer learning.

Initially, during the early stages of training, only the newly

added layers are trained using the fruit dataset. Upon reaching
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FIGURE 3

Augmented images.

the 20th iteration, the previously frozen existing layers are

unfrozen. Subsequently, minor weight adjustments are applied

to the trained layers of the model, aligning them with the

characteristics of the specified dataset.

2.5 Experimental environment settings and
performance evaluation metrics

The proposed model was implemented using Python (v. 3.8),

OpenCV (v. 4.7), Keras Library (v. 2.8) were used on Windows

10 Pro OS, with system configuration using an Intel i5 processor

running at 2.9 GHz, an Nvidia RTX 2060 Graphical Processing Unit

and 16 GB RAM.

Various metrics were utilized to assess the effectiveness of

different categorizing corn seed diseases, including commonly used

indicators such as accuracy, precision, recall, and the F1-score.

Accuracy represents the proportion of correctly identified samples

from all classes, Recall measures the ratio of correctly classified

positive instances among all actual positives, and Precision

quantifies the proportion of correctly identified positive instances

out of all expected positives. These metrics were computed using

Equations (1) through (4).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F1− Score = 2×
Recall× Precision

Recall+ Precision
(4)

3 Results and discussion

The results of the proposed model, an extended iteration of

MobileNetV2, underscore its remarkable performance, achieving

high accuracy rates through a strategic combination of architectural

enhancements and meticulous model tuning techniques. Trained

on augmented data and leveraging transfer learning, the proposed

model’s accuracy and loss dynamics are vividly depicted in

Figure 4.

In Figure 4A, we observe the compelling trajectory of the

proposed model’s accuracy during both training and validation

phases. Notably, during the initial training iterations, the model

commenced its learning journey at a modest 30% accuracy

rate. Demonstrating a steady ascent, the accuracy improved

progressively with each epoch, reaching an impressive 87% by

the 10th iteration. This upward trend persisted beyond the 10th
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FIGURE 4

Accuracy and loss of proposed model. (A) Training and (B) loss.

FIGURE 5

Confusion matrix of proposed model during testing.

iteration, with the model continuing to refine its understanding

of the data, culminating in a robust accuracy of ∼96% by the

35th iteration. Remarkably, the accuracy remained stable from

the 35th iteration onward, showcasing the model’s adeptness

in sustaining its high performance throughout the training

process. The validation accuracy closely mirrored the training

accuracy, commencing at 43% and steadily climbing to a parallel

96.27% by the 37th iteration. This parity between training and

validation accuracy is a testament to the model’s generalization

capability and its effectiveness in accurately classifying unseen

data. Crucially, the absence of oscillation in the training and

validation curves signifies a lack of overfitting. This resilience

is attributed to the thoughtful incorporation of various model

techniques, including data augmentation, transfer learning, and

adaptive learning rate, ensuring the model’s adaptability to diverse

data patterns.

Figure 4B complements the accuracy visualization by

presenting the loss dynamics of the proposed model. In the initial

stages, both training and validation losses were relatively high.

However, as the training progressed, a notable reduction in loss

was observed, reaching a minimum at the 35th iteration. This

substantial decrease in loss underscores the model’s capacity

to converge effectively, refining its predictive capabilities and

minimizing errors. Importantly, the sustained low loss from the

35th iteration onward signifies the model’s stability and robustness

in capturing the underlying patterns within the data.
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The exceptional accuracy rates and minimized loss achieved

by the proposed model can be attributed to the incorporation

of additional layers (Average Pooling, Flatten, Dense, Dropout,

and softmax) that enhance feature extraction and classification.

Furthermore, the implementation of various model tuning

techniques plays a crucial role in fortifying the model’s

performance. The use of adaptive learning rate, with an initial

rate set to INIT_LR = 0.001 and a decay calculated as decay =

INIT_LT/EPOCHS, expedites training while dynamically adjusting

the learning rate. This adaptability ensures efficient convergence

and alleviates the challenge of manually selecting an optimal

learning rate and schedule.

The employment of model checkpointing further enhances

the model’s robustness. This technique establishes checkpoints

during training, monitoring positive changes in accuracy. By saving

the model’s weights when accuracy reaches an optimum level,

the model checkpointing mechanism ensures that the trained

model is preserved at its best-performing state, thereby preventing

overfitting and enhancing generalization to unseen data. The

dropout technique serves as a potent tool in addressing overfitting

concerns. By randomly selecting and discarding neurons during

training, the model avoids relying too heavily on specific neurons,

promoting better generalization. This, in turn, ensures that the

model remains resilient when faced with diverse datasets.

Additionally, the incorporation of transfer learning, especially

the adopted hybrid approach, significantly contributes to the

model’s success. The utilization of pre-trained models on extensive

datasets, followed by fine-tuning on the specific fruit dataset,

empowers the model with a wealth of knowledge obtained

during training on related tasks. The hybrid transfer learning

approach, involving training newly added layers initially and

subsequently fine-tuning existing layers, facilitates the alignment

of the model with the characteristics of the specified dataset. This

strategic approach ensures that the model leverages its pre-existing

knowledge while adapting to the intricacies of the fruit dataset,

ultimately enhancing its overall performance and accuracy.

Figure 5 provides a detailed view of the confusion matrix

generated during the validation phase of the proposed model,

offering insights into its performance across the four distinct classes

of the corn disease dataset: Broken, Discolored, Silk cut, and

Pure. The diagonal elements of the confusion matrix represent the

true positive rates for each class, signifying the instances correctly

classified by the model. Notably, the proposed model excels in

accurately identifying instances of Broken, Discolored, Silk cut, and

Pure, with high percentages of 96.3%, 95.9%, 96.7%, and 96.2%,

respectively. These high true positive rates underscore the model’s

proficiency in recognizing and classifying instances of each specific

corn disease category.

However, a closer examination reveals some instances of

misclassification within the off-diagonal elements. For example,

there is a small percentage (1.2%) of instances belonging to

the Broken class that are misclassified as Discolored. Similarly,

2.9% of instances from the Silk cut class are misclassified as

Broken. These misclassifications could be attributed to the inherent

resemblance between certain symptoms of Broken and Silk cut

diseases, creating challenges for the model in distinguishing

between them accurately. Another noteworthy misclassification

occurs between the Discolored and Pure classes, with 2.6% of

TABLE 2 Evaluation matrices of proposed model.

Classes Broken Discolored Silk
cut

Pure

Precision 0.968 0.9504 0.949 0.975

Recall 0.963 0.959 0.957 0.962

F1-score 0.965 0.955 0.953 0.968

Accuracy 0.963 0.959 0.967 0.962

instances from Discolored being incorrectly classified as Pure, and

2.2% of instances from Pure being misclassified as Discolored. This

misclassification is plausible due to the visual similarities between

the symptoms of Discolored and Pure diseases, potentially leading

to confusion for the model. The misclassification between Broken

and Silk cut, as well as Discolored and Pure, underscores the

complexity of distinguishing between these classes, given the visual

resemblances in certain instances. The model’s reliance on visual

features may lead to misinterpretations when faced with subtle

differences or overlapping symptoms between these classes.

While the proposed model demonstrates high accuracy and

true positive rates across the four classes, the confusion matrix

sheds light on specific challenges in differentiating between

classes with visual similarities. The misclassifications, particularly

between Broken and Silk cut, and Discolored and Pure, highlight

the intricacies of the task and suggest avenues for further

refinement, such as incorporating additional features or leveraging

more advanced techniques to enhance the model’s discriminatory

capabilities in visually challenging scenarios.

Table 2 presents a comprehensive overview of the evaluation

metrics for the proposed model across the different classes

of the corn disease dataset: Broken, Discolored, Silk cut, and

Pure. These metrics, including Precision, Recall, F1-score, and

Accuracy, provide a nuanced understanding of the model’s

performance in terms of both correctness and completeness in

classification. Precision, as outlined in the table, measures the

accuracy of positive predictions, indicating the proportion of

instances correctly classified as belonging to a specific class. The

proposed model exhibits high precision values across all classes,

ranging from 0.949 for Silk cut to 0.975 for Pure. These high

precision values underscore themodel’s effectiveness inminimizing

false positives, demonstrating its capability to accurately identify

instances belonging to each specific corn disease class. The Recall

values, also known as Sensitivity or True Positive Rate, represent

the proportion of actual positive instances correctly identified by

the model. The proposed model achieves commendable Recall

values, ranging from 0.957 for Silk cut to 0.963 for Broken. These

values highlight the model’s ability to capture a significant portion

of the actual positive instances for each class, emphasizing its

sensitivity to detecting instances of corn diseases.

F1-score, a harmonic mean of Precision and Recall, provides

a balanced metric that considers both false positives and false

negatives. The proposed model achieves high F1-scores across

all classes, ranging from 0.953 for Silk cut to 0.968 for Pure.

These scores indicate a strong balance between precision and

recall, showcasing the model’s overall effectiveness in achieving

both accuracy and completeness in classification. The Accuracy
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FIGURE 6

Feature maps visualization.

values, representing the overall correctness of the model across all

classes, are consistently high, ranging from 0.959 for Discolored

to 0.967 for Silk cut. This demonstrates the model’s proficiency

in making correct predictions for the entire dataset. The

evaluation metrics in Table 2 collectively highlight the proposed

model’s robust performance in classifying instances across various

corn disease classes. The high precision, recall, and F1-score

values underscore its effectiveness in achieving accurate and

comprehensive classification. The consistent accuracy values across

all classes further reinforce the model’s overall reliability and

suitability for the specified task.

3.1 Feature mapping analysis

In a quest to unravel the intricate workings of the proposed

model, a pivotal aspect of our analysis involves delving into the

feature mapping visualization, particularly focused on the Silk Cut

corn class.

Figure 6 intricately illustrates the CNN’s journey through

various layers, deciphering the essence of the original image.

Commencing with the unaltered Silk Cut snapshot, the CNN’s

earlier layers reveal an intriguing lack of consistency, detecting

diverse elements of the image. Progressing through middle layers,

a heightened focus emerges as the network zeroes in on edges

and boundaries, delving into the structural intricacies of the corn.

Finally, in the layers just before the last, the CNN, despite a slight

blurring effect from activation functions, meticulously dissects

small and fine details, emphasizing its adeptness at capturing

the nuanced features that define the Silk Cut image. This visual

narrative provides a profound insight into the CNN’s feature

learning process, showcasing its evolving understanding of the corn

image’s complexities.

3.2 Comparative analysis of proposed
model with state-of-the-art models

The comparative analysis of the proposed model with state-of-

the-art (SOTA) models in corn seed disease classification, offers

valuable insights into the landscape of deep learning applications

in agriculture. Table 3 provides a comprehensive overview of

the overall performance of the proposed model in comparison

to SOTA models during the validation phase. It is crucial to

note that SOTA models in this context have undergone training

and validation using advanced model tuning techniques such

as data augmentation and transfer learning rate. In contrast,

the proposed model, as elucidated in the previous section,
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TABLE 3 Overall performance of SOTA model compared with proposed

model.

Models Precision Recall F1-
score

Accuracy

VGG19 0.8851 0.8848 0.8787 0.8848

EfficientNetV2S 0.8165 0.8135 0.8014 0.8187

RESNET50 0.8612 0.8643 0.8573 0.8599

MobileNetV2 0.9012 0.9004 0.8901 0.8999

Proposed 0.9606 0.9603 0.9602 0.9627

TABLE 4 Comparison of proposed model with existing studies.

References Base
model

Dataset Class Accuracy

Javanmardi et
al. [51]

CNN Corn seeds 9 98.10

Zhang et al.
[52]

DCNN Corn seeds 4 93.30

Xu et al. [53] CNN-RB Maize seed
disease

3 94.44

Sultan et al.
[54]

ShuffleNetv2 Corn
disease

4 96.28

Koeshardianto
et al. [55]

ResNet152v2 Corn
disease

4 65.00

Proposed MobileNetV2 Corn
disease

4 96.27

underwent modification through the addition of five distinct layers.

Additionally, model tuning techniques were applied, including

Adaptive Learning Rate, Model Checkpointing, Dropout, and

Transfer Learning.

The performance metrics, including Precision, Recall,

F1-score, and Accuracy, are reported for each model in

Table 3. Notably, the proposed model outshines the SOTA

models in terms of these metrics. VGG19, EfficientNetV2S,

RESNET50, and MobileNetV2 are benchmarked against

the proposed model. MobileNetV2, as the proposed model,

achieves the highest values across all performance metrics,

indicating its superiority in accurately classifying instances in the

validation set.

Moving beyond the direct comparison with SOTA models,

Table 4 extends the evaluation to include existing models

from the literature. Each entry in Table 4 represents a

distinct study, detailing the base model used, the dataset

employed, the number of classes, and the accuracy achieved.

Notably, the proposed model, employing MobileNetV2

as the base model, achieves an accuracy of 96.27% on a

Corn Disease dataset with four classes. This positions the

proposed model as a robust and high-performing solution,

demonstrating its competitiveness against existing models in

the literature.

Both Tables 3, 4 underscore the significance of the proposed

model in the realm of image classification. Its superior performance

against SOTA models and its competitive edge against existing

studies highlight the effectiveness of the model modifications and

tuning techniques employed. The proposed model, leveraging

MobileNetV2, emerges as a promising solution for accurate and

efficient classification tasks in the domain of agriculture and corn

seed disease detection.

4 Conclusion

The proposed model, aiming to address the discriminative

classification of various corn seed diseases, adopts MobileNetV2

as the optimal base model. Enhancements include the addition

of five layers—Average Pooling, Flatten, Dense, Dropout, and

softmax. The Average Pooling layer reduces computational

complexity, while the Flatten layer facilitates one-dimensional

array transformation for input into the Dense layer, enhancing

the model’s feature extraction capabilities. The Dense layer with

Relu activation captures complex patterns, and the Dropout layer

prevents overfitting. Four nodes in the classification layer refine the

model’s ability to distinguish between corn disease classes. Model

tuning techniques, such as data augmentation, adaptive learning

rate, model checkpointing, dropout, and transfer learning, further

contribute to the model’s efficiency. Data augmentation generates

artificial images, mitigating data limitations. Adaptive learning rate

expedites training, and model checkpointing prevents overfitting.

Dropout combats overfitting by deactivating neurons, and transfer

learning leverages pre-trained models for task-specific fine-tuning.

Results showcase the proposed model’s proficiency, with accuracy

reaching 96.27%. The model’s trajectory demonstrates steady

accuracy improvement and minimal loss. Evaluation metrics,

including precision, recall, F1-score, and accuracy, underscore the

model’s effectiveness across Broken, Discolored, Silk cut, and Pure

classes. Feature mapping analysis visualizes the model’s learning

process, revealing its evolution in capturing nuanced features.

Comparative analysis with SOTA models and existing studies

highlights the proposed model’s superiority, achieving higher

precision, recall, F1-score, and accuracy. The model, employing

MobileNetV2, outperforms counterparts, positioning it as a robust

solution for corn seed disease classification. Misclassifications

between similar classes indicate potential areas for improvement,

suggesting avenues for further refinement. The proposed model

demonstrates excellence in corn disease classification, showcasing

the impact of architectural enhancements and effective model

tuning techniques. Limitations include misclassifications in

visually similar classes, indicating scope for future enhancements.

Future work may involve incorporating additional features,

leveraging advanced techniques, and exploring diverse datasets for

comprehensive model refinement.
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