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The actin cytoskeleton plays a pivotal role in a broad range of physiological
processes including directing cell shape and subcellular organization, determining
cell mechanical properties, and sensing and transducing mechanical forces. The
versatility of the actin cytoskeleton arises from the ability of actin filaments to
assemble into higher order structures through their interaction with a vast set of
regulatory proteins. Actin filaments assemble into bundles, meshes, and networks,
where different combinations of these structures fulfill specific functional roles.
Analyzing the organization and abundance of different actin structures from
optical microscopy data provides a valuable metric for assessing cell
physiological function and changes associated with disease. However,
quantitative measurements of the size, abundance, orientation, and distribution
of different types of actin structure remains challenging both from an
experimental and image analysis perspective. In this review, we summarize
image analysis methods for extracting quantitative values that can be used for
characterizing the organization of actin structures and provide selected examples.
We summarize the potential sample types and metric reported with different
approaches as a guide for selecting an image analysis strategy.
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Introduction

Actin filaments (f-actin) are slender polymers (7–9 nm width, up to microns long)
assembled from globular subunits (g-actin). In cells, actin filaments dynamically assemble
and disassemble through the interaction of g-actin and f-actin with a range of regulatory
proteins that include actin nucleating, severing and capping proteins. Other actin regulatory
proteins assemble actin filaments into higher order structures by facilitating interactions
between actin filaments, for example, through branching from the side of a filament,
bundling or crosslinking filaments together. Different types of actin structure fulfill specific
functional roles. For example, stress fibers are contractile actin bundles composed of actin
filaments with alternating polarities (Naumanen et al., 2008). Repeating units of non-muscle
myosin II (NMMII) exist within these bundles and interact with actin filaments, ultimately
producing contractile forces within the cell (Elosegui-Artola et al., 2014; Lehtimäki et al.,
2021). Thus, stress fibers are responsible for cellular processes such as migration, adhesion,
morphogenesis, and mechanosensing of external forces via protein complexes at focal
adhesions (Lehtimäki et al., 2021). In contrast, lamellipodia are sheet-like membrane
protrusions located at the leading edge of motile cells (Verkhovsky et al., 2003; Mattila
and Lappalainen, 2008). These protrusions are composed mainly of branched actin networks
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responsible for protrusion and retraction of the cell membrane,
which allow cells to explore their local environment during
migration (Zimmermann and Falcke, 2014).

Quantification of the abundance and organization of actin
structures can provide a significant amount of information about
the physiological state of a cell. For example, stress fiber density is
believed to be proportional to a cell’s ability to spread (Elosegui-
Artola et al., 2014), and quantifying the abundance and orientation
of stress fibers has been used to characterize cellular responses to the
mechanical environment. In addition to characterizing the
physiological state of the cell, quantification of actin structures
can also provide insights into the mechanisms of disease. For
example, filopodia are involved in driving cellular migration. An
increase in the number and length of these structures is believed to
be associated with an increased risk of metastasis (Nilufar et al.,
2013). While the ability to quantify actin is beneficial for
understanding both physiological and pathological states, it
remains a challenging task and an active area of research.

Since cellular actin structures consist of tens to hundreds of
filaments, measuring their size and abundance is possible with
optical microscopy and within the resolution of conventional
fluorescence microscopes. Fluorescence microscopy techniques
including widefield, confocal and more recently super-resolution
microscopy are widely used for obtaining images of cytoskeletal
organization. A range of probes have been developed for
fluorescently labelling actin structures. The gold standard
fluorescence probe for imaging actin filaments in fixed cells is
fluorescently conjugated phalloidin. Phalloidin specifically binds
to F-actin with high affinity allowing images with high signal to
background to be obtained (Wulf et al., 1979; Adams and Pringle,
1991). Phalloidin staining is generally regarded to provide faithful
labelling of different types of actin structures and provides similar
images to cells stained with actin antibodies. While phalloidin
staining is used for imaging actin organization in fixed cells, a
range of different actin probes have been developed for visualizing
the actin cytoskeleton in live cells (Melak et al., 2017). Live cell
probes for visualizing actin include GFP fusions to G-actin
(Westphal et al., 1997; Doggett and Breslin, 2011), fusions to
actin-binding proteins or actin-binding peptides (Burkel et al.,
2007; Riedl et al., 2008; Lopata et al., 2018; Harris et al., 2020),
or live dyes (Lukinavičius et al., 2014) and the advantages and
disadvantages of each of these techniques has been discussed
previously (Melak et al., 2017).

Quantifying images obtained from optical microscopy can either
be done manually, semi-automated or automatically. Manual
analysis of an image involves counting specific structures that are
identified by the user or making measurements from regions of
interest that are drawn onto an image. Automated analysis requires
no user intervention in the analysis step where image data can
simply be streamed to an algorithm. Semi-automated analysis
involves an initial user step followed by automated analysis, for
example, initially selecting a cell to be analyzed which is then
subsequently analyzed by an algorithm. The type of data that can
be obtained from quantifying cytoskeletal organization varies based
on the goals of the study but can generally be broken down into four
categories; the frequency of occurrence of a particular structure, the
relative orientation of structures, the spacing and size of different
structures, and the abundance of actin or binding proteins contained

within a structure (Figure 1). In the following sections we describe
selected examples of analysis strategies based on the type of actin
structure that they have been designed to quantify.

Stress fibers and focal adhesions

Three subclasses of stress fibers exist and differ based on their
association with focal adhesions. Ventral stress fibers are the most
predominant subclass and are attached to focal adhesions on both
ends (Lehtimäki et al., 2021). Ventral stress fibers are typically
responsible for changes in cellular shape, adhesion, and overall
cellular contractions (Naumanen et al., 2008). Dorsal stress fibers
are attached to focal adhesions at one end while the other end of the
actin bundle extends towards the dorsal side of the cell (Naumanen
et al., 2008). This subclass is not necessarily contractile itself, but
rather interacts with other subclasses to propagate contractile forces
(Naumanen et al., 2008). Transverse arcs are the third stress fiber
subclass and exist along cellular edges near lamellipodial actin
networks (Lehtimäki et al., 2021). These stress fibers are thin
contractile actomyosin bundles that do not directly interact with
focal adhesions (Naumanen et al., 2008; Lehtimäki et al., 2021).
Contractile forces generated across transverse arcs are transmitted to
dorsal stress fibers, and then further propagated to focal adhesions
(Lehtimäki et al., 2021). The ability to quantify stress fibers is critical
as these structures play key roles in both detecting and transmitting
mechanical forces to the extracellular matrix via focal adhesions,
therefore dictating cellular behaviors (Elosegui-Artola et al., 2014).
Their phenotypes and architecture are also key indicators of current
cellular processes, both in normal and pathological states (Zhang
et al., 2017).

FIGURE 1
Quantitative information obtained from images of cytoskeletal
organization. Frequency of actin structure occurrence that can be
counted, for example, the number of filopodia. Orientation of
cytoskeletal structures, that might become aligned in the
direction of external or internal stimuli such as stress fibers. The
spacing and size of different actin structures for example, the
proximity of the actin cortex to the plasma membrane. The
abundance of actin in a different structure or the density of actin
binding protein bound to that structure.
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Stress fiber extractor (SFEX) is an open-source image processing
software developed by Zhang et al. (2017) which reconstructs and
subsequently quantifies actin stress fibers. Firstly, cytoskeletal
structures in microscopy images are enhanced to facilitate
binarization. Skeletonized images are then generated, containing
linear stress fiber fragments. The second part of this algorithmworks
to reconstruct traces of stress fibers in an iterative manner by
searching for fragment pairs. This method results in a
reconstructed image where quantitative values, such as fiber
width, length, orientation, and shape can then be obtained. Stress
fiber width is an important indicator of cellular mechanical
properties, as width is believed to be correlated with cell
contractility and additional actin regulatory pathways.

FSegment is a stress fiber quantification tool developed by Rogge
et al. (2017) capable of analyzing changes in stress fibers over time.
This algorithm specifically focuses on extracting metrics such as
stress fiber length, width, orientation, and intensity distribution.
Several pre-processing steps are first completed to segment the stress
fibers, followed by subtraction of the non-fiber region in the image
resulting in a fiber mask where the above parameters are quantified.
Similar to the previously described stress fiber quantification
algorithm, the output parameters provided by this algorithm are
useful in describing various cellular processes. For example, stress-
fibers are often thicker under instances of actin polymerization or
when contractility is being upregulated (Zhang et al., 2017).
Alternatively, these structures are thinner when the cell is in a
relaxed state (Zhang et al., 2017).

SFALab is a recent image analysis algorithm developed by
Mostert et al. (2023) which segments focal adhesions and
identifies ventral stress fibers. This algorithm first generates a cell
mask to determine focal adhesion density per cell and confirm that
only focal adhesions within the same cell are being analysed. Shape
fitting is then used to identify focal adhesion structures, which are
then analyzed for morphological features such as area and aspect
ratio. The original gray scale image is enhanced and combined with
the segmented focal adhesions. Curve fitting is performed on the
combined image between focal adhesion pairs to identify ventral
stress fibers where a polynomial with the highest mean intensity to
the input image is used. Parameters such as number of ventral stress
fibers and ventral stress fibers per focal adhesion are provided at this
stage. This technique expands on a similar algorithm by Elosegui-
Artola et al. (2014), and is useful as it specifically focuses on ventral
stress fibers which play a key role in transmitting forces to and from
the extracellular matrix due to their interaction with focal adhesions.
Focal adhesion density within a cell is believed to be related to the
degree of tension a cell is supporting, as more focal adhesions
provide more attachment points for stress fibers (Elosegui-Artola
et al., 2014).

Cortical actin

The actin cortex is a thin (~150–200 nm thick) meshwork of
filaments located beneath the plasma membrane (Chugh and
Paluch, 2018). Within the actin cortex, filaments are densely
crosslinked together through the activity of actin binding
proteins including filamins, actinin, and myosin (Biro et al.,
2013; Vadnjal et al., 2022). A major functional role of the actin

cortex involves determining cell shape and mechanics as this
structure is critically important for the generation of mechanical
forces that drive both cell migration and division (Eghiaian et al.,
2015; Chugh et al., 2017; Kelkar et al., 2020). Characterizing the
organization of the actin cortex is therefore crucial for
understanding the fundamental mechanisms of cellular force
generation shape change. To date, most of the work has focused
on quantifying two characteristics of the actin cortex, the pore size of
the meshwork, and the thickness of the meshwork beneath the
plasma membrane.

The cortical actin network is densely packed with a pore size that
is typically below the resolution limit of standard fluorescence
microscopy techniques and has instead been measured from
electron microscopy images (Bovellan et al., 2014), or super-
resolution imaging (Xu et al., 2013). The mesh size of the
network has been characterized by scanning electron microscopy
to be ~30 nm in control conditions. Perturbations of actin filament
assembly and nucleation lead to increases in mesh size and
concurrently a reduction in the density of actin filaments. For
example, when the activity Arp2/3 complex and formin
mDia1 are perturbed using shRNA or pharmacological inhibitors
the mesh size of the cortex increases from ~30 nm to ~100 nm. In
contrast to the meshwork pore size, fluorescence microscopy has
been successfully used to measure the thickness of the actin cortex.
Changes in the distribution and organization of actin filaments and
actin binding proteins within the cortex lead to gradients in
mechanical tension within the cell cortex that drive cellular shape
changes (Truong Quang et al., 2021). Measuring cortical thickness
and the localization of different actin regulatory proteins throughout
the cortex is fundamental for understanding this process. Seminal
work by Clark et al. (2013) measured the thickness of cortical actin
in HeLa cells to be on average ~190 nm. Thickness measurements
were obtained by measuring the position of the plasma membrane
and cortical actin which were labelled with mCherry-CAAX and
GFP-actin respectively. Position measurements were obtained by
determining the peaks of the fluorescence intensity along linescans
from the two-color channels which can then be used to determine
the thickness of the actin cortex beneath the membrane. This
technique leverages the rounded shape of mitotic cells and the
ability to fit the fluorescence intensity profile of the linescan to
obtain thickness measurements that are below the diffraction limit.
However, this technique uses the assumption of uniform actin
distribution through the cortex and requires additional
calibration steps to correct for sources of chromatic aberration
and differences in background fluorescence between the color
channels. Clausen et al. (2017) advanced on this technique, using
STED microscopy to provide higher resolution images that could
then be used to determine the spacing of cortical actin from the
membrane. The authors found an asymmetric distribution of actin
density suggesting a maximum spacing of 20 nm of cortical actin
from the membrane, with below 10 nm in some regions. In addition
to measurements of thickness and proximity to the plasma
membrane, STORM imaging has been used in a similar approach
to measure the distribution of actin regulatory proteins within the
actin cortex. Measuring differences in the intensity profile of
fluorophores targeted to different proteins or the plasma
membrane presents a valuable technique for precisely measuring
distances, that has been applied not only to the actin cytoskeleton
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but also for characterizing membrane protein height (Son et al.,
2020).

Lamellipodia, filopodia, and podosomes

Lamellipodia are sheet-like membrane protrusions located at the
leading edge of motile cells composed of branched actin networks
(Verkhovsky et al., 2003; Mattila and Lappalainen, 2008). Actin
orientation within lamellipodial structures is fundamentally linked
to the direction in which a cell is moving (Verkhovsky et al., 2003;
Zimmermann and Falcke, 2014). An image processing algorithm
developed by Verkhovsky et al. (2003) quantifies actin orientation in
lamellipodial protrusions at both an ultrastructural and cellular
level. This algorithm utilizes a combination of electron-
microscopy images, phase-contrast light microscopy images, and
fluorescent images stained with phalloidin. A single cell is captured
using at least two of the three techniques and the images are aligned
with one another. Images are first pre-processed for noise removal
and subsequently subjected to one of two edge detection methods,
either a glowing edge filter or Canny filter. All resultant images are
then superimposed to produce a final image accounting for edges at
all orientations. Both edge detection methods ensure uniform
sensitivity to edges of features at varying orientations, as some
methods preferentially detect edges at a vertical or diagonal
orientation rather than horizontal, which becomes problematic
when quantifying structures such as lamellipodia. Following these
pre-processing steps, a Radon transform is applied using a rotating
square mask to isolate the specific region of interest (ROI) being
analyzed. This function produces a strong signal if the linear features
in the ROI are orientated in the direction of the current projection,
or in other words, the actin filaments within the lamellipodia being
analyzed.

Embedded within lamellipodia are filopodia, or protrusive
structures composed of parallel bundles of actin filaments
(Mattila and Lappalainen, 2008). These thin finger-like
protrusions are responsible for probing their microenvironment
to assist in sensing the surrounding environmental conditions.
While filopodial size often depends on cell type, these structures
typically do not exceed 10 μm in length (Mattila and Lappalainen,
2008). Filopodia numbers can indicate the current migratory state of
a cell, which is important in pathological scenarios such as
metastatic cancers (Nilufar et al., 2013).

FiloDetect is an automated tool for quantifying filopodia in
fluorescent images developed by Nilufar et al. (2013). This algorithm
detects, counts, and measures filopodia using intensity-based
thresholding and various morphological operations. Cell bodies
are first segmented using an intensity thresholding technique
which ultimately eliminates any background pixels detected as
part of the foreground. Once segmentation has been completed,
morphological operations are performed where any fragments
removed from the main cell body are defined as candidate
filopodia. These structures are then defined as filopodia if they
pass a specific size threshold and fit to an ellipse. Filopodia length is
then calculated by thinning each individual structure to a single pixel
width, and then counting the remaining number of pixels. A
filopodia count can also be determined at this stage of the
algorithm. FiloQuant is another filopodia detection algorithm

developed by Jacquemet et al. (2017) capable of detecting
filopodial protrusions in both fixed and live cell microscopy data.
This ImageJ plugin provides step-by-step user validation to ensure
appropriate segmentation of these small structures. Intensity based
thresholding is first applied to the image to define cell edges and
create a mask while removing any filopodial-like structures
surrounding the cell. In parallel, the original image is enhanced.
These two images are then superimposed to produce a resultant
image containing only structures surrounding the originally defined
cell mask, which are defined as filopodial protrusions.
Skeletonization is performed on the resultant image to determine
filopodia length. Filopodia density is also determined at this stage by
calculating a ratio of filopodia count to cell edge length, which is a
useful metric in the context of cancer metastasis.

Podosomes are actin-rich structures that play a role in cell
migration and invasion (Linder et al., 2023). These structures
release proteolytic enzymes which degrade the extracellular
matrix (Linder et al., 2023). Podosomes have a dense F-actin
core with a diameter of approximately 350 nm and are
surrounded by a 250 nm wide ring composed of both integrins
and integrin-associated proteins (Linder et al., 2023). In
physiological conditions, podosomes are critical for cell invasion
across tissue boundaries for effective immune surveillance (Linder
et al., 2023). Podosomes are often difficult to distinguish from other
actin rich structures due to their smaller size and the heterogeneity
of podosome core intensities (Meddens et al., 2013).

A quantitative image analysis algorithm developed by Meddens
et al. (2013) separates podosome cores from other F-actin structures
in phalloidin-stained images based on intensity, shape, and size.
Images are first pre-processed by Gaussian smoothing, high pass
filtering, and unsharp masking resulting in enhanced edges. A local
threshold is then applied to achieve foreground separation, and
analysis of roundness and area is also performed to filter out any
objects not resembling podosome cores. This resultant image is then
combined with a Gaussian smoothed version of the original image to
further filter out any objects appearing smaller than podosomes.
Foreground refinement is achieved by additional thresholding. A
final podosome core mask is produced by performing a watershed
segmentation on the distance transform of the binary image to
isolate any podosome cores that may be touching or connected with
one another. At this stage, podosome size and shape are calculated
from the image mask while intensity is calculated by analyzing pixel
intensity values within the ring surrounding each podosome
structure.

Discussion

Quantitative characterization of the organization of the actin
cytoskeleton into different structures is critical for our
understanding of both normal physiology and disease. A broad
set of techniques have been developed to accomplish this
challenging task and we have summarized a subset of these in
relation to different structures that they are designed to analyze
(Table 1). New algorithms are continuously being developed, but all
the approaches face similar challenges in sample preparation,
imaging acquisition, and dealing with cell heterogeneity, which
we discuss below.
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TABLE 1 Summary of analysis strategies.

Structure Example of sample type Metric Example of output Potential application References

Multiple 2D analysis of human
mesenchymal stromal cells

Intensity F-actin distribution across a cell (or
across the nucleus)

Pharmacological
perturbations

Zonderland et al.
(2019)

2D analysis of immortalized
retinal pigmented epithelium cells

Intensity,
orientation, spacing,

and size

Quantifies mesh hole size, hole
circularity, distance between

junctions, filament density and
length

cell-cell junctions Flormann et al.
(2021)

2D/3D analysis of HeLa cells Intensity,
orientation, and size

Identifies centerlines of biopolymer
networks and network junctions

Temporal evolution of
biopolymers

Xu et al. (2015)

2D analysis of a
KR158 astrocytoma cell line

Intensity and
orientation

Peripheral actin bundles, stress
fibers, internal punctate, or

protrusive actin

Pharmacological
perturbations

Lockett et al.
(2014)

2D analysis of MG-63 osteoblasts Orientation and size Filament length and orientation Adhesion to Biomaterials Matschegewski
et al. (2012)

2D analysis of normal human
dermal fibroblasts

Intensity and spacing Actin abundance measurements Response to substrate
stiffness

Alhussein et al.
(2016)

2D analysis of human umbilical
vein endothelial cells

Intensity and
orientation

Orientation and density of actin
fibers

Response to mechanical
stretch

Yoshigi et al.
(2003)

2D analysis of onion epidermal
cells

Intensity and
orientation

Orientation and anisotropy of
fibrillar structures

Analysis of orientation and
anisotropy

Boudaoud et al.
(2014)

2D analysis of cardiac fibroblasts Intensity and spacing Measures uniformity of actin
organization

Response to mechanical
stretch

Fuseler et al.
(2007)

2D analysis of osteoblasts Orientation and size Filament orientation, filament
position, and filament length

Response to fluid shear stress Alioscha-Perez
et al. (2016)

2D analysis of NIH/3T3 cells Intensity and
orientation

Distribution of actin filaments and
average quantity of actin per cell

Pharmacological
perturbations

Liu et al. (2018)

2D analysis of osteoblasts Frequency and size Total filament length, maximum
filament length, and mean filament

length

Adhesion to Biomaterials Gruening et al.
(2021)

2D analysis of NIH/3T3 cells Intensity F-actin intensities per cell and
relates these values to mechanical

measurements

Pharmacological
perturbations

Liu et al. (2020)

2D analysis of mesenchymal stem
cells

Frequency/
abundance and

spacing

Detects changes in F-actin
structures (e.g., bundle or cross-

linked)

Pharmacological
perturbations

Revittser et al.
(2021)

2D analysis of melanoma cells Abundance and
spacing

Quantifies elongation and density
of actin patches

Cancer progression Sheykhi et al.
(2022)

2D analysis of human
osteosarcoma

Intensity Quantifies changes in actin filament
organization

Response to cancer therapies Vindin et al.
(2014)

Stress Fibers and
Focal Adhesions

2D analysis of human
osteosarcoma cells

Orientation and size Stress fiber width, length,
orientation, and shape

Quantification of stress fibers
in cells plated on fibronectin

micropatterns

Zhang et al. (2017)

2D analysis of A549 cells,
H460 cells, and H1299 cells

Orientation, spacing,
and size

Angular distribution of stress fibers Cancer progression Basu et al. (2022)

2D analysis of murine podocyte
cells

Intensity,
orientation, and size

Stress fiber length, width,
orientation

Pharmacological
perturbations

Rogge et al. (2017)

2D analysis of JC-53 cells Intensity, abundance,
and orientation

Uses coherency to analyze actin
density per cell area, relative

coherency per cell area, and mean
coherency per image

Quantification of the actin
cytoskeleton’s role upon

HIV-1-entry

Weichsel et al.
(2010)

2D/3D analysis of HeLa cells Intensity, frequency,
abundance, size

Focal adhesion area, circularity,
mean intensity, density per cell and

actin stress fiber count

Pharmacological
perturbations

Elosegui-Artola
et al. (2014)

(Continued on following page)
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Significant consideration needs to be taken when preparing
samples and labelling actin structures. For fixed cells, actin
structures can be preserved during sample preparation using a
specific combination of fixatives and buffers (Abe and Davies,
1995). For imaging, two major considerations need to be made
when choosing a probe for F-actin. Firstly, does the use of the probe
impact the organization of actin filaments into different structures?
For example, GFP-fusions to actin can perturb actin filament
assembly, and dyes that are based on small molecules can have
stabilizing effects on F-actin impacting actin filament disassembly.
Secondly, does the reporting probe faithfully label all actin
structures? For example, fluorescent fusions to actin binding
proteins and their minimal actin binding domains have been
shown to only label a subset of actin structures. This effect has
been attributed to competitive interactions with endogenous
proteins (Gunning et al., 2008), overall actin binding affinity and
dynamics (Harris et al., 2019) and specificity to different populations

of actin filaments (Harris et al., 2020). The probe used for reporting
the formation of different actin structures must therefore be
carefully selected and can be compared against fluorescently
conjugated phalloidin in fixed cells to determine labelling efficiency.

While light microscopy techniques have served as a valuable tool
for many years, the ability to image detailed subcellular structures
and organelles is still often hindered by the diffraction limitation
(Jing et al., 2021). As a general principle, imaging of actin structures
requires high resolution imaging obtained with a high numerical
aperture objective. This enables an image with a resolution that
provides sufficient sampling of the structure that is being analyzed
(for example, filopodia are 0.2–0.4 µm in diameter, requiring an
image with a pixel size of <0.2 µm, at the limit of diffraction limited
optical microscopy). Because actin is one of the most highly
abundant proteins, sectioning techniques such as confocal
microscopy can reduce background fluorescence in the image
allowing for improved signal to noise and ultimately a more

TABLE 1 (Continued) Summary of analysis strategies.

Structure Example of sample type Metric Example of output Potential application References

2D analysis of human epicardial-
derived cardiac fibroblasts

Intensity,
orientation,

frequency, spacing,
and size

Quantifies number of ventral stress
fibers

Pharmacological
perturbations

Mostert et al.
(2023)

2D analysis of Swiss
3T3 fibroblasts

Intensity,
orientation,
frequency,

abundance, and size

Number of fibers, length of fibers,
density of fibers, and fiber polarity

Pharmacological
perturbations

Lichtenstein et al.
(2003)

Cortical Actin
Network

2D analysis of bovine aortic
endothelial cells

Frequency, spacing,
and size

Quantifies the number of holes,
mean area of holes, and overall

surface coverage of holes

Pharmacological
perturbations

Kronlage et al.
(2015)

3D analysis of AF549 cells Intensity and size Quantifies the area and perimeter of
spaces between actin filaments in a

network

Pharmacological
perturbations

Garlick et al.
(2022)

3D analysis of Jurkat T-cells stably
expressing either LifeAct-Citrine

or LifeAct-SNAP.

Intensity and spacing Quantifies spacing of cortical actin
from the membrane subcellular

regions

Analysis of cortical actin
membrane dynamics and

spacing

Clausen et al.
(2017)

2D analysis of HeLa cells Intensity and spacing Quantifies actin cortex thickness Pharmacological
perturbations

Clark et al. (2013)

3D analysis of actin purified from
rabbit skeletal muscle

Spacing/size The mean mesh size is determined
for actin network bundles using

z-stacks

Pharmacological
perturbations

Cavanna and
Alvarado (2021)

Lamellipodia,
Filopodia, and
Podosomes

2D analysis of B16F1 mouse
melanoma cells, and

BT549 human breast cancer cells

Frequency and size Length of filopodial structures Cancer progression Nilufar et al.
(2013)

2D analysis of astrocytes Frequency and size Number and length of filopodia in
astrocytes

Pharmacological
perturbations

Aumann et al.
(2017)

2D analysis of multiple cell types Intensity, frequency,
and size

Filopodia length, straightness, tip
movement, base movement,

dynamics

Filopodial structures in
growth cones

Urbančič et al.
(2017)

2D analysis of immortalized
normal breast epithelial cells

(MCF10A)

Intensity, abundance,
and size

Quantifies filopodial protrusion
dynamics, density, and length

Cancer progression Jacquemet et al.
(2017)

2D analysis of black tetra
keratocytes

Orientation Quantifies the orientation of actin
filaments in lamellipodial

protrusions

Combination of
fluorescence, phase contrast,
and electron microscopy

Verkhovsky et al.
(2003)

2D analysis of human dendritic
cells generated from monocytes

Intensity, frequency,
and size

Podosome core intensity, size, and
shape

Pharmacological
perturbations

Meddens et al.
(2013)
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successful analysis. Super-resolution microscopy (SRM) has become
a more commonly used approach for imaging subcellular structures
such as actin filaments. SRM can detect smaller features, providing
more information about actin structures than what has previously
been available.

Cells vary significantly in both shape and size, making the initial
segmentation of cell boundaries and quantification of metrics that
characterize actin structures between cells challenging. For this
reason, semi-automated analysis of cell images acts as a useful
compromise between automated and manual image processing
algorithms. Semi-automated analysis allows for the user to define
certain parameters to cope with heterogeneity of cell images,
ensuring algorithm specificity to the experiment and imaging
conditions while limiting the amount of time spent and potential
human error created while processing image datasets. In addition,
normalization processes are often implemented into image
processing algorithms as an effort to quantify structures
independent of overall cell shape and size. In recent years, a
number of machine learning algorithms have been released using
various methods to both quantify and/or classify cell shape and
morphological features (Kan, 2017; Li et al., 2021; Liu et al., 2021;
Phillip et al., 2021). One possibility could be to combine automated
machine learning approaches for identification of cell shape and area
as a pre-processing step when quantifying cytoskeletal organization.
Indeed, user-friendly software packages to accomplish these tasks
such as CellProfiler (Jones et al., 2008; Dao et al., 2016) and Ilastik
(Berg et al., 2019) are becoming increasingly common.

Conclusion

The actin cytoskeleton is critical for many physiological
processes, including but not limited to driving cell motility,
determining cellular shape, and sensing and transmitting
mechanical forces. Actin filaments organize into higher order
structures to achieve these functions, including stress fibers,
cortical actin networks, lamellipodia, filopodia, and podosomes.
The ability to quantify these actin structures in terms of
intensity, orientation, frequency, abundance, spacing and size, is
therefore essential to understanding the current state of cells in both
physiological and pathological conditions. While a significant
amount of information can be obtained by quantifying the actin

cytoskeleton, many challenges exist, including dealing with
heterogeneity of cell shape and size, and difficulties
distinguishing actin-rich structures from one another. The field
of actin quantification will continue to evolve with the increased
use of machine learning and SRM, which will ultimately improve
our ability to quantify and understand this cytoskeletal structure.
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