
TYPE Hypothesis and Theory

PUBLISHED 03 January 2024

DOI 10.3389/fnhum.2023.1282924

OPEN ACCESS

EDITED BY

Changming Wang,

Capital Medical University, China

REVIEWED BY

Gerald Cooray,

Karolinska Institutet (KI), Sweden

Timo Ruusuvirta,

University of Turku, Finland

*CORRESPONDENCE

Peter A. Robinson

peter.robinson@sydney.edu.au

RECEIVED 25 August 2023

ACCEPTED 27 October 2023

PUBLISHED 03 January 2024

CITATION

Babaie-Janvier T, Gabay NC, McInnes A and

Robinson PA (2024) Neural field theory of

adaptive e�ects on auditory evoked responses

and mismatch negativity in multifrequency

stimulus sequences.

Front. Hum. Neurosci. 17:1282924.

doi: 10.3389/fnhum.2023.1282924

COPYRIGHT

© 2024 Babaie-Janvier, Gabay, McInnes and

Robinson. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Neural field theory of adaptive
e�ects on auditory evoked
responses and mismatch
negativity in multifrequency
stimulus sequences

Tahereh Babaie-Janvier1,2, Natasha C. Gabay1,2,

Alexander McInnes1 and Peter A. Robinson1,2*

1School of Physics, The University of Sydney, Sydney, NSW, Australia, 2Center of Excellence for

Integrative Brain Function, The University of Sydney, Sydney, NSW, Australia

Physiologically based neural field theory (NFT) of the corticothalamic system,

including adaptation, is used to calculate the responses evoked by trains of

auditory stimuli that di�er in frequency. In oddball paradigms, fully distinguishable

frequencies lead to di�erent standard (common stimulus) and deviant (rare

stimulus) responses; the signal obtained by subtracting the standard response

from the deviant is termed the mismatch negativity (MMN). In this analysis, deviant

responses are found to correspond to unadapted cortex, whereas the part of

auditory cortex that processes the standard stimuli adapts over several stimulus

presentations until the final standard response form is achieved. No higher-

order memory processes are invoked. In multifrequency experiments, the deviant

response approaches the standard one as the deviant frequency approaches that

of the standard and analytic criteria for this e�ect to be obtained. It is shown

that these criteria can also be used to understand adaptation in random tone

sequences. Amethod of probingMMNs and adaptation in random tone sequences

is suggested to makes more use of such data.

KEYWORDS

evoked responses,mismatchnegativity, neural field theory, adaptation, oddball paradigm,

stimulus discriminability

1 Introduction

Neural processing of sensory information in normal and abnormal states is commonly

investigated using evoked responses (ERs) to impulsive stimuli, measured via non-invasive

methods of electroencephalography (EEG) or magnetoencephalography (MEG) (Näätänen

and Alho, 1997; Tervaniemi et al., 1997; Luck and Kappenman, 2011; Niedermeyer and

Lopes da Silva, 2011; Luck, 2014). A so-called oddball paradigm is widely used to analyze the

effects evoked by any violation of regularity—e.g., changes in frequency, location, duration,

or intensity (Näätänen, 2003; Luck and Kappenman, 2011; Luck, 2014), in which a train of

so-called standard (S) stimuli is interrupted by rarer stimuli, termed deviant (D), as seen in

Figure 1. Such irregularities elicit very different responses when the two types of stimuli are

fully discriminable, whereas marginally discriminable stimuli give an intermediate response

(Sams et al., 1985; Näätänen, 2003; Garrido et al., 2009a, 2013). Throughout this article, we

denote stimuli with calligraphic font to distinguish them from responses, written in italic.
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Significantly, the first stimulus in a stimulus train always

evokes a D response, whereas standard responses only emerge after

a few successive presentations, approaching their limiting form

S∞ over an adaptation timescale of several seconds (Näätänen,

2003; Garrido et al., 2009a, 2013; Luck and Kappenman, 2011;

Luck, 2014). Involvement of adaptation is also inferred because

a pause in stimulation causes S responses to relax to the D form

over a few seconds (Cowan, 1984; Winkler et al., 1993; Loveless

et al., 1996; Näätänen, 2003). Similarly, when two D stimuli occur

consecutively or an S follows twoDs, bothD and S responses differ

from their prototypical forms (Sams et al., 1984). This implies that

adaptation to recent stimuli is at least partly responsible for the

different responses. It thus counts against interpretations that assert

that the system establishes expectations of the long-term statistical

properties of incoming stimuli (Näätänen et al., 1978, 1989, 1993,

2005, 2010; Tiitinen et al., 1993; Kraus et al., 1995, 1996; Tervaniemi

et al., 1997; Atienza et al., 2001; Näätänen, 2003; Garrido et al.,

2009b; Luck and Kappenman, 2011; Luck, 2014), although it does

not rule out some contribution from such effects.

AD response is also evoked by other irregularities within a train

of stimuli, including a repeated tone in an otherwise descending

sequence where no prior tone is repeated (Näätänen et al., 1989;

Tervaniemi et al., 1997; Näätänen, 2003; Garrido et al., 2009b,

2013); after a stimulus that is omitted or changed in duration or

intensity (Näätänen et al., 1989, 2007; Yabe et al., 1997; Näätänen,

2003; Salisbury, 2012); or when the overall frequency range of an

ensemble of random stimuli exceeds the discriminability threshold

(Sams et al., 1985; Garrido et al., 2013).

ERs are most commonly phenomenologically parameterized

by the timings and amplitudes of so-called components, which

approximately correspond to peaks and troughs in the waveform

(Luck and Kappenman, 2011; Luck, 2014). It is widely assumed that

each component has a fixed timing (latency) and polarity (positive

or negative) in normal subjects and that cognitive processes only

change their amplitudes (Hillyard and Anllo-Vento, 1998; Hillyard

et al., 1998). In this vein, the S response is often subtracted from the

D response to compute the so-called mismatch negativity (MMN),

which has been argued to be a separate component that results from

top-down memory-based comparison processes in higher-order

cortical areas that flag deviance from a pre-established regularity

(Näätänen et al., 1978, 1989, 1993, 2005, 2010; Tiitinen et al., 1993;

Kraus et al., 1995, 1996; Tervaniemi et al., 1997; Atienza et al.,

2001; Näätänen, 2003; Garrido et al., 2009b; Luck and Kappenman,

2011; Luck, 2014). In the present study, we base our description

of ERs on the underlying physical brain activity that they reflect,

and only use component terminology as a convenient shorthand

to designate timings and polarities of peaks and troughs. In this

notation, N1 and N2 denote negative peaks at around 100 and 200

ms post-stimulus, and P3 denotes a positive peak at 300 ms.

An alternative to the above view is that the auditoryMMN is the

result of cortical adaptation to repeated S stimuli that changes the

S response at the relevant point of the tonotopic map, whereas the

point that corresponds to theD stimuli undergoes little adaptation,

which mostly relaxes before the next such stimulus arrives (Atienza

et al., 2001; Jääskeläinen et al., 2004). This does not preclude

contributions from higher-order memory processes; however, basic

biophysics, the evolution of S and D responses during long trains,

the decay of their distinction during a few-second stimulation

pause, and the existence of MMN in coma (during which there is

arguably no higher order processing) all imply a role for adaptation

(Schröger, 1998; Näätänen, 2003; Jääskeläinen et al., 2004; Sussman

et al., 2014). Ruusuvirta (2021) pointed out that there are still

uncertainties about the precise mechanisms of adaptation and its

importance in determining ER structure, which reinforces the need

to test the extent to which adaptation can even potentially account

for ER structure.

Our approach to testing the potential role of adaptation is to

model ERs mechanistically in terms of the response of cortical

activity to incoming stimuli, focusing on the effects of slow

adaptation and adding frequency dependence to our prior neural

field theory (NFT; Robinson et al., 2021) to see whether they can

account for the evolution of ERs from deviant to standard form

when driven by multiple stimuli, and for frequency-dependent

features. NFT has been extensively used to model ERs, ongoing

EEG characteristics, and other phenomena (Rennie et al., 2002;

Robinson et al., 2002; Kerr et al., 2008, 2009, 2011; Babaie-

Janvier and Robinson, 2018, 2019, 2020; Mukta et al., 2020).

In particular, Kerr et al. (2011) successfully fitted NFT impulse-

response models of S and D ERs to data from cohorts of up

to nearly 1,500 subjects, albeit without including adaptation.

They showed that inferred prestimulus parameters for S and D

responses could be significantly different from each other and

from those of background EEG (van Albada et al., 2010; Kerr

et al., 2011). Our recent study (Babaie-Janvier and Robinson, 2018,

2019, 2020) also showed that stimulus-driven gain changes occur

as part of ERs and affect their form. Most recently, Robinson

et al. (2021) incorporated adaptation into the NFT model of

ERs and used it to calculate S and D responses to sequences of

simple stimuli, including the development of distinct response

characteristics. This provides a means by which a wide range of

experimental outcomes can be reproduced using a single model,

including the entire waveform, not just its peaks and troughs.

Moreover, it predicts observed changes in amplitudes and timings

of oscillations due to changes in corticothalamic parameters,

implying that fixed-latency components do not best reflect the

underlying dynamics. This quantitative approach also enables one

to determine how much of the dynamics can be accounted for by

adaptation and what remainder might be due to higher-order top-

downmemory-related stimulus-comparison processes. Using these

physically based approaches, they showed that the building blocks

of responses are the same damped corticothalamic oscillations that

account for ongoing EEG characteristics and other phenomena.

In the present study, we use our recent NFT model (Babaie-

Janvier and Robinson, 2020; Robinson et al., 2021) and generalize

it to incorporate the auditory tonotopic map to allow for stimuli

to overlap in their adaptive effects, instead of being assumed to

be entirely distinct. This method enables us to treat responses

to a train of stimuli in which frequent and infrequent tones are

not fully distinguishable (Robinson et al., 2021), and to relate the

response characteristics to the probability distribution of random

stimuli (Garrido et al., 2013). We thus aim to explore the extent

to which adaptation can account for the occurrence of standard,

deviant, and intermediate responses to trains of stimuli that can

differ in frequency.
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FIGURE 1

Schematic examples of typical standard (blue) and deviant (red) evoked responses to auditory stimuli in an auditory oddball experiment. Traditional

phenomenological “components” (peaks and troughs) are labeled N1, N2, and P3. Note that negative signals correspond to the upward direction in

these plots, in accord with convention.

The structure of the article is as follows: Section 2 provides

an overview of the necessary background theory for an

interdisciplinary readership, followed by extension of the NFT of

ERs with adaptation to also include tonotopy, in the absence of

higher-order feedbacks. In Section 3, we use the model to predict

the MMN as a function of stimulus discriminability in an oddball

paradigm and predict responses in random tone experiments. In

each case, the results are compared with experimental outcomes in

the literature. Section 4 summarizes the main findings and outlines

directions for future study.

2 Materials and methods

This material summarizes and further develops the necessary

theory for our analysis. Section 2.1 briefly summarizes the relevant

background aspects of the use of physiologically based neural

field theory in modeling large-scale brain activity and reviews

the essential components of our specific corticothalamic model,

which has previously been successfully tested against experimental

results in other contexts (Rennie et al., 2002; Kerr et al., 2008,

2011; Babaie-Janvier and Robinson, 2020; Robinson et al., 2021).

To avoid undue repetition, we refer the reader particularly to the

study by Robinson et al. (2021) for further details of the model and

its mathematical treatment in both time and frequency domains,

so that new aspects can be focused on here. Section 2.2 then

discusses how the tonotopic map and auditory inputs are treated

and establishes criteria for significant adaptation. The connection

to measured ERs is then discussed in Section 2.3.

2.1 NFT of corticothalamic evoked
responses

Cortical evoked responses (ERs), as measured by EEG or

MEG techniques, are generated primarily by perturbations in the

activity φe arriving at synapses of pyramidal excitatory cells due

to dynamics in the corticothalamic system (Nunez and Cutillo,

1995). Our corticothalamic model, shown in Figure 2, incorporates

the cortex and thalamus and their connectivities; each includes

distinct population of neurons: cortical excitatory (e) and inhibitory

(i) neurons, the thalamic reticular nucleus (TRN; r), thalamic

relay neurons (s), and non-corticothalamic neurons that provide

external inputs (n). In this study, the relevant relay nucleus

is the medial geniculate nucleus (MGN), whose projections are

to the primary auditory cortex (A1). The model incorporates

the auditory projection system with reciprocal corticothalamic

feedback projections, excitatory projections to the TRN from

MGN-A1 feedforward axons and A1-MGN feedback axons, and

inhibitory projections from the TRN onto MGN relay neurons.

The NFT discussed by Robinson et al. (2021) yields partial

differential equations for the mean firing rates φa of neurons in

the various structures mentioned in the previous paragraph, with

a = e, i, r, s, n. The firing rate φe in cortical pyramidal neurons has

previously been shown to be the one most closely related to EEG

signals (Nunez and Cutillo, 1995; Nunez and Srinivasan, 2006), a

relationship we continue to assume here.

Solution of physiologically based NFT equations of the

corticothalamic model first yields spatially uniform steady states

of the system, which are interpreted as characterizing the baseline

of normal activity, with firing rates φa that are in accord with

experiment (Robinson et al., 2002, 2004). Linear perturbations

from these steady states have been shown to correspond to time

dependent brain activity, leading to successful comparisons with

numerous experimental phenomena, including evoked responses

(Robinson et al., 1997, 2002, 2004, 2005; Rennie et al., 2002;

O’Connor and Robinson, 2004; Kerr et al., 2008; van Albada et al.,

2010; Roberts and Robinson, 2012; Abeysuriya et al., 2015). In this

study, we consider only the large-scale global ER because it has been

shown to dominate the measurable signal, as seen in Figure 12 of

Mukta et al. (2020).
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FIGURE 2

(A) Physiologically based corticothalamic model in which the arrows represent excitatory e�ects and the circles depict inhibitory ones. The

populations are cortical excitatory (e) and inhibitory (i) neurons, the thalamic reticular nucleus (r), thalamic relay neurons (s) that project to the cortex,

and non-corticothalamic neurons responsible for external inputs (n). (B) Schematic of propagation of neural activity to population a from population

b, where both fast (through η) and slow (through µ) modulation of the neuronal gain by local feedback is given by Equation (9).

Application of the Laplace transform

L[f (t)](s) = f (s) =
∫ ∞

0
f (t)e−stdt, (1)

to the NFT equations yields the following equation for the activity

φa at each neural population a in terms of activity arriving from

other populations b:

D̂a(s)
[

φ(0)
a + φ(1)

a (s)
]

= L̂(s)
∑

b

Gab

[

φ
(0)
b

+ φ
(1)
b
(s)e(−sτab)

]

,

(2)

where we retain first order perturbations (superscript 1) from the

steady state (superscript 0), and

D̂a(s) = (1+ s/γa)
2, (3)

L̂(s) = αβ/[(s+ α)(s+ β)], (4)

where L̂(s) is the operator that embodies the temporal response of

cell-body potentials to afferent pulse rate fields φb by encapsulating

the rates β and α of the response’s rise and fall, D̂a(s) corresponds

to a damped wave operator (Jirsa and Haken, 1996; Robinson et al.,

1997) with the damping rate γa satisfying γa = va/ra, where ra and

va are the characteristic range and conduction velocity of axons of

type a (in the corticothalamic system, only the axons of excitatory

cortical neurons are long enough to cause significant propagation
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effects on large scales; in the other populations, we assume the

axonal length to be small enough that it can be neglected, whence

ra ≈ 0 and D̂a ≈ 1), and the gains Gab, in general, are the response

in neuron a due to unit input from neuron b; i.e., the number of

additional pulses out for each additional pulse in.

For first-order perturbations, we can write

φ(1)
e (t) =

∫ t

−∞
Ten(t − t′)φ(1)

n (t′)dt′, (5)

for a purely temporal response, where the other linear

perturbations have been eliminated from the equations, Ten

is the resulting linear response function, which embodies the

system linear response to a perturbation, with Ten(t − t′) = 0 for

t < t′ to preserve causality. In Equation (5), φ
(1)
n is the incoming

non-corticothalamic stimulus to the corticothalamic system. The

form in Equation (1) can be generalized to include spatial aspects,

but here we focus on the temporal domain to bring out the main

aspects without undue complexity (Kerr et al., 2008). Equation (1)

can be Laplace transformed to yield

φ(1)
e (s) = Ten(s)φ

(1)
n (s), (6)

which expresses the transfer function as the ratio of output to

input in the Laplace domain. If the input in Equation (6) is a delta

function φn(t
′) = δ(t′ − t0), one finds

φ(1)
e (t) = Ten(t − t0), (7)

whence we see that the transfer function and the ER to a delta

input are one and the same. More generally, subsequent physical

phenomena such as volume conduction, measurement effects, and

postprocessing should be included in the overall transfer function

from stimulus to measurement, but we omit discussion of these

issues because they do not strongly affect the time course of large-

scale ERs, which is our focus here.

The transfer function itself can be changed by the stimulus,

owing to a variety of fast and slow dynamical effects that cause the

gains Gab to evolve in time (Koch, 1999; Rennie et al., 1999, 2000,

2002; Robinson and Roy, 2015; Babaie-Janvier and Robinson, 2019)

due to current or recent activity, including plasticity, long-term

potentiation/depression, adaptation, facilitation, habituation, and

sensitization (Koch, 1999; Rennie et al., 2000; Robinson and Roy,

2015; Babaie-Janvier and Robinson, 2019). Rennie et al. (1999),

Koch (1999), Robinson et al. (2002), and Robinson and Roy (2015)

introduced a general mathematical form for gain changes that are

driven by local activity and that relax toward equilibrium with a

characteristic timescale that can be applied to a broad range of

local feedback mechanisms in which presynaptic neuronal activity

modulates neuronal gains. For moderate perturbations, it yields

Gab(s) = G
(0)
ab

+ G
(1)
ab
(s), (8)

G
(1)
ab
(s) = [gabF(s)+ habH(s)]φ

(1)
b
(s), (9)

whereG
(0)
ab

is the static gain andG
(1)
ab

is the gain perturbation caused

by local feedback. Here, F(t) describes the temporal dynamics of

fast gain modulation on timescales of up to a few hundred ms and

gab is its strength, whereas H(t) is a slow adaptation process on

timescales of 5 – 10 s, with hab the corresponding strength; gab and

hab are assumed constant in the present study. Figure 2 depicts this

modulation schematically. Gain dynamics driven by postsynaptic

firing is postponed to future study, but can be treated similarly

(Rennie et al., 1999; Robinson and Roy, 2015; Robinson et al., 2021).

For simplicity, we use the forms

F(s) = η/(s+ η), (10)

H(s) = µ/(s+ µ). (11)

In the time domain, F(t) = H(t) = 0 for t < 0 to enforce

causality, while the positive rate constants η and µ are the inverse

timescales of the modulatory processes and the forms (10) and (11)

are normalized to unit integral over time. Previous study found

η = 25 s−1 (Rennie et al., 1999; Babaie-Janvier and Robinson,

2019), and later study set µ = 0.65 s−1 because of the several-

second timescales over which S response characteristics develop

and decay (Robinson et al., 2021). Substituting the dynamic form

of Gab from Equations (8) and (9) into Equation (2), one finds

D̂a(s)φ
(1)
a (s) = L̂(s)

∑

b

[

G
(0)
ab
e−sτab + φ

(0)
b

{

gabF(s)+ habH(s)
}

]

φ
(1)
b

(s),

(12)

the right side of which expresses two types of first-order responses:

the first term in the square brackets is the response that would occur

without change to the steady-state gains, while the second term is

the response due to stimulus-induced gain changes acting on the

steady-state activity (Robinson et al., 2021).

It is straightforward to eliminate the other first-order quantities

to obtain the transfer function to excitatory cortical activity from

auditory signals that reach the thalamus (Babaie-Janvier and

Robinson, 2019, 2020), giving

Ten(s) =
φ
(1)
e (s)

φ
(1)
n (s)

= χesn(s)

Mc(s)Pt(s)− Pc(s)
, (13)

which expresses the ratio of the response change φ
(1)
e to a change in

the input φ
(1)
n (i.e., to a stimulus). The full analysis shows that the

various terms in this equation have the specific forms (Robinson

et al., 2021)

χab(s) = L̂(s)
[

G
(0)
ab
e−sτab + φ

(0)
b

{

gabF(s)+ habH(s)
}

]

, (14)

Mc(s) = D̂e(1− χei)− χee, (15)

Pt(s) = 1− χsrs, , (16)

Pc(s) = χese + χesre, (17)

χabc = χabχbc. Table 1 lists nominal values of model parameters

for resting EEG (Robinson et al., 2004) and gain modulation

parameters calibrated and used in previous studies (Babaie-Janvier

and Robinson, 2019, 2020; Robinson et al., 2021). These values

were estimated for normal adults and have been extensively used

and verified in comparisons with experiments, as mentioned in

Section 1.
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TABLE 1 Estimated brain parameters for normal adults in the alert eyes-open state.

Quantity Value Gain Dynamic gain

γe Damping rate 109 s−1 ab [Gab]i [Gab]f Fast

αab Decay rate 80 s−1 ee 7.03 8.49 ηgee −0.0046

βab Rise rate 320 s−1 ei −8.11 −12.48 ηgei 0.0307

τes Forward delay 20 ms es 1.77 1.23 ηges 0.0297

τse Feedback delay 60 ms se 2.47 0.63 ηgse 0.0042

sr −1.89 −2.15 ηgsr −0.0056

rs 0.22 0.23 ηgrs 0.0046

φ(0)
e e Firing rate 16 s−1 re 1.31 1.18 ηgre 0.0113

φ(0)
s s Firing rate 16 s−1 sn 0.8 1.97 ηgsn 0

φ(0)
r r Firing rate 16 s−1 Adaptive

φ(0)
n n Firing rate 16 s−1 µhee 0.0420

µhei −0.1204

η Fast gain-change rate 25 s−1 µhes −0.0098

µhse −0.0535

µ Adaptation rate 0.65 s−1 µhsr −0.0051

µhrs 0

µhre 0

µhsn 0.01

Adapted from Robinson et al. (2004), Kerr et al. (2008), and Robinson et al. (2021), the estimated values are a self-consistent nominal set of parameters that provide a good fit to standard and

deviant responses. The gains [Gab]i and [Gab]f are the values initially and after 10 stimuli, respectively.

2.2 Stimulus profile at auditory cortex

In our previous study (Robinson et al., 2021), we assumed that

S andD stimuli could be clearly distinguished via a large frequency

separation and that EEG electrodes just responded to the total

response without distinguishing spatial locations. In the current

study, we relax the first assumption but retain the second. This

requires us to examine the frequency content of the stimulus and

its mapping to auditory cortex.

2.2.1 Tone-burst stimulus
ER experiments typically use short tone bursts of sinusoidal

waves of frequency f0 and duration τ . Such a burst can be written

X (t) = sin(2π f0t)W(t)[H(t)−H(t − τ )], (18)

where 2(u) is the step function

2(u) =
{

1, 0 ≤ u,

0, u < 0.
(19)

In Equation (18), the difference of the two step functions

restricts the stimulus to the interval 0 < t < τ and we use the

notation X to indicate that this is the externally applied stimulus,

which still has to be transduced by auditory pathways before

arriving at the cortex as φn. The remaining factor in Equation (18)

is the window function W(t) that determines the shape of the

burst within the overall interval τ . To minimize the generation of

side-lobes at frequencies far from f0, we use the Tukey window

W(u) =















sin2
[

π t
2pτ

]

, u < pτ ;
1, ρτ < u < (1− p)τ ;
sin2

[

π(τ−t)
2pτ

]

, (1− p)τ < u;
(20)

which smooths the burst over an interval pτ at each end of the

interval, with p < 0.5; we use p = 0.2. Fourier or Laplace

transformation of Equation (18) implies that a frequency range

1fu ≈ 2/[(1 − ρ)τ ] is present in a tone burst (Bracewell, 1986),

which expresses the frequency–time uncertainty relation. Figure 3

shows a tone burst of f0 = 200 Hz and τ = 50 ms with p = 0.2,

along with its Fourier spectrum.

2.2.2 Transfer to the auditory cortex via the
tonotopic map

When an auditory stimulus arrives at the ear, it passes via the

eardrum and stapes to the cochlea, which narrows progressively

with distance. Cilia near the entrance respond most strongly to

low-frequency signals, while those further in respond to higher

frequencies. Each group of cilia stimulates neurons that correspond

to a narrow range of frequencies around its preferred one,

with a firing rate that is proportional to the logarithm of the

intensity (Pickles, 2013). Thus, when a frequency is present, the

corresponding neurons are active with a firing rate that depends

on the intensity of the signal at that frequency.
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FIGURE 3

Tone burst of the form in Equation (18) at f0 = 200 Hz and τ = 50 ms with p = 0.2. (A) Time series showing the sinusoidal signal modulated by the

Tukey window. (B) Corresponding frequency spectrum.

Neurons at various stages of the auditory pathway remain

topographically arranged according to their optimal frequency

response. This tonotopic organization mirrors the distribution

of receptors in the cochlea, with a gradient extending between

neurons that preferentially respond to high frequencies and those

that respond best to low frequencies. Tonotopy is preserved via

the medial geniculate nucleus (MGN) of the thalamus to the

primary auditory cortex, where frequencies are approximately

logarithmically spaced in a one-dimensional tonotopic map, in

which each frequency f is mapped to a position x(f ) (Talavage et al.,

2004; Herdener et al., 2013; Saenz and Langers, 2014).

There is some spreading of neural projections in the pathways

to the auditory cortex. This means that a pure tone of a certain

frequency f0 stimulates cortical neurons across a small range of

adjacent locations around x(f0), corresponding to a frequency range

1fnat, which is around 0.3% of f0 for frequencies of order 1–2 kHz,

which are typical in ER experiments, and about 3 Hz for frequencies

below 1,000 Hz.

Any sinusoidal wave train that is cut short to a time interval

of length 1T to make a tone burst has an unavoidable spread

in frequency 1fu ≈ 1/T, via the uncertainty principle. Hence,

the total spread of cortical stimulation corresponds to a spread of

frequencies 1f , with

1f ≈
√

(1fnat)2 + (1fu)2. (21)

Since it is mathematically impossible to say simultaneously

exactly which frequencies are present at which times during a short

burst, due to the uncertainty principle, we approximate their effect

on the cortex by assuming that they are all present throughout

the interval of the burst. This approximation is well justified for

durations of only a few tens of ms because the dynamics of the

cortical response effectively integrate over the burst which appears

like a delta-function in time if it is sufficiently short. Therefore,

the stimulus that arrives at the primary auditory cortex can be

approximated as

φn(x, s) =
∫ +∞

−∞
w(x− x0)S(f0, s)dx, (22)

where x0 = x(f0) and
∫

w(x − x0)dx = 1. A suitable approximate

form is

w(x− x0) =
1

1f
√
2π

exp

[

− (x− x0)
2

2(1f )2

]

. (23)

It is worth noting that the stimulus profile at the cortex can be

calculated in one of two nearly equivalent ways: (i) first calculate

the stimulus spectrum for given f0 and τ , giving its intrinsic width

∼ 1fu and then convolve the spectrum with the function that

governs the spread 1fnat of afferents to the auditory cortex to yield

the total spread on the tonotopic map, or (ii) first specify f0 and1fu
and then use the total spread from the above equation to estimate

the spread on the tonotopic map directly. Here, we use the latter

approach, which leads to a more straightforward implementation.

2.2.3 Criteria for significant adaptive e�ects
Now that 1f has been defined, we can now easily define

criteria that characterize when significant adaptive effects due

to one stimulus will affect another to produce a more S-like

second response.

Frontiers inHumanNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1282924
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Babaie-Janvier et al. 10.3389/fnhum.2023.1282924

If a tone burst of central frequency f = f0 and duration τ

occurs at t = t0, it causes adaptive changes within a neighborhood

of f0 of width 1f . These changes last a time tH ≈ 5 − 10 s, so

any stimulus occurring at f1 in that frequency range and t1 in that

time interval will encounter a region of auditory cortex that has

undergone adaptation due to the first stimulus. It is convenient

to use the following two parameters when investigating adaptive

effects:

ρ = |f0 − f1|
1f

, (24)

ζ = R(f0,1f )tH . (25)

The discriminability ρ is the ratio of the frequency separation

to the spectral width 1f of φ
(1)
n and is large when the two spectra

stimulate quite different parts of the auditory cortex. The quantity

ζ is the product of the rate R(f0,1f ) at which stimuli arrive within

1f of f0 and the adaptation timescale tH and represents the mean

number of stimuli that might potentially be affected by the first

stimulus, or equivalently, the number of previous stimuli thatmight

affect it. Significant adaptive effects will only occur if ρ . 1 and

ζ & 1.

2.3 Measured ER

Once the stimulus φ
(1)
n (f , t) is known as a function of frequency

and time on the primary auditory cortex, its local contributions to

the ER, including adaptation, can be calculated using Equations (5)

and (13). In the present case, we assume that the recording

electrode responds to the whole stimulated cortical area, so the

measured ER is obtained by integrating over all frequencies.

2.3.1 ER: first stimulus
Let us consider the first ER in a sequence, so there has been

no prior adaptation and the transfer function does not depend on

position x (i.e., on frequency). The cortical response to φ
(1)
n (x, s) is

φ(1)
e (x, s) = Ten(s)φ

(1)
n (x, s), (26)

= Ten(s)

∫

w(x− x′)φ(1)
c (x′, s)dx′, (27)

because

φ(1)
n (x, s) =

∫

w(x− x′)φ(1)
c (x′, s)dx′. (28)

Here, we have written φ
(1)
c for the auditory neural signal that

would arrive from the cochlea if there were no spreading due to

anatomical effects or the finite duration of the tone burst, while the

weight function w(x − x′) is used to incorporate both these effects.

This function has central peak and a characteristic width 1x that

corresponds to 1f , and is normalized to satisfy

∫

w(x− x′)dx′ = 1; (29)

We also assume that w is symmetric, with w(x− x′) = w(x′ − x), as

in the example in Equation (23). This formulation is simpler than,

but not quite as accurate as, the alternative of w representing only

the spread due to 1fnat and using the actual spectral profile of the

tone burst, as discussed in Section 2.2.2.

Because we assume that the electrode that detects the ER does

not resolve the fine spatial scales of the tonotopic map, we must

integrate the response over x, so we find, aside from an overall

normalization,

ER(s) =
∫

ER(x, s)dx, (30)

ER(x, s) = φ(1)
e (x, s), (31)

= Ten(s)

∫

w(x− x′)φ(1)
c (x′)dx′, (32)

from Equations (26) and (28). Hence, upon substituting

Equation (32) into Equation (30), we obtain

ER(s) =
∫

Ten(s)

[∫

w(x− x′)φ(1)
c (x′, s)dx′

]

dx, (33)

= Ten(s)

∫ [∫

w(x− x′)dx

]

φ(1)
c (x′, s)dx′, (34)

= Ten(s)

∫

φ(1)
c (x′, s)dx′, (35)

from Equation (29). Hence, the ER is the response to the total

integrated signal that arrives at the auditory cortex at the frequency

represented by s.

2.3.2 ER: subsequent stimuli
Because cortical stimulation from a tone burst centered at f0

is strongest at x0 = x(f0), this point will experience the strongest

adaptation, with adaptive changes falling off with distance (i.e.,

with the frequency difference). As a result, we must replace T(s)

by T(x, s) in Equation (33) when the next stimulus arrives, as

in previous studies where x was ignored. Specifically, T(x, s) is

calculated by inserting the instantaneous values of the Gab(t) into

Equation (13), which will include long-lasting adaptive changes in

general. This yields

ER(x, s) = Ten(x, s)

∫

w(x− x′)φ(1)
c (x′, s)dx′, (36)

in place of Equation (33). Hence, upon substituting Equation (36)

into Equation (30), interchanging the order of integration, and

recalling that w is symmetric, we find

ER(s) =
∫ ∫

w(x− x′)Ten(x, s)φ
(1)
c (x′, s)dx′dx, (37)

=
∫ [∫

w(x′ − x)Ten(x, s)dx

]

φ(1)
c (x′, s)dx′, (38)

=
∫

Teff(x
′, s)φ(1)

c (x′, s)dx′. (39)

Here, an effective transfer function has been defined to be

Teff(x
′, s) =

∫

w(x′ − x)Ten(x, s)dx. (40)

This implies that the effective transfer function at x′ is a weighted
average of those at neighboring points. Hence, if the core of a
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FIGURE 4

Stimulus sequences used in the experiments analyzed, with central

stimulus frequencies indicated by dots at the stimulus onset times.

(A) Oddball paradigm. (B) Random-frequency sequence with probe

stimuli shown as triangles and squares.

stimulated region has undergone strong adaptation, its effects will

be mixed with those of edge regions where adaptation is weaker,

thus leading to a mixture of dominant S-like and weaker D-like

features in the ER. The result (39) reproduces our previous study

if w is approximated as being very narrow. Then, Equation (40)

yields Teff(x
′, s) ≈ Ten(x

′, s). If w is a delta function (which is not

possible in the real system), then Ten(x
′, s) ≈ Ten(x0, s), and we

recover Equation (33) and our previous results if the redundant first

argument is omitted. The fact that w always has a non-zero width

implies that some mixing of characteristics will always occur.

3 Results

We now apply the above theory to model ERs in two studies

from the literature: (i) an oddball paradigm in which the frequency

offset between standard and deviant stimuli is varied to examine

how discriminability affects the MMN (Sams et al., 1985) and (ii)

a series of fixed-frequency probe tones inserted into a random-

frequency tone sequence, in which the ER has been shown to

depend on the probability of background tones in the vicinity of

the probe frequency (Garrido et al., 2013). These are illustrated in

Figures 4A, B, respectively.

3.1 Oddball sequence

Figure 4A schematically shows the auditory oddball paradigm

used by Sams et al. (1985) to investigate the effects of frequency

discriminability on the difference between D and S responses. It

is common to term the difference between the two responses the

mismatch negativity (MMN), with

MMN(D, S, t) = D(t)− S(t). (41)

The MMN can be defined for any pair of responses, but it is most

common to use the limiting form of S(t) after a long sequence of

identical stimuli as the reference. We write this form as S∞(t).

In the experiments of Sams et al. (1985), a series of 1,000 Hz

standard tones (S) of duration τ = 50 ms with ∼ 1 ms rise and

fall times was presented with an interstimulus interval of 1 s. These

were replaced by deviant tones D with a probability of 0.2, which

differed only in their frequency, which was fixed at 1,002, 1,004,

1,008, 1,016, or 1,032 Hz, respectively, in each of five trials.

At 1,000 Hz, 1fnat ≈ 3 Hz, while τ = 50 ms implies

1fu ≈ 20 Hz, so 1f ≈ 20 Hz, dominated by the spectral width

of the tone burst. Equations (24) and (25) then imply that ρ =
0.1, 0.2, 0.4, 0.8, 1.6 and ζ = 5− 10. Hence, we predict that deviant

frequencies of 1,002 and 1,004 Hz would produce S-like responses,

those of 1,016 and 1,032 Hz would be D-like, and those of 1,008 Hz

would be intermediate with significant D-like characteristics.

In this study, we denote the unadapted deviant response asD1.

Therefore, a baseline MMN0 can be defined as

MMN0(t) = MMN(D1, S∞, t) = D1(t)− S∞(t). (42)

Figure 5 compares experimental results with the results of our

numerical calculations for the above parameters; we use regularly

spaced D stimuli, with one every 5 stimuli, to avoid the need to

average. Figure 5A shows that the D responses for 1, 002 Hz are

almost equal to the S response, with the D response slightly sharper

and only a very small MMN. These findings are in agreement with

experimental results by Sams et al. (1985) and are as expected

because the 2 Hz frequency offset is much smaller than 1f ≈
20 Hz, so all stimuli cause adaptation in overlapping regions of

the cortex. As the frequency offset increases through Figures 5B–

E, the response progressively evolves away from S∞ toward D1,

and is nearly identical to the latter for offsets of 16 and 32 Hz,

with a correspondingly larger MMN that approximates MMN0. All

these results are in accord with the experimental findings of Sams

et al. (1985) and imply that our estimate of 1f provides a good

estimate of when the transition is complete; at half this value, an

intermediate form is seen, as is evident in Figure 5C. Note that

the residual differences between the theoretical and experimental

curves cannot be considered to be significant because only six

subjects’ data were averaged to obtain these curves and ERs typically

exhibit significant intersubject variation.

Individual ERs occur on timescales of a few hundred ms, which

are much shorter than the adaptation timescale of 5–10 s. Hence,

they can be viewed as being the impulse responses of a cortical

region that has adapted from having its initial gains [Gab]i (see

Table 1) to gains determined by the slow adaptation parameters

hab, at the end of a long sequence of standard stimuli. In our

case, we write the latter gains as [Gab]f and state their values

after 10 stimuli in Table 1. Comparison of the initial and final

gains in Table 1 shows that the largest fractional changes within

the corticothalamic system involve increases in the magnitudes of

inhibitory gains (especially, ei and sr) and reductions in excitation

(especially, es and se); there is a countervailing increase in the
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sn gain where stimuli enter the system. Overall, this is consistent

with the overall level of activity being approximately maintained,

but there being a substantially lower positive feedback in the

corticothalamic loop that is comprised of the es and se connections.

This loop is chiefly responsible for generating ∼ 10 Hz alpha

oscillations, so the reduction in its loop gain due to adaptation

is consistent with the lower amplitude of such oscillations in the

adapted (standard) response than in the initial (deviant) one. These

results accord with our previous findings (Robinson et al., 2021),

but with simultaneous and improved matches to typical standard

and deviant responses.

3.2 Random-frequency sequence with
probe stimuli

In the experiment of Garrido et al. (2013), illustrated in

Figure 4B, subjects were presented with a random-frequency

FIGURE 5

Model S and D responses for di�erent deviant frequencies compared with experimental results adapted from Sams et al. (1985). Each row presents

the results for a particular deviant frequency, as labeled in the second column. For each frequency, the first column shows model predictions for ERs

excited with the deviant frequency (red) compared with the baseline D1 response (black solid) and the fully adapted S∞ response (black dashed); the

second column shows the corresponding experimental result for deviant (heavy line) and standard (light line) stimuli; the third column shows the

model MMN (solid) compared with MMN0 (dotted), and the final column shows the experimental MMN. (A) ERs and MMNs for deviant frequency

fD = 1, 002 Hz. (B) Same as (A) for fD = 1, 004 Hz. (C) Same as (A) for fD = 1, 008 Hz. (D) Same as (A) for fD = 1, 016 Hz. (E) Same as (A) for

fD = 1, 032 Hz.
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sequence of tones that could have either a narrow overall frequency

distribution or a broad one. Superposed on this were two sequences

of randomly spaced, fixed-frequency probe tones, one at the 500

Hz mean frequency of the random distribution, termed standard,

S , and one at four times that frequency, termed deviant, D. Each

probe sequence contained 10% of the overall number of stimuli. A

key aim of the experiment was to explore how the S andD responses

depended on the breadth of the background random frequency

distribution and the frequency of the probe relative to its center—

i.e., on the relative probability that random stimuli were in the

vicinity of a given probe frequency.

Garrido et al. (2013) used stimuli with τ = 50 ms, rise and

fall times of 10 ms (hence, an effective duration of 40 ms between

half-maximum points), and interstimulus interval of 500 ms. The

mean frequency of the Gaussian random distribution was 500 Hz,

and it had a logarithmic standard deviation σ of either 0.5 octaves

(narrow distribution,N ) or 1.5 octaves (broad distribution,B). The

probe frequencies were 500 and 2,000 Hz, and the timescale of their

results implied tH ≈ 10 s.

Garrido et al. (2013) published average responses, binned

according to the quantityNa, which was the number of immediately

preceding tones that all fell outside a frequency window of width

1x of 1/3 octave (i.e., about 130 Hz each side of the 500 Hz probe

tones, and 520 Hz each side of the 2,000 Hz probe tones). Large

Na was thus a very coarse-grained proxy for not being a recent

stimulus at a nearby frequency, but the 1/3 octave range was not

chosen based on the cortical response properties. We note that the

experimental parameters give 1f ≈ 20 Hz, which corresponds to

spreads of only 1x = 0.07 octaves at 500 Hz and 0.018 octaves at

2,000 Hz, so the bandwidth involved in calculating Na is too wide

for precise comparisons.

When considering a given probe frequency corresponding to

xp, we can rewrite Equation (25), for the typical number of prior

stimuli that affect a given response, as

ζ ≈ RtH
21x

σ
√
2π

exp

[

−
(xp − x)2

2σ 2

]

, (43)

where x corresponds to 500 Hz and 21x appears because this is the

total range around xp that drives adaptation at xp. Using the above

parameter values, we find ζ ≈ 2.3 for the SN condition (standard

probe amid a narrow background distribution), ζ = 0.75 for theSB

condition, ζ = 1.8×10−4 for theDN condition, and ζ = 0.075 for

theDB condition. This implies that probe responses should be close

to the fully adapted S form for the SN and SB conditions and close

to the unadapted D form for the DB and DN conditions. Figure 6

illustrates the adaptation window that underlies Equation (43). The

red square shows the arrival of a probe stimulus. Prior stimuli

within a time tH seconds before and within a frequency range of

±1f adaptively affect the ER to the probe, particularly if are recent

and close in frequency. The more prior stimuli lie in the window,

the closer the ER will be to a fully adapted standard S∞, whereas

if the window is empty of prior stimuli, the ER will be close to the

deviant D1.

The above values of ζ for the four conditions studied byGarrido

et al. (2013) shows that the predictions are consistent with the

experimental results: in the cases where ζ ≪ 1, which correlates

FIGURE 6

Schematics of adaptive window for a given stimulus of a particular

frequency. The red square shows the arrival of a stimulus and the

window determines the adaptive interval within which previous

stimuli can have adaptive e�ects on the response. Similarly, the

stimulus in question can a�ect responses in a similar window that

follows it.

with large Na, Garrido et al. (2013) found D-like (unadapted)

responses, whereas for ζ & 1, the responses were more S-like,

owing to greater adaptation. These results thus accord with our

expectation that there should be little adaptation if there have been

few or no stimuli within the window shown in Figure 6. However,

the 1/3 octave bandwidth used in defining Na is much larger

than the physical width, so the correlation is weakened because

many data points with moderate Na do not involve significant

adaptation, but were included along with strongly adapted cases in

the experimental averages.

The above results suggest a more efficient use of data,

and a streamlined experimental procedure, in ER experiments

on random frequency stimuli. Instead of using separate fixed-

frequency probes of the responses to random stimuli, the random

stimuli can be used to probe one another. In this case, the responses

would simply be binned and averaged according to the value of ζ ,

andNa would not be used; one could even use the actual value of the

number of stimuli in the window shown in Figure 6, with a weight

function to smooth the edges of the window. Moreover, to improve

statistics toward the edges of the frequency distribution, a uniform

distribution in frequency or its logarithm, rather than a Gaussian,

could be employed.

4 Summary and conclusion

In this study, we have generalized our previous theory

of evoked responses with adaptation to allow for frequency-

dependent responses, to obtain criteria for when significant

adaptation occurs, and to determine whether adaptation suffices

to reproduce standard (adapted), deviant (unadapted), and

intermediate responses. The results have been applied to explain

the response dynamics seen in experiments in which standard

and deviant tones differ only in frequency, and in which

random-frequency tones are presented. The main results are

as follows:
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(i) Extension to frequency-dependent adaptation was achieved

by allowing for the intrinsic spread in frequency of a tone

burst due to its finite duration plus the known spread due

to the divergence in projections to the auditory cortex via

the tonotopic map. These effects mean that adaptation at the

nominal tonotopic location of a given frequency is affected by

stimuli at nearby frequencies.

(ii) Stimuli cause adaptation at neighboring frequencies and

subsequent times, causing later stimuli in the affected zone to

produce evoked responses more like standards than deviants.

The quantities ρ and ζ defined in Equations (24) and (25)

can be used to quantify the affected frequency–time range:

when numerous stimuli are received, significant adaptation

occurs for ρ . 1 and ζ & 1. Typically, these correspond to

adaptive effects from one stimulus affecting the responses to

other stimuli within a few Hz and∼ 5 s.

(iii) The main gain changes tended to increase cortical

inhibition and reduce positive corticothalamic feedback,

while maintaining overall mean brain activity levels by

increasing the gain where external stimuli enter the thalamus.

However, positive feedback via the corticothalamic loop was

significantly reduced, leading to lower amplitude ∼ 10 Hz

oscillations in the adapted (standard) response than in the

initial (deviant) one. These results were consistent with our

previous study (Robinson et al., 2021). Good matches to both

standard and deviant responses, and during adaptation driven

by a sequence of stimuli, were obtained using a single set

of parameters.

(iv) The results were found to be consistent with experimental

results for oddball sequences in which the deviant stimuli

differed only in their frequency relative to the standards (Sams

et al., 1985).

(v) In the case of random-frequency stimulation (Garrido

et al., 2013), the criteria mentioned in (ii) were found

to be consistent with the experimental results. Specifically,

significant adaptation occurs if expected number of stimuli

within the adaptation time–frequency window exceeds about

1, as expressed by Equation (43). By using the present criteria

and binning according to the number of prior stimuli in

the window shown in Figure 6, every stimulus can be used

as a probe of the adaptive effects due to prior stimuli at

nearby frequencies and times, rather than having to rely on

probe stimuli at specific frequencies. This approach would

make fuller use of such data, thereby enabling shorter

experimental protocols.

Overall, these results significantly extend the range of

experiments on evoked response sequences that can be explained

by adaptive effects in sensory cortex within a neural field theory

framework, showing that many mismatch negativity findings can

be explained by adaptation at relevant points in the tonotopic map,

so long as adaptation exists and notwithstanding some debate as

to its exact mechanisms (Ruusuvirta, 2021). Future study could

usefully apply similar methods to investigate deviant stimuli that

differ only in intensity or duration, sequences of descending tones

in which one tone is repeated, or more abstract deviance rules. Such

analyses will help to distinguish local adaptive effects from those

of top-down feedbacks from higher cortical areas—an essential

contribution toward probing the levels at which different aspects

of stimuli are processed.
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