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Deterministic wind power prediction can be used for long time-scale optimization
of power dispatching systems, but the probability and fluctuation range of
prediction results cannot be calculated. A Bayesian LSTM neural network
(BNN-LSTM) is constructed based on Bayesian networks by placing a priori
distributions on top of the LSTM network layer weight parameters. First, the
temporal convolutional neural network (TCNN) is used to process the historical
time-series data for wind power prediction, which is used to extract the
correlation features of the time-series data and learn the trend changes of the
time-series data. Then, the mutual information entropy method is used to analyze
themeteorological dataset of wind power, which is used to eliminate the variables
with small correlation and reduce the dimension of the meteorological dataset, so
as to simplify the overall structure of the prediction model. At the same time, the
Embedding structure is used to learn the temporal classification features of wind
power. Finally, the time series data processed by TCNN, the meteorological data
after dimensionality reduction, and the time classification feature data are fed into
the BNN-LSTM prediction model together. Compared with a Bayesian neural
network, continuous interval method, and Temporal Fusion Transformer (TFT),
which is one of the most advanced time series prediction networks, the improved
BNN-LSTM can respond more accurately to wind power fluctuations with better
prediction results. The comprehensive index of probability prediction of pinball
loss is smaller than those of the other three methods by 53.2%, 24.4%, and 11.3%,
and the Winkler index is 3.5 %, 34.6 %, and 8.2 % smaller, respectively.
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1 Introduction

Clean and renewable sources of energy, such as wind power, are necessary to compensate
for the decline in the global supply of petrochemicals. Wind power has attracted much
attention worldwide due to its non-polluting and inexhaustible advantages. However, the
volatility of wind power generation poses considerable challenges to the stable operation of
power grids, and accurate wind power forecasting reduces the negative impact on the grid (Li
et al., 2017; Harrou et al., 2023).

Traditional wind power forecasting techniques are mainly based on deterministic
forecasts (point forecasts), such as autoregressive integrated moving average method
(ARIMA) (Wang et al., 2016), Artificial Neural Network (ANN) (Yu et al., 2019), and
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Kalman filter (Zheng et al., 2020) et al. However, wind power is
susceptible to weather changes, wind speed, turbine operating
conditions, and other factors, which makes it difficult to obtain
accurate point forecasts (Louka et al., 2018), while directly
determining the prediction results of wind energy in power
system planning can bring risks to the grid, and the point
prediction also lacks a detailed analysis of the prediction results.
Accurate prediction of wind power generation using uncertainty
theory is important for the safe operation of power systems
including renewable energy, and probabilistic prediction also
provides more information about stochastic wind power (Sun
et al., 2021).

There are also more studies on the prediction of wind power,
Gao et al. proposed a combined prediction method based on the
Sparrow Search Algorithm (SSA) to optimize the VMD parameters,
and the simulation showed that the SSA-VMD-LSTM-NKDE
combined model can not only effectively improve the accuracy of
deterministic prediction, but also effectively quantify the uncertainty
of wind power prediction results. (GAO et al., 2023). Dong et al.
proposed a temporal hybrid density network to extract the local
moment information of wind power temporal data as an input
channel, and used a temporal convolutional network to extract the
probabilistic features at multiple time scales, and the results of the
example show that the local moment channel can effectively
improve the convergence of the model training (DONG et al.,
2022). Ma et al. proposed a nonparametric wind power
prediction method based on empirical dynamic modeling for
short-term probabilistic forecasting, without any assumptions on
the distribution types or physical equations, the proposed approach
can overcome the drawbacks of distribution type misspecification or
physical model incorrectness in the conventional forecast
approaches (Ma et al., 2019). Mahmoud et al. developed an
Adaptive Evolutionary Extreme Learning Machine (SAEELM) to
directly model the prediction intervals of wind power generation
with different confidence levels, and through a case study of a real
wind farm in Australia, SAEELM has better versatility than other
methods such as ANN and SVM, and can generate high-quality
prediction intervals. (Mahmoud et al., 2018). Based on the wind
power curve and data-driven model, Wang et al.proposed a multi-
window kernel density estimation method, which generates kernel
density estimation with different window widths according to
different confidence levels, and realizes the ultra-short-term
adaptive probability prediction of wind power. (WANG et al.,
2023). Su et al. proposed a dual attention probability prediction
model (MT-DALSTM) based on multi-task joint quantile loss. The
verification results show that the proposed method has obvious
improvement in sharpness, reliability, and comprehensive
performance nidex (Su et al., 2023). Feng et al. proposed a short-
term wind power probability density prediction method based on
variational mode decomposition and an improved squirrel
algorithm to optimize gated recurrent unit (GRU) quantile
regression. The results show that the improved model has higher
accuracy and efficiency than the initial model (Alkesaiberi et al.,
2022). Alkesaiberi et al. used the enhanced machine learning models
to forecast wind power time-series data. They employed Bayesian
optimization (BO) to optimally tune hyperparameters of the
Gaussian process regression (GPR), Support Vector Regression
(SVR) with different kernels, and ensemble learning (ES) models

and investigated their forecasting performance. And dynamic
information has been incorporated into their construction to
further enhance the forecasting performance of the investigated
models. The verification results of actual measurement data on three
wind power datasets show that the optimized GPR and ensemble
models are superior to other machine learning models (Lee et al.,
2020). Lee et al. used an ensemble learning approach to predict wind
power with sufficient accuracy based on a variety of factors taking
into account the time dependence of wind measurements. Tests on
two real wind power datasets showed that the ensemble approach
predicts wind power with a high degree of accuracy compared to an
independent model, and that lagged variables contribute
significantly to the ensemble model, allowing for the construction
of a more concise model (FENG et al., 2023).

In research on the performance improvement of BNN and LSTM
models, Zheng et al. proposed an improved Bayesian Neural Networks
(IBNN) forecast model by augmenting historical load data as inputs
based on simple feedforward structure, and the correlation with load
time delay and the influencing factors are analyzed in detail. Simulation
results show that compared with other widely used prediction methods,
IBNN also has better accuracy and relatively shorter calculation time
(Zheng et al., 2018). The randomness of sampling in Bayesian neural
networks causes errors in the updating of model parameters during
training and some sampled models with poor performance in testing.
To solve this problem, Zhang et al. proposed to train Bayesian neural
networks with Adversarial Distribution as a theoretical solution. The
simulation results on a variety of experimental data show that the
proposed method can effectively improve the performance of the
Bayesian neural network model (Zhang et al., 2022). M.M. et al.
combined Gaussian process regression with LSTM machine learning
to improve the prediction ability of surface sea temperature (SST). The
coupled GPR-LSTM model may potentially carry both flexibility and
feature extraction capacity, which could describe temporal
dependencies in SST time-series and improve the prediction
accuracy of SST (Hittawe et al., 2022).

In this paper, according to the input data feature type of wind
power prediction, different processing modules are adopted. we
construct a BNN-LSTM network by combining the advantages of
LSTM in extracting features of time-series data, and improving the
input structure of BNN-LSTM by processing historical power data
with temporal convolution, meteorological data with MIE
processing and time-periodic data with classification processing,
and it can be seen through various probabilistic prediction
simulation experiments that the method proposed in this paper
has good probabilistic prediction effect.

2 Improved BNN-LSTM neural network

2.1 LSTM neural network

LSTM is a deep learningmethodwidely used in the field ofmachine
learning, which was proposed by Hochreiter and Schmidhuber in 1997
(HOCHREITER and SCHMIDHUBER, 1997). LSTM is a deep
learning model specially used to process time series data. It adds a
gate controller to the network model, which can solve the long-term
dependence problem (gradient explosion or disappearance) in RNN.
The structure is shown in Figure 1. As shown in the figure, the actual
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input of the LSTM unit at time t includes the state ht-1 at time t-1 and
the current input xt. Through four fully connected neurons ft, gt, it, and
ot, three gates are used to complete the function of remembering or
forgetting information, where the forgetting gate determines howmuch
previous information will be forwarded, and the input gate controls the
new input In terms of information, the output gate decides what will be
output at this time step. In terms of output, ht is then fed into the next
moment as an input and can be thought of as a short-term state, while ct
determines the longer-term dependencies. The entire calculation is
shown in equations (1)-5).

ft � σ W f( )xt + U f( )ht−1( ) (1)
it � σ W i( )xt + U i( )ht−1( ) (2)

gt � tanh W c( )xt + U c( )ht−1( ) (3)
ot � σ W o( )xt + U o( )ht−1( ) (4)

ht � ot tanh ct( ) (5)
Where gt is the temporary memory unit, ct is the new memory

unit, it is the input gate, ft is the forgetting gate, ot is the output gate,
W and U are the weight matrices, σ is sigmoid function.

2.2 Bayesian neural network (BNN-LSTM)

The BNN is constructed by integrating the prior distribution
over the weight parameters of the LSTM layer in the paper, and its
structure is shown in Figure 2. The structure of a Bayesian neural
network is similar to that of a traditional deep neural network, which
also consists of three layers: input layer, hidden layer, and output
layer. However it is different from other types of neural networks in
that it has a probability layer, and the weights of the probability layer
obey the probability distribution.

In Figure 2, X is the input of the hidden layer, and Y is the output
of the hidden layer; wi and bi are the weight and bias of the ith
neuron, respectively, where the weight obeys the probability
distribution in the form of p (wi|X,Y).

The unique probability layer of the Bayesian neural network
enables the network to express uncertainty, and it has a variety of
different output possibilities under specific input. So the Bayesian
neural network itself can be regarded as the fusion of infinite sub-
networks, similar to the ensemble neural network. However,
different from the simple fusion of general neural networks, the
sub-networks of Bayesian neural networks are not unrelated to each
other. In the actual training process, all sub-networks can be
optimized in each round of training. However, in the process of
prediction, the final result of prediction can come from several
different sub-networks by implementing forward propagation on
the same test set several times, so the Bayesian deep network model
has a good regularization effect, which can better restrain over-
fitting than general neural networks.

2.3 Network structure improvement

2.3.1 Temporal convolutional neural network
(TCNN) for optimizing Temporal features

Temporal convolutional neural network (TCNN) is designed for
sequence modeling tasks and has been widely used in sequence
modeling of different data types, including time series prediction
(Bai et al., 2018; Chen et al., 2020; Yang et al., 2020). The general
architecture of TCNN is shown in Figure 3, which is informed by the
CNN architecture and combines autoregressive prediction with long
memory. TCNN is a layered architecture, which consists of several
convolution hidden layers with the same size as the input layer.

TCNN includes three parts: causal convolution, dilated
convolution, and residual connection. Causal convolution means
that the output at time t is only determined by the convolution of the
input at time t or earlier in the previous layer, which uses zero
padding in the hidden layer to ensure that the hidden layer has the
same dimension as the input layer to promote convolution.

Dilated convolution can achieve a larger receptive field to
capture long memory. In the dilated convolution operation, the
convolution kernels of all layers remain unchanged, but the dilated
factor d increases exponentially with the network depth d = 2L,
where l is the number of network layers. As shown in Figure 3, Xt is
the temporal input variable associated with the predicted output, yt
is the temporal prediction output. And d is 1 in the first layer, then
increases in each layer, and reaches 4 in the last hidden layer. This
pyramid structure and aggregation mechanism effectively increase

FIGURE 1
LSTM structure diagram.

FIGURE 2
Bayesian neural network probability layer structure.
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the receptive field of TCNN, allowing coverage of long input
sequences.

TCNN also uses residual connection, as shown in Figure 4.
Residual connection helps to overcome the problem of gradient
disappearance in multi-layer networks. It has two branches, one of
which transforms the input x by a series of stacked layers, including
two null causal convolutional layers, and the other is a direct
connection of the input x. However, the original input x and the
output of the residual block have different widths, and the addition
operation cannot be performed. The 1 × 1 convolution layer is used
to correct the direct branch to ensure the same width.

Compared with recurrent architectures such as RNN, LSTM,
and GRU, TCNN has the advantages of larger receptive field size,
more stable gradient, and stronger parallelism by means of dilated
convolution, causal convolution, and residual connection.

In order to fully capture the serial time dependence of wind
power historical data and current wind power, this paper adopts
TCNN to process the wind power historical time series data, feeding
TCNN with the historical power values of the first 24 sampling
moments, and feeding the predicted output of TCNN to the BNN-
LSTM probabilistic layer.

2.3.2 Embedding (embedding) structure
optimization time discrete features

The Embedding method was originally designed to solve the
problem of the sparse matrix of word One-hot representation in
natural language processing and the inability to reflect the semantic
relationship between words. Paccanaro et al.proposed a word
embedding word vector representation method, which can map
the original word sparse vector to a low-dimensional dense vector
(Paccanaro et al., 2001). Subsequently, the Embedding method has
been widely used, and the Embedding method has also become a
preprocessing stage of deep learning as a feature engineering
(Mikolov et al., 2013). This paper takes the wind power time
feature as an entity, performs the Embedding operation on the
wind power time, and takes the generated Embedding feature vector
as the pre-training vector.

Wind power has the regularity of periodic change with time
(such as year, season, etc.). In order to ensure that the constructed
wind power prediction network can learn time classification
features, such as months in a year, days in a week, days in a
month, hours in a day, and minutes in an hour. In this paper,
the embedding structure is used to map the discrete features, and the
discrete (such as integer years, months, etc.) input is mapped into
the geometric vector space. For similar discrete features, they will be
embedded into similar vectors, which can well characterize the time
periodicity and classification features of wind power, and form the
prediction pre-training vector.

The Embedding structure is used to encode each category
feature, such as months in 1 year and minutes in 1 hour. These

FIGURE 3
TCNN structure.

FIGURE 4
Residual connection of TCNN network.
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features are then combined and finally connected to a two-layer fully
connected layer (FC). The FC layer also adds a residual connection,
as shown in Figure 5.

2.3.3 Mutual information entropy (MIE) optimized
weather characteristics

Mutual information is a way to measure the degree of
information sharing between variables in information theory,
which characterizes how well a random variable correlates with
information about another random variable (Cao et al., 2012; Feng
et al., 2017).

Define the vector X = [x1, x2, . . . xn], n is the length of X.
Normalize X as shown in equation (6).

X0 � X −min X( )
max X( ) −min X( ) (6)

where X0 is the result of the X-normalization process.
Assuming that B is the group distance of X0, and Ei is the

upper and lower limits of the fluctuation interval of X0, the
calculation formulas are shown in equations (7) and (8)
respectively.

B � max X0( ) −min X0( )
n

(7)

Ei �
−∞ i� 1
min X0( ) + B × i−1( ) i� 2, 3,/n
+∞ i � n+1

⎧⎪⎨⎪⎩ (8)

Based on the one-dimensional histogram analysis method, X0 is
divided into n fluctuation intervals according to Eq 4, and Xi denotes
the i-th fluctuation interval, as shown in Eq 9.

Xi ⊆ Ei, Ei+1[ ] i� 1, 2,/,n (9)

Assuming that p (·) denotes the upper and lower probability
density function, the upper and lower bound probability density p
(Xi) of each fluctuation interval Xi is:

p Xi( ) � ni
n

(10)

where ni is the number of data samples of elements in X0 in the
fluctuation interval Xi.

The self-information entropy H(Xi) is used to characterize
the magnitude of uncertainty in the random fluctuations of X
itself, i.e.,

H Xi( )� −∑n
i�1
p Xi( )logp Xi( )

2 (11)

According to Shannon Information Theory, the self-
information entropy H(Xi) of a one-dimensional vector is
extended to the mutual information I(X;Y), that is:

I X;Y( )� −∑n
i�1
∑n
j�1
p XiYj( )log2 p XiYj( )

p Xi( )p Yj( )⎛⎝ ⎞⎠ (12)

where Y is a vector different from X, p (Yj) is the upper and lower
probability density of the fluctuation interval Yj, and p (XiYj)
represents the joint probability density of X0 and Y0 in
fluctuation interval Xi and Yj.

I(X;Y) characterizes the degree of information sharing between
X and Y, which can be used to measure the correlation between one
variable and the other. If vector X and vector Y are independent and
unrelated to each other, then vector X will not provide any
information to vector Y, and the mutual information between
them is zero. on the contrary, if vector X and vector Y are
related to each other, then all the information passed between X
and Y will be shared, and then the mutual information between
them I(X;Y) = 1.

To eliminate the effect of the magnitude, the generalized mutual
information I(X;Y) is calculated after normalization to obtain the
final MIE correlation coefficient IXY For.

IXY � I X;Y( )����������
H X( )H Y( )√ (13)

whereH(Y) denotes the self-information entropy of the vector Y.
MIE characterizes the statistical properties of the probability

distribution between variables, which is always non-negative,
i.e., IXY≥0, and is related to the generalized linear correlation
coefficient, which can be applied to a wider range. It can better
mine the nonlinear correlation between meteorological factors and
wind power, and is conducive to the screening of key meteorological
features.

Wind power is related to a variety of meteorological factors, such
as wind speed, wind direction, temperature, and barometric
pressure, but each factor has different degrees of influence on
wind power prediction. If all factors are fed into BNN-LSTM, on
the one hand, it results in a complex model structure with many
parameters and low efficiency, and at the same time, the inclusion of
factors that have a low correlation with the wind power is a kind of
noise interference to the prediction model, and will bring a negative
impact, thus reducing the prediction accuracy of the model.

FIGURE 5
Embedding structure of wind power time feature.
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Therefore, a correlation analysis of the wind power dataset is needed
to eliminate factors of little value and also to reduce the data
dimensionality.

Assuming that each meteorological variable Xi′ (i = 1,2, . . . ,4)
represents wind speed, wind direction, temperature, and air
pressure, respectively, the wind power is expressed as Y′. In this
paper, we calculate the mutual information entropy (MIE)
correlation coefficient between each meteorological factor and
wind power separately IX′Y′ = [ISP, IDP, IEP, IPP], whose
calculation results are shown in Table 1.

From Table 1, it can be seen that the MIE correlation
coefficients of each meteorological factor with wind power are
wind speed, wind direction, temperature and pressure from the
largest to the smallest, i.e., wind speed and wind direction have
the highest correlation with wind power, which are greater than
0.5. In order to maximize the balance between training accuracy
and training efficiency, the top two meteorological factors with
high MIE correlation coefficients, wind speed, and wind

direction, are finally used as the optimized meteorological
input features in this paper.

3 Probabilistic wind power prediction
model

3.1 Improved BNN-LSTM probabilistic
prediction model

The improved BNN-LSTM prediction model constructed in this
paper includes three components. The TCNN network is utilized to
process the wind power historical data and extract the temporal data
association features, and then the learned trend feature data is used as
one of the BNN-LSTM probabilistic layer input data subsets. The
information entropy method is utilized to downscale the wind power
related meteorological variables, and the downsized meteorological
variables are used as one of the input data subsets of the BNN-LSTM
probabilistic layer. Then, the Embedding structure is used to learn the
temporal classification features, and the vector encoded by the
Embedding structure is used as one of the input data subsets of
the BNN-LSTM probability layer, and finally the three subsets are fed
into the constructed BNN-LSTM prediction model through fusion,
and the model structure is shown in Figure 6.

The specific steps are as follows.

1) Input data preprocessing and feature engineering. The input
features are collected, and the preprocessing and feature
extraction of wind power historical data prediction,

TABLE 1 MIE correlation coefficients of each meteorological factor and wind
power.

Meteorological factors Correlation coefficient Ixi ′Y′

Wind speed S ISP 0.9201

Wind direction D IDP 0.5431

Temperature E IEP 0.2897

Air pressure P IPP 0.0796

FIGURE 6
Structure of improved BNN-LSTM wind power prediction model.
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meteorological data dimension reduction, wind power time
discrete feature Embedding are carried out according to the
requirements of different input channels.

2) Model training. The data after the preprocessing of the training
set is input into the model for training, the Adammethod is used
to optimize the loss function, and the early termination strategy
is used to suppress overfitting.

3) Output of prediction results. The Monte Carlo sampling method
is used to predict all the prediction results after several times.

3.2 Predictive evaluation criteria

3.2.1 Point forecast evaluation index
A good prediction error index is helpful for better iterative

optimization of the prediction model, and it can also facilitate the
comparison between different algorithms. This paper selects the
common root mean square error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE), and Coefficient
of determination (R2) as the point prediction error index, and the
specific definitions are as follows.

a) Root mean square error

RMSE �

����������∑T
i�t

Pi − P̂i( )2
T

√√
(14)

b) Average absolute error

MAE � 1
T
∑T
i�t

Pi − P̂i

∣∣∣∣ ∣∣∣∣ (15)

c) mean absolute percentage error

MAPE � 100%
T

∑T
i�t

Pi − P̂i

Pi

∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣ (16)

d) Coefficient of determination

R2 P, P̂( )� 1−
∑T
i�1

Pi − P̂i( )2
∑T
i�1

Pi − �P( )2 (17)

where T is the number of sampling time points. Pi and P̂i represent
the actual and predicted power values at moment i, respectively, �P is
the average power during time T.

3.2.2 Probabilistic forecast evaluation index
For wind power probabilistic prediction, this paper adopts two

commonly used probabilistic evaluation methods for wind power
probabilistic prediction evaluation. One is the pinball loss score,
which can comprehensively indicate reliability and sharpness, and
the other is the Winkler score, which can indicate the sharpness and
unconditional coverage of the prediction interval.

3.2.2.1 Pinball loss score
In this paper, the pinball loss score function used is:

Lτ x, y, f x( )( ) � −τ 1 − yf x( )( ) 1 − yf x( )< 0
1 − yf x( ) 1 − yf x( )≥ 0

{ (18)

where f(x) are prediction values and y are actual values, and τ∈[0,1].
It can be seen that the pinball loss score function not only penalizes
the wrongly classified samples, but also gives an additional penalty to
the correctly classified samples; in addition, since the function uses
the quantile distance, it is not sensitive to noise, and the data is
heavy. Sampling is more stable and does not increase
computational cost.

3.2.2.2 Winkler score
The Winkler Score takes into account the width and coverage of

the interval forecast given by the confidence (1-α). At time t,
assuming that the confidence (1 − α) × 100% prediction interval
[Dt, Ut] corresponds to the true value of Vt, it is defined as:

Winkler Score �
δt Dt ≤Vt ≤Ut

δt + 2 Dt − Vt( )/α Vt ≤Dt

δt + 2 Vt − Ut( )/α Vt ≥Ut

⎧⎪⎨⎪⎩ (19)

where δ = Ut− Dt represents the interval width. If the true value is
outside the prediction interval, the Winkler score gives a penalty
based on α. In the same way, by calculating and summing the
Winkler scores of all time points within the prediction time range,
the total Winkler score of the prediction results in this interval is
obtained. Therefore, a lower Winkler score indicates a better
prediction interval.

4 Simulation verification

4.1 Dataset

The dataset used in this paper is from ERCOTWind power plant
data from 2017 to 2019 (Ko et al., 2020), the dataset contains time,
meteorological, and wind power data with 1 h interval of data. Of the
total dataset, 70%, 20%, and 10% portions are used for the training,
testing, and validation sets, respectively. In this paper, we use
pytorch1.11 to build the network model, and the GPU model
used is GEForce RTX 3060Ti. The BNN-LSTM model was
optimized by small-batch gradient descent using the Adam
optimizer with a maximum number of 200 iterations and a
random search method for hyperparameter optimization
selection, which finally determined a learning rate of 0.01 and a
batch size of 64. The time series length was searched from
{1,6,12,18,24,30,36}, and based on the Winkler score optimization
analysis at the 90 % confidence level, the sequence length of 24 is the
best, as shown in Figure 7.

4.2 Predicted effect

4.2.1 Point prediction effect
This paper first establishes a three-layer TCNN wind speed

and wind direction prediction model, and predicts the current
wind speed and wind direction according to the historical values
of wind speed and wind direction. Then, the predicted values of
wind speed and wind direction are used as the input of
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meteorological factors, and based on the method described in
Section 2.1, the wind power prediction model is trained in the
way of data division in Section 3.1.

After training, 20% of the test set data is fed into the
improved BNN-LSTM network for testing, and each
prediction point is Monte Carlo sampled 100 times to make
a scatter plot of the prediction points and compare the
prediction results with those of the CNN without probability
layer and BiLSTM methods.

It can be seen from Figure 8, 9 that the trend and size of the
predicted value and the actual value of both wind speed and wind
direction are basically the same. By using the average absolute error
formula summarized in 2.3, the average absolute errors of both are
3.54 m/s and 21.7, respectively, which shows that both are small and
the prediction effect is good. Figure 10 shows that the predicted
value is close to the actual value, and there is only a large error at
individual points.

1) Wind speed forecast
2) Wind direction prediction
3) Wind power forecast

As can be seen from Figure 10, the predicted value of the
algorithm in this paper is close to the actual value, the error
value fluctuates around zero, and only a few points have a large
error. Table 2 shows the calculation results of RMSE, MAE, MAPE,
and R2 indexes of the three algorithms, and the value of each index is
the average of each algorithm after 50 times of operation. The results
show that the improved BNN-LSTM is dominant in point
prediction performance, as indicated by the approximately
13.27%, 13.63%, and 17.42% lower RMSE, MAE, and MAPE
respectively and R2 approximately 1.21 % higher, when
compared with the method of LSTM. The performance of the

FIGURE 7
Effect of wind power input length on the model.

FIGURE 8
Wind speed forecast.

FIGURE 9
Wind direction forecast.

FIGURE 10
Comparison of wind power prediction algorithms.
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improved BNN-LSTM model also dominates when compared with
the CNNmethods, with approximately 18.48%, 19.78%, 22.81%, and
1.56% improvements in the four evaluationmetrics. R2 is a statistical
index describing the fitting data of the regression prediction model,
which can evaluate the effectiveness and accuracy of the regression
prediction model. The better the fitting effect of the prediction
model, the higher the R2 evaluation index value. From Table 2, it can
be seen that the R2 value of the improved BNN-LSTM is larger and
the fitting effect is better. In summary, it can be seen that the
prediction model proposed in this paper can better adapt to the
actual working conditions of wind turbines and has higher
prediction accuracy.

Regarding the computational cost, the times of the training and
testing process for all the examined methods are presented in
Table 3. It can be seen that the computational complexity of the
improved BNN-LSTM is similar to that of the CNN method, and it
is faster than the LSTM calculation. The data preprocessing and
feature extraction of the proposed method do not bring obvious
computational time-consuming increases to the entire network.

4.2.2 Probabilistic prediction effect
In order to further test the practical feasibility, superiority, and

ability to capture uncertainty of the prediction model described in this
paper, the probability prediction of wind power is carried out at 80%

TABLE 2 Comparison of prediction results.

Prediction algorithm RMSE (MW) MAE (MW) MAPE (%) R2

Improved BNN-LSTM 791.36 597.72 2.35 0.9879

BiLSTM 925.97 703.18 2.91 0.9528

CNN 978.61 751.91 3.24 0.9398

TABLE 3 Comparison of calculation time of different methods.

Prediction algorithm Training times(s) Testing times(s)

Improved BNN-LSTM 789.56 4.89

BiLSTM 890.53 5.67

CNN 776.89 4.21

FIGURE 11
Probability prediction of wind power at 80% confidence level.

FIGURE 12
Probability prediction of wind power at 90% confidence level.

FIGURE 13
Comparison diagram of wind power forecast intervals of
different algorithms.
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and 90% confidence levels, respectively, and the prediction results are
shown in Figure 11, 12. At the 80% confidence level, it is compared with
the Bayesian neural network and continuous interval prediction
method, as shown in Figure 13. Table 4 is the comprehensive
probability evaluation index value of different methods. Note that
the average of all the Pinball values is calculated to evaluate the
overall performance of the probabilistic forecasts for q = 0.01, 0.02,
. . ., 0.99, and a lower value indicates better performance. The Winkler
score is the average of the 80 % and 90 % confidence levels.

1) Prediction at 80% confidence level
2) Prediction at 90% confidence level
3) Contrast forecast

It can be seen from Figure 11, 12 that the improved BNN-LSTM
neural network wind power probability prediction model can
respond to the power fluctuation in time at different confidence
levels, and give the possible power fluctuation range at the next
prediction point, with high accuracy.

In general, the probabilistic forecasting performance is evaluated
in terms of three primary aspects: reliability, sharpness, and
resolution, which have been quantified by the comprehensive
evaluation criteria: the pinball loss and the Winkler score.
Visually inspecting the results in Figure 13, the probabilistic
forecasts generated using the constructed improved BNN-LSTM
model present the benefits of a tighter prediction coverage interval, a
lower prediction interval that varies over time, and higher
unconditional coverage, corresponding to sharpness, resolution,
and reliability, respectively (Hong and Fan, 2016).

The pinball index and Winkler index data in Table 4 show that the
prediction results obtained by the proposed improved BNN-LSTM have
the highest accuracy, followed by Temporal Fusion Transformer (TFT),
one of themost advanced temporal prediction networks. The pinball index
of the improved BNN-LSTM is 11.3 %, 53.2 %, and 24.4 % smaller than
the other threemethods, and theWinkler index is 8.2%, 3.5% and 34.6%
smaller than the other threemethods. The fact that improved BNN-LSTM
presents the best predictive capability indicates the significance of
capturing both epistemic uncertainty and aleatoric uncertainty.

To further intuitively verify the superiority of the proposed
method, based on the comparative simulation experiment in
Figure 13, this paper also calculates the prediction interval index
of each algorithm, that is, the average interval width in the same
prediction period, as shown in Table 5.

It can be seen from Table 5 that the average interval width of the
proposed method is smaller under the two confidence levels.
Especially when the confidence level reaches 90 %, the average
interval width of the proposed method is much smaller than that of
the other two traditional methods. Compared with the most

advanced time series prediction network TFT, it also has certain
advantages, which indicates that the proposed method can predict
the wind power probability more accurately and at a lower cost,
which verifies the superiority of the proposed method.

5 Conclusion

Aiming at the problem that wind power uncertainty point
prediction cannot predict wind power fluctuation. An improved
BNN-LSTM prediction model is constructed based on a Bayesian
neural network, combined with the advantages of LSTM in
processing time-series data in this paper, and the wind power
historical time-series power feature input is optimized by TCNN
network first. The correlation calculation of complex meteorological
input factors affecting wind power prediction is carried out by the
mutual information entropy correlation coefficient method, and the
factors with low correlation with wind power are eliminated to reduce
the input dimensionality and input noise. The temporal classification
features are also extracted by Embedding structure bymaking full use of
the periodic fluctuation feature of wind power prediction in time.
Finally, the reduced dimensional meteorological factors, TCNN
processed power history time series data, and temporal classification
features are used as the final inputs. Through the prediction simulation
under 80 % and 90 % confidence levels and the comparison with a
Bayesian neural network, continuous interval prediction method, and
TFT, it can be seen that this paper has great performance advantages in
point prediction evaluation indexes RMSE, MAE, MAPE and R2 and
probability prediction evaluation indexesWinkler score and pinball loss
score, which can better predict the accuracy and volatility of wind
power.

Data availability statement
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Residual Network With Bidirectional LSTM for One-Hour-Ahead

TABLE 4 Comparison of wind power probability prediction performance.

Probabilistic prediction method Pinball (MW) Winkler (90%)

Improved BNN-LSTM 41.33 57.67

TFT 48.76 63.29

Bayesian neural network 91.83 125.04

Interval prediction method 59.75 90.76

TABLE 5 The index of forecast interval.

Prediction confidence 80% 90%

Average interval width of Improved BNN-LSTM/MW 1010.6 1549.4

Average interval width of TFT/MW 1338.7 1875.6

Average interval width of Bayesian neural network/MW 1825.2 2995.9

Average interval width of Interval prediction method/MW 1565.1 2787.6
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