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Biological control using plant-beneficial fungi has gained considerable

interest as a sustainable method for pest management, by priming the

plant for enhanced defense against pathogens and insect herbivores.

However, despite promising outcomes, little is known about how different

fungal strains mediate these beneficial effects. In this study, we evaluated

whether inoculation of tomato seeds with the plant-beneficial fungi

Beauveria bassiana ARSEF 3097, Metarhizium brunneum ARSEF 1095 and

Trichoderma harzianum T22 affected the plant’s volatile organic compound

(VOC) profile and the host-choice behavior of Nesidiocoris tenuis, an

emerging pest species in NW-European tomato cultivation, and the related

zoophytophagous biocontrol agent Macrolophus pygmaeus. Results

indicated that fungal inoculation did not significantly alter the VOC

composition of tomato plants. However, in a two-choice cage assay where

female insects were given the option to select between control plants and

fungus-inoculated plants, N. tenuis preferred control plants over M.

brunneum-inoculated plants. Nearly 72% of all N. tenuis individuals tested

chose the control treatment. In all other combinations tested, no significant

differences were found for none of the insects. We conclude that inoculation

of tomato with plant-beneficial fungi had limited effects on plant volatile

composition and host-choice behavior of insects. However, the observation

thatN. tenuiswas deterred from the cropwhen inoculated withM. brunneum

and attracted to non-inoculated plants may provide new opportunities for

future biocontrol based on a push-pull strategy.
KEYWORDS

Beauveria bassiana, biological control, host-searching behavior, Metarhizium
brunneum, Trichoderma harzianum
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1 Introduction

Plant diseases and pests pose significant threats to agricultural

productivity and food security (Savary et al., 2019). Arthropods are

estimated to destroy 18 – 26% of global annual crop production,

equal to a value of more than 430 billion euro (Culliney, 2014).

Classically, pests are controlled by the use of chemical pesticides,

which have greatly benefited global agriculture and food security,

but also posed risks to environmental sustainability and public

health (Damalas and Eleftherohorinos, 2011; Sharma et al., 2019;

Calvo-Agudo et al., 2021). In addition, the intensive use of chemical

pesticides has resulted in the development of resistant pests and

pathogens (Bass et al., 2015; Gould et al., 2018; Hawkins et al.,

2019). To mitigate these negative impacts, substantial efforts have

been made to reduce the use of chemical pesticides (cfr. EU-

directives such as 91/414/EEC and the Farm to Fork strategy

committed to work towards reducing the overall use and risk of

chemical pesticides by 50% by 2030 (Parisi et al., 2015; European

Commission, 2020; Silva et al., 2022)), and encourage more eco-

friendly pest management methods like Integrated Pest

Management (IPM) and biological control.

Among various options, biological control using plant-

beneficial microbes has gained considerable importance as a

method for pest management, by priming the plant for enhanced

defense against pathogens and insect herbivores (Pieterse et al.,

2014). Beneficial microbes in the root microbiome contribute

positively to plant growth and performance through direct and

indirect mechanisms (Van der Putten et al., 2001; Wardle et al.,

2004; Bezemer and Van Dam, 2005). Direct effects may result from

improved availability and uptake of nutrients (Meesters et al., 2023),

and by exerting direct negative effects on the behavior or

performance of herbivorous insects, e.g. by the production of

repellants, antifeedants and toxins (Pineda et al., 2010). Indirect

effects may result from enhanced recruitment of natural enemies of

herbivores or improving their activity (Pineda et al., 2010). Plant

inoculation with beneficial microbes can alter the physiology of the

plant, leading to changes in the plant-volatile profile (Shikano et al.,

2017; Vega, 2018), which in turn can affect higher trophic levels

such as insect herbivores and their natural enemies. For example,

inoculation of tomato plants with the endophytic fungus Fusarium

solani Saccardo strain K (Hypocreales: Nectriaceae) increased both

direct and indirect tomato defenses against spider mites, by directly

reducing their performance and attracting more predators,

respectively, when compared with control plants (Garantonakis

et al., 2018). Similarly, endophytic colonization by the

entomopathogenic fungus Beauveria bassiana Vuillemin strain

EABb 01/33-Su (Hypocreales: Cordycipitaceae) altered the

composition of the volatile organic compounds (VOCs) emitted

by melon and cotton plants. Some of the emitted compounds are

known to be released in response to herbivore attack and have been

implicated in natural enemy attraction (González-Mas et al., 2021).

Likewise, tomato inoculation with Trichoderma longibrachiatum

Rifai strain MK1 (Hypocreales: Hypocreaceae) increased the plant’s

attractiveness towards the generalist predator Macrolophus

pygmaeus Rambur (Hemiptera: Miridae) (Battaglia et al., 2013).

However, effects of plant inoculation with beneficial microbes on
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herbivorous insects and their natural enemies have been found to be

ambiguous: in some cases, herbivores are repelled by microbe-

inoculated plants (Rondot and Reineke, 2017; Sword et al., 2017;

Wei et al., 2020), while in other cases they are attracted (Wilberts

et al., 2022). Similarly, natural enemies are attracted in some cases

(Battaglia et al., 2013; Pangesti et al., 2015) while repelled in others

(Ormond et al., 2011). So far, only little is known about the factors

determining microbe-mediated plant responses, but it is generally

assumed that fungal species or strain, along with plant species or

genotype (cultivar), and insect species, play an important role in

this context (Berg, 2009; Alam et al., 2021). Nevertheless, most

studies performed so far have focused on a single fungal strain

(Battaglia et al., 2013; Garantonakis et al., 2018; Alınç et al., 2021),

making it difficult to ascertain how the interactions between plants

and insects are mediated by different fungal strains.

The main goal of this study was to investigate the effects of

different plant-beneficial fungi on plant volatile emissions and how

this affects the host-choice behavior of plant-feeding insects.

Specifically, we assessed the effects of seed inoculation of tomato

Solanum lycopersicum Linnaeus (Solanales: Solanaceae) with the

fungal strains Beauveria bassiana ARSEF 3097, Metarhizium

brunneum ARSEF 1095 Petch (Hypocreales: Cordycipitaceae) and

Trichoderma harzianum Rifai T22 (Hypocreales: Hypocreaceae) on

the plant VOC profile and the host-choice behavior of Nesidiocoris

tenuis Reuter (Hemiptera : Mir idae) and the re lated

zoophytophagous mirid bug M. pygmaeus. While N. tenuis is an

important biological control agent of whiteflies, leafminers, thrips

and spider mites in Mediterranean countries (Sanchez, 2008), in

recent years it has become an important problem in the greenhouse

cultivation of tomatoes in Northwestern Europe, especially when N.

tenuis population densities are high or when prey is scarce or absent

(Siscaro et al., 2019). Plant feeding byN. tenuis causes the formation

of necrotic rings on stems and leaf petioles, resulting in flower

abortion in addition to punctures in fruits. These effects

subsequently result in reduced crop quality and yield (Siscaro

et al., 2019). By contrast, the phylogenetically related mirid M.

pygmaeus is less harmful and is commonly used as a biocontrol

agent against various herbivorous insects like the tomato borer Tuta

absoluta Meyrick (Lepidoptera: Gelechiidae), whiteflies, thrips, leaf

miners, aphids, spider mites and lepidopterans (Calvo et al., 2009;

Nannini et al., 2012; Perdikis et al., 2014). Ultimately, we aimed to

identify fungal strains that deter N. tenuis, while having no effect on

M. pygmaeus. Such strains could provide a promising approach to

enhance the biocontrol of N. tenuis.
2 Materials and methods

2.1 Study organisms

Beauveria bassiana ARSEF 3097 and Metarhizium brunneum

ARSEF 1095 are the active ingredients of the commercially available

bioinsecticides Naturalis® and BIPESCO®, respectively. These

strains were obtained from the Agricultural Research Service

Collection of Entomopathogenic Fungal Cultures (ARSEF)

located in New York, USA. Trichoderma harzianum strain T22,
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which has recently been re-classified as Trichoderma afroharzianum

Rifai (Hypocreales: Hypocreaceae) (Chaverri et al., 2015) (for

consistency with previous research further referred to as T.

harzianum in this study) is the active ingredient in various

biofertilizers and biopesticides, including Trianum-P (Koppert

Biological Systems, The Netherlands), from which it was isolated

for this study. While predominantly known as entomopathogenic

fungi, B. bassiana ARSEF 3097 and M. brunneum ARSEF 1095 are

also able to endophytically colonize plant tissues from several hosts

upon artificial inoculation, including tomato (Klieber and Reineke,

2016; Jaber and Araj, 2018; Wilberts et al., 2022; Meesters et al.,

2023). Trichoderma harzianum T22 is primarily known to colonize

plant roots epiphytically but has also been found to colonize plant

tissues endophytically (Harman et al., 2004). The three selected

strains have been found to offer plants various benefits, including

enhanced plant growth (Sani et al., 2020; Van Hee et al., 2023;

Wilberts et al., 2023) and increased resistance against pathogens

and/or herbivorous insects (Jaber and Alananbeh, 2018; Jaber and

Araj, 2018; Alınç et al., 2021; Wilberts et al., 2022; Meesters et al.,

2023; Van Hee et al., 2023). The fungal strains were preserved on

potato dextrose agar (PDA) plugs in 35% glycerol at -80°C until

further use. Both a lab culture of N. tenuis and M. pygmaeus were

established using adult specimens kindly provided by Biobest N.V.

(Westerlo, Belgium). Lab cultures were then maintained in mesh

insect cages (17.5 cm × 17.5 cm × 17.5 cm, 96 × 26 mesh - 680 μm

aperture, BugDorm, MegaView Science Co., Ltd.) under controlled

conditions (25 ± 1°C, 70 ± 10% relative humidity (RH) and 16L:8D

photoperiod; ECL02, Snijders Labs, The Netherlands)). Insects were

provided with ad libitum access to g-irradiated Ephestia kuehniella

Zeller (Lepidoptera: Pyralidae) eggs as a food source without plants.

Wet cotton sticks enclosed in stretched Parafilm® were offered as

oviposition substrate and water source (De Puysseleyr et al., 2013).
2.2 Fungal inoculation

Plants were inoculated as previously described (Soad et al.,

2005; Meesters et al., 2023). Initially, stock cultures of the three

fungi were plated on agar-based quarter-strength (¼) Sabouraud

dextrose agar, which was supplemented with yeast extract (SDAY)

and subsequently transferred to the same medium again. Next, the

fungal strains were grown on SDAY at a temperature of 25°C.

Following a ten-day incubation period, conidia were collected by

gently scraping the spores from the agar plates after being flooded

with sterile physiological saline solution (0.8% w/v NaCl). The

obtained suspension was filtered through a sterile microcloth (Mira

Cloth, Merck, Massachusetts, USA) and washed twice using sterile

physiological saline solution to yield a purified suspension of fungal

conidia. Once the number of conidia was counted using a Bürker

haemocytometer, the spore concentration was adjusted to 1 × 107

spores mL-1. Before conducting experiments, conidial viability was

assessed by plating a 100 μL aliquot of 1 × 103 conidia mL-1 on three

SDAY plates. Following incubation at 25°C for 24 hours, the

numbers of germinated and ungerminated conidia were counted

under a microscope. Spores were considered germinated when the

germ tube extended to a length at least twice that of the spore
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diameter. Results of the germination tests demonstrated > 90%

viability rate for all conidial suspensions.

Prior to inoculation, tomato seeds were surface-sterilized using a

1% (v/v) sodium hypochlorite solution for 5 min with agitation,

followed by rinsing four times using sterile distilled water.

Subsequently, 25 surface-sterilized seeds were put on a filter paper

inside a 9 cm diameter Petri dish and then moistened with 2 mL

sterile distilled water. Plates were wrapped with breathable surgical

tape (3M, Belgium) and incubated in the dark at 25°C for 48 h to

promote germination. Germinated seeds were submerged for 24 h by

addition of 6 mL conidial suspension into the Petri dishes (Soad et al.,

2005) or using physiological water as a control. Germinated seeds

were then planted in a growth medium comprising a 3:1 ratio of

potting mix (Universal potting mix; Agrofino, Ghent, Belgium) and

white sand (for chemical characteristics of the potting mixture, see

Supplementary Table 1, Supporting Information), after which they

were put in a plant growth cabinet (MD1400, Snijders Labs, The

Netherlands) at 23 ± 1°C, 65 ± 2% RH and a 16L:8D photoperiod.

The growth cabinet was equipped with white LED lights that

provided a photosynthetic flux density of 220 μmol photons m-2 s-

1. After 14 days, seedlings were individually transplanted in 10.5 cm

diameter plastic pots with the same potting mix as mentioned earlier

and placed in a climate-controlled greenhouse compartment until

further use. Plants were put together according to fungal treatment to

avoid contamination between the different treatments at a distance of

at least 50 cm between treatments. When transplanting the plants,

fungal colonization was also verified by collecting root samples from

three plants per treatment (not further used in the experiments), as

described in Meesters et al. (2023), and showed that the inoculation

was successful.
2.3 Collection and analysis of plant volatile
organic compounds

Seven weeks after fungal inoculation, tomato plants were

subjected to dynamic headspace sampling to assess the VOC

composition of their aboveground plant parts. At that time, no

visual differences were observed among fungus-treated and control

plants. For each treatment, individual tomato plants (n = 10) were

enclosed within a glass dome (height: 20 cm; diameter: 23 cm), which

was sealed with aluminum plates around the stem right above the first

true leaf, while ensuring that the plant was not constricted. Volatiles

collected from empty glass domes were used as background volatiles.

Glass domes were cleaned with acetone and heated at 175°C for 2 h

before being used for plant volatile collections. To maintain a positive

pressure within the domes, charcoal-filtered air was pumped into

each dome at 250 mL min-1 and drawn out at 200 mL min-1 through

a stainless-steel tube filled with 200 mg Tenax TA adsorbent (20/35

mesh; CAMSCO, Houston, TX, USA). Collections were carried out

under laboratory conditions (23 ± 2°C; 65 ± 5% RH; 16L:8D

photoperiod) for a period of 2 h (lights on), after acclimatization of

the plants to the room for 24 hours and for 30min in the glass domes.

Desorption of volatiles from the Tenax TA adsorbent as well as

subsequent separation and detection of the volatiles were conducted

using a Thermal Desorber TD100-xr (Markes, Llantrisant,
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Glamorgan, UK), which was connected to a 7890B gas

chromatograph (GC) coupled to quadrupole-time-of-flight mass

spectrometer (Q-ToF) (both from Agilent (Agilent Technologies,

USA)). Volatiles were released from the adsorbent at 250°C for

10 min under a helium flow rate of 30 mL min-1 and

simultaneously re-collected in an electronically cooled solvent trap

(Markes) at 0°C. Following completion of the desorption and re-

collection process, volatiles were released from the cold trap by

ballistic heating at a rate of 40°C s-1 to 280°C, which was then kept

for 5 min, while the volatiles were directed to a DB-5MS analytical

column (Phenomenex, Torrance, CA, USA) (length: 30 m; inner

diameter: 0.25 mm; film thickness: 1 μm), placed inside the oven of

the GC at a split ratio of 100:1 for further separation. Initially, the GC

oven temperature was held at 40°C for 2 min, then raised at a rate of

10°C min-1 to 100°C, and then held for 1 min. Then it was raised at a

rate of 5°C min-1 to 140°C and immediately thereafter at a rate of 10°

C min-1 to a final temperature of 280°C, where it was kept for 1 min

under a constant helium flow of 1.2 mLmin-1. Column effluents were

ionized through electron impact ionization at 70 eV and subsequently

detected with an accurate mass Q-ToF MS, acquiring mass spectra

from 35- 400 m/z at an acquisition rate of 5 spectra s-1. The transfer

line and ion source of the Q-ToF MS were set at 280°C and 230°C,

respectively. To detect the presence of plant volatile compounds,

chromatograms were recorded using MassHunter deconvolution

software (Agilent Techologies, Inc 2008). Next, chromatograms

were converted to Xcalibur data through a two-step raw data

conversion program provided within the MetAlign software

(Lommen, 2009). Automated baseline correction, peak selection

(Signal-to-Noise ratio > 3) and alignments of all extracted mass

signals of the raw data were processed following an untargeted

metabolomic workflow using MetAlign, which provides detailed

information on the abundance of the mass signals representing the

various volatile compounds (Lommen, 2009). Next, the extracted

mass features were reconstructed into potential compounds using the

MSClust software through data reduction employing unsupervised

clustering and extraction of putative metabolite mass spectra

(Tikunov et al., 2012). Tentative identification of volatile

compounds relied on a comparative analysis of the reconstructed

mass spectra with those in the NIST 2014 and Wageningen Mass

Spectral Database of Natural Products MS libraries. In addition,

experimentally obtained linear retention indices (LRIs) were used as

an additional element in the identification process.
2.4 Two-choice cage assay

Immediately after VOC collection, plants were subjected to a

two-choice cage bioassay, set up according to Battaglia et al. (2013),

to assess plant attractiveness to N. tenuis and M. pygmaeus and

evaluate their host preference. Experiments were performed in

nylon mesh insect cages (60 cm × 40 cm × 40 cm (W × L × H),

mesh size 0.25 mm × 0.25 mm, Entomologie-Speciaalzaak

Vermandel V.O.F., The Netherlands). Both an inoculated and

non-inoculated control plant were put in each cage at a distance

of 30 cm from each other (avoiding any contact between the two

plants). Ten N. tenuis or M. pygmaeus adult females that were less
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each cage at an equal distance from both plants. Insects were not

provided with additional food or prey in order to stimulate host

selection and plant feeding. Prior to subjecting the insects to the

experiments, insects were starved for one day by providing only

water and putting each of them in individual transparent plastic

containers (1.5 cm × 1.5 cm × 1.5 cm) to prevent cannibalism.

Twenty-four hours after their release, insect positions were

recorded by visual inspection of each plant. As a control, insects

were also given the choice between two non-inoculated control

plants. The experiment was performed at five time points, with two

replicates per time point (n = 10, except for plants inoculated with

B. bassiana ARSEF 3097 exposed to M. pygmaeus; n = 9). Cages

were set-up in a glass greenhouse compartment with climate control

(20 ± 4°C, RH = 66 ± 20%, and a 18L:6D photoperiod;

Supplementary Figure 1), over a time period of 10 days in March

2022 using a fully randomized block design to avoid spatial effects.
2.5 Statistical analysis

A Principal Component Analysis (PCA) using the VOC peak

heights correlation matrix was performed to visualize differences in

the plant VOC composition between fungal strains. To assess

whether the chemical composition of the VOC blends differed

significantly among fungal strains, a one-way permutational

multivariate analysis of variance (perMANOVA) was performed on

the data matrix with fungal strain and VOC peak heights. The

assessment of statistical significance was based on 1000

permutations. The analysis was executed using the adonis2

function of the vegan package in R. To further assess differences in

the VOC composition between the different treatments at the level of

compounds, a univariate ANOVA or Kruskal Wallis test (when the

normality assumption was not met) was performed on the VOC peak

heights of the different compounds. Likewise, to assess differences

between the control treatment and each of the fungal treatments,

pair-wise post-hoc tests were performed on the VOC peak heights

using the Student’s t-test or Wilcoxon Rank Sum test. All these

statistical analyses were performed in R 4.0.3 (R Core Team, 2013).

To analyze insect response, for each tested combination, we

employed a generalized linear mixed model (GLMM) with a

binomial distribution (choice is binary: for either control side or

treatment side) with a logit link function (logistic regression). Fungal

strain was used as a fixed factor, utilizing the ‘glmer’ function from

the lme4 package in R. In this analysis, each release of one cohort of

ten insects (n = 10; except for B. bassiana-inoculated plants exposed

to M. pygmaeus for which n = 9) was considered as a replicate. To

prevent overdispersion and mitigate pseudoreplication, we

incorporated the release of each cohort as a random factor in the

model, as well as the day of the experiment. The response variable in

the model was the number of insects choosing the control or

treatment side of each cohort. Subsequently, we performed an

analysis of variance type III c2-test on the GLMM to determine

whether there was an overall difference between the responses to the

different tested fungal strains. Next, pair-wise post hoc tests (with

estimated marginal means performed with the ‘Emmeans’ package)
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were used to determine differences between control and fungal

treatments. Results were presented by calculating the percentage of

insects choosing fungus-inoculated or non-inoculated (control)

plants. Insects located on other places than the plant were

considered non-responders and not taken into account in the

statistical analyses.
3 Results

3.1 Effect on plant VOC composition

In total, 43 volatile compounds were detected and quantified in

the headspace of the tested plants. These consisted predominantly

of monoterpenes and sesquiterpenes (Table 1). The principal

component analysis (PCA) showed no clear separation in VOC

composition between the different treatments (Figure 1). The first

principal component (PC1) in the PCA accounted for 58.59% of the

total variation, the second component (PC2) for 8.78% (Figure 1).

PerMANOVA confirmed that no statistical differences were found

between the different treatments (pseudo-F = 0.400, p = 0.901). As

indicated by the PCA, three samples exhibited some deviation from

the remaining replicates, i.e. one control sample, one from a plant

inoculated with B. bassiana ARSEF 3097 and one from a plant

inoculated with M. brunneum ARSEF 1095. Therefore, the

PerMANOVA was also performed with these samples excluded

from the dataset. Once again, no statistical differences were found

(pseudo-F = 0.572, p = 0.753). These samples were not omitted in

the remainder of the data analysis. When looking at individual

volatile compounds, no significant differences were detected

between treatments (Table 1). To the contrary, when zooming in

on the pairwise differences between the control treatment and each

of the three fungal treatments, it becomes clear that plants

inoculated with B. bassiana ARSEF 3097 emitted significantly

larger amounts of the sesquiterpenes b-elemene, d-elemene, a-
caryophyllene and b-caryophyllene compared to control plants. No

differences were found between the control plants and the other two

fungus-treated plants (Supplementary Table 1).
3.2 Effect on insect choice behavior

Insect responsiveness in our two-choice bioassay varied

between 78 and 92% per tested combinations (Figure 2). No

significant difference in choice was observed when insects were

given a choice between two control plants (N. tenuis: percentage

choice left plant = 52.5 ± 16.4% versus right plant 47.5 ± 16.4%; M.

pygmaeus: left plant = 45.7 ± 15.3% versus right plant 54.3 ± 15.3%),

demonstrating the robustness of our assay (Figure 2). The choice of

N. tenuis for control versus fungus-inoculated plants varied

significantly between fungal treatments (c²(3) = 16.425, p <

0.001). Female N. tenuis bugs significantly preferred control

plants over M. brunneum ARSEF 1095 inoculated plants (p =

0.018, percentage choice control plant = 71.8 ± 14.8%)

(Figure 2A). For the other combinations, no significant

differences in choice behavior were recorded. Responses of M.
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pygmaeus did not result in significant differences in choice

behavior between control plants and fungus-inoculated plants

(c²(3) = 2.111, p = 0.550) (Figure 2B).
4 Discussion

In this study, we investigated the effect of three fungal strains

(Beauveria bassiana ARSEF 3097, Metarhizium brunneum ARSEF

1095 and Trichoderma harzianum T22) on plant volatile emissions

and the choice behavior of the generalist zoophytophagous mirids

N. tenuis andM. pygmaeus, with the aim to identify strains that can

deter N. tenuis while having no effect on the commonly used

biocontrol agent M. pygmaeus. Selection by insects of suitable

feeding sites, mating sites and oviposition sites depends on a

unique and complex mixture of plant anatomical and chemical

characteristics (Smith and Chuang, 2014). In the early stages of

host-seeking and choice behavior, plant VOCs play a key role in

guiding insects to suitable food plants (von Arx et al., 2012). Plants

associate with diverse microorganisms that form intimate

relationships with their hosts (Tian et al., 2020). As some of them

may affect host physiology and functioning (Vidal and Jaber, 2015;

Vega, 2018; Gange et al., 2019), we hypothesized that inoculation

with plant-beneficial fungi affects VOC composition and host-

plant selection.

Our results show that the fungi tested did not significantly alter

the VOC composition of tomato plants. By contrast, Wilberts et al.

(2022) found that inoculation with the entomopathogenic fungus

Akanthomyces muscarius Petch ARSEF 5128 (Hypocreales:

Cordycipitaceae) significantly changed the VOC composition of

sweet pepper compared to non-inoculated plants. Inoculation with

B. bassiana ARSEF 3097, i.e. the strain also used in this study,

however, did not change the VOC profile of sweet pepper

(Wilberts et al., 2022). Together with our study, this suggests that

B. bassiana ARSEF 3097 has no or only a limited impact on plant

odor. When sweet pepper plants were inoculated with A. muscarius,

significantly higher amounts of b-pinene were emitted than non-

inoculated plants, and significantly higher amounts of indole than B.

bassiana-inoculated and non-inoculated plants. Notably, the authors

found that A. muscarius inoculated plants were more attractive to

aphids than control plants, most probably because of the altered VOC

composition (Wilberts et al., 2022). In line with our findings, T.

harzianum T22 was not found to alter the VOC composition of

tomato plants as long as they were not infested by aphids (Coppola

et al., 2017). When plants were infested with aphids, the VOC

composition of fungus-inoculated plants was different from infested

control plants, which coincided with an increased attraction of the

aphid parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae).

This was linked to an upregulation of genes involved in terpenoid

biosynthesis and the salicylic acid-mediated defense pathway, which

led to increased volatile emission levels of methyl salicylate and b-
caryophyllene (Coppola et al., 2017).

Whereas no differences in VOC blends were found between the

different fungi, the results of our bioassays showed that when N.

tenuis females were given the choice between control plants and

fungus-inoculated plants, N. tenuis preferred control plants over M.
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TABLE 1 Peak heights1 of volatile organic compounds (VOCs) obtained from the headspace of tomato plants inoculated with the fungi Beauveria
bassiana ARSEF 3097, Metarhizium brunneum ARSEF 1095 or Trichoderma harzianum T22, compared to mock-inoculated plants (Control).

Compound name and class ERI2 LRI3
B. bassiana
ARSEF 3097

M. brunneum
ARSEF 1095

T. harzianum
T22

Control P-value4

(n = 9) (n = 10) (n = 10) (n = 10)

Hydrocarbons

3,3,5-Trimethylcyclohexene 831 824 692.5 ± 262.2 747.1 ± 334.3 519.2 ± 148.3 443.1 ± 146.6 0.717

3,5,5-Trimethylcyclohexene 841 832 585 ± 220.4 644.8 ± 286.5 433.6 ± 128.4 376.9 ± 126.7 0.725

Monoterpenes

a-Thujene 932 930 487 ± 115.8 372.5 ± 97.3 489.7 ± 109.7 449 ± 81.6 0.800

a-Pinene 943 939 25936.3 ± 11386 14149.3 ± 1844.6 25434.2 ± 12833.6 15058.1 ± 3322.5 0.928

3,7,7-Trimethylcyclohepta-1,3,5-triene 982 980 104867.3 ± 38427.6 58346.9 ± 23464.9 111092.9 ± 42409.9 60979.4 ± 14865.3 0.605*

b-Pinene 991 989 10518 ± 2708.7 6732.7 ± 1913.3 7747.2 ± 1884.2 7549.5 ± 2023.4 0.639

2-Carene 1008 1007 180899.3 ± 51779.1 139256.3 ± 47161.9 173106.2 ± 43945.5 165207.9 ± 39541 0.883

m-Mentha-1,8-diene 1013 1009 381.2 ± 114.8 339.8 ± 122.5 489.6 ± 218.7 339 ± 76.5 0.844

a -Phellandrene 1016 1017 29066.1 ± 12346.8 24454.1 ± 12459.9 27106.4 ± 12135.4 25184 ± 8246.8 0.900*

3-Carene 1019 1019 2725 ± 630.2 2400.1 ± 583 3085.8 ± 861 2432.8 ± 552.2 0.885*

a -Terpinene 1026 1025 23759.1 ± 10263.9 17930.6 ± 9212.9 28798.4 ± 16312.8 22999.1 ± 8332.3 0.859*

p-Cymene 1033 1025 21736.2 ± 8334.7 16061.8 ± 7073.8 23784.9 ± 8848.6 18378.1 ± 4382.6 0.745*

(Z)-b-Ocimene 1036 1037 911.6 ± 248.1 890.8 ± 233.8 940.8 ± 211.1 963.5 ± 296.3 0.455

Limonene 1039 1038 83322.7 ± 28284.8 58616.8 ± 22299.9 73339.5 ± 21393.5 71661.7 ± 19481.3 0.805

b-Phellandrene 1043 1044 41447.6 ± 12306.4 31963.4 ± 10567.7 39734 ± 9468.3 36913.2 ± 9316.5 0.843

1,8-Cineole 1045 1044 321.6 ± 69.6 235.6 ± 60.9 294.9 ± 62 294.5 ± 54.7 0.599

(E)-b-Ocimene 1048 1048 3471.1 ± 828.8 4175 ± 777.4 3903.1 ± 704.9 3160.9 ± 771.6 0.640

g-Terpinene 1066 1065 4043.4 ± 1406.8 2724.2 ± 1003.8 4226.1 ± 1661.4 3309.7 ± 879.5 0.820*

m-Cymene 1089 1085 213.4 ± 52.1 154.8 ± 54.9 352.8 ± 118.7 177.8 ± 32.4 0.679

Isoterpinolene 1095 1091 2117.4 ± 803.8 1283.3 ± 466.5 2163.2 ± 887 1717.3 ± 520.7 0.805*

p-Cymenene 1100 1100 2195.5 ± 865.6 2072.6 ± 716.4 3445.7 ± 1269.6 2428.4 ± 578.4 0.635

2,2-Dimethylocta-3,4-dienal 1112 1116 28.7 ± 3.7 344 ± 204 58.2 ± 13.8 38.1 ± 5.9 0.197

p-Mentha-1,3,8-triene 1126 1119 356.3 ± 102.3 237.4 ± 40.1 262.7 ± 44.5 330.3 ± 55.9 0.766

Terpinolene 1130 1119 889.4 ± 324.7 751 ± 301.6 1037.7 ± 488.7 649.5 ± 198.5 0.905

2,2,5-Trimethyl-4-cyclohepten-1-one 1138 1149 30.1 ± 5 41.9 ± 7.7 48.3 ± 13.8 45.5 ± 7.3 0.732

p-Mentha-1,5,8-triene 1153 1139 628.4 ± 204 402.7 ± 89.3 540.8 ± 97.6 647.2 ± 155.1 0.415

Myrtenol 1194 1194 457.9 ± 149.9 186.5 ± 57.3 399.5 ± 116 509.3 ± 143.7 0.298

Cumin aldehyde 1264 1265 457.2 ± 119.1 424.2 ± 54.6 540.2 ± 180.6 478.1 ± 87.8 0.763

Piperitone 1275 1275 191.2 ± 58.1 152.9 ± 52.2 291.7 ± 124.8 190.1 ± 55.3 0.654

(Z)-Myrtanol 1304 1261 152.2 ± 48 116.3 ± 21.5 192.4 ± 86.2 140.3 ± 36.8 0.618

Sesquiterpenes

d-Elemene 1355 1357 1713.3 ± 678.1 724.5 ± 338.2 759 ± 264.2 1088.4 ± 365.7 0.124

Isodauca-6,9-diene 1401 1393 1040.8 ± 743.4 1004.9 ± 562.7 363.7 ± 107.9 305.5 ± 72.4 0.815

b-Elemene 1411 1416 192.4 ± 58.1 157.1 ± 51.4 120.6 ± 40.3 150.7 ± 43.2 0.067

(Continued)
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brunneumARSEF 1095 inoculated plants. Among the testedN. tenuis

individuals, 72% chose the control treatment. In all other

combinations tested, no significant differences were found, neither

for N. tenuis nor for M. pygmaeus. This is a promising result for

future biocontrol strategies, whereN. tenuismay be deterred from the

crop when inoculated with M. brunneum ARSEF 1095 and attracted

to non-inoculated plants where they can be concentrated and locally

treated with a pesticide, while M. pygmaeus remains undisturbed.

However, it has to be noted that insect recordings were made at only

one time interval, i.e. 24 h after insect release, and that no data are

available for other time points. The mechanisms behind the observed

aversion of N. tenuis for M. brunneum inoculated plants are still

unclear. No differences were found in the emissions of individual

compounds between the control plants and plants inoculated withM.

brunneum ARSEF 1095, suggesting that causal compounds were

below the detection limit or that other factors are involved. Previous

research has shown that host-selection by herbivores is not only

driven by olfactory cues, but also by visual, contact and gustatory cues

(Bernays and Chapman, 2007). Additional research is required to

find out whether and how these cues are influenced by fungal

inoculation. Nevertheless, it has to be noted that insect behavior is

not always influenced by the volatile blend as a whole or the presence

and abundance of specific compounds in the blend, but often

depends on the level and ratio of the different compounds (Bruce

and Pickett, 2011; Uefune et al., 2013; Goelen et al., 2021).

In our study insects were allowed to see and probe the plants

before settling. In order to purely evaluate olfactory responses,
Frontiers in Plant Science 07
olfactometer bioassays could be performed in which visual cues and

other potential stimuli are eliminated (Naselli et al., 2017; Wilberts

et al., 2022). In previous research, it was shown that inoculation of

Moneymaker tomato plants with M. brunneum ARSEF 1095

significantly changed the nutritional profile of the tomato plants.

For example, M. brunneum ARSEF 1095 significantly reduced the

total content of micronutrients and total nitrogen content in the sap

of tomato leaves compared to control plants (Meesters et al., 2023).

Potentially, this may have contributed to the deterrent effect on N.

tenuis adults over the investigated period of 24 hours. Furthermore,

the production of secondary metabolites, produced by or induced

by the fungus, might be another reason for the difference in the

choice behavior (Pieterse et al., 2014; Quesada Moraga, 2020). In

potato Solanum tuberosum Linnaeus (Solanales, Solanaceae) plants,

for example, it was shown thatM. brunneum ARSEF 1095 produced

secondary metabolites such as destruxin A during transient

endophytic colonization (Rıós-Moreno et al., 2016), which has

insecticidal activities and may suppress the insect’s innate

immune system (Hu et al., 2007; Pal et al., 2007). Further

research is needed to find out whether secondary metabolites may

help explain the change in N. tenuis behavior following fungal

inoculation (Shrivastava et al., 2015).

Among the VOCs detected in this study, monoterpenes and

sesquiterpenes were the most representative classes. By contrast, no

green leaf volatiles (GLVs) were detected in this study. GLVs are six

carbon (C6) compounds that are typically released in response to

mechanical damage, herbivore feeding or pathogen attack, but also as a
TABLE 1 Continued

Compound name and class ERI2 LRI3
B. bassiana
ARSEF 3097

M. brunneum
ARSEF 1095

T. harzianum
T22

Control P-value4

(n = 9) (n = 10) (n = 10) (n = 10)

b-Caryophyllene 1455 1455 26240.4 ± 16501.7 5310.3 ± 2097 5965.5 ± 2077.7 9338.9 ± 5546.3 0.115*

Guaia-6,9-diene 1469 1450 468.1 ± 169.3 321.5 ± 95.7 292 ± 84.2 333.9 ± 121.6 0.293

a-Caryophyllene 1491 1491 9332.3 ± 5168.7 2213.1 ± 801.4 2754.6 ± 987.4 3118.6 ± 1541.3 0.107*

(Z)-b-Guaiene 1515 1513 162.3 ± 56.5 104.4 ± 26.6 111.5 ± 33.9 114.2 ± 32.2 0.251

a-Selinene 1533 1529 163.1 ± 39.9 105.6 ± 19 129.7 ± 32.2 114.3 ± 29.2 0.184

Nitrogen-containing compounds

2-Methylbutanenitrile 729 729 441 ± 75.3 390.7 ± 110.1 438.4 ± 68.9 547 ± 104.4 0.715

2-Isopropyl-3-methoxypyrazine 1091 1090 166.7 ± 61.1 262.5 ± 107.3 82.9 ± 20.8 216.7 ± 64.5 0.809

Alcohols

3,3,5-Trimethylcyclohexanol 1064 1073 541.8 ± 262.8 327.1 ± 111.1 225.6 ± 47.7 272.6 ± 78.1 0.591

Ethers

Anetofuran 1202 1197 1388.1 ± 613.1 864 ± 287.8 1462.3 ± 680.9 1131.8 ± 414.6 0.873*

Homoterpenes

(E,E)-TMTT5 1582 1581 390 ± 97.5 268.6 ± 41.1 501.5 ± 162 693 ± 183.4 0.646
f

1Volatile emissions are presented as average peak heights ± SE, divided by 103. The number of replicates is given in parentheses.
2ERI = experimentally obtained retention indices.
3LRI = retention indices obtained from literature.
4P-values are from ANOVA (*) (df = 3, a = 0.05) or Kruskal Wallis.
5TMTT = 4,8,12-Trimethyl-1,3,7,11-tridecatetraene.
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FIGURE 1

Principal component analysis (PCA) of the volatile composition of tomato plants (cv. Moneymaker) inoculated with Beauveria bassiana ARSEF 3097
(green), Metarhizium brunneum ARSEF 1095 (yellow), Trichoderma harzianum T22 (blue), or non-inoculated (Control, purple). Each data point
represents a VOC headspace sample (n = 10, except for Beauveria bassiana ARSEF 3097 for which n = 9). Vectors (in blue) visualize the loadings for
each VOC, whereas ellipses represent 95% confidence intervals.
BA

FIGURE 2

Response (% ± SE) of Nesidiocoris tenuis (A) and Macrolophus pygmaeus (B) adult females (tested in ten cohorts of ten females, except for M.
pygmaeus on Beauveria bassiana ARSEF 3097 inoculated plants for which nine cohorts of ten females were included) when given the choice
between a non-inoculated tomato plant (cv. Moneymaker) (control, purple) and a fungus-inoculated plant (Beauveria bassiana ARSEF 3097 (green),
Metarhizium brunneum ARSEF 1095 (yellow), or Trichoderma harzianum T22 (blue)) in a greenhouse cage assay. P-values in bold indicate significant
differences in insect response (p ≤ 0.05) when compared to a 50:50 distribution. Pie charts show the percentage of responding (blue) and non-
responding (orange) insects. Overall responsiveness of N. tenuis and M. pygmaeus was 90.5% and 85.5%, respectively.
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consequence of abiotic stresses (Ameye et al., 2018). The fact that no

GLVs were found suggests that they were not induced after inoculation

with beneficial fungi, confirming previous studies (Papantoniou et al.,

2022). However, there are also studies showing that plant beneficial

fungi can enhance the production of GLVs, as for example shown for

arbuscular mycorrhizal fungi (Velásquez et al., 2020). From all

sesquiterpenes detected in our study, b-caryophyllene represented

the highest level in B. bassiana ARSEF 3097 inoculated plants

compared to control plants (Table 1). b-Caryophyllene has been

reported to have negative growth regulatory effects, as well as

contact and fumigant toxicity against agricultural pests (Ma et al.,

2020; Mahajan et al., 2022). In addition, plants overexpressing the b-
caryophyllene synthase gene have been reported to reduce pest

populations such as cotton aphid Aphis gossypii Linnaeus

(Hemiptera: Ahididae), cotton bollworm Helicoverpa armigera

Hübner (Lepidoptera: Noctuidae), the herbivorous mirid Apolygus

lucorumMeyer-Dür (Hemiptera: Miridae) and the common cutworm

Spodoptera litura Fabricius (Lepidoptera: Noctuidae), while parasitoids

such as Peristenus spretus Chen & van Achterberg (Hymenoptera:

Braconidae) and Aphidius gifuensis Ashmead (Hymenoptera:

Braconidae) are attracted (Zhang et al., 2020; Mahajan et al., 2022).

Although no significant effect of plant inoculation with B. bassiana

ARSEF 3097 on host-selection behavior was observed, and

generalizations over different cultivars must be made with caution,

inoculation of tomato cultivar Micro-Tom with B. bassiana ARSEF

3097 in previous experiments was found to reduce N. tenuis feeding

damage and increase its mortality rate (Meesters et al., 2023).

Undoubtedly, further investigation is required, yet the increased level

of b-caryophyllene might potentially have played a role here.

To conclude, our study has demonstrated that the three tested

plant-beneficial fungi have no substantial impact on the VOC

profiles in tomato (cv. Moneymaker). Nevertheless, altered host

selection behavior was observed for N. tenuis when plants were

inoculated with M. brunneum ARSEF 1095. Specifically, N. tenuis

was deterred by fungus-inoculated plants, while no effects were

observed for the closely related biocontrol agent M. pygmaeus.

Further research is required to investigate whether these findings

may lead to new biocontrol strategies against N. tenuis.
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