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In the process of grading and dynamically optimizing the design and construction
parameters of the surrounding rock mass of a rock tunnel face, efficiently and
accurately acquiring the geometrical parameters of the rock discontinuities is an
important basic task. To address the problems of time consuming, low accuracy,
and high danger associated with traditional methods of obtaining the structural
information of rock mass, this paper proposes a method for three-dimensional
reconstruction and intelligent information extraction of tunnel face based on
binocular stereo vision (BSV). First, the parallel binocular device with a single
camera was improved, calibrated using the checkerboard calibration method. By
integrating with the semi-global matching algorithm, the BSV based method for
the three-dimensional reconstruction of the rock mass of the tunnel face was
optimized. Furthermore, based on the results from on-site engineering
applications, this study leveraged two parameters, point cloud density and
algorithm runtime, to determine the optimal values for the disparity range and
window size parameters within the semi-global stereo matching algorithm. This
enhancement improved the performance of the 3D reconstruction method based
on binocular stereo vision. Finally, efficient and refined intelligent methods for
extracting structural parameters of the rock mass were proposed based on
k-nearest neighbor search and kernel density estimation. The research results
can provide reliable technical support for the intelligent and efficient acquisition of
rock mass structural information in rock tunnel engineering faces.
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1 Introduction

In rock masses, numerous randomly developed joints, fissures, and discontinuities of
varying scales exist. The geometric distribution and orientation analysis of these
discontinuities are fundamental and necessary processes for the classification, stability
assessment, and design and construction of rock tunnels in geotechnical engineering
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(Li et al., 2017; Wang et al., 2021). However, due to factors such as
limitations in engineering exploration techniques, tunnel depth,
topography, construction duration, and costs, it is challenging to
achieve detailed coverage of the entire tunnel alignment during the
early stages of engineering construction (Yu et al., 2023). Therefore,
as tunnel excavation progresses, there is a need to monitor in real-
time the changes in information regarding newly exposed rock joints
on the tunnel face. This enables the swift completion of geological
sketches, facilitating timely dynamic adjustments to optimize tunnel
design and construction parameters.

However, in the context of collecting information about rock
joints on tunnel faces, traditional manual geological sketching
typically relies on contact measurements using tools such as
compasses and calipers. This method is characterized by time-
consuming processes, high subjectivity, and elevated safety risks
(Ge et al., 2017;Wang et al., 2021). Hence, there is an urgent need for
a systematic approach for the identification and parameter
extraction of rock joints on tunnel faces that is both high-
precision and efficient.

In recent years, non-contact measurement methods have found
widespread application in the acquisition of discontinuities information
in tunnels and underground engineering rock masses (Xu et al., 2021a;
Battulwar et al., 2021; Xu et al., 2021b; Xu et al., 2022; Xu et al., 2023).
Non-contact measurements primarily involve two methods: la-ser
scanning and close-range photogrammetry. Three-dimensional laser
scanning technology can rapidly acquire high-precision point cloud
data of rock joints (Xu et al., 2017; Zhou et al., 2021). However, the cost
of three-dimensional laser scanning equipment suitable for on-site
engineering applications is substantial, limiting the method’s
scalability and widespread use in pro-jects (Wei et al., 2015). Close-
range photogrammetry, with its advantages of low cost, portability, and
ease of operation, is capable of obtainingmillimeter-level high-precision
point clouds as well (Sturzenegger and Stead, 2009). Currently, the use
of Structure from Motion (SfM) algorithms can effectively reconstruct
entire rock specimens using photographic data (Zhang et al., 2022).
However, for large-scale tunnel face rock masses, the use of SfM
technology requires capturing dozens or even hundreds of images
from different angles to reconstruct the entire rock surface (García-
Luna et al., 2019; Chen et al., 2021), which is operationally complex and
not conducive to rapid construction in engineering projects. García-
Luna et al. (2019) conducted photogrammetric reconstructions of the
surfaces of two tunnels, capturing 169 and 206 images, respectively. The
reconstruction times for these datasets were 22 and 25 h, respectively.
Even when using only 13 images for reconstruction, the average
processing time remained approximately 14 min.

In comparison to SfM technology, stereo vision technology with
binocular vision can achieve three-dimensional reconstruction using
only two tunnel face images. This not only offers higher efficiency but
also meets the accuracy requirements for extracting discontinuities
information (Zhang et al., 2016). Li et al. (2017) applied stereo vision
to construct a quantitative characterization system for tunnel face rock
masses, utilizing the Australian photogrammetric system
(CAE Sirovision). While this system is mature, it comes at a high
cost. Zhu et al. (2016) implemented image reconstruction technology
based on binocular photogrammetry equipment and software in a
highway tunnel in Guizhou, China, for measuring rock mass
discontinuities. Chen et al. (2017), based on monocular stereo
three-dimensional reconstruction technology, proposed a

standardized shooting process and automated method for
extracting spacing and roughness parameters between rock masses
on tunnel faces. In this process, the three-dimensional point cloud
reconstruction also utilized the computer vision toolkit provided by a
German company,MVTec. However, previous studies in monocular
stereo reconstruction often employed foreign commercial software.
When applied to the complex and variable geological environment of
tunnels and underground engineering, their performance needs
further improvement. Additionally, with the development of stereo
vision technology, traditional three-dimensional reconstruction
algorithms require optimization in terms of accuracy and
efficiency. Currently, there is limited research on the application of
stereo vision algorithms that balance speed and accuracy in tunnel
engineering field settings.

This paper is grounded in the context of intelligent design and
construction in tunnel engineering, with a specific focus on the Yulin
Diversion Tunnel Project (Tunnel #7) in China. It optimizes the
process of three-dimensional reconstruction of tunnel faces based
on binocular stereovision technology. It explores the impact of
parameters such as disparity range and window size on the speed
and quality of three-dimensional reconstruction. Furthermore, it
proposes an intelligent extraction method for the discontinuity
orientation information of tunnel face rock masses based on k
nearest neighbor search and kernel density estimation. This
approach furnishes a dependable application method for the
digital geological sketching of rock mass tunnel faces.

2 Three-dimensional reconstruction of
tunnel face rock mass

2.1 3D reconstruction process based on
binocular stereo vision

Figure 1 illustrates a comprehensive binocular stereo vision
photogrammetric process, encompassing the determination of the
shooting device parameters, camera calibration, image acquisition,
image preprocessing, stereo matching, three-dimensional
reconstruction, and post-processing of point clouds (Hartley and
Zisserman, 2003). The specific workflow is outlined as follows.

(1) Estimate the shooting range based on the contour map inside
the tunnel to determine suitable device parameters (focal length,
shooting distance, and baseline length) (Kim et al., 2016).

(2) Conduct camera calibration indoors using the selected device
parameters, significantly reducing on-site shooting time. The
calibration yields intrinsic parameters (focal length, principal
point coordinates, axis skew parameters) and extrinsic
parameters (rotation matrix and translation matrix).

(3) Capture two images of the tunnel face from the left and right
positions inside the tunnel. Perform epipolar rectification to
obtain the reprojection matrix (Bradski and Kaehler, 2008).
Subsequently, apply grayscale transformation to the images and
employ the semi-global stereo matching algorithm
(Semi − GlobalMatching) (Hirschmuller, 2005). This
algorithm generates a disparity map, which, combined with
the reprojection matrix, facilitates three-dimensional
reconstruction, resulting in a three-dimensional point cloud.
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(4) Conduct post-processing on the three-dimensional point cloud,
involving tasks such as region of interest segmentation,
smoothing, denoising, and coordinate transformation (Gigli
and Casagli, 2011). This post-processing mitigates potential
noise or missing data in the three-dimensional point cloud,
ensuring the acquisition of a high-quality three-dimensional
point cloud for accurate estimation of structural parameters.

In the aforementioned process, the stereo matching step plays a
decisive role in determining the quality of the reconstructed three-
dimensional point cloud. Section 2.2 below will elaborate on the
fundamental principles of the semi-global stereo matching
algorithm and analyze the impact of algorithm parameters on the
quality and speed of point cloud reconstruction.

2.2 Principle of semi-global stereo matching
algorithm

An exemplary stereo matching algorithm must concurrently
consider precision and efficiency while maintaining high robustness.
The Semi-Global Matching Algorithm (SGM) fulfills these
requirements (Ernst and Hirschmüller, 2008; Spangenberg et al.,
2013). Binocular stereovision technology based on Semi-Global
Matching Algorithm (SGM) exhibits high performance in
applications requiring real-time geological information retrieval
(Kim et al., 2016). The algorithm primarily encompasses four
steps: cost computation, cost aggregation, disparity calculation,
and disparity optimization (Xie et al., 2014). The fundamental
concept involves selecting a disparity range and calculating the
cost value between each pixel in one image and its corresponding
pixel in another image for each disparity value within the chosen
range. After cost aggregation, the minimum cost value within this
disparity range corresponds to the optimal disparity for the best

match. Following epipolar rectification, as depicted in Figure 2, a
target point (Q) in the tunnel face, with its projection points QL and
QR on the left and right pixel planes, respectively, is situated on a
epipolar line (l) parallel to the baseline. In the matching process, as
shown in Figure 3, due to the inability to directly determine the
coordinates of QR, the stereo matching algorithm is employed to
ascertain the position of corresponding point (QR) and compute the
disparity value (d) in pixels, serving as a prerequisite for subsequent
three-dimensional reconstruction. Hence, achieving a more accurate
and rapid determination of the position of corresponding points
holds significant importance for practical applications in three-
dimensional point cloud reconstruction. Within the cost
computation process, the disparity range and window size
emerge as two critical parameters determining the position of
corresponding points (Lai, 2010; Mattoccia, 2011).

Various shooting scenarios encompass distinct disparity ranges;
hence, it is imperative to select an effective disparity range for cost
computation. A smaller disparity range can mitigate computational
complexity but might overlook genuine differences. Conversely, a
larger disparity range allows for more disparacies but could increase
computation time. Therefore, judicious estimation of the disparity
range is paramount in stereo matching. This paper will delve into
methods for determining the disparity range in tunnel engineering
scenes and examine the impact of this parameter on the quality of
the disparity map and point cloud in Section 4.

After determining the disparity range, the algorithm relies on the
Census Transform (Zabih and Woodfill, 1994) for matching cost
computation (Figure 4). The transform compares the grayscale value
of the central pixel (p) with the values of pixels in the neighborhood
window (window size n × n, where n is an odd number, in pixels).
The obtained bit string values serve as the census transform value
(Cs) for the central pixel:

ξ I u, v( ), I u + i, v + j( )( ) � 1 if I u, v( )> I u + i, v + j( )
0 otherwise

{ (1)

FIGURE 1
Parallel binocular stereo vision reconstruction process of tunnel face.
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Cs u, v( ) � ⊗
i,j[ ]∈n′ ξ I u, v( ), I u + i, v + j( )( ) (2)

Where, I(u, v) represents the gray value of the center pixel p,
I(u + i, v + j) represents the gray values of the pixels in the
neighborhood window, n′ is the largest integer not exceeding half
of n, and ⊗ denotes the bitwise concatenation operation. Once the

bitstrings of two images are obtained, the Hamming distance
between these two transform values is computed. The Hamming
distance represents the number of differing bits in the corresponding
positions of the two bitstrings, as shown in Eq. 3. The resulting
Hamming distance serves as the cost value C(u, v, d):

C u, v, d( ) � Hamming Csl u, v( ), Csr u − d, v( )( ) (3)

FIGURE 2
Polar geometry for parallel views.

FIGURE 3
Stereo matching determines the corresponding point, dmax is the maximum disparity value (Xie et al., 2014).

FIGURE 4
Calculation of the matching cost.
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It is not difficult to understand that the computed cost value
represents the degree of matching between two pixels. According to
the aforementioned principles, it is evident that the size of the
neighborhood window determines the size of the matched image
blocks. A smaller window size can capture more details of the tunnel
face and lead to faster computation. However, it might be more
susceptible to the influence of noise and texture blurring.
Conversely, a larger window size can provide greater noise
robustness and occlusion resistance but may result in a blurry or
excessively smoothed disparity map, potentially missing finer details
and edges. Therefore, it is necessary to select appropriate parameters
to strike a balance between spatial resolution and noise robustness.

In summary, the optimal disparity range and window size
depend on the specific characteristics of the shooting scene. In
practical tunnel engineering applications, shooting sites often
exhibit strong noise, high complexity, and intricate variations in
tunnel face textures. Hence, for achieving high-quality and efficient
three-dimensional reconstruction of tunnel faces, it is essential to
choose suitable parameters to balance accuracy, robustness, and
processing speed. Section 4.2.2 and Section 3.2.3 of this paper
respectively discuss and optimize the disparity range and window
size parameters.

3 Intelligent extraction method of
structural plane parameters

The orientation of discontinuities is one of the parameters
recommended by the International Society for Rock Mechanics
for description. Riquelme et al. (2014) presented a methodology
for the identification and analysis of flat surfaces outcropping in a
rocky slope using the 3D data obtained with LiDAR. Zhang et al.
(2018) proposed a method to automatically extract rock
discontinuities from point clouds for rock slopes along highways.
Li et al. (2019) proposed an automatic characterization method for
rock mass discontinuities using 3D point clouds applied to drill-and
-blast rock tunnels. Singh et al. (2022) proposed a new automated
algorithm that used the spatial distribution of points on
discontinuities to capture unique signatures in the form of
sinusoidal waves. The discontinuities are then effectively
characterized by clustering the amplitude and phase profiles of
the sinusoidal waves. Building upon prior research findings, this
method utilizes the acquired three-dimensional point cloud. It
employs a developed algorithm for intelligent extraction of
discontinuity orientation, implemented in Matlab. The accuracy
of this algorithm was validated through manual measurements of
surface orientation.

3.1 Point cloud normal vector computation

The computation of point cloud normals involves selecting
target points from the processed point cloud of the tunnel face
rock surface. To determine the normals at these target points,
information from neighboring points is utilized for local
searching (Terrell and Scott, 1992). Subsequently, a covariance
matrix of the neighboring points is constructed, and the normals
are computed by solving for the eigenvalues and eigenvectors of this

matrix. In this study, the point cloud normal computation is
implemented using the knnsearch function (Friedman et al.,
1977), with the number of selected neighboring points set to 10.

3.2 The determination of advantageous
structural orientation

The solved normals can be reoriented by mapping them to the
horizontal projection grid. Considering the coordinate system where
the positive Y-axis is oriented to the north (N), the positive X-axis is
oriented to the east (E), and the positive Z-axis is oriented upwards;
Eq. 4 and Eq. 5 are employed with the unit normal vector n � a, b, c{ }
at the midpoint to calculate the dip direction (Dd) and dip angle
(Dip) for each point in the point cloud, resulting
in Dire � Ddi,Dipi{ }.

Dd � a tan
a

b
( ) a> 0,b> 0

Dd � a tan
a

b
( ) + 1800 a≥ 0,b< 0

Dd � a tan
a

b
( ) + 1800 a< 0,b< 0

Dd � a tan
a

b
( ) + 3600 a> 0,b≥ 0 if b� 0,b� 1.0e−10( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

Dip � a cos c( ), if Dip> 0,Dip � 1800 −Dip (5)
Mapping the orientation of each point to the red-flat projection

grid results in Dire � Ddi,Dipi{ } coordinates (Pi) in a two-
dimensional coordinate system, where Pi � Xi, Yi{ }, and
i � [1, 2, ..., i]. The calculation for Xi, Yi{ } is as follows:

Xi � Dipi* cos Ddi( )
Yi � Dipi* sin Ddi( ){ } (6)

The kernel density estimation algorithm (Riquelme et al., 2014) is a
method for estimating the probability density function of data, which
can be utilized to determine regions of data point clustering, thus
extracting and visualizing dominant discontinuity orientations. The
coordinates of the data point with the highest density are determined for
the obtained Pi using the kernel density estimation algorithm:
Pi2 � Xi,Yi{ }. According to Eq. 6, the corresponding dominant
structural orientation Direj � Ddi,Dipi{ } is inversely calculated.

3.3 Point cloud grouping based on allowable
error angles

Due to varying degrees of convexity in the rock mass
discontinuities, it is necessary to predefine a permissible error angle
(δ). This error angle serves two purposes: firstly, it is employed to
distinguish between different discontinuities. As detailed in Section 3.2,
the algorithm traverses the point cloud, calculating the dip angles of
each point relative to the dominant dip direction. When the angle
between the normal vectors of two dominant dip planes exceeds δ, it is
defined as non-coplanar, indicating they do not belong to the same
discontinuity. Secondly, δ is utilized to filter out orientations within the
stereographic projection network where dips are close to each other in
local maxima sets. For this algorithm, the permissible error angle is set
to 20°.
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3.4 Cluster algorithms are used to
determine subgroups for each group
of point clouds

This study employs the K-means clustering algorithm
(Hartigan and Wong, 1979), which operates on the principle
of partitioning the sample point cloud into k subsets, forming k
clusters. Each of the n samples is assigned to one of these
clusters, with the goal of minimizing the distance between
each sample and the centroid of its assigned cluster.
In practical application, the first step involves determining
the subgroup of each dominant discontinuity within
the measurement window. Subsequently, according to
Eq. 7, the dip and dip direction of the dominant
discontinuity are transformed into the normal vector of each
sub-discontinuity:

E � sin Dip( ) sin Dd( )
F � sin Dip( ) cos Dd( )
G � cos Dip( )

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭ (7)

E, F, and G are respectively the normal vector n � (E, F, G) of
the sub-discontinuity in the X, Y, and Z coordinate systems.
Then, the individually subgrouped point clouds are mapped
onto plane Ex + Fy + Gz +H� 0, and the dataset’s outline
is determined based on the mapping results, as shown in
Eq. 8. Utilizing the outer contour data obtained through
Eq. 8, cluster grouping is performed to visualize different
discontinuities.

x′ � x F2 + G2( ) − E Fy + Gz +H( )
y′ � y E2 + G2( ) − F Ex + Gz +H( )� 0
z′ � z E2 + F2( ) − G Ex + Fy +H( )

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭ (8)

4 Engineering application

4.1 Engineering background

The Yulin Diversion Tunnel No. 7 has a total length of 4188 m,
making it an exceptionally long diversion tunnel. The maximum
depth of its tunnel floor is 430 m, and it has a horseshoe-shaped
cross-sectional design. The tunnel is situated in a region with steep
terrain and significant topographical variations. The geological
structure in this area is highly developed, presenting complex
engineering geological conditions. Under the long-term regional
stress in the north-south direction, the dominant basement
structures have developed, primarily characterized by east-west
trending folds and faults. The exposed geological formations
within the survey area primarily consist of Neogene Quaternary
strata, Upper Tertiary strata, and Lower Paleozoic Qinling Group
Guozhuang Formation, as well as intrusive rocks. The
predominant lithology is characterized by dark schistose diorite
gneiss and hornblende schistose diorite gneiss. Moreover, the rock
and soil formations in the area are significantly influenced by
tectonic factors such as folding, faulting (layers), and jointing,
resulting in a relatively fractured rock mass with high groundwater
content.

4.2 The 3D reconstruction of rock mass
structure

4.2.1 On-site operation process
(1) The shooting range was estimated based on the tunnel site

conditions, with a determined shooting distance of
approximately 6 m, a camera focal length of 18mm, and a
baseline length of 67 cm. Under these conditions, the
achievable precision for discernible objects is 2 mm.
Calibration was performed indoors using an A2 sized
chessboard calibration board to obtain the camera’s intrinsic
and extrinsic parameters (Friedman et al., 1977) (Figure 5A).
The calibration board used in the experiment had checkers with
a size of 20 mm and was arranged in a grid of 17 rows and
26 columns. The average reprojection error for the left camera
calibration was 0.21 pixels, while the right camera calibration
exhibited an average reprojection error of 0.22 pixels.

(2) The selected on-site shooting range for the tunnel’s face was
approximately 16 m2. Six ground control points (GCPs) and a
target board were positioned on the rock surface, with each GCP
having a side length of 80 mm. The target board featured four
markers with equidistant spacing of 120 mm between them, and
their three-dimensional coordinates at the center point were
measured using a total station (Figure 5B). Additionally, two
800 W LED floodlights were set up to ensure adequate
illumination inside the tunnel, preventing shadows on the
rock surface that could lead to gaps in the point cloud.

(3) After placing the GCPs and target board, the discontinuity
orientation of five typical discontinuities was measured on-
site using a mechanical geological compass as a reference group
(Figure 5C).

(4) A modified single-camera parallel stereo photography device
was employed to obtain the stereoscopic information of the
tunnel face (Figure 5D). This setup consisted of a digital camera,
gimbal, tripod, support rod, slider, pantilt head, slider fixed
clamp, and laser rangefinder. Detailed camera parameters are
provided in Table 1. The slider was upgraded for this study,
featuring a scale and slider fixed clamps. During use, the
positions of the two slider fixed clamps could be adjusted
based on the scale, allowing for the selection of baseline
lengths to meet the requirements of different shooting ranges.

(5) The collected two photos were processed following the procedures
outlined in Section 2.1, focusing on the region of interest (Zhou
et al., 2021), which was approximately 12 m2 (Figure 6A). The
parameters for the SGM algorithm included the default disparity
range (DR) of [0 64] and the default window size parameter (WS)
of 15 (15 × 15). This resulted in the generation of a disparity map
(Figure 6B) and subsequently the reconstruction of the tunnel face’s
three-dimensional point cloud (Figure 6C).

From Figures 6B,C, it is evident that, under default parameters,
the disparity map is excessively chaotic, leading to a very sparse and
scattered point cloud. Consequently, applying the SGM algorithm
directly to the tunnel engineering site proved to be challenging.
Through the parameter optimization discussed in Section 4.3.1 and
Section 4.3.2, this study successfully constructed a high-quality
three-dimensional point cloud of the tunnel face.
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4.2.2 Selection of disparity range
The disparity range should be selected based on the minimum

and maximum horizontal displacements between corresponding
pixels in the rectified image pairs. Figure 7 illustrates the
horizontal displacement values for some pixels in the tunnel face

image pairs. From Figure 7, it can be observed that the disparity
range within the region of interest is approximately [112, 144]
(disparity range values are multiples of 16). When setting the
disparity range, it is common to set the minimum value to 0
(Zhang et al., 1995). Therefore, in this study, the disparity range

FIGURE 5
On-site collection of rock mass images on the face of the tunnel. Camera calibration (A). Setting up the shooting site (B). Measuring discontinuity
orientations with a geological compass (C). Single-camera parallel binocular shooting device (D).

TABLE 1 Camera parameters.

Camera Sensor size Image resolution Camera lens Focal length (mm) Aperture

Canon EOS 90D 22.3 × 14.8 mm 6960 × 4640 pixels EF-S 18–135 mm 18 f/3.5–5.6

FIGURE 6
3D reconstruction of tunnel face rockmass. Region of interest (ROI) delineation (A). The disparity map under default parameters (B). The point cloud
image under default parameters (C).
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was set to [0 112], [0 128], [0 144], [0 160], [0 176], [0 192], [0 208],
[0 224], [0 240], and [0 256], with a window size of 5 × 5 pixels. The
optimal disparity range was determined by comparing the point
cloud results under different range settings (see Figure 8).

The accuracy of discontinuity features extracted from a point
cloud model is often a focal point of research attention. Point
cloud density is one of the most intuitive factors affecting this
accuracy (Chen et al., 2021). Furthermore, to investigate the
rationality of parameter selection, this study compared the time
consumption of the 3D reconstruction process under different
parameter settings.

As observed in Figure 8, it is evident that when the maximum
disparity value ( dmax) is less than 112, the disparity range is too
small to identify a sufficient number of corresponding points.
Consequently, it is unable to generate a complete point cloud,
aligning with the principles of stereo matching outlined in
Section 2.2. However, with dmax set to a value exceeding the
horizontal offset of the majority of pixels in the region of
interest, a relatively complete point cloud can be generated, as
demonstrated in Figure 9. Notably, when dmax is set to 144, the

point cloud density is 39621 points/m2, and the recognition accuracy
reaches the highest level.

Additionally, with a further increase in dmax, there is a
diminishing trend in the point cloud density in the point
cloud. However, the reduction rate is less than 0.2%, and the
quality of the point cloud remains largely unchanged, with no
significant presence of noise or erroneous matches.
Simultaneously, the processing time increases with the
augmentation of dmax. Thus, to balance point cloud quality
and computational efficiency, this study sets the optimal
disparity range to [0 144], resulting in a processing time of
34.94 s. It’s noteworthy that the computational setup utilized
in this study consists of a 12th Gen Intel(R) Core (TM) i7-12700
2.10 GHz processor with 16.0 GB of RAM. The reported
processing time corresponds to the duration required to
generate a point cloud for a rock surface of 16 square meters,
the point cloud density is 134375 points/m2.

4.2.3 Selection of window size
In accordance with the optimal disparity range [0 144] derived

in Section 4.2.3, this study investigates the influence of window size
(5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15, 17 × 17, 19 × 19, 21 × 21,
and 23 × 23) on point cloud quality, point cloud density, and 3D
reconstruction time under this parameter setting.

Figure 10 visually illustrates the quality of tunnel face point
cloud reconstruction under different window sizes. It is evident
that when the window size is between 5 × 5 and 11 × 11 pixels, a
smaller window size results in a more fragmented point cloud
within the red dashed line. This fragmentation is attributed to the
presence of complex textures and shadows. When the window
size is 15 × 15 pixels, the point cloud density reaches the
maximum, which is 40357 points/m2, and the recognition
accuracy reaches the highest level. However, as the window
size increases from 19 × 19 to 23 × 23 pixels within the red
dashed line, the point cloud becomes more fragmented, possibly
due to over-smoothing. In terms of processing time, as observed
in Figure 11, there is an overall decreasing trend in computation
speed with the increase in window size, and the relationship with
window size appears to be nonlinear. This phenomenon may be
attributed to variations in memory consumption during different

FIGURE 7
Select disparity range.

FIGURE 8
Point cloud images of the tunnel face under different disparity ranges.
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computation time intervals, leading to the irregularity in
processing time. However, when the window size exceeds
21 × 21 pixels, there is a sudden decrease in processing time,
contrary to expectations. This could be a result of the increased
window size leading to higher smoothness, causing the loss of
details in certain areas of the point cloud and, consequently, a
reduction in the point cloud density in the point cloud (refer to
Figure 10).

Through experimental validation, it has been determined that
the combination of a disparity range of [0 144] and a window size of
15 × 15 pixels represents the optimal parameter setting for the 3D
reconstruction of tunnel face in this project. This holds significant
importance for the automated collection of tunnel face information

and can be directly applied to the intelligent data collection process
of tunnel face information in similar scenarios. However, it should
be noted that the selection of these parameters is influenced by other
factors such as device parameters, lighting conditions, and size
effects. Therefore, the optimal disparity range and window size
may not be unique and could vary depending on different
conditions. In conclusion, the parameter values optimized in this
study are specific to the collection of tunnel face information in this
project.

4.2.4 3D reconstruction verification
How to verify the accuracy of discontinuity extraction from 3D

point cloud based on binocular stereo vision reconstruction is an

FIGURE 9
Point cloud density and running time under different parallax ranges.

FIGURE 10
Point cloud images of the tunnel surface under different window sizes.
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extremely important issue. This study compares the tunnel face
point cloud reconstructed by the SGM algorithm with the three-
dimensional point cloud reconstructed by RealityCapture software
using the SFM algorithm, as shown in Figure 12, and Table 2
compares the difference between the two dimensions in terms of

accuracy and time. The SfM reconstruction method in this study was
inspired by the recommendations in the García-Luna et al. (2019)
literature regarding the number of tunnel images. Thirteen images of
the tunnel face were employed for the 3D reconstruction, and the
camera model matched the one listed in Table 1.

FIGURE 11
Point cloud density and running time under different window seizes.

FIGURE 12
Point cloud quality comparison. Point cloud based on SFM reconstruction (A). Point cloud based on SGM reconstruction (B).

TABLE 2 Point cloud accuracy and core step time-consuming comparison.

Method Point density (points/m2) Time spent on core steps

Collection of tunnel face information (min) 3D point cloud reconstruction

SGM 134375 15 3 min52 s

SFM 243994 15 9 min7 s
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Comparison from Figure 12 reveals that both algorithms exhibit
varying degrees of point cloud loss due to the limited number of
reconstructed images. Within the red solid line, Algorithm SFM
shows noticeable gaps in the point cloud, while within the green
solid line, it appears more complete. Conversely, Algorithm SGM
demonstrates the opposite trend. This phenomenon can be
attributed to the primary factor of missing data in the image
collection from different angles. Analyzing the point cloud
density in Table 2 and the region within the blue solid line in
Figure 12, Algorithm SFM captures more point cloud information,
providing better reconstruction along the edges of the rock surface.
However, it comes at the cost of increased noise points. Algorithm
SGM, on the other hand, demonstrates an advantage in smoothness
and exhibits overall better reconstruction quality.

Regarding the time consumed for structural face recognition, the
data collection process for tunnel rock surface information involved
three graduate students and one on-site measurement personnel.
The surveying instrument measurements of GCPs were conducted
simultaneously with the binocular imaging. The total collection time
for both methods depended on the measurement time of the
surveying instrument, which is time-consuming. In terms of the
time taken for three-dimensional point cloud reconstruction,
Algorithm SGM required approximately 35 s for a single
reconstruction (refer to Figure 9; Figure 11). Achieving high-
precision point cloud quality took a total of 3 min and 52 s. This
represents a 57.6% reduction in reconstruction time compared to
Algorithm SFM, significantly enhancing the efficiency of the

reconstruction process for practical engineering applications. It is
important to note that the outlined procedures were carried out by
experienced operators. With improved proficiency, there is potential
for further reduction in application time for this technology.

4.3 Intelligent extraction of discontinuities
orientations

(1) Firstly, a local coordinate system is established using the three-
dimensional coordinates of the GCPs within the region of
interest (as depicted in Figure 13A). In the coordinate
transformation, only the coordinates of three GCPs are
necessary for the conversion (Li et al., 2017). Considering the
uncertainty in point cloud reconstruction, this study measured
the coordinates of five GCPs with respect to a target board.

(2) Subsequently, the three-dimensional point cloud of the tunnel
rock surface under the optimal parameter combination is fixed
to the local coordinate system, resulting in the corrected three-
dimensional point cloud.

(3) Following this, the discontinuity orientation intelligent
extraction algorithm is applied to the corrected point cloud
for intelligent recognition of discontinuities. This involves
solving for the point cloud normals (refer to Figure 13B),
yielding the clustered three-dimensional point cloud (refer to
Figure 13C) and four sets of dominant structural planes
(detailed orientations are presented in Figure 13C; Table 3).

FIGURE 13
Discontinuities orientation extraction and grouping. The grouping of structural surfaces (A). The calculation of point cloud normal (B). Point cloud
clustering (C).
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The algorithm required 3 min and 42 s to execute. Due to
challenging on-site measurement conditions, the orientations
of four representative discontinuities within the region of
interest were manually measured, as illustrated in
Figure 13A. To assess the applicability of the discontinuity
orientation intelligent extraction algorithm, a comparison
was made with the parameters of these four sets of
discontinuities, as detailed in Table 3.

In this study, the mechanical geological compass was employed
to measure the dip and dip angle of discontinuities, serving as a
benchmark for validating the intelligent recognition of discontinuity
orientations. The measured dip and dip angle were used as the
control group, while the discontinuity parameters extracted from the
three-dimensional point cloud served as the experimental group. A
comparative analysis was conducted to assess their accuracy. The
results indicate that the algorithm exhibits a high degree of precision
in dip angle identification, with an error range within ± 2°. However,
in dip identification, the maximum error occurred in Group I,
reaching up to 10°, and there was no apparent pattern in the
errors among different groups. Two main factors contribute to
these results: firstly, the application of binocular stereovision
technology in the three-dimensional reconstruction process,
where calibration errors, device parameter errors, and stereo
matching errors can affect the accuracy of the point cloud
(Hartley and Zisserman, 2003); secondly, inaccuracies in the
magnetic needle readings during manual measurements
contributed to the errors, with the latter being the dominant factor.

5 Conclusion

This study is anchored in the Yulin Diversion Tunnel Project
(Tunnel #7), and it focuses on the non-contact acquisition of
geological structural information of the tunnel face using
binocular stereovision technology. Additionally, the three-
dimensional reconstruction technique of the tunnel face rock
mass point cloud was enhanced through the optimization of a
semi-global stereo matching algorithm. Furthermore, an
intelligent and efficient method for extracting structural
information has been proposed. The main conclusions are as
follows.

(1) Using binocular stereo vision technology, this study improved
the single-camera parallel binocular setup by upgrading the
sliding rail to achieve adjustable baseline length, adapting to

different shooting ranges/rock sizes. Combining the semi-global
stereo matching algorithm, it outlined the process of three-
dimensional reconstruction of the rock face: device parameter
selection, camera calibration, image acquisition, image
preprocessing, stereo matching, and three-dimensional point
cloud model generation. This allows the rock face information
acquisition time to be controlled within 15 min, with a single
three-dimensional reconstruction taking only 40 s. The
discernible object accuracy is 2 mm, demonstrating the
advantages of rapid acquisition and fine reconstruction.
Therefore, it holds broad applicability for practical use.

(2) Based on the semi-global stereo matching principle, this study
delved into the mechanisms affecting the disparity range and
window size. The quality of the three-dimensional point cloud is
significantly influenced by the disparity range and window size.
The optimal reconstruction result is achieved when the disparity
range is set to [0 144] and the window size is 15 × 15 pixels.
Furthermore, the algorithm’s running speed is relatively
unaffected by different disparity range and window size
values. Different disparity ranges and window sizes have an
impact on running speed of no more than 1s. Results from
actual field applications show that using the optimized stereo
matching algorithm for three-dimensional reconstruction yields
excellent performance.

(3) On the foundation of the three-dimensional fine point cloudmodel,
an intelligent extraction algorithm for discontinuity orientation
based on k-nearest neighbor search and kernel density
estimation is proposed. The obtained dip and dip angle values
closely align with those measured by geological compass, validating
the accuracy of the binocular three-dimensional reconstruction
algorithm and the intelligent extraction algorithm for rock mass
discontinuity orientation. This enables the systematic identification
of rock mass structural information on tunnel rock faces.
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