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Neural decoding is a powerful method to analyze neural activity. However, the 
code needed to run a decoding analysis can be complex, which can present a 
barrier to using the method. In this paper we introduce a package that makes it 
easy to perform decoding analyses in the R programing language. We describe 
how the package is designed in a modular fashion which allows researchers to 
easily implement a range of different analyses. We also discuss how to format 
data to be able to use the package, and we give two examples of how to use the 
package to analyze real data. We believe that this package, combined with the 
rich data analysis ecosystem in R, will make it significantly easier for researchers 
to create reproducible decoding analyses, which should help increase the pace 
of neuroscience discoveries.
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Introduction

Advances in neural recording technology have allowed for a large increase in the size of 
datasets that can be recorded, which has the potential to revolutionize our understanding of how 
the brain enables complex behaviors (Stevenson and Kording, 2011; Steinmetz et al., 2021). 
However, in order to convert these new datasets into meaningful information, new data analysis 
methods and tools are needed (Brown et al., 2004; Williamson et al., 2019; Semedo et al., 2020). 
To address this issue, we have created a software package called the NeuroDecodeR, which can 
run neural decoding analyses on large datasets. This package should make it easy for 
experimental neuroscientists to extract insights from the large datasets they are collecting, and 
thus help speed up the pace of discovery.

Neural decoding is a data analysis method that uses neural activity to predict which 
experimental conditions are present on different experimental trials (Quian Quiroga and 
Panzeri, 2009; Meyers and Kreiman, 2012). Neural decoding analyses have been used on 
data from a range of recording modalities in humans, including on electroencephalogram 
(EEG) and magnetoencephalogram (MEG) signals (Carlson et al., 2011; Isik et al., 2014), 
electrocorticography (ECoG) recordings (Volkova et al., 2019), single unit recordings 
(Rutishauser et  al., 2015; Saha et  al., 2021), and fMRI BOLD responses, where the 
method is referred to as multivariate pattern analysis (Haynes and Rees, 2006; O’Toole 
et al., 2007; Pereira et al., 2009; Tong and Pratte, 2012; Weaverdyck et al., 2020). Neural 
decoding analyses of spiking activity have also been conducted in a range of animal 
species and in different brain regions including the motor cortex of macaques to predict 
reaching directions and control brain computer interfaces (Georgopoulos et al., 1986; 
Wessberg et al., 2000), the hippocampus of rats to predict spatial location information 
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(Brown et  al., 1998; Tingley and Buzsáki, 2018), the inferior 
temporal cortex of macaques to predict which visual objects 
were present (Hung et al., 2005; Zhang et al., 2011), and higher 
level brain regions to predict a range of cognitive related 
variables (Crowe et al., 2010; Rikhye et al., 2018).

There are several advantages to using neural decoding to analyze 
data including the ability to pool signals across many recording 
channels which can give a clearer picture of what information is in a 
brain region at a particular point in time (Quiroga et  al., 2004). 
Additionally, neural decoding can be used to assess how information 
is coded in populations of neural activity (Nirenberg and Latham, 
2003; Jacobs et al., 2009; Meyers et al., 2015), such as whether there is 
a small subset of neurons that contain all the information present in a 
larger population (Meyers et al., 2008, 2012) and whether information 
is coded by patterns of activity that change in time (Meyers et al., 2008; 
King and Dehaene, 2014; Meyers, 2018).

Despite the advantages neural decoding has as a data analysis 
method, the code needed to run a decoding analysis can be complex 
which can present a barrier to using the method. To address this 
difficulty, several software packages exist that make it easier to run 
these analyses including packages in Python (Hanke et  al., 2009; 
Glaser et al., 2020) and MATLAB (Hebart et al., 2015; Oosterhof et al., 
2016; Peng et al., 2020). In previous work we have also tried to address 
this issue by creating a MATLAB toolbox called the Neural Decoding 
Toolbox (Meyers, 2013).

In this paper, we introduce a new neural decoding package written 
in R (R Core Team, 2021), called NeuroDecodeR. The design of the 
NeuroDecodeR is based on the design of the MALTAB Neural 
Decoding Toolbox, but it extends its functionality several ways. In 
particular, the NeuroDecodeR includes the ability to easily add new 
measures for quantifying decoding accuracy, a system to manage 
results, and the ability to run the code in parallel which greatly speeds 
up the time it takes to run an analysis. Additionally, using the R 
programming language has several advantages including that R is free/
open source, and that there is a large data analysis ecosystem for 
creating reproducible data analyses.

In the following paper, we  describe the design of the 
NeuroDecodeR package, the data format that is used by the 
package, and we give an example of how the package can be used 
by reproducing results from Meyers et  al. (2015). We hope this 
package will make it easier for neuroscientists to extract insights 
from the data they collect, and will help introduce neural decoding 
analyses to the larger Statistics/Data Science community that uses 
R to analyze data.

Methods

A brief overview of neural population 
decoding

Neural decoding is a data analysis method that assesses 
whether information about particular stimuli, or other 
behaviorally relevant variables, is present in neural activity (Quian 
Quiroga and Panzeri, 2009). The method works by ‘training’ a 
machine learning algorithm, called a pattern classifier, to learn the 
relationship between neural activity and particular experimental 
conditions on a subset of data called the training set. Once the 
classifier has ‘learned’ the relationship between the neural data 

and experimental conditions, one assesses whether this 
relationship is reliable by having the pattern classifier predict 
which experimental conditions are present in a separate test set 
of data.

In a typical analysis, the data in split into k different parts, and the 
classifier is trained on k-1 parts and tested on the remaining part. This 
procedure is repeated k times where a different part of the data is used 
to test the classifier each time, in a process called cross-validation, and 
a final measure of prediction accuracy is aggregated across the 
performance on all k test sets. If the pattern classifier can make 
accurate predictions on these separate test sets of data, then this 
indicates that a brain region has information about a particular 
experimental condition (for more information about decoding see 
Meyers and Kreiman, 2012).

Decoding methods are often applied to time series data, such 
as neural activity recorded over a fixed length experimental trial. 
To do this, the classifier is trained and tested at one point in time, 
and then the procedure is repeated at the next point in time. This 
leads to results that show how the information content fluctuates 
over the course of a trial, and can be  used to assess how 
information flows through different brain regions (Meyers et al., 
2018). Additionally, neural decoding can be used to gain insight 
into how information is coded in neural activity. For example, a 
temporal cross-decoding (TCD) analysis can be done where the 
classifier is trained at one time period and then tested at a different 
time period. If the classifier has a high decoding accuracy when 
trained and tested at the same time period, but a low decoding 
accuracy when trained and tested at different time periods, then 
this indicates information is coded by patterns of activity that 
change in time (Meyers et al., 2008; King and Dehaene, 2014). 
Abstract information can also be assessed using a ‘generalization 
analysis’ by training the classifier on one set of conditions and 
then testing the classifier on a related set of conditions. For 
example, Hung et al. (2005) assessed whether the inferior temporal 
cortex contains information about objects that is invariant to the 
position by training the classifier to discriminate between a set of 
objects that were shown at one retinal position and then testing 
the classifier to see whether it could make predictions at a 
different retinal position (also see “Decoding analysis 2” below for 
another example of a generalization analysis).

When running a decoding analysis, neural activity from different 
sites do not need to be recorded simultaneously, but instead one can 
create ‘pseudo-populations’ where responses of simultaneously 
recorded neural populations are approximated by combining 
recordings made across multiple experimental sessions (Averbeck 
et al., 2006; Meyers and Kreiman, 2012). These pseudo-populations 
allow a larger number of sites to be included in a decoding analysis, 
which can lead to clearer results. As described below, one of the 
strengths of the NeuroDecodeR package is that it can automatically 
create pseudo-populations as part of the decoding procedure.

Installing the NeuroDecodeR package

The NeuroDecodeR package has been published on the 
comprehensive R archive (CRAN). Like all R packages, the 
NeuroDecodeR package must be installed before it can be used for  
the first time. To install the package, use the command:  
install.packages("NeuroDecodeR"). Once the package is 

https://doi.org/10.3389/fninf.2023.1275903
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Meyers 10.3389/fninf.2023.1275903

Frontiers in Neuroinformatics 03 frontiersin.org

installed, any time you would like to use it you can load it into memory 
using: library(NeuroDecodeR).

Below we describe the design of the NeuroDecodeR package, the 
data formats that the package uses, and how to run two types of 
decoding analyses using the package. Additional tutorials, a complete 
reference of functions that are available, and more information about 
how to extend the functionality of the package is available at https://
emeyers.github.io/NeuroDecodeR/. Additionally, the development 
version of the package is available on GitHub at https://github.com/
emeyers/NeuroDecodeR. If one is interested in learning more about 
how neural decoding works in general, Meyers and Krieman (2012) 
contain an overview of the method.

Design of the NeuroDecodeR package

The NeuroDecodeR package is designed around five abstract 
object types which allows researchers to easily run a range of different 
decoding analyses. The five object types are:

 1. Datasources (ds): These objects create training and test splits 
of the data.

 2. Feature preprocessors (fp): These objects extract statistics 
from the training set, and then apply transformations to the 
training and test set. These transformations are typically used 
to either improve the decoding accuracy, or to assess how 
information is coded in neural activity.

 3. Classifiers (cl): These objects learn the relationship between 
neural activity and experimental conditions on the training set 
of data, and then make predictions on the test set of data.

 4. Result metrics (rm): These objects compare the predictions 
made by the classifier on the test set of data to the experimental 
conditions that were actually present, and then create metrics 
that indicate how accurate the predictions were. The final 
decoding results are stored in these objects as data frames and 
can be plotted using associated plot methods.

 5. Cross-validator (cv): These objects take a datasource, feature 
preprocessors, a classifier, and result metrics, and run a 
decoding analysis by:

 a. Generating training and test data from the data source.
 b. Pre-processing the data using the feature preprocessors.
 c.  Passing the data to the classifier which learns a model on 

the training data and then makes predictions on the test data.
 d.  Passing the classifier’s predictions to the result metrics which 

creates measures of how accurately the information can 
be decoded.

Steps a-d are typically repeated several times on different 
“resample runs”, where different training and test sets are 
“created on each run”, which can lead to more accurate results.

The NeuroDecodeR package comes with one or more 
implementations of each of these object types, as listed in Table 1. A 
description of how to use these objects to run a decoding analysis is 
shown in the Results section below.

The advantage of this modular design is that it allows researchers 
to easily try out different analyses to gain additional insights and to 
make sure the results are robust to particular analysis choices. For 
example, as described below in the Results section, one can use the 

ds_generalization datasource instead of the ds_basic 
datasource to run a generalization analysis which can assess whether 
there is abstract information in the neural data.

Each of these object types are defined by an interface which specifies 
exactly which methods each object must have to work with the other 
object types in the package. This design allows users to add new 
implementations of the objects to their analysis. For example, a researcher 
could create a new classifier by implementing an S3 object that has a 
get_predictions() method.1 More information on how to 
implement the methods needed to create new NeuroDecodeR objects is 
available on the NeuroDecodeR’s documentation: https://emeyers.
github.io/NeuroDecodeR/articles/NDR_object_specification.html.

Data formats

Raster format
In order to use the NeuroDecodeR package, neural data must be put 

into a particular format called “raster format.” In this format, data from 
each recording site is in a separate “raster data” file. The data in each of 
these raster data files consists of a data frame where each row corresponds 
to one experimental trial, and each column must start with the prefix 
site_info., labels., or time. Columns that start with the prefix 
site_info. contain meta-information about the recording site. 
Columns that start with the prefix labels. contain information about 
which experimental conditions were present. Columns that start with the 
prefix time. contain the neural activity that occurred at a particular 
point in time.

To illustrate the data formats NeuroDecodeR package uses, and 
how to run a decoding analyses, we will use data from the “Friewald 
Tsao Face Views AM data set” (Freiwald and Tsao, 2010). This data 
set consists of recordings made from neurons in the macaque anterior 
medial face patch (AM) while monkeys viewed a random sequence 
of images where each image was presented for 200 ms with a 200 ms 
inter-stimulus interval. The images shown consisted of faces from 25 
different people taken from 8 different head orientations (Figure 1A). 
For readers who are interested in replicating the analyses described 
below, a zip file that contains a directory with raster data from this 
experiment can be  downloaded from http://www.readout.info/
downloads/datasets/freiwald-tsao-face-views-am-dataset/. When 
this data archive is unzipped, a directory will be  created called 
Freiwald_Tsao_faceviews_AM_data/ that has 193 files of data in 
raster format that we will use in the analyses.

Figure 1A shows example stimuli from the experiment conducted 
by Freiwald and Tsao (2010) and Figure 1B shows data from one neuron 
that is in raster format. From looking at the raster format data (Figure 1B) 
we see the that the “site_info” columns consists of site_info.monkey 
which contain information about the name of the monkey and site_
info.region which contains information about the brain region where 
the recording was made. We also have “labels” columns that list what 
stimulus occurred on each experimental trial including labels.

1 Experimenting with different classification algorithms is useful for gaining 

insight into the ‘neural code’ and for assessing the maximum amount of 

information that could be extracted by a sequence of downstream areas 

(Meyers et al., 2015; Glaser et al., 2020).
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person which indicates who the person was in each image that was 
presented, labels.orientation which indicate the head orientation 
in each image, and labels.orient_person_combo which combines 
the head orientation and person information. Finally, we have the “time” 
columns which contain the recorded data, including time.2_3, which 
contains the neural activity that occurred in the time window [2 3) 
milliseconds after the stimulus onset. Since the recordings are neuronal 
spiking activity, each data value in these “time” columns is either a 1 
indicating a neuron produced an action potential or a 0 indicating that 
it did not. As described below, we can visualize raster format data using 
the plot(raster_data) function, which will produce plots such as 
the one shown in Figure 1C.

When analyzing data from a new experiment, one can put data 
into raster format by saving data in comma separated value (csv) files 
with the appropriate column names (i.e., columns names that start 
with site_info., labels. and time.). The data can then later 
be  loaded in raster format using the read_raster_data() 
function. Alternatively, one can save them in the MATLAB Neural 
Decoding Toolbox raster format2 and then convert the files into R 
using the convert_matlab_raster_data() function.

Binned format
Once one has created a directory that has data files from each 

recording site in raster format, one can convert this data to “binned 
format” using the create_binned_data() function. After this 
conversion is done, the rest of decoding process relies only on data in 
binned format. Data in “binned format” is similar to data in raster 
format in that it contains the same site_info., labels. and time. 
columns.; however, the binned data time. columns contain data at a 
coarser temporal resolution that is created by averaging activity in 
sliding time windows. For example, the Friewald Tsao Face Views 
raster data is recorded at millisecond resolution, as indicated by the 
fact that the time bins are successive numbers; i.e., time.1_2, 

2 http://www.readout.info/toolbox-design/data-formats/raster-format/

time.2_3, time.3_4, etc. However, as described in the Results 
section, we can use the create_binned_data() to create averaged 
firing rates in 30 ms bins sampled every 10 ms, which will give us time 
bins columns with values time.1_31, time.11_41, time.21_51, 
etc. Additionally, data in binned format contains data from all 
recording sites as rows in the data table, and there is a siteID column 
that indicates which recording site the data in each row came from. 
The reason for binning the data is that it is usually computationally 
too expensive in terms of memory and runtime to analyze data at a 
very high temporal resolution. Additionally, firing rates averaged over 
longer time periods usually lead to higher decoding accuracies which 
can give clearer results (Meyers et al., 2009).

Results

In the following sections, we describe how to use the NeuroDecodeR 
package to run two different decoding analyses. The analyses described 
below can be replicated by downloading the raster data at http://www.
readout.info/downloads/datasets/freiwald-tsao-face-views-am-dataset/.

Viewing raster data

As mentioned above, to illustrate how to use the NeuroDecodeR 
package we will analyze the “Friewald Tsao Face Views AM data set” which 
consists of 193 files in raster format that are stored in a directory called 
Freiwald_Tsao_faceviews_AM_data/. To begin we will load one of 
these raster format files using the read_raster_data() function, and 
then we can plot the data using the plot() function as follows:

 raster_dir_name
<- "Freiwald_Tsao_faceviews_AM_data"

 raster_data <- read_raster_data(file.path(raster_ 
 dir_name, "raster_data_bert_am_site021.rda"))

plot(raster_data)

TABLE 1 A list of implementations NeuroDecodeR objects that come with the NeuroDecodeR package.

Datasources (ds):

  ds_basic: creates training and test splits of the data, including the ability to create pseudo-populations.

  ds_generalization: allows one run of generalization analysis by training the classifier on one set of conditions (labels) and then test the classifier on a different related set 

of conditions.

Feature-preprocessors (fp):

  fp_zscore: calculates the mean and standard deviation of each feature on the training set, and then z-score normalizes the training and test set features using these values.

  fp_select_k_features: finds the k most selective features on the training data, and then eliminates all other features from the training and test set.

Classifiers (cl):

  cl_max_correlation: A maximum correlation coefficient classifier.

  cl_poisson_naive_bayes: A Poisson Naïve Bayes classifier.

  cl_svm: A support vector machine classifier.

Result metrics (rm):

  rm_main_results: Calculates three measures of decoding accuracy: (1) The classification accuracy (zone-one loss); (2) Normalized rank results; (3) Decision values. The 

associated plot function can create line plots and temporal cross-decoding (TCD) plots.

  rm_confusion_matrix: Creates a confusion matrix showing how often trials from class i were predicted to belong to class j.

Cross-validators (cv):

  cv_standard: Takes ds, fp, cl, and rm. objects, and using the run_decoding() function, a cross-validation loop is run several times to create the decoding results.

The package also includes a number of additional functions that are useful for processing data, plotting, and saving/loading results.  
For more details on these objects, see Supplementary Table S1, and the online documentation at: https://emeyers.github.io/NeuroDecodeR/reference/index.html.
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The results from visualizing the raster data for this neuron are 
shown in Figure 1C. In the plot, the x-axis corresponds to time from 
the stimulus onset, y-axis corresponds to different experimental trials, 
and black tick marks on the plot corresponds to the time when action 
potentials occurred.

While one does not need to visualize raster data to run a decoding 
analysis, it can be useful to visually examine raster data from a few sites 
to make sure the data conform to expectations. For example, in the 
Freiwald and Tsao experiment, images were shown every 400 ms (i.e., 
images were presented for 200 ms followed by a 200 ms interstimulus 
interval). When looking at the plot of the raster data example neuron 
shown in Figure 1C, we see that there is a large increase in spiking 
activity a little before 200 ms post stimulus onset, which corresponds 
to the response latency of this neuron, and then another large increase 
in spiking activity a little before 600 ms post stimulus onset, which 
corresponds to the response of the next stimulus. Seeing that the 
pattern of responses matches what we expect based on the design of 
the experiment is a good sanity check that we have correctly formatted 
the data.

Binning the data

As we also mentioned above, all decoding analyses use data that 
is in binned format which can be created from raster data files using 
the create_binned_data() function. The create_binned_
data() function takes the following arguments:

 1. A string specifying the path to a directory that contains the 
raster data files.

 2. A string specifying a prefix that will be appended to the saved 
binned data file name.

 3. A number specifying the bin width which neural activity will 
be averaged over.

 4. A number specifying the sampling interval indicating the 
frequency with which to repeat the binning process.3

3 There are also a few additional optional arguments to control the binning 

process. To see all the arguments, one can view the function documentation 

FIGURE 1

Stimuli and raster data from the Friewald Tsao Face Views AM data set. (A) Example of the 8 head orientation stimuli from 1 of the 25 individuals in the 
Friewald and Tsao Face Views data set (the full data set consists of 25 individuals from these 8 head orientations). The labels below each image 
correspond the labels.orientation column in the raster data. (B) An example of data in raster format. Each row corresponds to an experimental 
trial, and the columns start with either site_info., labels., or time. Which is required for data to be in raster format. (C) A visualization of data 
that is in raster format created by using the plot(raster_data) function.
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For our analysis, we will average the activity in 30 ms bins, and 
we will sample the data at 10 ms intervals. This can be achieved by 
running the following command:

binned_file_name <- create_binned_data(raster_dir_name,
                                                     save_prefix_name = "FV_AM",
                                                     bin_width = 30,
                                                     sampling_interval = 10)

The resulting binned data is in a file called FV_

AM_30bins_10sampled.Rda which we  will use for all the 
subsequent decoding analyses in this paper.

Decoding analysis 1: decoding face identity 
using left profile images

As a first demonstration of how to run a decoding analysis, 
we will decode which of the 25 individuals were shown on each trial 
using only the left profile images. To do this, we will use the labels.
orient_person_combo column of the binned data, and we will 
only use the label levels that start with “left profile” which 
correspond to trials when left profile images were shown; i.e., 
we will use the label levels "left profile 1", "left profile 2", 
up to "left profile 25", which corresponds to a trials where a left 
profile image of person 1 was shown, up to trials when a left profile 
image of person 25 was shown, and we are excluding trials when 
faces of other orientations were shown such as "right profile 1", 
and "frontal 10", etc.

Assessing how many recording sites and 
cross-validation splits to use

Before starting to run a decoding analysis, it is useful to assess 
how many trials were collected from each recording site for each 
stimulus that was shown; for example, for neuron with siteID 7, 
how many trials were recorded when the image "left profile 3" 
was shown, etc. By examining this information across all the sites 
that were recorded, one can assess how many cross-validations 
splits to use, and whether specific sites should be excluded from 
further analyses because not enough trials were recorded from a 
given site. This is particularly important when creating pseudo-
populations from experiments where data from different sites were 
recorded in different experimental sessions, since it is likely that 
sites that were recorded in different sessions will have different 
numbers of trials for each stimulus. If one uses k cross-validation 
splits, then only sites that have at least k trial repetitions of all the 
stimuli can be included in the analysis. Therefore, finding the sites 
that have enough repetitions of all the stimuli is an important first 
step so that one can tell which sites have enough data to be included 
in the analysis.

To visualize how many sites have at least k repetitions of each 
stimulus for different values of k, we can use the get_num_label_
repetitions() function, along with the associated plot() function 
as shown here:

by typing? create_binned_data.

label_info <-  get_num_label_repetitions(binned_
data = "FV_AM_30bins_10sampled.Rda", 
labels = "orient_person_combo")

plot(label_info, show_legend = FALSE)

The results from running this code, shown in Figure 2, illustrate 
the trade-off between the number of cross-validation splits 
we would like to use (k), and the number of neurons available. To 
interpret this plot, we will focus on the black dashed line which 
shows how many sites have k repetitions of all the stimuli. From 
looking at this black dashed line, we see that there are a little less 
than 150 neurons that have 3 repetitions of each of the 25 stimuli, 
and there are a little more than 75 neurons that have 4 repetitions 
of each stimulus. Thus, if we  run a 3 fold cross-validation, our 
pseudo-population vectors could consist of a little less than 150 
neurons, and if we  run a 4 fold cross-validation analysis, our 
pseudo-population vectors could consist of a little more than 75 
neurons. In the subsequent analyses, we will run a 3 fold cross-
validation, although a 4 fold cross-validation with fewer neurons 
would also be a reasonable choice.4

The colored lines on the plot show how many sites have at least k 
repetitions for each specific stimulus, where there is a different 
colored line corresponding to each stimulus that was shown in the 
experiment. If one of these colored lines was close to the black dashed 
line, this would indicate that there was a stimulus that had fewer 
repetitions than the other stimuli and we might consider excluding 
this stimulus from our analysis to make more sites available to use in 
our analysis.

To restrict our subsequent analyses to only use sites that have 3 
repetitions of all stimuli, we  can use the get_siteIDs_with_k_
label_repetitions() functions which will give us the site IDs of 
all neurons that have at least 3 trial repetitions of all the stimuli. The code 
below shows how we can store this information in an object called 
sites_to_use which we will use in our subsequent analyses.

sites_to_use <-  get_siteIDs_with_k_label_repetitions( 
"FV_AM_30bins_10sampled.Rda",
labels = "orient_person_combo",
k = 3)

Running the decoding analysis
Now that we have binned the data, and we have decided to use 

3 cross-validation splits, we are ready to run the decoding analysis. 
To do this, we  will first create a vector with the 25 strings that 
contain the names of label level for trials when left profile images 
were shown. We can do this by creating a vector of strings to restrict 
our decoding analysis to only decode trials when the left profile 
images were shown.

left_profile_levels <- paste("left profile", 1:25)

4 Using only 3 cross-validation splits is generally considered a very low 

number for decoding analyses, and we would prefer to use 6 or more splits. 

However, given that the AM brain region is highly selective for faces, as you will 

see below, this analysis still gives useful results.
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We can then run a decoding analysis by creating each of the 5 object 
types described in the Method section. For our first analysis we will use a:

 1. ds_basic data source to create pseudo-populations of data. The 
arguments we pass to this constructor are: (a) the name of the 
binned data file; (b) the variable we  want to decode (e.g., 
"orient_person_combo"); (c) the number of cross-validation 
splits to use; (d) a vector with the levels we want to use (i.e., the 
levels that start with "left profile")5 and (e) the site IDs for all 
the sites that have at least 3 label repetitions.6

 2. fp_zscore feature preprocessor to normalize the data. This 
feature preprocessor ensures that neurons with higher firing rates 
do not dominate over neurons with lower firing rates. Feature 

5 If the label_levels argument is not specified, all available label levels 

will be used in decoding, which would be 200 stimuli in this case (i.e., 25 

individuals from 8 head orientations).

6 If this argument is not specified, then all sites that have at least 3 repetitions 

for the label_levels specified will be used. This is slightly different than 

the sites we have selected since we are only using sites that have at least 3 

repetitions for all 200 stimuli, rather than at least 3 repetitions for only the 

left-profile images. The reason we are using only sites with 3 repetitions of all 

stimuli, is so that we can make a fair comparison to decoding right profile 

images in the second analyses that is described below.

pre-processes are put into a list which allow the analysis to 
contain more than one feature pre-processor, although we will 
only use one here.

 3. cl_max_correlation classifier to make our predictions.
 4. rm_main_results and rm_confusion_matrix result 

metrics to show our decoding accuracies. Result metrics  
are also put into a list which allows us to use two result 
metrics here.

 5. cv_standard cross-validator to run the full decoding analysis. 
The arguments we pass to this constructor are: (a) the data source; 
(b) the classifier; (c) the feature pre-processor; (d) the result 
metrics; and (e) a number specifying how many resample 
runs to use.

We set up these decoding objects using the code below:

ds <- ds_basic( binned_data = "FV_AM_30bins_10 
sampled.Rda",
labels = "orient_person_combo",
num_cv_splits = 3,

label_levels = left_profile_levels,

site_IDs_to_use = sites_to_use)

fps <- list(fp_zscore())
cl <- cl_max_correlation()
rms <- list(rm_main_results(), rm_confusion_matrix())

FIGURE 2

A plot showing how many sites (i.e., neurons) have at least k repetitions of all label levels for the orient_person_combo label. The black dashed line 
shows how many sites have at least k repetitions of for all label levels, and the colored traces show how many sites have at least k repetitions for each 
specific label level in the data set; since there are 8 * 25  =  200 label levels (i.e., stimuli), there are 200 colored lines on this plot. As expected, as the 
number of repeated conditions k increases, there are fewer sites available that have k repetitions of all the label levels. When running a decoding 
analysis, one needs to select a number of cross-validation splits k, and only sites that have at least k repetitions of all label levels can be used in the 
analysis. Thus, there is a trade-off between how many cross-validation splits to use and how many sites are available for decoding. The black dashed 
line is useful for selecting the number cross-validations splits k to use so that one has both a reasonable number of cross-validation splits and a 
reasonable number of sites available. Additionally, the colored lines are useful for assessing if particular label level (e.g., stimulus) have far fewer 
repetitions which would be the case if a particular colored line was much closer to the black dashed line than the other colored lines (which is not the 
case here). If a particular label level has far fewer repetitions than other label levels, then one can exclude the label level from the analysis in order to 
increase the number of sites available for decoding.
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cv <- cv_standard(datasource = ds,
classifier = cl,

feature_preprocessors = fps,

result_metrics = rms)

We can then run the decoding analysis using the cross-validators 
run_decoding() method as shown below where we can store the results 
from this analysis in a list that we usually name DECODING_RESULTS:

DECODING_RESULTS <- run_decoding(cv)

The run_decoding() function runs the decoding process in 
parallel, where the number of parallel cores can be specified by the 
optional num_parallel_cores argument to the cv_standard 
object (by default runs the code in parallel using half the cores that are 
available on the computer used for running the analysis).7

Plotting the results
The DECODING_RESULTS object created by running the run_

decoding() function is a list that contains result metric objects 
which now hold the compiled results. Additionally, the DECODING_
RESULTS object contains a list called cross_validation_
parameters which stores the parameters that were used to generate 
the results. To see this for the DECODING_RESULTS object we created 
above, we  can print out the names of the values stored in the 
DECODING_RESULTS object using:

names(DECODING_RESULTS)

 [1] "rm_main_results" "rm_confusion_matrix" 
"cross_validation_paramaters"

If we examine the DECODING_RESULTS$cross_validation_
parameters list, we see it contains the objects used in the decoding 
analysis including ds, fp, cl, and rm objects, along with information 
about the analyses stored in the parameter_df data frame. If 
we examine the result metrics stored in the DECODING_RESULTS 
object, we see it holds the compiled results. In particular, the original 
empty result metrics that were passed to the cross-validator now hold 
the actual decoding results that were compiled from running run_
decoding(cv) method. We can plot the results stored in these result 
metrics using their plot() functions.

The rm_main_results results metric plot() function creates 
a line plot of the decoding results as a function of time, as well as 
temporal cross decoding (TCD) plots. To create line plots, we use the 
plot() functions type = "line" argument. By default only the 
classification accuracy is plotted (i.e., the zero–one loss results), but 
we can also include normalized rank results, and the decision values 
on the plot by setting the results_to_show = "all" argument. The 
full call to the plot function then becomes:

7 The code took a little over 8 min on the system we tested it on. However, 

the run time will obviously depend on the specifications of the computer 

you use for the analysis. If you would like the code to run faster, you can try 

binning the code using a larger sampling interval of 30 ms, which cut down 

the run time on our computer to be a little over 2 min.

plot (DECODING_RESULTS$rm_main_

results,  

type = "line",  
results_to_show = "all")

The results are show in Figure 3A. From looking at the results 
we see that the decoding accuracy rises above the chance level of 1/25 
around 150 ms after stimulus onset, and the zero–one loss, normalized 
rank and raw decision value results look similar, which is often the case. 
If we want to plot a TCD plot, we set the type = "TCD".

plot(DECODING_RESULTS$rm_main_results, type = "TCD")

This TCD plot is in shown in Figure 3B. From looking at the 
TCD we  do not see a strong diagonal yellow region in the plot 
which would indicate that the decoding accuracy is only high when 
training and testing the classifier at the same point in time. Thus, 
information appears to be contained in a stationary neural code 
where the same patterns of neural activity codes information at 
different points in time, rather than a dynamic population code 
where the patterns of neural activity that code information change 
in time.

The rm_confusion_matrix result metric plot() function 
allows one to view a sequence of confusion matrices for each time 
period that was decoded. Because we  binned the data with a 
relatively small sampling interval of 10 ms, plotting a sequence of 
confusion matrices for all decoded time bins will be rather cluttered, 
so instead we will just plot the confusion matrix that starts around 
200 ms after stimulus onset, which we  can do by setting the 
argument start_time_to_plot = 200:

plot (DECODING_RESULTS$rm_confusion_matrix, 

plot_only_one_train_time = 206)

The results are shown in Figure 4. The y-axis on the plot shows the 
true class, and the x-axis on the plot shows the predicted class, and 
consequently diagonal elements on the plot are correct predictions. 
From looking at Figure 4, we see that some classes (i.e., face identities) 
were predicted more accurately than others, for example, the person 
10 was correctly predicted about 60% of the time.

Saving and logging the results
After running an analysis, it is useful to save the results so that 

one can replot them at a later time, and compare the results to those 
from other analyses that have been run. Rather than using R’s save() 
function to save the results, it is useful to use the NeuroDecodeR’s 
log_save_results() function. This function not only saves the 
results, but it also creates a “manifest file” that keeps track of the 
parameters that were used in each decoding analysis that has run. 
This manifest file can then be used to search through all previous 
results that have been run, and to load previous results based on 
parameter values using the log_load_results_from_params() 
function.

To save the results using the log_save_results() function, 
we pass the DECODING_RESULTS list, along with a directory name 
where we would like to save the results. Additionally, we can also set the 
result_name argument to a string which will give a name to the results 
that can be  used to reload the results using the 
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log_load_results_from_result_name() function. For the 
analysis we  ran above, we  can save the results to a directory called 
“results” using the following:

log_save_results(DECODING_RESULTS,

save_directory_name = "results",
 result_name = "Left profile 
face decoding")

Decoding analysis 2: testing generalization 
across head orientations

To further illustrate the capabilities of the NeuroDecodeR package, 
we now demonstrate how to run a generalization analysis where a 

classifier is trained on one set of conditions and then tested on a related 
set of conditions. In particular, we will train the classifier to distinguish 
between the 25 individuals using trials when left-profile face images 
were shown, as we did previously, but rather than testing the classifier 
on the same left-profile images (from different trials), we will instead 
test to see if the classifier can distinguish between the 25 individuals on 
trials when right-profile images were shown. If the classifier is able to 
classify the right-profile images at a high level of accuracy, this indicates 
that the neural representation contains information about face identity 
that is abstracted from the specific low-level visual features the classifier 
was trained on; i.e., anterior-medial face patch contains a representation 
of face identity that is invariant to the orientation of an individual’s 
head (Meyers et al., 2015).

Running this generalization analysis is very similar to running the 
basic decoding analysis we did above, however, we will use the ds_
generalization data source rather than the ds_basic data 

FIGURE 3

Results from decoding face identity (using only the left-profile face images) compiled by the rm_main_results object. (A) A line plot showing the 
classification accuracy (zero–one loss), normalized rank, and decision value results based on running the plot(rm_main_results, 
type = "line") function. As can be seen, the decoding accuracy increases above chance levels approximate 100 ms after stimulus onset. For the 
zero–one loss results, chance accuracy is 4% since there are 25 classes. (B) A temporal cross-decoding (TCD) plot based on using the plot(rm_
main_results, type = "TCD") function. The lack of a strong diagonal band on the plot indicates that information is not contained in a highly 
dynamic code. Overall, the reason the classification accuracy is relatively low is because we are only training the classifier on two examples from each class.
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source. The data, and all other NeuroDecodeR objects in this analysis 
will be  the same as we used previously, which illustrates how the 
modular nature of the object in the NeuroDecodeR package allows 
one to easily run a range of analyses.

To create the ds_generalization data source, we will first 
create a vector of 25 strings that list all the right profile image names 
in the same order as the vector of left profile image names that 
we created previously. This can be done using:

right_profile_levels <- paste("right profile", 1:25)

We can then create the ds_generalization datasource by 
specifying the same binned_file_name, label_to_decode, 

num_cv_splits, and site_IDs_to_use8 arguments as was done 
with the ds_basic, along with setting the train_label_levels 

8 It is possible that different sites have different numbers of left and right 

profile trials, which would make different sites available for decoding left profile 

and right profile images. By setting the site_IDs_to_use in both the basic 

and generalization analyses using only sites that have at least 3 repetitions for 

all head orientation images, we guarantee that the same sites will be used in 

our basic decoding analysis (train and test left) and in our generalization analysis 

(train left test right). This allows a fair comparison of these analyses since 

differences in decoding accuracies cannot be  due to different neurons 

being used.

to be the left_profile_levels, and the test_label_levels to 
be the right_profile_levels. Thus, the code for creating the ds_
generalization is:

ds <- ds_generalization(binned_file_name,
labels = "orient_person_combo",
num_cv_splits = 3,

train_label_levels = left_profile_levels,

test_label_levels = right_profile_levels,

site_IDs_to_use = sites_to_use)

Now that the generalization data source has been created, we can 
create the other NeuroDecodeR objects, run the analysis, and save 
the results as was done before. To make the code run a little faster, 
we will omit using the rm_confusion_matrix, and we will omit 
creating the temporal cross decoding results by setting run_
TCD = FALSE in the cross-validator.

fps <- list(fp_zscore())
cl <- cl_max_correlation()
rms <- list(rm_main_results())
cv <- cv_standard(datasource = ds,

classifier = cl,

feature_preprocessors = fps,

result_metrics = rms,

run_TCD = FALSE)

FIGURE 4

A Confusion matrix decoding face identity (using only the left-profile face images) compiled by the rm_confusion_matrix object. The confusion 
matrix is shown at 206  ms post stimulus onset using the function plot(rm_confusion_matrix, plot_only_one_train_time = 206). 
Elements on the diagonal indicate a high level of correct predictions while elements off the diagonal indicate patterns of mistakes; for example, 
we that images of person 5 were fairly frequently classified as person 8.
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DECODING_RESULTS <- run_decoding(cv)

log_save_results(DECODING_RESULTS,

save_directory_name = "results",
 result_name = "Train left profile, test 
right profile")

Once the analysis has finished running and we have saved the 
results, we can use plot_main_results() function to compare 
the results we created when training and testing the classifier on the 
left-profile images (that were created in the first analysis above) to 
the generalization results we just ran. To do this we will create a 
vector of strings that have the result names that we created when 
we saved the DECODING_RESULT objects from our two analyses. 
We will then pass the name of the directory holding the results, 
along with these result names to create a line plot that compares 
the results:

result_names <-  c("Left profile face decoding", 
"Train left profile, test 

right profile")

plot_main_result s(results_dir_name = "results",  
result_names)

The resulting plot from running this code is shown in 
Figure  5. As can be  seen, there is a similar level of decoding 
accuracies when the classifier is tested on the left and right profile 
images, which suggests that the neural representation of identity 
is highly invariant to the pose of the head, at least between left and 

right profile images. We encourage the reader to experiment with 
assessing the invariance across other head orientations, such as 
training on the front facing images and testing on the profile 
images.9

Piping together NeuroDecodeR objects
A popular way to write data analysis code in R is to use the pipe 

operator to string together a sequence of data analysis functions. The 
NeuroDecodeR package also supports the pipe operator to create a 
sequence of functions that are needed to run a decoding analysis. 
This can be done by:

 1. Starting with a binned data file name
 2. piping it to a data source
 3. piping together feature-preprocessors, a classifier, and 

result metrics
 4. piping this to a cross-validator.

The code below illustrates how to run the same basic analysis 
as our first analysis above using the pipe operator. For the sake of 
novelty, we  will decode the right profile images, and we  
plot the results from all the analyses we  have run (see 
Supplementary Figure S1).

"FV_AM_30bins_10sampled.Rda"  |>
ds_basic(labels = "orient_person_combo",

num_cv_splits = 3,

label_levels = right_profile_levels,

site_IDs_to_use = sites_to_use)  |>

fp_zscore()  |>

cl_max_correlation()  |>

rm_main_results()  |>

rm_confusion_matrix()  |>

cv_standard(run_TCD = FALSE)  |>

run_decoding()  |>

 log_save_results(save_directory_ 

name = "results",
 result_name = "Right profile face  

decoding")

 result_ names <- c(result_names, "Right profile 

face decoding")

 plot_ma in_results(results_dir_name = "results", 
result_names)

Discussion

In this paper, we  introduced the NeuroDecodeR package, 
described the design and data formats used by the package, and gave 
examples of how to run a basic decoding and generalization analysis. 
We also described the benefits of using the package, including the fact 

9 Spoiler, decoding accuracy on the frontal images is higher, and there is 

less invariance generalizing from the frontal images to the profile images.

FIGURE 5

Comparison of basic identity decoding results to generalization 
analysis results. The plot shows the results from classifying the 25 
individual face identities using a basic decoding analysis where 
the classifier was trained and tested using on left profile face 
images (red trace) to generalization analysis results where the 
classifier was trained on left profile images and tested on right 
profile images (cyan trace). As can be seen, the classification 
accuracies are fairly similar for the basic and generalization 
analysis indicating that face identity information in brain region 
AM is contained in a code that is highly invariance to the pose of 
the head across left and right profile images. The x-axis shows the 
time from stimulus onset in milliseconds, and the y-axis is the 
classification accuracy (0–1 loss).
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that the modular design of the package makes it easy to run a range 
of different decoding analyses, the decoding code is parallelized 
which speeds up the run time of analyses, and a system that makes it 
easy to save and manage decoding results. Additionally, using the R 
programming language to run decoding analyses has several benefits 
including that it is a free/open source language, and that R has a 
strong ecosystem for creating reproducible analyses. In particular, 
we highly recommend that users of the NeuroDecodeR package take 
advantage of these reproducible features in R by creating R Markdown 
documents that contain the code used for each analysis so that it is 
easy to recreate any analysis run.10

The description of the NeuroDecodeR package in this paper 
is based on the package’s initial release, however, we anticipate 
continuing to develop and extend the package. A few directions 
we  are interested in extending the package include adding 
additional NeuroDecodeR objects (e.g., additional data sources 
and classifiers), and writing code that can give estimates of the 
memory usage and runtime that particular analysis will take 
which will enable users to choose decoding parameters based 
on the computing system they are using for their analyses. For 
example, users could bin their data at a higher temporal 
resolution if they are running their analyses on a more powerful 
computer. We also plan to create a shiny app for the package 
that will allow users to generate R Markdown documents that 
contain all the code needed to run an analysis by clicking buttons 
on a graphical user interface. This “NeuroShiny” app will further 
shorten the time it takes to run decoding analyses, and 
will enable neuroscientists with little programming experience 
to run reproducible decoding analyses on their data. Finally, 
we  anticipate creating other types of analyses that use the 
same binned and raster formats described in this paper, which 
will allow researchers to easily run a whole range of different 
types of analyses once they have put their data into the 
proper format.

In summary, we believe that the NeuroDecodeR package will 
be of great benefit to neuroscientists who are interested in using 
decoding to analyze their data, and should also offer an entry point 
for statisticians who are familiar with the R programming language 
to become involved in analyzing neural data. We  hope that this 
package will lead to new insights into how the brain processes 
information and will help to speed up the pace of discovery 
in neuroscience.
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