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Background: Recurrent pregnancy loss is a distressing event during

pregnancy, and understanding its causal factors is crucial. Follistatin, a

glycoprotein involved in folliculogenesis and embryogenesis, has been

implicated as a potential contributor to the risk of spontaneous abortion.

However, establishing a causal relationship requires rigorous investigation

using robust methods.

Methods: In this study, we utilized mendelian randomization (MR), a powerful

genetic epidemiological approach, to examine the causal relationship

between follistatin levels and spontaneous abortion. We obtained

instrumental variables strongly associated with follistatin levels from large-

scale genome-wide association from the IEU database. The inverse variance

weighting (IVW) method was taken as gold standard. We also performed

sensitivity test to evaluate the robustness of our result.

Results: MR analysis revealed a significant causal relationship between low

follistatin levels and spontaneous abortion (p = 0.03). Sensitivity analyses,

including pleiotropy test, heterogeneity test, and leave-one-out analysis, all

supported the robustness of our findings.

Conclusion: Our study provides compelling evidence supporting the causal

relationship between low follistatin levels and increased risk of spontaneous

abortion. These findings underscore the importance of follistatin in the

etiology of spontaneous abortion and suggest potential preventive

interventions. Modulating follistatin levels or relevant pathways could hold

promise for reducing the incidence of spontaneous abortion and improving

reproductive outcomes. The utilization of MRs strengthens the validity of our
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results by mitigating confounding and reverse causality biases. Further

research is needed to elucidate the underlying molecular mechanisms and

explore therapeutic strategies targeting follistatin levels.
KEYWORDS

follistatin, spontaneous abortion, mendelian randomization, abortion, recurrent
pregnancy loss
1 Introduction

Spontaneous abortion is a frequently encountered complication

during pregnancy, characterized by the loss of pregnancy before 20

weeks of gestation (1). Approximately 9-20% of all recognized

pregnancies result in spontaneous abortion. Among these, 3-5% of

couples face the challenge of two or more clinically recognized

pregnancies ending in failure, known as recurrent pregnancy loss

(RPL) (2, 3). RPL can be devastating, bringing great trauma to both

the patient and their family (4). Various factors contribute to RPL,

with chromosomal abnormality being the most common, responsible

for over half of RPL cases (5). Additionally, 10%–15% of women with

multiple pregnancy losses exhibit uterine anomalies, such as partial or

complete septum (6, 7). Hormonal causes such as luteal phase defect,

pregestational diabetes mellitus, and polycystic ovary disease can lead

to RPL (8). Moreover, immune disorders may contribute to RPL by

dysregulating trophoblast function and endometrial angiogenesis (9).

For example, primary antiphospholipid syndrome (APS), present in

one-third of RPL patients, is associated with elevated serum anti-

phospholipid antibody (aPL) levels. Increased aPL levels reduce

placental hormone production, impair trophoblast function, and

result in pregnancy loss and other obstetric complications (10).

Women with celiac disease often have elevated anti-

transglutaminase type 2 (anti-TG2) autoantibodies, leading to

reduced blood vessel formation and disrupted endometrial

angiogenesis, contributing to RPL (11). Infections, exposure to

environmental agents, and elevated homocysteine levels are also

implicated in RPL (12). Nevertheless, the understanding of RPL

remains significantly limited, as almost 50% of RPL cases are still

categorized as unexplained (9).

Follistatin (FST) is a secreted protein that primarily synthesized

and secreted by the liver, mainly implicated in suppressing follicle-

stimulating hormone (FSH) activity through autocrine or paracrine

mechanisms (13–15). Notably, FST serves as a binding protein and

regulator in the transforming growth factor-beta (TGF-b) signaling
pathway, selectively binding to ligands such as activins and bone

morphogenetic proteins (BMP) (13, 16, 17). It restrained granulosa

cell proliferation and steroidogenesis by neutralizing the action of
02
activin (18–20). It also enhanced basal estradiol and progesterone

production (21, 22), promoting cell invasion via the ALK4-

SMAD2/3-SMAD4 signaling pathway (23–26).

Serum FST increased significantly throughout gestation until

the first day of parturition and declined afterward (27). Evidence

showed its possible role as chemokine to induce trophoblast

migration and invasion through the enhanced JNK signaling,

contributing to maintain trophoblast function and promote

placental development (28, 29). FST was upregulated in the

decidua during early pregnancy, and women with RPL were

observed to have a lower endometrial expression of FST during

the luteal phase (30). A lower FST level in endometrium stromal

cells of women with RPL was also observed (30). Conditional

knockout of mice uterine Fst can cause severe fertility defects,

reduced responsiveness to estrogen and progesterone signals,

impaired artificial decidualization, and an unreceptive

environment for embryo attachment. These findings suggest that

Fst may play a crucial role in facilitating uterine receptivity (31). A

decreased FST level was also observed in serum and placenta of

women with preeclampsia (PE) (32–34), resulting in impaired

trophoblast function through upregulating GDF11 levels in

trophoblasts. The dysregulation of the FST-GDF11-Smad2/3 axis

may be critical to trophoblast function, which adds more evidence

to the essential role of FST on trophoblast during pregnancy (35).

Mendelian randomization (MR) is an epidemiological tool

based on genetic variants related to exposure factors, helping to

assess the association of these gene variations with outcomes such as

disease onset or mortality. Its core relies on using genetic data as a

bridge to investigate causal relationships between a particular

exposure and a specific outcome (36, 37). Randomized controlled

trials (RCTs) have long been recognized as the gold standard for

causal inference, yet it is costly and complicated to conduct. Similar

to RCTs that randomly assign participants to a trial or control

group, MR studies “randomize” participants based on one or more

gene alleles that influence risk factors and attempt to determine if

carriers of these genetic variations have different disease onset risks

compared with non-carriers (38). Traditional observational study

designs rely on exposure obtained through questionnaires,
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biochemical assays, or imaging, whereas genetic variations exist at

birth and remain stable throughout life. Notably, information of

genetic variation and diseases is easy to acquire through open-

dataset, and since it leaves out the complicated implementation

process and ethical restriction, it is much easier to conduct

compared with RCTs (39). In view of these incomparable

advantages of MR, here we performed a two-sample MR analysis

of the GWAS summary data from the UK Biobank and EBI

database so as to find whether there is a potential causal

association between FST level and spontaneous abortion, trying to

provide novel evidence in this field of research.
2 Materials and methods

2.1 Study design

Here, we conducted a two-sample MR analysis to examine the

possible causal association between FST level and spontaneous

abortion. Figure 1 provides an overview of the study’s key factors,

including the exposures, outcomes, and genetic instruments. The

study was based on previously published materials and public

databases and received ethical approval and participant consent

from the relevant institutional review committees.

The genetic variants in this study are fully considered based on

the three principles below throughout our analysis. First is relevance

assumption: the genetic variant must be closely correlated with

follistatin levels; second is independence assumption: the genetic

variant cannot be associated with any possible confounders of

follistatin levels or spontaneous abortion; and third is exclusivity

assumption: the genetic variant cannot be related to the

relevant outcomes.
Frontiers in Endocrinology 03
2.2 Data sources

2.2.1 Exposure population and data
We extracted exposure data from a previous study (40),

downloaded from the website of IEU OPEN GWAS PROJECT

(https://gwas.mrcieu.ac.uk/, GWAS ID: ebi-a-GCST90012080).

2.2.2 Outcome population and data
We extracted outcome data from a UK Biobank study (Dataset

ID: ukb-d-O03), downloaded from the website of the IEU OPEN

GWAS PROJECT (https://gwas.mrcieu.ac.uk/).
2.3 Statistical analysis

All the data processing and statistical analyze are performed

using the R4.2.2 software (Lucent Technologies, USA). The MR,

heterogeneity test and pleiotropy test were carried by the “Two

Sample MR” package (41).
2.4 Extraction of instrumental variables

We performed two-step filtering to eliminate those SNPs that

do not satisfy the relevance assumption and obtained the satisfying

instrumental variables (IVs). We extracted SNPs that are (1) closely

related to the exposure (follistatin level) at a genome-wide

significance threshold of p < 5 × 10−8. 2) without linkage

disequilibrium (LD) (linkage disequilibrium r2 < 0.05), since we

should make sure that no correlation LD between selected IVs and

potential confounding factors exist. The R2 value was calculated for

these IVs to assess their association with the exposure (42).
FIGURE 1

Overview of the study’s key factors. Genetic variant, exposure, and outcomes are as described. Following the three assumptions, genetic variant
must be closely correlated with the exposure but cannot be associated with neither the confounders nor the outcomes.
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2.5 Elimination of confounding factors

We used PhenoScanner (Version 2), a database of human

genotype–phenotype associations to figure out whether the

confounding factors such as anatomical abnormalities, hormonal

imbalances (PCOS, luteal phase defect, etc.), and immune disorders

(antiphospholipid syndrome, lupus erythematosus, etc.) may

influence our result according to the independent assumption (43,

44). Over 65 billion associations and over 150 million unique

genetic variants are recorded in PhenoScanner. We applied the

“Phenoscanner” R package to investigated each of the five IVs and

their corresponding phenotypes (43, 44). Any IVs exhibiting

associations with confounding factors were excluded from the

analysis, applying stringent criteria (p < 1 × 10−5, r2 > 0.8).
2.6 Sensitivity test

To make sure that our MR results are robust enough for us to

come up with a causal conclusion, we extensively performed three

aspects of sensitivity test, namely, heterogeneity test, pleiotropy test,

and leave-one-out analysis test. R software was used to visualize

results with depicting scatter plot, forest plot, etc.
2.7 Two-sample MR analysis

In two-sample MR analysis, five methods are commonly used:

MR-Egger, Weighted Median, Inverse Variance Weighted, Simple

Mode, and Weighted Mode. Among these methods, Inverse

Variance Weighted is widely accepted and considered the most

effective, as it accounts for heterogeneity when assessing causality.

However, the other four methods also demonstrate robustness to

varying degrees. MR-Egger is particularly useful when there is

potential violation of instrumental variable assumptions, such as

pleiotropy. It estimates the causal effect while allowing for average

pleiotropic bias (45). The Weighted Median method provides a

robust estimate by considering the median of all possible

instrumental variable estimates, even when up to 50% of the

instruments are invalid. This method is advantageous in

situations where some instrumental variables may be biased or

weak. The Simple Mode and Weighted Mode methods combine the

estimates from multiple instruments by either taking the mode or
Frontiers in Endocrinology 04
using weighted averages. To evaluate the causal risk of FST levels,

we performed all five methods. A positive result from any one or

more of these methods would indicate a potential causal risk

associated with FST levels.
3 Results

3.1 Study population

The exposure population pertains to follistatin levels, sourced

from 39 cohorts of European ancestry. These data were thoroughly

cleaned and summarized in a previously published study in 2020

(40), where a genome-wide meta-analysis of 90 cardiovascular-

related proteins across 15 studies were identified. We extracted

identified genetic variants related to follistatin levels from the

recorded ebi-a dataset of IEU open GWAS project (GWAS ID:

ebi-a-GCST90012080). In this dataset, 21,758 samples are involved,

with 13,022,208 SNPs being reported (40). All of them are of

European ancestry. The effect allele (EA), other allele (OA), beta

coefficients, p value, and standard error (SE) are also included in

this dataset for further investigation.

For the outcomes, summary-level data were obtained from the

UK Biobank study (46). In the UK Biobank, pregnancy loss was

defined as a history of self-reported spontaneous abortion or

termination. We utilized the second round of Neale Lab’s

genome-wide association analyses in the UK Biobank, obtaining

1,150 female patients with spontaneous abortion and 360,044

matched controls of European ancestry and 9,543,298

detected SNPs.
3.2 Five SNPs are validated as
instrumental variables

MR relies on the idea of random allocation of genetic traits. If

the frequency of SNPs harmonizes with the alteration of the

exposure, we can tentatively deduce that the SNP is correlated

with the exposure. We screen the total of 13,022,208 SNPs in the

exposure dataset based on the relevance assumption and

independence assumption mentioned in the “study design” and

finally achieved five SNPs that satisfied for IVs. We presented some

detailed information for these SNPs such as effect allele frequency,
TABLE 1 General data for five SNPs as instrumental variables.

SNP for IV Miscarriage (outcome) Follistatin (exposure)

Chr Position SNP ID EA OA Beta EAF SE p value Beta EAF SE p value R2

9 92228559 rs10908903 G T -1.43E-04 0.4677 0.0106 0.2850 0.0603 0.4587 0.0109 2.76E-08 3.43E-03

2 27730940 rs1260326 C T 1.05E-04 0.6069 0.0107 0.4381 -0.1323 0.6024 0.0106 9.58E-36 3.21E-03

15 43726625 rs150844304 C A -5.26E-04 0.0245 0.0109 0.2187 0.2466 0.0294 0.0321 1.46E-14 6.98E-04

5 53327571 rs31226 C T 2.62E-04 0.6064 0.0123 0.0541 -0.1289 0.5979 0.0107 1.56E-33 7.87E-04

12 57791833 rs7974833 C T 9.15E-05 0.2367 0.0321 0.5561 0.0849 0.2350 0.0123 5.61E-12 1.55E-04
fron
Chr, chromosome; SNP, single-nucleotide polymorphism; EA, effect allele; OA, other allele; EAF, effect allele frequency; SE, standard error.
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standard error, and effect allele (Table 1). In addition, we calculated

the R2 value for the IVs, which help to explain the extent of

exposure (Table 2).
3.3 MR analysis showed that follistatin level
is a causal risk for spontaneous abortion

Here, we adopted five methods to evaluate the follistatin level

effect on the risk of spontaneous abortion, and the results are shown

in Table 3 and Figure 2. Considering the absence of neither

heterogeneity nor pleiotropy (which we would describe in detail

on the next part), we selected IVW as the main method as well as

the gold standard for determining the causal effect of FST level on

the risk of spontaneous abortion (47). We found that the IVW

method showed a p value of 0.03517563 (<0.05) and b of

−0.001282787 (<0), indicating the causal relationship between low

FST level in the European population.
3.4 Sensitivity analysis

In this work, sensitivity analysis is performed to (1) evaluate

whether the results are robust and the conclusions are reliable; (2)

assess whether the results have potential biases (such as genetic

pleiotropy and data heterogeneity); and (3) evaluate whether there

is a certain instrumental variable that significantly affects the

outcome variable.

We detected no heterogeneity in the five IVs that we chose for

the spontaneous abortion (MR–Egger Q statistics = 2.738052; Qdf =

3; Qpval = 0.4337995; IVW Q statistics = 2.875518; Qdf = 4; Qpval

= 0.5788685) (Table 4). We then focused on the pleiotropy using the
Frontiers in Endocrinology 05
MR–Egger method. The intercept with the Y-axis represents the

horizontal pleiotropy. Zero horizontal pleiotropy is one of

the prerequisites of applying the MR method according to the

exclusive assumption. Here, we noticed no horizontal pleiotropy

existed in our MR analysis results (Egger_intercept = 7.505441e-05;

se = 0.0002024312; p value = 0.7354456) (Table 5). In the “leave-

one-out” analysis, we sequentially removed each SNP and

calculated the MR effect of the remaining SNPs. We noticed that

the removal of any of these individual SNPs did not result in

significant changes of the overall causal estimation effect (Figure 3).

Taken together, these results suggest that our findings were robust

and the exception of single IV exert no difference on the overall

estimated causal effect.

The Wald ratio method was used to estimate the causal effect of

each individual SNP on the risk of spontaneous abortion. The

findings have been presented in a forest plot to provide a visual

representation (Figure 4). The threshold of significance for the

forest plot remained controversial. It can be defined as either p <

0.05 or p < 0.05/n (n refers to the number of SNPs). Here,

comprehensively regarding the p values for each single SNP on

the outcome (Table 1), the leave-one-out analysis test (Figure 3),

and all the SNPs combined (Figure 4), it was quite clear that a causal

association existed between follistatin level and the risk of

spontaneous abortion.
4 Discussion

In this study, we employed two-sample MR to investigate the

causal relationship between FST levels and spontaneous abortion.

The evidence from MR analysis indicates that low follistatin level

was a causal risk factor for spontaneous abortion and these results
TABLE 3 Causal effect between follistatin level and spontaneous abortion by different MR analysis methods.

Exposure Outcome Method nSNP p value beta R2

Follistatin levels Spontaneous abortion MR–Egger 5 0.36562849 -0.001908907 3.43E-03

Follistatin levels Spontaneous abortion Weighted median 5 0.03961415 -0.001535967 3.21E-03

Follistatin levels Spontaneous abortion Inverse variance weighted 5 0.03517563 -0.001282787 6.98E-04

Follistatin levels Spontaneous abortion Simple mode 5 0.09652113 -0.002171829 7.87E-04

Follistatin levels Spontaneous abortion Weighted mode 5 0.10618687 -0.002087265 1.55E-04
fron
TABLE 2 Evaluation of instrumental variables.

SNPs for IV Follistatin level (exposure)

Chr Position SNP ID MAF beta SE

9 92228559 rs10908903 0.4587 0.0603 0.0109

2 27730940 rs1260326 0.6024 −0.1323 0.0106

15 43726625 rs150844304 0.0294 0.2466 0.0321

5 53327571 rs31226 0.5979 −0.1289 0.0107

12 57791833 rs7974833 0.235 0.0849 0.0123
tie
IV, instrumental variable; Chr, chromosome; SNP, single nucleotide polymorphism; MAF, minor allele frequency; Beta, the effect size; R2, IV explains the extent of exposure.
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were generally reliable as the sensitivity analysis strongly supports.

These findings have important implications for understanding the

pathogenesis of spontaneous abortion and may contribute to the

development of potential preventive and therapeutic strategies.

It is widely acknowledged that establishing proper placentation

involves sequential processes, notably trophoblast invasion and

angiogenesis (48). The orchestrated interplay of angiogenic

processes and steroid hormones induces transformative changes

in the endometrium, facilitating its receptivity to the blastocyst and

initiating the implantation process (49). Successful placentation and

the commencement of pregnancy hinge on prerequisites such as

endometrial angiogenesis, decidualization, and trophoblast invasion

(48, 50, 51). Any dysregulation during the above processes may lead

to pregnancy failure and RPL. High levels of anti-annexin V

antibody can bind to trophoblast cells, affecting trophoblast

invasiveness and causing defective placentation (52). Also, lots of

proteins and related pathways have been recognized to be involved

in regulating trophoblast function, such as TGF-b which governs

the differentiation program of extravillous trophoblasts in the

developing human placenta (53).

The underlying biological mechanisms linking low follistatin

levels with spontaneous abortion warrant further investigation.
Frontiers in Endocrinology 06
Follistatin not only has an inhibitory effect on FSH secretion

from cultured anterior pituitary cells (54) but also is involved in

trophoblast invasion and embryonic development. FST acts as an

antagonist to the TGF-b superfamily and thereby modulates

important signaling pathways such as JNK signaling, ALK4-

SMAD2/3-SMAD4 signaling, and FST-GDF11-Smad2/3, further

affecting trophoblast function (55). It is hypothesized that

reduced follistatin levels may disrupt multiple pathways such as

JNK signaling, ALK4-SMAD2/3-SMAD4 signaling, and FST-

GDF11-Smad2/3, leading to trophoblast dysfunction and causing

impaired implantation and defective placental development,

ultimately resulting in abortion. Future research should focus on

elucidating the specific molecular mechanisms through which

follistatin influences pregnancy outcomes.

Our results are consistent with previous studies that have

reported a probable association between low follistatin levels and

adverse pregnancy outcomes (30, 56–58). For instance, Prakash

et al. (30) observed a dramatic decrease of FST expression in

endometrial stromal cells of women with spontaneous abortion.

However, it should be noted that some studies reported no

significant decrease of follistatin in the serum of women with

spontaneous abortion (59, 60). These discrepancies may arise
TABLE 4 Heterogeneity statistics.

Method Q Q_df Q_pval

MR–Egger 2.738052 0.4337995

Inverse variance weighted 2.875518 0.5788685
TABLE 5 Pleiotropy statistics of MR analysis.

Method
Egger regression

of intercept
SE

p
value

MR–Egger 7.51E-05 0.000202431 0.7354456
fron
FIGURE 2

Scatter plot illustrating the distribution of individual ratio estimates of follistatin levels with spontaneous abortion as the outcome. Trend lines derived
from five different 2SMR methods are also included in each scatter plot to indicate cause and effect.
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FIGURE 3

Leave-one-out analysis for follistatin levels on spontaneous abortion. The given dark dots indicate effect measures from IVW-MR analysis excluding
specific SNPs. Red line indicates pooled analysis including all SNPs by the IVW-MR method (plotted for comparison).
FIGURE 4

Forest plot showing the causal effect of each single SNP on the risk of miscarriage.
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from variations in sample size and characteristics, since it only

includes around 10 abortion samples and 10 control samples.

Although previous studies have pointed out a possible association

between FST and spontaneous abortion, there is no absolute evidence

on a genetic aspect. Establishing a direct causal link between

follistatin and spontaneous abortion presents challenges due to

confounding effects from factors such as lifestyle and

environmental influences. To overcome this challenge, a promising

approach is the utilization of MR, which leverages genetic variants as

IVs to infer causal relationships. In our study, we utilized MR to

present novel evidence that demonstrates a causal relationship

between low FST levels and spontaneous abortion. This finding

holds significant implications for the field of reproductive health.

Our results suggest that interventions targeting increased FST levels

may have the potential to reduce the incidence of spontaneous

abortion, which is a devastating outcome for numerous couples.

However, despite the valuable insights gained from this study, several

limitations should be acknowledged. We recognize that our analysis

only included the European population, introducing the possibility of

potential bias associated with differing ancestries.

Our study yields meaningful clinical implications. First, it

indicates that FST levels might be integrated into routine

antenatal assessments to evaluate the risk of pregnancy failure.

This is particularly crucial for individuals with a history of

spontaneous abortion, where assessing their FST levels may serve

as a predictive indicator for the occurrence of RPL. Concurrently,

FST may function as a prospective biomarker for targeted

interventions like hormonal therapies or lifestyle adjustments and

the development of personalized medical strategies. Future studies

could explore interventions aimed at modulating follistatin levels to

potentially prevent or mitigate the risk of spontaneous abortion.

Moreover, investigations into the long-term effects of low follistatin

levels on maternal and offspring health outcomes would be valuable

for a comprehensive understanding of the implications.

In conclusion, our study contributes to the growing body of

reliable evidence supporting the critical role of FST in successful

pregnancy outcomes and highlights it as a promising therapeutic

target. We remain hopeful that further research, conducted with

larger sample sizes based on our observations, will provide

additional insights into the underlying mechanisms that link FST

and pregnancy outcomes.
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