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Epigenetic clocks are DNA methylation-based chronological age prediction
models that are commonly employed to study age-related biology. The
difference between the predicted and observed age is often interpreted as a
form of biological age acceleration, and many studies have measured the impact
of environmental and disease-associated factors on epigenetic age. Most
epigenetic clocks are fit using approaches that minimize the error between the
predicted and observed chronological age, and as a result, they may not
accurately model the impact of factors that moderate the relationship between
the actual and epigenetic age. Here, we compare epigenetic clocks that are
constructed using penalized regression methods to an evolutionary framework of
epigenetic aging with the epigenetic pacemaker (EPM), which directly models
DNA methylation as a function of a time-dependent epigenetic state. In
simulations, we show that the value of the epigenetic state is impacted by
factors such as age, sex, and cell-type composition. Next, in a dataset
aggregated from previous studies, we show that the epigenetic state is also
moderated by sex and the cell type. Finally, we demonstrate that the
epigenetic state is also moderated by toxins in a study on polybrominated
biphenyl exposure. Thus, we find that the pacemaker provides a robust
framework for the study of factors that impact epigenetic age acceleration and
that the effect of these factors may be obscured in traditional clocks based on
linear regression models.
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1 Introduction

Epigenetic clocks are accurate age prediction models based on DNA methylation that
serve as promising tools for the study of aging and age-related biology. Beyond predicting the
age of an individual to within a couple of years, multiple studies have shown that the
difference between the observed and expected epigenetic age can be interpreted as a measure
of biological age acceleration (Horvath and Raj, 2018). The first epigenetic clock was
developed by Bocklandt et al. (2011). Since then, numerous epigenetic clocks have emerged.
The pan-tissue Horvath clock (Horvath, 2013) and the blood Hannum clock (Hannum et al.,
2013) are considered first-generation clocks. These first-generation clocks rely on a limited
number of DNA methylation sites to estimate age and accurately predict an individual’s age
across different tissues and cell types. GrimAge and DNAm PhenoAge are second-
generation clocks, trained against biological age measures, enabling them to predict the
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mortality risk. As these age prediction models have gained
popularity in human aging studies, they have been used to reveal
health and environmental factors that impact the epigenetic age.
These studies have led to the identification of multiple factors
associated with a variety of health outcomes including mortality
risk (Marioni et al., 2015; Perna et al., 2016), cancer risk (Dugué
et al., 2018), cardiovascular disease (Huang et al., 2019), and other
negative health outcomes (Horvath et al., 2014; Horvath et al., 2015;
Armstrong et al., 2017). However, one intrinsic limitation
underlying all of these epigenetic clocks is that as they predict
age more accurately, epigenetic age acceleration effects become less
significant (Zhang et al., 2019).

Epigenetic clocks are generally trained using a regularized
regression model. Given an elastic net model of the form y = βX,
the goal of penalized regression is to maximize the likelihood by
reducing the prediction error of the model. However, sites where the
relationship between methylation and time is non-linear may be
discarded (Snir et al., 2019). Methylation sites that are associated
with factors other than age (e.g., sex and cell type composition) that
also increase the modeled error may also be discarded during model
fitting. Therefore, these epigenetic models may not be optimal for
detecting the effects of age moderating factors.

An alternative and complementary approach in studying
epigenetic aging is to model how methylation for a
predetermined collection of sites changes with respect to time.
For this purpose, we have previously developed the epigenetic
pacemaker (EPM) (Snir et al., 2016; Farrell et al., 2020) to model
methylation changes with age. Under the EPM, the epigenetic state
has a linear relationship with the modeled methylation data but not
necessarily with chronological age. This allows for non-linear
relationships between time and methylation to be modeled
without prior knowledge of the underlying form.

In the current work, we ask whether the EPM formalism can be
utilized for the identification of moderators that impact the association
between age and the epigenetic state (i.e., factors that accelerate or
decelerate the changes in epigenetic states with time). To this end, we
extend the EPM model to simulate methylation matrices associated
with age and age-accelerating phenotypes. We then evaluate the ability
of regularized regression and EPM models to detect age acceleration
traits that have linear and non-linear associations with age. Utilizing a
large aggregate dataset, we validate the simulation results and, in one
illustrative example, further assess the ability of the EPM to detect age-
related methylation changes associated with PBB exposure.

2 Results

2.1 Simulation of trait-associated
methylation matrices

To determine whether age-accelerating factors can be detected in
synthetic data, we developed a simulation framework that allowed us
to explicitly model epigenetic age-accelerating factors. In our
simulation, we first define the age-associated phenotypes and then
we derive the methylation levels that are consistent with these
phenotypes. Simulated traits included a binary phenotype (γ = 0.5)
and continuous phenotypes influenced by only age, or by age and
sample factors (Table 1). We chose these trait forms as the binary

phenotype simulates the effect of sex; the continuous phenotypes
influenced by age only represent intrinsic epigenetic aging, and the
continuous phenotypes influenced by sample-specific values
represent individual characteristics, such as body mass index
(BMI) or other disease-associated traits that could potentially
impact epigenetic aging. The effect, q, of the binary trait was
varied from 0.995 to 1.0 over five equally spaced intervals. For the
non-binary traits with a non-linear age association, we used the form

pk,j � Age0.5j qk,j. (1)

In this formula, a 0.001 decrease in q corresponds to a 1 percent
decrease in the epigenetic state by age 100. Within each interval,
the standard deviation of the sample parameter distribution was
varied from 0.0 to 0.01 over five equally spaced intervals. The
simulation was repeated 50 times for each combination of binary
and continuous traits, with 500 simulated samples within each
iteration. Additionally, at a binary q-value of 0.995, the range of
continuous traits was expanded over a broader range to assess the
model sensitivity for detecting the continuous trait. Five
methylation sites for all continuous traits were then simulated
and 50 methylation sites for the binary trait. Additional 50 sites
were simulated that were equally influenced by a mixture of four
continuous traits and the simulated binary trait. The resulting
simulation matrix contains 450 methylation sites.

Given a simulation dataset, the samples were split randomly in
half for model training and testing. EPM models were fit for each
simulation training set, and the epigenetic state and age predictions
were made for the testing set. In the last step of our simulation, we
asked whether we could identify whether the epigenetic state was
impacted by the factors included in our model (i.e., whether we
could detect age-accelerating and -decelerating factors). To
determine the effect of each factor on the epigenetic state, we fit
a regression model where the epigenetic age or state is dependent on
the age, square root of the age, the continuous factor (e.g., BMI), and
binary trait status of the sample.

Sj � Age + ����
Age

√ + healthj + binaryj. (2)

The square root of the age is included in the regression model to
account for the non-linear relationship between the simulated age
and methylation data.

As the exposure size (i.e., q value of each factor) of the binary trait is
decreased from 1.00 to 0.995, the ability to detect the influence of the
trait on the epigenetic state and age is improved (Figure 1A). At an effect
size of 0.995, the estimated effect of the binary trait on the epigenetic
state is significant (μ = 0.035, σ = 0.089). At an exposure size of 1.0,
where the simulated binary trait has no effect, the distribution of
p-values for EPM is not significant (i.e., p ≥ 0.05). The ability to
observe the continuous factor effect of the simulated continuous traits
improves in the EPM models as the standard deviation of the sample
effect distribution is increased (Figure 1C). At an exposure size of
0.002 and 0.0025, the average EPMmodel is significant (μ = 0.0194, σ =
0.0436). At a continuous trait standard deviation above 0.005, the
models produce significant results. This demonstrates that when the
effect size is sufficiently large, we are able to identify epigenetic state
accelerating and decelerating factors using our formalism.

We also explored whether we could identify moderators by
computing the epigenetic age using more widely used linear models
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through penalized regression, as opposed to using the EPM. In this
case, all the simulations steps were the same expect that instead of
using the EPM to compute the epigenetic state, we used a penalized
regression approach to estimate the epigenetic age of each
individual. The main difference is that penalized regression leads
to models where the epigenetic age is linear with the age. We found
that the linear models are less sensitive for the detection of aging
moderators than the EPM. At an effect size of 0.995, the estimated
effect of the binary trait on the epigenetic state (i.e., EPM) is
significant, while the effect on the epigenetic age (i.e., penalized

regression) is not (μ = 0.269, σ = 0.282). Similarly, at an exposure size
of 0.002 and 0.0025, the average EPM model is significant, while the
average linear model is not (μ = 0.0607, σ = 0.128).

2.2 Universal blood epigenetic pacemaker
and penalized regression models

We next repeated a similar analysis using a large aggregate
dataset composed of Illumina 450K array data (Demetriou et al.,

TABLE 1 Simulated trait conditions.

Trait form Beta Gamma Gamma standard deviation Sample effect Age only Generated phenotypes

Continuous 0.1 N (0.5, 0.01) 0.05 Yes No 10

Continuous 0.1 N (1.0, 0.01) 0.05 Yes No 10

Continuous 0.1 N (0.5, 0.01) 0.05 No Yes 20

Continuous 0.1 N (1.0, 0.01) 0.05 No Yes 20

Binary 0.1 0.5 0 Yes No 1

FIGURE 1
The distribution binary coefficient p-values for (A) EPM. (B) penalized regression models. The distribution of p-values given a simulation health
standard deviation for (C) EPM and (D) penalized regression models.
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2013; Tan et al., 2014; Horvath and Ritz, 2015; Tserel et al., 2015;
Voisin et al., 2015; Soriano-Tárraga et al., 2016; Dabin et al., 2020;
Ventham et al., 2016; Marabita et al., 2018; Braun et al., 2019;
Kurushima et al., 2019; Zannas et al., 2019; Johnson et al., 2020)
deposited in the Gene Expression Omnibus (Barrett et al., 2012)
(GEO), to determine whether we can identify aging moderators in
real data. All methylation array datasets were processed using a
unified pipeline from raw array intensity data (IDAT) files using
minfi (Aryee et al., 2014). Sex and blood cell-type abundance
predictions were made for each processed, as previously
described (Houseman et al., 2012; Aryee et al., 2014). The
aggregate dataset contains 6,251 whole-blood tissue samples,
representing 16 GEO series.

We trained EPM and penalized regression models using data
assembled from four GEO series (Johansson et al., 2013; Liu et al.,
2013; Butcher et al., 2017; Dámaso et al., 2020) (n = 1605) with
samples spanning a wide age range (0.01–94.0 years). The training
set was split by predicted sex, and within each sex, we used stratified
sampling by age to select 95% of the samples for model training. The
selected samples from each sex were combined (n = 1524), and the
remaining samples (n = 81) were left out for model evaluation.
Methylation values for all samples were quantile-normalized by the
probe type (Horvath, 2013) using the median site methylation values
across all training samples for each methylation site. The cell-type
abundance estimate usually leads to the prediction of about half a
dozen cell types. In order to reduce the parameters in our
moderation analysis, we used principal component analysis
(PCA) to describe the cell types using only three components.
The trained PCA model was used to predict the cell-type PCs for
the testing and validation datasets.

The site selection for the EPM model is performed outside of
model fitting. Methylation sites were selected for model training if
the absolute Pearson correlation coefficient between methylation
values and age was greater than 0.4 (n = 16, 880). A per site
regression model was fit using the observed methylation value as
the dependent variable and age as the explanatory variable. Sites

with a mean absolute error (MAE) less than 0.025 between the
predicted and observed methylation values were retained for further
analysis (n = 7, 013). An EPM model was fit using these sites
(Figure 2A). We then further filtered sites that lead to models with a
low prediction error. To accomplish this, subsets of sites with a
similar functional form were identified by clustering sites by affinity
propagation (Frey and Dueck, 2007)) by the Euclidean distance
between the single-site regression model residuals. Cross-validated
EPM models were trained for all clusters with greater than 10 sites
(n = 55). The cluster EPM models show varying associations
between the epigenetic state and age relative to the EPM model
fit with all sites initially selected by absolute PCC (Figure 2B).

In contrast to the EPM model, we fit the penalized regression
model to the training matrix herein. The normalized training
methylation matrix was first filtered to remove sites with a
variance below 0.001, resulting in a training matrix with
183,114 sites. A cross-validated (cv = 5) elastic net model was
trained against training sample ages using the filtered
methylation matrix. The trained model performed well on the
training (R2 = 0.981) and testing (R2 = 0.940) datasets
(Supplementary Figures S1G,H).

Clusters with an observed EPM and penalized regression MAE
less than 6 years (n = 5) were combined to fit final EPM and
penalized regression models. This resembles the simulated
methylation matrices where sites with differing functional forms
are modeled collectively. The combined cluster EPM and the
combined cluster regression model performed well on the
training and testing datasets (Supplementary Figures S1A–C).

We evaluated the combined cluster EPM, combined cluster
penalized regression, and the fully penalized regression models
against a validation dataset consisting of 14 GEO series
experiments, representing 4,600 whole-blood tissue samples. Each
model accurately predicted the epigenetic state or epigenetic age of
the validation samples (Figure 3).

In the last step, we attempted to identify moderators of
epigenetic states (using the EPM) and epigenetic age (using

FIGURE 2
(A) EPMmodel fit with 3832 methylation sites with a MAE below 0.025. (B) The fit trend line for EPM clusters with more than 10 sites and an R2 ≥ 0.4.
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penalized regression). To accomplish this, we fit an ordinary least
squares regression model for every validation experiment
individually to predict the observed epigenetic age or state using
the sample age, the square root of age, cell-type PCs, and
predicted sex:

Sj � Age + ����
Age

√ + PC1 + PC2 + PC3 + Sex + Intercept. (3)

The individual terms were evaluated for significance to determine
whether they significantly moderated the association between the
epigenetic state or epigenetic age and the actual age. If the proportion
of female samples to the total number of samples was greater than 0.7,
the sex term was dropped from the regression model. The coefficients
of the significant cell type PC2 were observed for all EPMmodels and
the majority of the cluster and fully penalized regression models
(Figure 4A). Significant cell-type PC1 and PC3 coefficients were
observed for the majority of the EPM models but not for the

cluster or fully penalized regression models. Significant sex effects
(p < 0.0038) were observed for 9, 4, and 0 out of 15 models for the
EPM, cluster penalized regression, and fully penalized regression,
respectively (Figure 4B). This shows that, in general, the epigenetic
state is more significantly impacted by sex and cell-type composition
than the epigenetic age. Of course, we could not test for additional
moderators in this dataset as we only computed the sex and cell-type
composition of each sample. Therefore, we sought to identify
additional datasets that included the measurement of factors that
might impact epigenetic states or ages.

2.3 Polybrominated biphenyl exposure

Polybrominated biphenyls (PBBs) were widely used throughout
the United States in the 1960s and 1970s for a variety of industrial

FIGURE 3
Whole blood tissue validation. (A) EPM. (B) cluster penalized regression and (C) full penalized regression models.

FIGURE 4
(A) Cell type principal component and (B) predicted sex regression coefficient p-values.
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applications. Widespread PBB exposure occurred in the state of
Michigan from the summer of 1973 to later spring of 1974 when an
industrial PBB mixture was incorrectly substituted for a nutritional
supplement used in livestock feed (Fries and Kimbrough, 1985). PBB
is biologically stable and has a slow biological half-life; individuals
exposed during the initial 1973–1974 incident still have detectable
PBB in their blood (Safe and Hutzinger, 1984). PBB is an endocrine-
disrupting compound, and exposure has been linked to numerous
adverse health outcomes in Michigan residents, such as thyroid
dysfunction (Jacobson et al., 2017; Curtis S. W. et al., 2019) and
various cancers (Hoque et al., 1998; Terrell et al., 2016). A study by
Curtis et al. showed that the total PBB exposure is associated with
altered DNA methylation at CpG sites, enriched for an association
with endocrine-related autoimmune disease (Curtis S. W. et al.,
2019). Utilizing the publicly available Illumina Methylation EPIC
array (Pidsley et al., 2016) profiles (n = 679) that covered a wide age
range (23–88 years), we sought to compare the ability of penalized
regression and the EPM to detect epigenetic age acceleration
associated with PBB exposure.

In brief, 50% of samples (n = 339) were selected for model
training using stratified cross-validation by age. A cross-validated
elastic net model was trained using all methylation sites with a site
variance above 0.001, (n = 529, 703). The trained model performed
well on the training and testing datasets (R2 = 1.00, R2 = 0.740,
Supplementary Figures S2C,D). EPM sites were selected and models
fit as described with the universal blood EPM. Four EPM clusters
(MAE < 6) were merged for a combined EPM model built using
413 CpG sites. The combined EPM model performed well in
training and testing datasets (R2 = 0.794, R2 = 0.812,
Supplementary Figures S2A,B). Epigenetic age and epigenetic
state predictions were then made for the testing samples using
the penalized regression and EPM models. We then fit an OLS
regression model

Sj � Age + ����
Age

√ + PC1 + PC2 + PC3 + Sex + PBB + Intercept

(4)
to predict the epigenetic age or state dependent on PBB

exposure, age, the square root of age, cell-type PCs, and
predicted sex. PBB exposure was highly significant in the EPM
regression model (p = 5.9e − 10) but not the penalized regression
model (p = 0.141).

3 Discussion

Epigenetic clocks are widely used biomarkers that can
accurately predict the age of an individual based on their
methylation pattern. They have been shown to be useful for
human studies of aging and animal studies, including mice
(Thompson et al., 2018) and dogs (Thompson et al., 2017).
Epigenetic clocks are typically constructed using penalized
regression approaches. Given a large enough matrix, penalized
regression will select sites that minimize the prediction error.
Beyond predicting actual ages, these models have also been used
to measure the influence of external factors on the rates of aging,
and multiple studies have shown that the resulting age
accelerations (i.e., the differences between actual and predicted

ages) are significantly associated with multiple factors such as
cardiovascular disease (Huang et al., 2019) and mortality risk
(Marioni et al., 2015; Perna et al., 2016).

Although epigenetic clocks have proven to be useful, they have
significant limitations. Because they are based on linear models, it
may be difficult to model aging when the underlying methylation
changes are non-linear in time. Moreover, epigenetic clocks are
prone to over-fitting, and while cross-validation schemes are often
used to construct robust clocks, they often do not yield accurate
estimates for some datasets. Finally, as epigenetic clocks become
more accurate, they primarily predict age and will not be
significantly affected by aging moderators. Therefore, more
accurate epigenetic clocks become less useful in studying the
impact of factors that accelerate epigenetic aging. This realization
has led to the development of second-generation epigenetic clocks
that are trained on health-adjusted aging measures rather than just
ages (Levine et al., 2018; Lu et al., 2019).

To overcome some of these limitations, we have previously
developed the EPM formalism. In this approach, rather than
building a model for the age, we construct a model for the
observed methylation data that depends on age. The advantage of
this approach is that this formalism allows us to identify nonlinear
associations between methylation and age across a lifespan.
Moreover, these models tend to be robust to training as they are
fit to large methylation matrices rather than age vectors. Finally, the
model describes the change in methylation at each site with respect
to a time-dependent epigenetic state, and therefore, all parameters of
the model are directly interpretable as either initial values of
methylation or rates of change of methylation.

Depending on the context, epigenetic clocks are both more and
less effective than the EPM. Penalized regression models provide
more accurate age predictions (R2 = 0.875, 0.911) than the EPM
model (R2 = 0.821), and the model output can be directly compared
to the age of a sample. However, because these models are optimized
to reduce the error between the actual and predicted ages, they tend
to minimize the effect of extraneous factors on the predicted age. As
such, epigenetic clocks are not optimal for identifying external
factors that moderate the relations between the actual and
predicted ages. By contrast, the EPM models are not optimized
to minimize the difference between the predicted and actual ages but
rather try to minimize the difference between observed and modeled
methylation values. As such, they retain many of the effects that
other factors may have on the association between methylation and
epigenetic states.

In this study, we find that while the penalized regression models
were more accurate for predicting age, the epigenetic state generated
by the EPM is significantly impacted by cell type and sex effects in
both simulations and real data. Depending on the goal, an epigenetic
measure that is sensitive to the cell type may or may not be
advantageous. However, if one is interested in a cell-type
independent measure of epigenetic age, the predictions can
always be corrected using the inferred cell types. It is generally of
greater interest to identify non-cell-type factors that influence the
epigenetic age. To this end and as an example, we found that the
EPM model generated for individuals exposed to PBB was sensitive
to PBB exposure, which has been linked to negative health outcomes,
while the penalized regression epigenetic aging model was not.
Additionally, the sensitivity of the EPM to moderators of
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epigenetic aging has been supported by two recent studies
investigating epigenetic aging in marmots (Pinho et al., 2021)
and zebras (Larison et al., 2021). In the first of these studies, the
EPMmodels showed an association between hibernation and slowed
epigenetic aging in marmots and in the second an increased
epigenetic age associated with zebra inbreeding; no such
associations were observed with penalized regression epigenetic
age models.

Most studies of human epigenetic aging are not motivated by the
development of accurate age predictors since ages are nearly always
known in studies but rather by the discovery of biological aging
moderators. We, therefore, suggest that the EPM may be a more
sensitive approach than epigenetic clocks for the detection of factors
other than age that influence the epigenome and, therefore,
potentially more useful for discovering moderators of biological
aging.

4 Methods

4.1 Elastic-net regression model

Previous epigenetic clocks have utilized elastic-net regression to
build age prediction models in the form of

L λ1, λ2, β( ) � |y −Xβ|2 + λ2|β|2 + λ1|β|. (5)
In the case of epigenetic clocks, the likelihood is maximized by

minimizing the difference between the observed and predicted age
across subjects while optimizing the elastic-net penalties, λ1 and λ2,
using cross-validation approaches. We implemented this
regression using the elastic-net model found in the Python
scikit-learn library.

4.2 Epigenetic pacemaker model

In our previously published method, Farrell et al. (2020), the
EPM was developed to account for non-linear relationships between
age and methylation. The EPM models’ individual methylation sites
are expressed as

m̂ij � m0
i + risj + ϵij, (6)

where
m̂ij is the observed methylation value.
m0

i is the initial methylation value.
ri is the rate of change.sj is the epigenetic state.
ϵij is a normally distributed error term.
ri andm0

i are characteristic of the sites across all individuals, and
the epigenetic state of an individual sj is set using information from
all modeled sites. Given an input matrix M̂ � [m̂i,j], the EPM
utilizes a fast conditional expectation maximization algorithm to
find the optimal values of m0

i , ri, and sj to minimize the error
between the observed and predicted methylation values across a set
of sites. This is accomplished by first fitting a linear model per site
using age as the initial sj. sj of the modeled samples is then updated to
minimize the error between the observed and predicted methylation
values. This process is performed iteratively until the reduction in

error is below a specified threshold or the maximum number of
iterations is reached.

4.3 Simulation

We began with the assumption that under the EPM, the
epigenetic state for individuals j and Sj can be interpreted as a
form of biological age that represents a weighted sum of aging-
associated phenotypes:

Sj � ∑
n

k�1
α1p1,j +/ + αkpk,j. (7)

Under this model,
αk is the weight of the phenotype k.
pk,j is the value of the phenotype k.
Phenotypes here may contribute to increased or decreased aging,

and when considered as a whole, they contribute to the overall aging
rate observed for an individual.

As shown in Snir et al. (2019), the relationship between pk,j and
time is not necessarily linear. When simulating age-associated
phenotypes, each phenotype can be represented as

pk,j � Age
γk
j qk,j, (8)

where
γk is a phenotype specific parameter shared among all

individuals.
qk,j represents the coefficient, or exposure, of the phenotype for

an individual.
The observed phenotype is modeled as an interaction between

age and an exposure of varying magnitude among individuals. If γk =
1, then the effect of phenotype is linear with age, while if 0 < γk < 1,
then the effect is non-linear. In this formulation, we can also include
non-age dependent traits by setting

γk = 0 and pk,j � qk,j � Age0jqk,j.

Furthermore, to assess the sensitivity of the EPM at detecting
moderators of epigenetic aging (i.e., phenotypes that accelerate or
decelerate the epigenetic state of an individual), we simulated a
methylation matrix containing linear and non-linear age-associated
traits of the form

pk,j � AgeN 0.5,0.01( )
j qk,j (9)

and

pk,j � AgeN 1,0.01( )
j qk,j. (10)

The trait γ parameter was generated by sampling from a normal
distribution N (0.5, 0.01) to generate traits with varying
relationships with time (Supplementary Figure S3). Thus, in this
simulation, we include both phenotypes that influence the epigenetic
state in a non-linear age-associated manner and those that affect it in
a linear fashion. Samples were simulated by assigning an age from a
uniform distribution, U(0, 100). In this formalism, the qk,j term is a
sample specific factor that influences the magnitude and direction of
the simulated age-accelerating trait.

We implemented the simulation framework as a Python
package with NumPy (≥v1.16.3) (Harris et al., 2020) and scikit-
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learn (v0.24) (Pedregosa et al., 2011) as dependencies. A simulation
run generates a trait-associated methylation matrix, and the
samples are tied to the simulated traits. The simulation
procedure is implemented as follows:

• Traits are initialized that contain the information about the trait
relationship with age and a simulated sample phenotype. Given
the structure pk,j � Age

γk
j qk,j, k samples, and j traits, γ is the

characteristic of the trait. When a sample is passed to a trait, a
value of q is generated for the sample by sampling from a normal
distribution with a variance characteristic of the simulation trait.
Additionally, each trait can be optionally influenced by a
characteristic measure of sample health, hj. Given a normally
distributed trait N (μ, σ2) and a health effect hj, the sampled
distribution for individual j is N (μ + hj, σ2). Continuous and
binary traits can be simulated. If a binary trait is simulated, a
q-value other than 1 is assigned at a specified probability.

• Samples are simulated by setting the age by sampling from a
uniform distribution over a specified range and by setting a
sample health metric h by sampling from a normal distribution
centered on zero with a specified variance. Traits passed to a
sample simulation object are then set according to the age and
health of the sample. Simulated samples retain all the set
phenotype information for downstream reference.

• Methylation sites are simulated by randomly setting the initial
methylation value, maximum observable methylation value,
the rate of change at the site, and the error observed at each
site. Sites are then assigned traits that influence the
methylation values at each site.

• Methylation values are simulated for each site for every
individual, given the simulated phenotypes with a specified
amount of random noise.

The simulation data were randomly split in half into training and
testing sets. The EPM models were fit using the simulated methylation
matrix against age. Penalized regression models were fit using scikit-
learn (v0.24) (Pedregosa et al., 2011) ElasticNet (alpha = 1, L1_ratio =
0.75, and selection = random). All other parameters were set to their
default values. Ordinary least squares regression, as implemented in
statsmodels (0.11.1) (Seabold and Perktold, 2010), was utilized to
describe the epigenetic state or age with the following form:

Sj � Age + ����
Age

√ + healthj + binaryj. (11)

The complete analysis is found in the EPMSimulation.ipynb
supplementary file.

4.4 Methylation array processing

Metadata for Illumina methylation 450K BeadChip methylation
array experiments deposited in the GEO database (Barrett et al., 2012)
with more than 50 samples were parsed using a custom Python tool set.
Experiments that were missing methylation BeadChip array intensity
data (IDAT) files, made repeated measurements of the same samples,
utilized cultured cells, or assayed cancerous tissues were excluded from
further processing. IDAT files were processed using minfi (Aryee et al.,
2014) (v1.34.0). Sample IDAT files were processed in batches according

to GEO series and BeadChip identification. Methylation values within
each batch were normal-exponential normalized using out-of-band
probes (Triche et al., 2013). Blood cell-type counts were estimated
using a regression calibration approach (Houseman et al., 2012), and
sex predictions were made using the median intensity measurements of
the X and Y chromosomes, as implemented inminfi (Aryee et al., 2014).
Whole-blood array samples were used for downstream analysis if the
sample median methylation probe intensity was greater than 10.5 and
the difference between the observed and expected median unmethylated
probe intensity is less than 0.4, where the expectedmedian unmethylated
signal is described by (y = 0.66x + 3.718).

4.5 Blood epigenetic pacemaker and
penalized regression models

Methylation sites with an absolute Pearson correlation
coefficient between methylation values and age greater than
0.40 and 0.45 for the unified whole blood and PBB datasets,
respectively, were initially selected for EPM model training. A
linear model was generated using NumPy polyfit (Harris et al.,
2020) with age as the independent variable and methylation values
as the dependent variable. MAE was calculated as the mean absolute
difference between the observed and predicted meth values,
according to the site linear models. A vector of residuals
generated using these models were utilized for clustering by
affinity propagation (Frey and Dueck, 2007), as implemented in
scikit-learn (v0.24) (Pedregosa et al., 2011) with a random state of
1 and a cluster preference of −2.5. Cross-validated EPM and
penalized regression models for the universal blood analysis were
trained for all clusters containing greater than 10 sites. Clusters with
an observed EPM and penalized regression MAE less than 6.0 were
combined to fit the final EPM and regression models.

Penalized regression models were fit using scikit-learn (v0.24)
(Pedregosa et al., 2011) ElasticNetCV (cv = 5 alpha = 1, l1_ratio =
0.75, and selection = random). All other parameters were set to their
default values. PCA, as implemented in scikit-learn, was utilized with
default parameters to perform PCA on training sample cell-type
abundances. The trained PCA was utilized to calculate cell-type PCs
for the testing and validation samples. Ordinary least squares regression,
as implemented in statsmodels (0.11.1) (Seabold and Perktold, 2010), was
utilized to describe the epigenetic state or age with the following form:

Sj � Age + ����
Age

√ + CellTypePC1 + CellTypePC2

+ CellTypePC3 + Sex + Intercept. (12)

The complete analysis is found in the EPMUniversalClock.ipynb
supplementary file.

4.6 Analysis environment

Analysis was carried out in a Jupyter (Basu, 2023) analysis
environment. Joblib (Varoquaux and Grisel, 2009), SciPy
(Virtanen et al., 2020), Matplotlib (Hunter, 2007), Seaborn
(Waskom, 2021), Pandas (McKinney, 2012), and tqdm (Da
Costa-Luis, 2019) packages were utilized during analysis.
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