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Renewable energy resources like solar power contribute greatly to decreasing
emissions of carbon dioxide and substituting generators fueled by fossil fuels. Due
to the unpredictable and intermittent nature of solar power production as a result
of solar radiance and other weather conditions, it is very difficult to integrate solar
power into conventional power systems operation economically in a reliable
manner, whichwould emphasize demand for accurate prediction techniques. The
study proposes and applies a revised radial basis function neural network (RBFNN)
scheme to predict the short-term power output of photovoltaic plant in a day-
ahead predictionmanner. In the proposedmethod, the linear as well as non-linear
variables in the RBFNN scheme are efficiently trained using the whale optimization
algorithm to speed the convergence of prediction results. A nonlinear benchmark
function has also been used to validate the suggested scheme, which was also
used in predicting the power output of solar energy for a well-designed
experiment. A comparison study case generating different outcomes shows
that the suggested approach could provide a higher level of prediction
precision than other methods in similar scenarios, which suggests the
proposed method can be used as a more suitable tool to deal such solar
energy forecasting issues.
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1 Introduction

In addition to reducing fossil fuel use and assisting electric grid operators in meeting
peak demand during peak hours, solar photovoltaic (PV) energy has become a rapidly
expanding renewable energy source and major energy supply (Hong et al., 2019; Jaihuni
et al., 2022). With the advent of this kind of renewable relevant technology, solar power
production is being integrated more efficiently into the electrical grid with operation features
(Wentz et al., 2022). Nevertheless, solar PV system operators face challenges when their
output power varies due to climate patterns (such as cloudy, rainy, and sunny days; abrupt
weather changes; winter weather; and so on). It is essential for the system to operate reliably
and securely in these cases when solar PV power generated is forecasted accurately with good
enough precision (Li et al., 2019; Succetti et al., 2020). Especially for the short-term
forecasting that involves numerous uncertainty sources, which become extremely hard
for conventional methods depends heavily on the time series modeling (Inman et al., 2013;
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Tuohy et al., 2015). On the other hand, PV plant power output
forecasting is the process of forecasting solar energy production at
the intersection of different domain knowledge in different fields,
such as the energy industry, meteorology, data science, and machine
learning (Inman et al., 2013; Gutierrez-Corea et al., 2016; Reindl
et al., 2017). By forecasting solar irradiance, grid operators, power
traders or solar farms can plan and manage better electricity
production and consumption. This is essential to ensure the
stable operation of the power grid, reducing operating costs, and
promote the widespread usage of renewable energy sources (Islam
et al., 2008; Ellabban et al., 2014). There are a variety of methods for
solar irradiance and energy prediction (Blaga et al., 2019; Han et al.,
2022), including physical model-based methods, statistical methods
and machine learning methods that are mostly dealing with short-
term forecasting issue. Within these methods, physical model-based
approaches depend a lot on modeling and simulation of physical
factors such as solar radiation, clouds, and atmospheric conditions,
which are even highly dynamic during any short time periods. In
comparison, statistical methods, presented in most current works,
build data-driven probabilistic models that can be based on
historical data to predict short-term future solar energy
production (Blaga et al., 2019; Snegirev et al., 2019; Han et al.,
2022) either in long-term or short-term time period. Machine
learning methods, especially deep learning techniques, are also
playing an increasingly important role in solar energy prediction.
These methods learn and automatically extract complex patterns in
the solar power relevant data to provide more accurate predictions.
However, due to the complexity and uncertainty of weather
conditions, solar forecasting remains a challenging task (Zhang
et al., 2013). In order to improve the accuracy of prediction, it is
necessary to consider a variety of factors, such as geographical
location, climatic conditions, seasonal changes, equipment
performance and so on (Sangrody et al., 2017; Sobri et al., 2018).
In addition, real-time data acquisition and processing, model
selection and optimization, uncertainty estimation are also key
issues in solar energy prediction.

In general, solar forecasting is a complex and important task
that involves knowledge and technology from multiple fields.
With the popularization of renewable energy and the
advancement of intelligent grid, solar energy prediction will
play an even more important role in the future (Vanderstar
et al., 2018; Wentz et al., 2022). The work in (Hong et al.,
2019) describes a number of solar power prediction methods
that mostly deal with short-term forecasting issues. A significant
research trend is that recent works have focused heavily on deep
learning techniques that are purely data-driven with model-free
design, especially for short-term small-scale forecasting problem.
Ref (Jaihuni et al., 2022) demonstrates the effectiveness of deep
Recurrent Neural Networks (RNNs) in estimating 1-week solar
radiance using highly accurate Canadian solar data. Ref (Wentz
et al., 2022) shows that the power prediction technique using a
radiance metric and Long Short-Term Memory (LSTM) has a
Mean Absolute Percentage Error (MAPE) of 6.95% that is highly
below the average MAPE of conventional methods. Ref (Succetti
et al., 2020) uses a multiple variable network with associated
parameters such as temperature, wind speed, humidity, solar
radiation, and PV power output, and achieves a Normalized
Mean Absolute Error (NMAE) of 7.91%, which can be taken as

good enough record in day-ahead short-term PV power output
forecasting.

In addition to ANN and Fuzzy Logic, soft computing methods
were applied to obtain accurate energy predictions. A Recurrent
Neural Network method for estimating insolation was presented in
ref (Li et al., 2019) A number of ANNmethods were employed in ref
(Obiora et al., 2021) for predicting solar irradiation, while both
multivariate and univariate methods were employed for forecasting
power. A weather-driven hybrid approach was used in ref (Akhter
et al., 2022) for forecasting solar power output daily, and for
decreasing adverse effects the following day. A climate-driven
prediction model was used in Ref (Gao et al., 2019) for
predicting solar plants for a day ahead, overcoming the effects of
fluctuation. Further, ref (Sridharan, 2023) examined how multi-
linear regression, polynomial regression, logarithmic regression, and
artificial neural networks can be employed for predicting PV power
using data from the prior year. Ref (Sangrody et al., 2017) applied
Backpropagation Neural Network (BPNN) using Lavenberg -
Marquardt algorithms to update weights.

A solar power prediction method based on echo state networks
and principal component analysis was examined in ref (Ling et al.,
2023). ANNs are not the only models used to forecast solar power;
deep learning is likewise used. In ref (Zhang et al., 2019), deep
recurrent neural networks using long short-term memory units
(DRNN-LSTM) were used to forecast solar power and loads
using day-ahead and weekly-ahead historical data. A radiance
prediction algorithm based on LSTM deep neural networks was
used in ref (Jaihuni et al., 2022) to analysis the radiance impact on
solar energy. In neural network modeling, training non-linear
variables requires considerable effort, despite the fact that many
neural network schemes are available. In spite of their problems with
complexities and formulations, meta-heuristic algorithms (MAs)
serve as efficient optimization methods that can help improve the
parameter-tuning. Therefore, numerous MAs are widely applied for
optimizing neural network nonlinear variables, including grey wolf
optimizations, monarch butterfly optimizations (MBOs), genetic
algorithms (GA), biogeography-based optimizations (BBOs),
particle swarm optimizations (PSO), glowworm swarm
optimizations (GSOs), and whale optimization problems
(WOAs), so on. Radical basis function neural networks are
known for their simplicity and ability to approximate non-linear
behavior. An artificial bee colony method was used in (Alzaeemi and
Sathasivam, 2020) for training fuzzy RBFNNs using data
granulation. In (Tsoulos and Charilogis, 2023), a combined PSO-
GA approach was employed for optimizing the evolution of RBF
neural network to predict rain.

The study proposes and implements a whale optimization-
driven RBF neural network to solve the solar production
problem. The study’s main contributions are as follows, 1) the
study uses Whale optimization-driven RBF scheme to train non-
linear variables in RBF scheme for the first time. 2) Efficiency of
suggested WOA-driven model training techniques was evaluated
against conventional MA techniques on a number of nonlinear
model problems.

Following are the sections in the study. Section 2 presents the
general framework and preliminary methods for the PV plant power
output forecasting scenarios, including the proposed WOA-driven
RBF approach. Section 3 presents the simulations and case study
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results to implement the test cases with demonstration of the
numerical values for the performance validation. Section 4
concludes and discusses the major founding with suggestion of
the future research work.

2 Preliminaries of the framework

The following part discusses preliminary techniques such as
competitive swarm optimization and the canonical RBFNN, which
provides good fundamental for the proposed PV plant power output
forecasting framework.

2.1 RBFNN

Traditionally, RBF neural networks are multi-input and single-
output (MISO) neural network structures, using Gaussian functions
acting as the activation function. Figure 1 shows three layers of RBF
neural networks, consisting of input layer, hidden layer, and output
layer. The basic structure could be represented as the following Eq. 1:

y t( ) � ∑n
i�1
wi.∅i X( ) (1)

In which, y( t ) shows the neural network model output during
t. wi shows the linear output weight of the ith node hidden layer. For
input vector, the radial basis function φi can be determined as
standard Gaussian function formulation in the following way of
Eq. 2:

∅i X( ) � exp − 1
2σ2i

X − ci‖ ‖2( ), i � 1, 2, . . . , n (2)

Where, σ i shows the Gaussian distributed width and ci shows
center of the ith hidden node. n shows the number of hidden layers.
Euclidean distance formulas and denominator contain non-linear
function variables, requiring efficient optimization methods. The
weighting parameters of RBF-based neural network can be efficiently
computed via combination with any computationally tractable heuristic
optimization method, which makes it easily for parameter tuning
compared with other hyper-parameter sensitive methods.

2.2 Whale optimization algorithm (WOA)

WOA is an optimization algorithm derived from bubble-net
hunt methods used in meta-heuristic algorithms (Mi et al., 2016). In
this algorithm, it is described how humpback whales hunt.
Humpback whales follow the usual bubbles when they encircle
preys, creating a circle or ‘9-shaped path’. Basically, bubble-net
hunting or feeding is explained by humpback whales diving
10–15 m in water and subsequently starting to generate bubbles
encasing preys, followed by following the bubbles and moving
up. According to the algorithm presented in (Mi et al., 2016),
Whale Optimization algorithm (WOA) is modeled in the
following ways.

2.2.1 An encircled prey formula
After encircling the target, the humpback whales update their

location to reach the optimum solution over a series of iterations.

�D � C. �X t( ) −X t( )∣∣∣∣ ∣∣∣∣ (3)
�X t + 1( ) � �X t( ) − �A. �D (4)

In which, �A, �D show coefficient vectors. t shows present
iteration. �X*(t) shows the position vector of optimal solution.
X(t) shows the position vector. �A, �D can be described in the
following way:

�A � 2 �a p r − �a (5)
�A � 2 p r (6)

In which, �a reduces linearly from two to zero over during
iteration and r shows a randomly selected number between [0,
1]. In this way, Eqs 3–6 could control the optimal search direction
and learning rate of the global optimality convergence.

2.2.2 Bubble-net attack approach
Humpback whale bubble-net behaviors can be mathematically

described using 2 approaches:

A. Method for shrinking encirclement: In the method, �a was
linearly decreased from two to zero. Random value for vector
in domain amongst [−1, 1].

B. Spiral updating position:As a result of the helix-shaped motion
of the humpback whales and target, the following formula can be
derived as Eq. 7:

�X t + 1( ) � �D′ p ebt p cos 2πl( ) + �X t( ) (7)
In which, l represents a randomly selected number between

[−1, 1]. b shows fixed logarithmic shape. �D′ � | �X*(t) −X(t)| shows
the distance among ith whale to the target mean optimal solution.

During optimization, whales are assumed to follow either a
shrinking encirclement or logarithmic path 50%–60% of the time.
The mathematical model is based on the following Eq. 8:

�X t + 1( ) � �X t( ) − �A �D if p< 0.5
�D′.eN. cos 2πl( ) + �X t( ) p≥ 0.5

{ (8)

In which, p is a randomly selected parameter in the value range
of [0, 1]. �A, �D still indicate the coefficient vectors to tune the learning
rate of optimal solutions.

FIGURE 1
RBF network framework.
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2.2.3 Searching for target
Exploration is done using �A to find the target. Additionally, �A

accepts values above 1 or below −1. There are 2 requirements for
exploration.

�D � �C.Xrand
����→− �X

∣∣∣∣∣ ∣∣∣∣∣ (9)
�X t + 1( ) � Xrand

����→− �A �D (10)
Lastly, the following should be followed (Zhang et al., 2013):

• | �A|> 1 would enforce exploration to WOA algorithm for
determining global optimal avoid local optimal.

• | �A|< 1 should be chosen in order to update the location of
present searching agent/optimal solution.

3 Suggested WOA optimized RBF
neural network

An RBF neural network’s architecture and variables must be
defined, just like any other neural network scheme. A scheme
training process can be divided into three main categories
depending on the flexibility of its determination. The first one
involves determining the model structure and non-linear
variables via trial and error and subsequently obtaining linear

weights using minimum squares or various approximations. The
second one involves fixing the model structure including input
and hidden node number and allowing the optimization approach
for training the non-linear and linear variables. Lastly, the third
one involves simultaneous training of the model structure and
variables. As part of the Model Training Type 2 presented in
the study, the WOA approach has been used to train the non-
linear and linear variables based on an established neural network
model framework. As a fitness function for optimizing RBF
networks, the root mean square error (RMSE) has been used,
as shown in Eqs 5, 6)

minf �

��������������
1
Nm

.∑Nm

i�1
ŷ − ym( )2√√

(11)

In which, ŷ shows the forecast value and ym shows the measured
information set. It is important to calculate each parameter in
advance of computing ŷ, as expressed in Eq. (12):

ŷ � ∑nh
i�1
wi.exp − 1

2σ2i
X − ci‖ ‖2( ), i � 1, 2, . . . , n (12)

An RBF neural network training procedure can likewise be
considered an unrestricted optimization problem along with the
objective function. The decision parameters are expressed in the
following manner, assuming i and j are the input node and hidden
node in Eq. (13):

particle i( ) � c11, c21, . . . , σ1,w1, c12, c22, . . . , cj2, σ2, w2, , . . .[
c1k, c2k, . . . , cjk, σk, wk] (13)

There is full encoding of non-linear variables in all hidden nodes
and their associated linear weighting factors. Figure 2 shows the in-
depth process of this suggested WOA-driven RBF model approach:

1) Initialization:
(a) Input information vectors are selected and adopted into

the RBF neural networks; b) The number of hidden nodes
for RBF neural networks is determined and pre-defined
according to empirical analysis; c) The decision
parameters based on the current framework are encoded
according to the solar power predication factors; d) Decision
parameter values of the entire population are initialized by
random values;

2) Optimization procedure:
(a) The mean value X′

k(t) of the entire population is calculated;
b) The entire population is divided into two categories

FIGURE 2
Process of WOA optimized RBF network.

TABLE 1 PV Power plant information.

Variables Amount

Capacity 1MW

MJB panels 02 Nos

Inverters 02 Nos

Entire number of SCB (String connection box) 24 Nos

Entire number of strings 200

Maximum string current 7.9A

TABLE 2 PCC among the plant output power and various weather variables
within 2022 data.

Factor PCC

Wind direction 6e − 3

Wind speed 101e − 3

Module temperature 802e − 3

Ambient temperature 106e − 3

Solar irradiance 992e − 3
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containing the same number of particles; c) one
population from every category is selected at the
random group and the fitness function Eq. 11 for the
two particles is calculated; d) The loser based on Eqs 9,

10 is updated; e) The new loser and the winner are added to
the upcoming generation population; f) The step 2)-(c) to
step 2)-(e) should be repeated until there are no
whales left.

FIGURE 3
A representation of normalized weather variables and plant output power against normalized time for 8 January 2022 (A) Radiance (B) Ambient and
Module temperatures (C) Wind speed and (D) Wind direction.

FIGURE 5
Optimum Sigma (σopt) for RBF training monthly.

FIGURE 4
RMSE versus sigma for RBF.
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3) Finalization procedure:
(a) The maximum number of iterations should be determined

according pre-defined tolerance; b) The step 2)-(a) should be
repeated until the max number of iterations has been reached;
c) The procedure is terminated via iteration limitation or
convergence tolerance with the optimal value generated.

4 Simulation and case study

Even though PV power output is mainly determined by radiance,
other weather conditions and associated parameters (the temperature of
the module, surrounding temperature, the direction and speed of the
wind) are also important and have impact on the ultimate PV plant
power output. For instance, the open circuit voltage of crystalline silicon
PV modules reduces in response to increasing temperature, reaching a
value of −0.45%/K, and short-circuit current ranges from 0.4%/K to
0.9%/K. Consequently, wind speed is usually used as a predicting
variable to account for the cooling impact, heat dissipation, and PV
panel cleaning. Those weather and environmental conditions could be
coded as corresponding variables in the RBFNN asmodified input data.
The short-term forecasting for PV plant power output should include
considerable determining factors to guarantee the accuracy and
forecasting reliability.

4.1 Simulation setup

Table 1 shows the plant information. Information is captured by the
SCADA system daily and is used to monitor and record weather
conditions. A weather variable’s output is correlated using Pearson
Correlation Coefficient (PCC). The Pearson Correlation Coefficient is
described by Eq. (14) in which x-axis shows the time series of output
power, y-axis shows the time series for all climate dependent parameters.

PCC � n ∑xy( ) − ∑x( ) ��
y

√( )���������������������������
n∑x2 − ��

x
√( )2[ ] n∑y2 − ∑y( )2[ ]√ (14)

The PCC parameter setting for a weather variable is shown
in Table. 2 to illustrate the association among the variable and
the plant’s power output. An example of a radiance and power
output profile is shown in Figure 3A, in which a near-unity PCC
value predicts that radiance and power output are heavily
correlated. In contrast, variables such as module
temperature, ambient temperature, and the direction and
speed of the wind show less correlation with power output
(see Figures 3B, C, D). Wind variables can be key to forecasting
unplanned blackouts in coastal areas such as Odisha due to
adverse climate conditions.

The networks are trained using information from 2012 to 2013.
The information from 2022 to 2023 is either inaccurate (for
example, incorrect SCADA reading) or indicates unusual
circumstances (for example, blackouts). In the absence of power
generation, the information is eliminated using a MATLAB
program. MATLAB’s ‘nntool’ function is used to train the
network during July 2022 and 2023 datasets to produce
forecasts in July 2024. A comparison of the trained ANN’s
output with the calculated 2024 information set helps to
determine how effective the algorithm is.

4.2 Method performance

A neural network schema is trained for information gathered
in July 2022 and July 2023 and evaluated for information gathered
in July 2024. A comparison of the approach with the real output
information of 18 July 2014 is shown in Figure 4. The optimum
Sigma (σopt) of RBF training monthly is shown in Figure 5. In
Figure 6, the proposed approach and others are simulated
alongside the PV power generation of the plant measured on
18 July 2024.

As a result of the proposed approach’s low RMSE, it produces
an improved fit compared with other existing methods that
usually range from 0.7–0.9 for RMSE. As well as a low RMSE,
the algorithm has also produced an irregular envelope around the
real output with limited upper bound and lower bound. In this
way, WOA-RBF actually increases power output envelope by
having greater RMSE than the proposed approach. Although the
proposed approach has the lowest RMSE among others,
simulated output power drops sharply around 0.5 during
normalized time. There is a possibility that at the RBFEF
training, one point of the dataset was anomalous near the
input data point, which can cause unexpected drops in
simulated output.

FIGURE 6
Comparing the output of RBF, FFNN, decision-driven algorithm
and the real power production of the plant.

TABLE 3 The minimal forecasting RMSE error for different weather conditions
in different seasons.

Weather conditions Clear-sky Cloudy

Winter 0.0642 0.0724

Spring 0.0611 0.0695

Summer 0.0622 0.0718

Autumn 0.0628 0.0709
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4.3 Analysis in different application scenarios

With the consideration of different weather condition effect, the
proposed method has also been tested in different application
scenarios via RBFNN parameter tuning according to the clear-
sky day forecasting or cloudy day forecasting applications in
different seasons.

By tuning the optimal hyper-parameters of RBFNN, Table 3
shows the minimal forecasting RMSE error of PV plant power
output for different weather conditions in different seasons.
Compared with other forecasting methods, the proposed one
could deal with more different scenarios since it depends little on
any specific features that should be pre-defined. It is easily observed
that generally speaking most short-term PV power output
forecasting results are better in clear-sky day conditions than
cloudy day conditions due to the uncertain shadowing effect of
massive cloud impact on the sunny irradiance. It is worth
mentioning that this phenomenon is also observed in other
existing methods. The specific forecasting RMSE error also varies
with the season change over the whole year, since the temperature or
humidity condition will play a role as well in determining the specific
energy generation level of PV plant power output.

In Figure 7, we also try the normal distribution fitting for the
forecasting errors to observe the error reduction and error growth
phenomenon in application scenarios of different aggregated PV
plant power output capacity. It can be found that for smaller
60 MW PV plant power output forecasting, the fitting error has a
more stochastic error distribution since the internal aggregation of
PV cell units usually suffers less counteracting effect compared with
larger 230 MW PV plant power output forecasting.

On the other hand, the operation of larger PV plant would
provide larger resource capacity and better forecasting reliability
margin to deal with the manual feature extraction issues. It is
believed that with proper design of the hyper-parameter of
RBFNN framework and gradient calculation of WOA
optimization, the short-term PV plant power output forecasting
could be self-adaptive to the changes of external environmental

weather conditions and power dispatch scheduling of each PV
generation unit.

5 Conclusion

The work proposes a whale optimization algorithm combined
with RBFNN to forecast solar production. The suggested approach
framework allows for simultaneous determination of linear and
non-linear variables in RBFs. Several non-linear evaluations and a
forecast task for solar production have confirmed its
competitiveness. This paper also proposes the whale optimization
algorithm using RBF to help forecast PV power plant output directly
day-ahead in advance with acceptable forecasting errors. A
comparison study case is experimented to generate different
outcomes that shows the proposed approach could provide a
higher level of prediction precision than other conventional
methods in similar scenarios, especially for PV plant power
output in various conditions. According to the specific
application scenarios, this work suggests and concludes the
proposed method can be used as a more suitable tool to deal
with such solar energy and PV plant power output forecasting
problems. In the future work, we will consider more sources of
uncertainty and combine the current method with some auto-
encoder framework to efficiently extract the significant features of
the forecasting problem, which would further improve the short-
term prediction accuracy for large-scale PV plant capacity. The
proposed method can also be combined with the coupled operation
framework to facilitate the end-to-end decision-making of
forecasting-based power system operation.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

FIGURE 7
The forecasting error with normal distribution fitting for different large-scale aggregated PV plant. (A) 60 MW aggregated PV plant power output
forecasting error fitting. (B) 230 MW aggregated PV plant power output forecasting error fitting.
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