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Background: The importance of being physically active and avoiding staying in
bed has been recognized in stroke rehabilitation. However, studies have pointed
out that stroke patients admitted to rehabilitation units often spend most of their
day immobile and inactive, with limited opportunities for activity outside their
bedrooms. To address this issue, it is necessary to record the duration of stroke
patients staying in their bedrooms, but it is impractical for medical providers to do
this manually during their daily work of providing care. Although an automated
approach using wearable devices and access points is more practical,
implementing these access points into medical facilities is costly. However,
when combined with machine learning, predicting the duration of stroke
patients staying in their bedrooms is possible with reduced cost. We assessed
using machine learning to estimate bedroom-stay duration using activity data
recorded with wearable devices.

Method: We recruited 99 stroke hemiparesis inpatients and conducted
343 measurements. Data on electrocardiograms and chest acceleration were
measured using a wearable device, and the location name of the access point that
detected the signal of the device was recorded. We first investigated the
correlation between bedroom-stay duration measured from the access point
as the objective variable and activity data measured with a wearable device and
demographic information as explanatory variables. To evaluate the duration
predictability, we then compared machine-learning models commonly used in
medical studies.

Results:We conducted 228measurements that surpassed a 90% data-acquisition
rate using Bluetooth Low Energy. Among the explanatory variables, the period
spent reclining and sitting/standing were correlated with bedroom-stay duration
(Spearman’s rank correlation coefficient (R) of 0.56 and −0.52, p < 0.001).
Interestingly, the sum of the motor and cognitive categories of the functional
independencemeasure, clinical indicators of the abilities of stroke patients, lacked
correlation. The correlation between the actual bedroom-stay duration and
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predicted one using machine-learning models resulted in an R of 0.72 and p <
0.001, suggesting the possibility of predicting bedroom-stay duration from activity
data and demographics.

Conclusion: Wearable devices, coupled with machine learning, can predict the
duration of patients staying in their bedrooms. Once trained, the machine-learning
model can predict without continuously tracking the actual location, enabling
more cost-effective and privacy-centric future measurements.

KEYWORDS

bedroom-stay duration, location tracking, rehabilitation, stroke, machine learning,
wearable sensors

1 Introduction

1.1 Background and research aim

Several studies associated with stroke rehabilitation have
reported a positive correlation between the duration of daily
rehabilitation therapy and functional improvements in daily
activities (Langhorne et al., 1996; Kwakkel et al., 2004; Yagi et al.,
2017). It has also been expected that providing additional
opportunities for physical activity, such as self-training and
avoiding prolonged bed rest, supports better outcomes for
patients (Patel et al., 2012; Tijsen et al., 2019). However, studies
have shown that stroke patients admitted to rehabilitation units
often spend a majority of their day in or near their beds (West and
Bernhardt, 2013; Chouliara et al., 2021). One study highlighted that
during most of their time in the bedroom, patients are either inactive
or engaged in passive activities such as talking, reading, or watching
television (West and Bernhardt, 2013). Such healthcare design can
potentially impact patient outcomes or contribute to disuse
syndrome (Li et al., 2020). Given the anticipated rise in global
stroke-related deaths, advancing stroke rehabilitation to support
better outcomes is a pressing issue globally (Fan et al., 2023).
Wearable devices offer promising benefits for monitoring the
activity of stroke patients (Rosenberger et al., 2016). They are
increasingly used in medical studies in real-world settings due to
their cost-effectiveness and small size. However, the complexity of
impairment and disability in stroke patients poses challenges,
especially regarding the detection accuracy of activity (Storti
et al., 2008; Carroll et al., 2012). An alternative approach involves
quantitatively assessing patient inactivity by recording the duration
of stroke patients staying in their bedroom (West and Bernhardt,
2012). However, researchers conducted these observations
manually, which may be impractical for healthcare providers to
adopt in their routine care.

Automatically measuring the duration of stroke patients staying in
their bedrooms using wireless access points that receive signals from
patient-worn beacons or wearable devices will be useful. However,
implementing access points in indoor environments, such as hospitals,
requires a significant budget to cover expansive areas. To balance the
cost-effectiveness of wearable devices with the accurate location-
identification capabilities of access points, we focused on using
machine-learning models, which are promising for the medical
applications for their prediction and classification tasks, especially
when paired with Internet of Things (IoT) devices (Kumar et al.,
2023; Lai et al., 2023). Once trained via supervised learning using

data from wearable devices, these models can potentially predict the
duration of stroke patients staying in their bedrooms without
continuous reliance on the actual location identified with access
points. Predicting bedroom-stay duration may also support the
planning of future care programs to obtain better outcomes.

Thus, our objective was to evaluate the performance of
predicting the duration of stroke patients staying in their
bedrooms using wearable-derived data. We also investigated the
correlation between these estimates, demographic information, and
patient-activity features measured with wearable devices.

1.2 Literature review

While the Global Positioning System or cellular wireless networks
in wearable devices or smartphones is commonly used to identify
location, it is often ineffective in indoor environments where
electromagnetic shields, such as walls or doors, obstruct satellite or
wireless signals (Hao et al., 2020). Attention has thus turned to indoor-
positioning technologies, such as pedestrian dead reckoning (PDR),Wi-
Fi, Bluetooth Low Energy (BLE), and radio frequency identification
(RFID) (Wu et al., 2019; Alhomayani and Mahoor, 2020). We focused
on long-term patient monitoring to measure the duration of stroke
patients staying in their bedrooms for more than 24 h. Given that
gyroscopes, essential for reliable PDR methods for estimating indoor
location using only sensors (Hou and Bergmann, 2020), consumemore
power than other inertial sensors such as accelerometers, PDR is
challenging for long-term monitoring. Hence, we opted for indoor-
location tracking using BLE. BLE offers a balance between Wi-Fi and
RFID, which is promising for reliable indoor-location tracking due to its
wider wireless coverage than RFID and relatively lower power
consumption than Wi-Fi, which is practical for clinical applications
(Givehchian et al., 2022; Shang and Wang, 2022). There have been
several reports on location-identification systems using BLE in hospitals
(Rozum et al., 2019; Shipkovenski et al., 2020;Wichmann, 2022; Hadian
et al., 2023), and in particular, systems that record patient locations
covering their entire life space in hospitals in real-world settings have
been developed (Abubeker and Baskar, 2023; Samama and Patarot,
2023). However, neither the automated recording of the duration of
inpatients staying in their bedrooms nor its prediction has been
demonstrated. To address this issue, we installed a system that
simultaneously records both the activity and location of patients in
hospital buildings. This system comprises a wearable device that sends
BLE signals and access points installed on the ceilings of patients’ life
spaces such as bedrooms, training rooms, and common spaces, enabling
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the automated recording of duration. This paper is the first study to
explore the potential for machine learning to predict the duration of
stroke patients staying in their bedrooms using activity data measured
with a wearable device. To clarify the novelty of the present study,
Table 1 summarizes the approaches of location-identification studies
conducted in hospitals.

1.3 Paper structure

This paper is structured as follows. Section 2 presents participant
details and the system designed to measure their locations and
activities using BLE access points and wearable devices. This section
also describes the activity features measured with wearable devices,
machine-learning models, and statistical tests we used. Section 3
presents the results of activity measurements and location
identifications and the evaluation of the prediction performance
of the duration of stroke patients’ stay in their bedrooms. Section 4
discusses this study’s potential benefits and its limitations. Finally,
Section 5 concludes the study.

2 Materials and methods

In this section, we detail the participants recruited for this study,
devices integrated into the experimental system, signal processing of
sensor data to compute features related to patient activity, machine-
learning models used to estimate the duration of stroke patients
staying in their bedrooms using these features, and statistical tests we
conducted to verify significance.

2.1 Participants

We enrolled 99 hemiparetic stroke inpatients from Fujita Health
University (FHU) Hospital. Written informed consent was obtained
from all participants. We measured data on electrocardiograms
(ECGs) and chest acceleration using a wearable device. The

locations or names of the rooms where BLE access points
detected the device’s signals emitted from the trunk of the
participant, were recorded as well. Each measurement was
conducted for 2 days. Patients underwent multiple measurement
sessions with their consent; in such instances, these 2-day
measurements were repeated biweekly. A total of
343 measurements were conducted. We also documented
participants’ demographic information such as age, height,
weight, and sex, as well as the motor and cognitive categories of
the functional independence measure (mFIM and cFIM), which are
clinical scales to assess the degree of independence of daily activities
and communication (Keith et al., 1987). The mFIM and cFIM were
assessed by rehabilitation professionals. On the basis of the data-
acquisition rate, explained in a later section, 284 measurements
involving 85 patients were selected and analyzed.

2.2 Experimental setup

Figure 1 illustrates the configuration of the experimental system
installed at FHU Hospital. The system comprises smart clothing
with a transmitter that sends BLE signals and BLE access points.
This clothing was worn by the patients, and BLE access points were
positioned on the ceilings of each patient’s bedroom, the training
room, and common areas for comprehensive coverage (Matsunaga
et al., 2019). The “hitoe” transmitter 01 (NTT DOCOMO Inc.,
Tokyo) was used as the wearable device (Nakata et al., 2022). The
smart clothing (Toray Industries, Inc., Tokyo) was designed to be
skin-tight, ensuring the transmitter maintains close contact with the
patient’s body; the clothing was changed daily. This device is
equipped with an ECG and a three-axis acceleration sensor. The
ECG and acceleration sensor have sampling rates of 1 kHz and
25 Hz, respectively (Tsukada et al., 2019; Ogasawara et al., 2021). To
transfer the data measured with the wearable device to a server
(PRIMERGY TX1320 M4, Fujitsu Ltd., Tokyo), we used a wireless
gateway (OpenBlocks IoT BX0, Plat’Home Co., Ltd., Tokyo) as the
BLE access point. These access points were networked with the
server through the local area network (LAN) of FHU Hospital. We

TABLE 1 Approaches of patient location-identification studies conducted in hospitals.

Study Recording method of
patient locations

Recording place
in hospital

Experimental
situation

Measurement of room-
stay duration

Prediction of room-
stay duration

West and Bernhardt
(2013)

Manual Multi-location Real world Yes No

Chouliara et al.
(2021)

Manual Multi-location Real world Yes No

Rozum t al. (2019) Automatic Single-location Real world No No

Shipkovenski et al.
(2020)

Automatic Multi-location Laboratory-testing No No

Hadian et al. (2023) Automatic Single-location Laboratory-testing No No

Abubeker and
Baskar (2023)

Automatic Multi-location Real world No No

Samama and
Patarot (2023)

Automatic Multi-location Real-world No No

Present study Automatic Multi-location Real-world Yes Yes
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custom-developed the applications operating on the BLE access
points and server using Python 3.9. We used PostgreSQL 13.6 to set
up a database on the server, where the measurement data were
stored.

Figure 2 illustrates the placement of BLE access points in the
rehabilitation wards. The FHU rehabilitation wards are located
across two buildings: one building is dedicated to rehabilitation
training activities, and the other is focused on the daily-life
rehabilitation of inpatients. BLE signals, being generally weaker
than Wi-Fi or cellular signals, present a unique challenge.
Previous research indicates that BLE-signal strength attenuates
significantly when a wearable device moves several meters from
the access point or to an adjacent room separated by walls or doors
(Faragher and Harle, 2015). This significant attenuation can lead to
disconnection in wireless communication. To address this, we
implemented the following two rules when deploying the access
points within the buildings (Matsunaga et al., 2019). One is
overlapping coverage. We aimed to keep the distance between
neighboring BLE access points at about 5 m. This rule was
intended to create overlapping zones of wireless coverage,
ensuring that communication remains stable and continuous.
Even in the spacious training areas, which lack substantial
electromagnetic shielding, distances between access points were
kept at less than 10 m. The other rule is dedicated bedroom
coverage. We placed at least one access point in each patient’s
bedroom. This rule was necessary due to the bedrooms in this
hospital being electromagnetically shielded by metal-containing
firewalls, which further dampen the already weak BLE signals.
When an access point detects a BLE signal from a patient’s

wearable device, it establishes a communication link with that
device. All access points continuously monitor the received-
signal-strength indicator of BLE advertise packets. If a patient
moves and one access point loses the signal, another nearby
access point is programmed to swiftly re-establish the connection
with the wearable device to continue data acquisition. The data-
acquisition rate between the BLE access points and wearable devices
was found to be nearly identical to that with conventional
monitoring approaches that use smartphones to connect with
wearable devices (Matsunaga et al., 2019).

2.3 Signal processing to calculate features of
stroke-patient activity

Table 2 lists the features of stroke-patient activity calculated
from the measurement data acquired with a wearable device. The
relationships between these features and the motor function of
stroke patients have been explored (Arad et al., 2002; Kanai
et al., 2018; Nathoo et al., 2018; Murayama et al., 2020; Mukaino
et al., 2022). The experimental system described above automatically
calculates these features using ECG and acceleration data. We briefly
summarize this calculation process. The heart rate was calculated
every minute using R-R (R-wave peak to R-wave peak) intervals
detected in the ECG in the transmitter (Matsuura et al., 2022).
Percent heart rate reserve (%HRR) is a well-known indicator that
correlates with the amount of activity or exercise in stroke
rehabilitation (Nathoo et al., 2018). The %HRR was calculated
from heart rate and age in this study (Matsuura et al., 2019).

FIGURE 1
Configuration of experimental system. Wearable device, integrated into smart clothing, is worn by patient and equipped to send BLE signals. This
device is used to continuously measure ECG and acceleration data of patient. BLE access points are installed throughout rehabilitation wards of FHU
Hospital. Specifically, these access points are positioned on ceiling of each patient’s bedroom, training room, and common areas. These access points are
designed to receive signals transmitted by wearable device worn by patient. Collected measurement data and location name are then transmitted
and stored on server, which is located in staff room within hospital.
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Patient activity was classified into three categories: reclining, sitting/
standing, and walking. This classification began with calculating the
angle or declination of the acceleration sensor relative to the
direction of gravitational acceleration in the sagittal plane of the
patient’s trunk (Fortune et al., 2014). Using this calculated angle and
a predetermined threshold, patients’ postures were initially
categorized as either reclining or sitting/standing. To further
delineate patient activity, the wearable device was designed to
recognize periods when the patient was walking. This recognition
was achieved by detecting walking steps, which were inferred from
the norm of the acceleration using a rules-based algorithm
(Ogasawara et al., 2016). Specifically, this allowed the system to

differentiate between walking and non-walking states when the
initial posture was identified as sitting/standing. This posture-
classification method has been validated through studies
involving both healthy individuals and clinical patients (Rauen
et al., 2018; Ogasawara et al., 2023). In addition to posture
classifications, moving standard averaging of trunk acceleration
(MSDA) is used as an indicator of the physical-activity intensity
of stroke patients (Mukaino et al., 2022).

In recordings lasting more than 24 h, one of the challenges
encountered is data loss. This loss can occur due to various factors
including equipment failure, limitations in data-collection
capabilities, and human error (Cismondi et al., 2013; Lai et al.,
2020). To mitigate the impact of missing data, we implemented a
data-imputation technique that is based on averaging (Ogasawara
et al., 2021; Ogasawara et al., 2023). This technique generates a time
series of features of stroke-patient activity over a 24-h period with
reduced data loss by calculating the averages and ratios of these
features at the same time of day during several measurement-
session days.

2.4 Machine-learning models

We introduce a framework for estimating the bedroom-stay
durations of inpatients by using the features of stroke-patient
activity calculated from data measured with wearable devices in
conjunction with machine-learning methodologies. The notation

FIGURE 2
Location of BLE access points in rehabilitation wards. Approximately 50 BLE access points were distributed across two buildings to provide
comprehensive coverage.

TABLE 2 Features of stroke-patient activity calculated frommeasurement data
of wearable devices.

Feature Unit Sensor

Heart rate bpm Electrocardiogram

% HRR percent Electrocardiogram

Period spent reclining hour Acceleration

Period spent sitting or standing hour Acceleration

Period spent walking hour Acceleration

MSDA m/s2 Acceleration

Total number of walking steps step Acceleration
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Y′
i∈ R denotes the estimated room-stay duration, calculated with the

features, while Yi∈ R is the ground truth of the duration measured
by access points. Here, i indexes the participants, ranging from 1 to
n. For a successful estimation, the squared error∑i‖Y′

i − Yi‖2 should
be minimal, and a statistically significant correlation between Y′

i and
Yi needs to be validated. The details of this validation process are
described later in the paper. Given that Y′

i is calculated from the
feature set X, it is represented as Y′

i � Ψ(X), where X is a feature
vector composed of m features obtained from data measured with
wearable devices and represented as X � (x1, x2, .., xm). When ty is
the time recorded with access points and Yi is the total period of ty
over 24 h, Yi � ∑ty. Prediction of inpatient room-stay durations
using wearables and machine-learning models becomes
advantageous when C(X)< C(ty) holds, where C(X) and C(ty)
are the costs to acquire activity data of inpatients measured on
wearables and location information logged on BLE access point,
respectively, due to the cost of constructing access points or in
scenarios where logging the location information is not permitted.
In other words, hospitals that find it difficult to implement access
points covering expansive areas may have the potential to
quantitatively evaluate the duration.

Figure 3 illustrates the training and validation processes
undertaken with machine-learning models. The objective variable
to be estimated in this study was the duration of stroke patients
staying in their bedrooms identified with BLE access points. The
explanatory variables in the models include activity data measured
with a wearable device, averaged over 24 h, and demographic
information of the patients. We used a range of machine-
learning models for comparison, including both established and
newer ones. We used random forest (RF) (Dey et al., 2020), gradient
boosting (GB) (Xu et al., 2022), and support vector machine (SVM)

(Xiang et al., 2020), which are frequently used models in medical
studies. These models were implemented using the scikit-learn
library in Python 3. We also used a deep-neural-network (DNN)
specifically designed for high-performance prediction of tabular
data and implemented with the pytorch-tabular library (Joseph,
2021) as well as evaluated ensembles of these models.

To validate these machine-learning models, we used a nested
cross-validation (CV), also known as double CV. This is a common
approach to obtain robust prediction models and is effective at
avoiding overfitting, which results in biased training outcomes
(Cawley and Talbot, 2010; Vabalas et al., 2019). Nested CV
consists of internal and external validation processes. The
internal process aims to optimize the models’ hyperparameters.
During this internal process, the set of hyperparameters that yield
the lowest prediction errors are identified. With these optimal
hyperparameters in place, the training and evaluation of the
models are conducted in the external validation process using
different test samples that were not involved in the internal
process. CV provides a participant-independent estimate of
performance for new or previously unseen participants because
training and test dataset were different. In our study, samples
were shuffled randomly at the starting of both internal and
external CV. Both CVs were conducted with five folds. For
hyperparameter optimization in the internal CV, we used
AutoML from the Optuna library in Python 3 (Akiba et al., 2019).

To interpret the estimation mechanisms of the trained models,
we used SHapley Additive exPlanations (SHAP) (Lundberg and Lee,
2017). SHAP is a unified framework for interpreting model
predictions and enables us to investigate the contribution of each
feature to the trained models. We conducted an overall feature
summary analysis on the basis of SHAP.

FIGURE 3
Training and validation processes undertaken with machine-learning models to estimate duration of stroke patients staying in their bedrooms.
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2.5 Statistical analysis

To explore the relationships between the features calculated
from the data recorded with the wearable device or demographics
and the duration of stroke patients staying in their bedrooms, we
conducted a statistical analysis. Initially, we conducted a Shapiro-
Wilk test to assess the normality of the data distribution. If the
normality of at least one of the paired values was not confirmed, a
correlation analysis was carried out using Spearman’s rank
correlation coefficient R (Schober and Vetter, 2020).

3 Results

This section first presents the results of a preliminary analysis
then the demographic information of the participants involved in
this study. The correlation relationships between the features of
stroke-patient activity and demographics and the duration of the
stroke patients staying in their bedrooms are also detailed. Finally,
the evaluation of machine-learning models for estimating the
duration of a patient staying in their bedroom is discussed.

3.1 Preliminary analysis

This section presents the assessment of BLE-access-point
performance. Specifically, Section 3.1.1 assesses the performance
of location identification using the BLE access points, and Section
3.1.2 assesses the data-acquisition rate of the BLE access points.

3.1.1 Location identification using bluetooth low
energy access points

To confirm the location-identification performance of the BLE
access points, we assessed the duration for an access point to establish a
connection with a wearable device when a user enters a roomwhere the
BLE access point is located as well as the duration for the connection to
be terminated when a user exits the room (refer to Supplementary
Figure S1). The results indicate that the average duration required to
establish a connection with four participants was 8.82 s, and the average
duration for disconnection was 1.03 s. The results suggest the sufficient
specificity in the location-identification capabilities of the BLE access
points because these durations are on the scale of seconds and fast
enough for location data with a data-rate of 1 min. For further details,
refer to Supplementary Method S1 and Results S1.

3.1.2 Data-acquisition rate of bluetooth low energy
access points

Figure 4 illustrates the data-acquisition rate of participants’ location
data using the BLE access points during nighttime hours (21:30 to 6:00).
Nearly all patients are expected to remain in their bedrooms in this
period. A 100% data-acquisition rate is achieved when there is no data
loss between the wearable device and a BLE access point placed in
rehabilitationwards.We set a 90%data-acquisition rate as the threshold
for further analysis. Of the 343 measurements, 284 (or 82.8%) exceeded
this threshold. The average data-acquisition rate among these
284 measurements was 98.0% ± 2.23%. We conducted correlation
analysis and trained machine-learning models using these
284 measurements.

3.2 Patient demographics

Table 3 lists the demographics of the participants in this study.
The sample size related to age, sex, height, and weight, corresponds
to the number of patients (99 and 85). The sample size for other
demographics corresponds to the number of measurements
(343 and 284) because we repeated 2-day measurements biweekly
for an identical patient, and these values often changed drastically.

3.3 Correlation analysis

Table 4 shows the correlation relationships between the features
of patient activity or demographic information and the duration of
the patients staying in their bedrooms. We used R because a normal
distribution was not confirmed with the duration of the patients
staying in their bedrooms in the Shapiro-Wilk test. There were
correlation relationships between the period spent reclining and the
patients’ stay in their bedrooms (R = 0.56) and between the period
spent sitting or standing and the time spent in their bedrooms
(R = −0.52). Both relationships were statistically significant (p <
0.001). Interestingly, neither mFIM nor cFIM, clinical indicators of
the motor or cognitive abilities of stroke patients, showed any
correlation (R = −0.04 and 0.04). These results suggest the
importance of monitoring patients’ activities using wearable
devices. Figure 5 presents examples of correlation plots.
Compared with the plot of mFIM, for which correlation was not
confirmed, those of the period of reclining and sitting/standing
displayed observable positive or negative slopes in distribution.

3.4 Evaluation of machine-learning models
for estimating stay duration in bedroom

Figure 6 shows the correlation relationships between the actual
and estimated durations of the patients staying in their bedrooms.
The vertical axis represents the estimated duration identified with
the BLE access points, and the horizontal axis represents the
duration actual using machine-learning models. All results were
statistically significant with p-values less than 0.001. Among the
models in Figures 6A–D, R ranged from 0.51 to 0.69, with GB and
RF proving the most successful in estimation (R = 0.69). Even the
lowest R resulting from the DNN was close to the best R among
features shown in the previous section (R = 0.51). When machine-
learning models were ensembled, R further improved. Although R
was 0.70 when all four models were ensembled (Figure 6E),
excluding the DNN, R increased to 0.72 (Figure 6F). The results
in Figure 6 support the validity of using machine learning to estimate
the duration of stroke patients staying in their bedrooms.

Figure 7 presents the results of the SHAP analysis for the four
machine-learning models. The horizontal axis of the plot displays
the SHAP values, which quantify the contribution of each feature to
the prediction performance of a model. These SHAP values are
normalized and presented as a percentage of the total contribution
of all features. In all the models except the DNN, the period spent
reclining emerged as the feature with the most substantial
contribution to the predictions regarding the duration of stroke
patients staying in their bedrooms. Other notable contributors
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across the models were the periods spent sitting/standing, mFIM,
and cFIM. Interestingly, in the DNN, the number of walking steps
showed the highest contribution, differing from the other models.

We conducted another investigation into how the recording
time-window impacts the prediction performance of the models.
Figure 8 presents the prediction performances of GB using data
measured during different segments of the day: morning (6:00 to 13:
00), afternoon (13:00 to 18:00), evening (18:00 to 21:30), and lights-
out period (21:30 to 6:00). Using only data recorded in the morning
or afternoon (Figures 8A,B) yielded notable correlations: R of
0.64 and 0.61, respectively. However, these correlations fell short
compared with that using record during 24 h R = 0.69 (Figure 6A).
Predictions based on data recorded in the evening or lights-out
period were even less successful, as shown in Figures 8C,D. When
the time window was expanded to encompass both morning and

afternoon (Figure 8E), R peaked at 0.68. In contrast, R remained low
on the basis of data recorded both in the evening and lights-out
period (Figure 8F). These results suggest that data collection only in
daytime is helpful, and a broader recording window results in
developing better models to predict the duration of stroke
patients staying in their bedrooms.

4 Discussion

Our study advanced prior research in two ways. We first
demonstrated the automatic recording of the duration of stroke
patients staying in their bedrooms by implementing a location-
identification system with BLE signals. We then suggested the
possibility of predicting the duration using wearable-derived data.

FIGURE 4
Acquisition rate of participants’ location data using BLE access points. Horizontal axis represents percentage of period when data of location
information was successfully acquired at night (from 21:30 to 6:00). Vertical axis represents ratio of number of measurements in each class to total
number of measurements (343 in this study).

TABLE 3 Patient demographics.

343 measurements with 99 enrolled
patients

284 analyzed measurements with 85 selected
patients

Age (years) 70.9 ± 14.2 70.0 ± 14.5

Sex (male/female) 63/36 56/29

Height (cm) 161.5 ± 8.9 162.1 ± 8.5

Weight (kg) 56.0 ± 12.0 56.6 ± 12.4

Mobility (walk/wheelchair) 80/263 65/219

mFIM 48.2 ± 24.3 47.9 ± 24.5

cFIM 23.2 ± 9.4 23.1 ± 9.5

Duration of stroke patients staying in their
bedrooms (hours)

15.2 ± 4.6 16.6 ± 3.2

mFIM, and cFIM, are clinical scales scored by rehabilitation professionals and used to assess degree of independence of daily activities and communication.
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We now discuss the potential advantages and limitations of
predicting the duration of stroke patients staying in their
bedrooms using a wearable device and machine learning, which
will lead to future work.

4.1 Potential advantages

4.1.1 Feature analysis
We investigated features that could be related to the duration of

a patient staying in their bedroom. As indicated in Table 4,
significant correlations were suggested between the period spent
reclining and those spent sitting/standing. In contrast, demographic
information showed no significant relationship. Thus, the results

suggest the importance of activity measurement with a wearable
device. Those features indicating posture were important valuables
for the machine-learning models, as shown in Figure 7, and were
calculated from acceleration data. An acceleration-sensor module is
generally power-efficient and cost-effective, making it suitable for
long-term activity monitoring.

Among the clinical scales for rehabilitation, mFIM and cFIM
demonstrated a lack of strong correlation with the bedroom stay
duration. They are used to evaluate independence in terms of need
for assistance with daily activities and communication scored by
rehabilitation professionals. Previous studies have suggested that
many stroke patients often spend a majority of their day in or near
their beds regardless of their FIM values (West and Bernhardt, 2013;
Chouliara et al., 2021). The results from our study support the
tendency. However, mFIM and cFIM exhibited significant
contributions in the SHAP analysis in tree-structured models,
such as GB and RF. This finding suggests that these machine-
learning models might assign importance to mFIM and cFIM not
linearly related. In the tree-structured models, for example, these
non-correlating indicators might prove valuable in deeper branches
for estimation.

4.1.2 Machine learning
Some machine-learning models yielded higher R of 0.69, as

shown in Figures 6A,B, compared with the best R of 0.56 derived
from the patient-activity features presented in Table 4. This suggests
the potential usefulness of machine-learning models to predict the
duration of patients staying in their bedrooms. It also suggests the
possibility of conducting more cost-effective and privacy-conscious
measurements in the future, as once the model has been trained with
supervised learning, it can make predictions using only the
explanatory variables without further recording and storing the
patients’ actual location history.

The technique used to combine predictionmodels demonstrated
enhanced prediction performance, as shown in Figure 6. This is
consistent with theoretical studies that indicate an appropriately
constructed ensemble model typically offers a reduced squared error
compared with individual predictive models (Krogh and Vedelsby,
1994; Ganaie et al., 2022). We experimentally applied the theory in
activity monitoring. To construct an appropriate ensemble model,
we eliminated the poor-prediction model, as shown in Figure 6F.

TABLE 4 Correlation relationships between features of stroke-patient activity
or demographic information and duration of stroke patients staying in their
bedrooms. The correlation relationships with statistical significance are
highlighted in bold.

Features R p-value

Demographics of patient Elapsed week from
admission

−0.18 0.002

Age 0.14 0.02

Sex 0.05 0.38

Height −0.04 0.49

Weight −0.05 0.39

mFIM −0.04 0.47

cFIM 0.04 0.48

Features of stroke-patient
activity

Heartrate 0.14 0.02

%HRR −0.07 0.24

Period spent reclining 0.56 <0.001

Period spent sitting or
standing

−0.52 <0.001

Period spent walking −0.12 0.04

MSDA −0.15 0.01

Walking steps −0.12 0.04

FIGURE 5
Examples of correlation plots of demographics in Table 3 and duration of stroke patients staying in their bedrooms. Correlation plots between
patients’ bedroom duration and (A) mFIM, (B) period spent reclining and (C) period spent sitting or standing.
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FIGURE 6
Correlation relationships between actual and estimated duration of stroke patients staying in their bedrooms. Validatedmodels are (A)GB, (B) RF, (C)
SVM, (D) DNN, (E) ensemble of all four models, and (F) ensemble using top-three models.

FIGURE 7
Contribution of each feature for trained models in predicting duration of stroke patients staying in their bedrooms. SHAP analysis was performed to
the models of (A) GB, (B) SVM, (C) RF and (D) DNN.
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The ensemble technique we used was quite basic, averaging the
predicted values of the models. This suggests the potential for
enhanced performance by adding more sophisticated techniques,
such as attention models (Singh et al., 2023), in future research.

4.1.3 Measurement time of wearable devices
By using only the activity data recorded from morning to

afternoon, we achieved a prediction performance (R = 0.68 in
Figure 8E) that was closely comparable to using data from the
entire day (R = 0.69 in Figure 6A). This suggests that the time during
which activity is recorded plays a crucial role in predicting the
duration of a patient staying in their bedroom. The possible reason
could be that many patients tend to stay in their bedrooms from
evening to the next morning, regardless of their physical condition.
As wearable devices often require close body contact, which some
patients find it uncomfortable, using such devices in the daytime
might be a practical solution.

4.2 Limitations and future work

4.2.1 Data loss of location tracking
While using BLE access points for location tracking within

the rehabilitation wards, we found that only 284 out of the
43 measurements (82.8%) achieved a data-acquisition rate
exceeding 90%. This indicates that data loss remains a

challenge that needs addressing, which is similar to other
medical-sensor-network systems (Selvarajan et al., 2023). This
data loss could be due to equipment malfunctions, such as battery
depletion, interference from electromagnetic shields in the
environment, and human errors. Specifically, BLE
communication is prone to disruptions because of issues such
as multipath fading and fluctuating conditions (Iannizzotto et al.,
2023). Machine-learning techniques to impute missing health
records have been proposed and could prove beneficial for studies
that rely on location tracking (Getz et al., 2023).

4.2.2 Prediction performance of machine-learning
models

The predictive capabilities of the machine-learning models we
used, especially the DNN, still need to be addressed. The performance
of the DNN (R = 0.51) was lower than those of the more common,
well-established models of GB, RF and SVM. This is consistent
with previous studies that the best performance with tabular data
is often achieved with “shallow”models (Joseph, 2021). One potential
explanation for this discrepancy might be the limited size of our
dataset. Deep learning typically requires large datasets, often spanning
hundreds or even thousands of examples. Fields, such as microarray
studies or gene analyses, often have access to such voluminous data,
but for many fields, accumulating sizable datasets remains a challenge
(Park and Tamura, 2019; Lin and Tsai, 2020). Augmenting sensor
data is also challenging, unlike using image data, where augmentation

FIGURE 8
Correlation relationships between actual and estimated duration of stroke patients staying in their bedrooms by using recorded data. The data was
segmented into various time periods: (A)morning (6:00 to 13:00), (B) afternoon (13:00 to 18:00), (C) evening (18:00 to 21:30), (D) lights-out (21:30 to 6:
00), (E) morning to afternoon (6:00 to 18:00), and (F) evening to lights-out (18:00 to 6:00). GB was employed for this analysis.
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is a commonly used strategy to expand datasets. Thus, using an
ensemble of models, as was done in this study, may be crucial with
smaller datasets. Another alternative could be to transfer learning and
self-supervised learning known to be tunable even with small datasets
(Ebbehoj et al., 2022; Rani et al., 2023).

4.2.3 Feature exploring and bias of dataset
While we evaluated 14 features for our machine-learning

models, there remain additional features yet to be explored. We
could not include features related to heart rate variability (HRV)
due to our experimental system’s data-transfer limitations. Given the
advancements in recent studies on the capability to monitor HRV
features, we anticipate their inclusion in future research (Ashokkumar
et al., 2023). Assessing a patient’s in-bed status and their restlessness
during rest are also important from a clinical standpoint. A broader
range of sensors is essential to cover such features. Moving forward, it
will be important to increase the number of sensor types and leverage
sensor-fusion methodologies (Khadidos et al., 2023).

Data bias is also a limitation. All data for this study were
collected in a single facility, which might not capture the
variability of data from diverse demographics. To develop a more
applicable model, data from multiple facilities would be crucial.
However, the implementation of BLE access points across numerous
locations may not be financially feasible for many hospitals due to
hardware and installation costs. Given that the need for actual
location data is temporal during the model-training phase,
dozens of facilities would be sufficient. Follow-up studies at
multiple facilities are needed to verify these possibilities.

5 Conclusion

We investigated the prediction of the duration of patients
staying in their bedrooms using machine learning and wearable
devices. We analyzed 284 measurements among 343, which
exceeded the 90% data-acquisition rate at BLE access points.
Correlation analysis suggested that a wearable device could
provide indicators related to the duration of patients staying
in their bedrooms, and those were the periods spent reclining and
sitting/standing with an R of 0.56 and −0.52. Interestingly, mFIM
or cFIM did not show any correlation. The machine-learning
models RF, GB, SVM, DNN, and an ensemble of them were
evaluated. The highest R among these models was 0.72,
suggesting the possibility of predicting the duration of patients
staying in their bedrooms from activity data and demographic
information. In SHAP analysis, the machine-learning models
showed high contribution to features with/without correlations,
which were the period spent reclining and sitting/standing,
mFIM, cFIM, and walking steps. Using only the activity data
recorded frommorning to afternoon, the prediction performance
was R = 0.68, suggesting measurement during only the daytime
may be useful. These results suggest the possibility of conducting
more privacy-conscious measurements, as once the model has
been trained with supervised learning, it can make predictions
using only the explanatory variables without further recording
and storing the patients’ actual location history.
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