
Frontiers in Neuroinformatics 01 frontiersin.org

NeuroDecodeR: a package for
neural decoding in R
Ethan M. Meyers 1,2,3*
1 Department of Statistics and Data Science, Yale University, New Haven, CT, United States, 2 School of
Cognitive Science, Hampshire College, Amherst, MA, United States, 3 The Center for Brains, Minds and
Machines, Massachusetts Institute of Technology, Cambridge, MA, United States

Neural decoding is a powerful method to analyze neural activity. However, the
code needed to run a decoding analysis can be complex, which can present a
barrier to using the method. In this paper we introduce a package that makes it
easy to perform decoding analyses in the R programing language. We describe
how the package is designed in a modular fashion which allows researchers to
easily implement a range of different analyses. We also discuss how to format
data to be able to use the package, and we give two examples of how to use the
package to analyze real data. We believe that this package, combined with the
rich data analysis ecosystem in R, will make it significantly easier for researchers
to create reproducible decoding analyses, which should help increase the pace
of neuroscience discoveries.

KEYWORDS

neural decoding, readout, multivariate pattern analysis, R, data analysis, statistics,
machine learning, data science

Introduction

Advances in neural recording technology have allowed for a large increase in the size of
datasets that can be recorded, which has the potential to revolutionize our understanding of how
the brain enables complex behaviors (Stevenson and Kording, 2011; Steinmetz et al., 2021).
However, in order to convert these new datasets into meaningful information, new data analysis
methods and tools are needed (Brown et al., 2004; Williamson et al., 2019; Semedo et al., 2020).
To address this issue, we have created a software package called the NeuroDecodeR, which can
run neural decoding analyses on large datasets. This package should make it easy for
experimental neuroscientists to extract insights from the large datasets they are collecting, and
thus help speed up the pace of discovery.

Neural decoding is a data analysis method that uses neural activity to predict which
experimental conditions are present on different experimental trials (Quian Quiroga and
Panzeri, 2009; Meyers and Kreiman, 2012). Neural decoding analyses have been used on
data from a range of recording modalities in humans, including on electroencephalogram
(EEG) and magnetoencephalogram (MEG) signals (Carlson et al., 2011; Isik et al., 2014),
electrocorticography (ECoG) recordings (Volkova et al., 2019), single unit recordings
(Rutishauser et al., 2015; Saha et al., 2021), and fMRI BOLD responses, where the
method is referred to as multivariate pattern analysis (Haynes and Rees, 2006; O’Toole
et al., 2007; Pereira et al., 2009; Tong and Pratte, 2012; Weaverdyck et al., 2020). Neural
decoding analyses of spiking activity have also been conducted in a range of animal
species and in different brain regions including the motor cortex of macaques to predict
reaching directions and control brain computer interfaces (Georgopoulos et al., 1986;
Wessberg et al., 2000), the hippocampus of rats to predict spatial location information

OPEN ACCESS

EDITED BY

Roberto Guidotti,
University of Studies G. d'Annunzio Chieti and
Pescara, Italy

REVIEWED BY

Livio Finos,
University of Padua, Italy
Hongzhi Kuai,
Maebashi Institute of Technology, Japan

*CORRESPONDENCE

Ethan M. Meyers
 ethan.meyers@yale.edu

RECEIVED 10 August 2023
ACCEPTED 16 October 2023
PUBLISHED 03 January 2024

CITATION

Meyers EM (2024) NeuroDecodeR: a package
for neural decoding in R.
Front. Neuroinform. 17:1275903.
doi: 10.3389/fninf.2023.1275903

COPYRIGHT

© 2024 Meyers. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Technology and Code
PUBLISHED 03 January 2024
DOI 10.3389/fninf.2023.1275903

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2023.1275903&domain=pdf&date_stamp=2024-01-03
https://www.frontiersin.org/articles/10.3389/fninf.2023.1275903/full
https://www.frontiersin.org/articles/10.3389/fninf.2023.1275903/full
mailto:ethan.meyers@yale.edu
https://doi.org/10.3389/fninf.2023.1275903
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2023.1275903

Meyers 10.3389/fninf.2023.1275903

Frontiers in Neuroinformatics 02 frontiersin.org

(Brown et al., 1998; Tingley and Buzsáki, 2018), the inferior
temporal cortex of macaques to predict which visual objects
were present (Hung et al., 2005; Zhang et al., 2011), and higher
level brain regions to predict a range of cognitive related
variables (Crowe et al., 2010; Rikhye et al., 2018).

There are several advantages to using neural decoding to analyze
data including the ability to pool signals across many recording
channels which can give a clearer picture of what information is in a
brain region at a particular point in time (Quiroga et al., 2004).
Additionally, neural decoding can be used to assess how information
is coded in populations of neural activity (Nirenberg and Latham,
2003; Jacobs et al., 2009; Meyers et al., 2015), such as whether there is
a small subset of neurons that contain all the information present in a
larger population (Meyers et al., 2008, 2012) and whether information
is coded by patterns of activity that change in time (Meyers et al., 2008;
King and Dehaene, 2014; Meyers, 2018).

Despite the advantages neural decoding has as a data analysis
method, the code needed to run a decoding analysis can be complex
which can present a barrier to using the method. To address this
difficulty, several software packages exist that make it easier to run
these analyses including packages in Python (Hanke et al., 2009;
Glaser et al., 2020) and MATLAB (Hebart et al., 2015; Oosterhof et al.,
2016; Peng et al., 2020). In previous work we have also tried to address
this issue by creating a MATLAB toolbox called the Neural Decoding
Toolbox (Meyers, 2013).

In this paper, we introduce a new neural decoding package written
in R (R Core Team, 2021), called NeuroDecodeR. The design of the
NeuroDecodeR is based on the design of the MALTAB Neural
Decoding Toolbox, but it extends its functionality several ways. In
particular, the NeuroDecodeR includes the ability to easily add new
measures for quantifying decoding accuracy, a system to manage
results, and the ability to run the code in parallel which greatly speeds
up the time it takes to run an analysis. Additionally, using the R
programming language has several advantages including that R is free/
open source, and that there is a large data analysis ecosystem for
creating reproducible data analyses.

In the following paper, we describe the design of the
NeuroDecodeR package, the data format that is used by the
package, and we give an example of how the package can be used
by reproducing results from Meyers et al. (2015). We hope this
package will make it easier for neuroscientists to extract insights
from the data they collect, and will help introduce neural decoding
analyses to the larger Statistics/Data Science community that uses
R to analyze data.

Methods

A brief overview of neural population
decoding

Neural decoding is a data analysis method that assesses
whether information about particular stimuli, or other
behaviorally relevant variables, is present in neural activity (Quian
Quiroga and Panzeri, 2009). The method works by ‘training’ a
machine learning algorithm, called a pattern classifier, to learn the
relationship between neural activity and particular experimental
conditions on a subset of data called the training set. Once the
classifier has ‘learned’ the relationship between the neural data

and experimental conditions, one assesses whether this
relationship is reliable by having the pattern classifier predict
which experimental conditions are present in a separate test set
of data.

In a typical analysis, the data in split into k different parts, and the
classifier is trained on k-1 parts and tested on the remaining part. This
procedure is repeated k times where a different part of the data is used
to test the classifier each time, in a process called cross-validation, and
a final measure of prediction accuracy is aggregated across the
performance on all k test sets. If the pattern classifier can make
accurate predictions on these separate test sets of data, then this
indicates that a brain region has information about a particular
experimental condition (for more information about decoding see
Meyers and Kreiman, 2012).

Decoding methods are often applied to time series data, such
as neural activity recorded over a fixed length experimental trial.
To do this, the classifier is trained and tested at one point in time,
and then the procedure is repeated at the next point in time. This
leads to results that show how the information content fluctuates
over the course of a trial, and can be used to assess how
information flows through different brain regions (Meyers et al.,
2018). Additionally, neural decoding can be used to gain insight
into how information is coded in neural activity. For example, a
temporal cross-decoding (TCD) analysis can be done where the
classifier is trained at one time period and then tested at a different
time period. If the classifier has a high decoding accuracy when
trained and tested at the same time period, but a low decoding
accuracy when trained and tested at different time periods, then
this indicates information is coded by patterns of activity that
change in time (Meyers et al., 2008; King and Dehaene, 2014).
Abstract information can also be assessed using a ‘generalization
analysis’ by training the classifier on one set of conditions and
then testing the classifier on a related set of conditions. For
example, Hung et al. (2005) assessed whether the inferior temporal
cortex contains information about objects that is invariant to the
position by training the classifier to discriminate between a set of
objects that were shown at one retinal position and then testing
the classifier to see whether it could make predictions at a
different retinal position (also see “Decoding analysis 2” below for
another example of a generalization analysis).

When running a decoding analysis, neural activity from different
sites do not need to be recorded simultaneously, but instead one can
create ‘pseudo-populations’ where responses of simultaneously
recorded neural populations are approximated by combining
recordings made across multiple experimental sessions (Averbeck
et al., 2006; Meyers and Kreiman, 2012). These pseudo-populations
allow a larger number of sites to be included in a decoding analysis,
which can lead to clearer results. As described below, one of the
strengths of the NeuroDecodeR package is that it can automatically
create pseudo-populations as part of the decoding procedure.

Installing the NeuroDecodeR package

The NeuroDecodeR package has been published on the
comprehensive R archive (CRAN). Like all R packages, the
NeuroDecodeR package must be installed before it can be used for
the first time. To install the package, use the command:
install.packages("NeuroDecodeR"). Once the package is

https://doi.org/10.3389/fninf.2023.1275903
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Meyers 10.3389/fninf.2023.1275903

Frontiers in Neuroinformatics 03 frontiersin.org

installed, any time you would like to use it you can load it into memory
using: library(NeuroDecodeR).

Below we describe the design of the NeuroDecodeR package, the
data formats that the package uses, and how to run two types of
decoding analyses using the package. Additional tutorials, a complete
reference of functions that are available, and more information about
how to extend the functionality of the package is available at https://
emeyers.github.io/NeuroDecodeR/. Additionally, the development
version of the package is available on GitHub at https://github.com/
emeyers/NeuroDecodeR. If one is interested in learning more about
how neural decoding works in general, Meyers and Krieman (2012)
contain an overview of the method.

Design of the NeuroDecodeR package

The NeuroDecodeR package is designed around five abstract
object types which allows researchers to easily run a range of different
decoding analyses. The five object types are:

 1. Datasources (ds): These objects create training and test splits
of the data.

 2. Feature preprocessors (fp): These objects extract statistics
from the training set, and then apply transformations to the
training and test set. These transformations are typically used
to either improve the decoding accuracy, or to assess how
information is coded in neural activity.

 3. Classifiers (cl): These objects learn the relationship between
neural activity and experimental conditions on the training set
of data, and then make predictions on the test set of data.

 4. Result metrics (rm): These objects compare the predictions
made by the classifier on the test set of data to the experimental
conditions that were actually present, and then create metrics
that indicate how accurate the predictions were. The final
decoding results are stored in these objects as data frames and
can be plotted using associated plot methods.

 5. Cross-validator (cv): These objects take a datasource, feature
preprocessors, a classifier, and result metrics, and run a
decoding analysis by:

 a. Generating training and test data from the data source.
 b. Pre-processing the data using the feature preprocessors.
 c. Passing the data to the classifier which learns a model on

the training data and then makes predictions on the test data.
 d. Passing the classifier’s predictions to the result metrics which

creates measures of how accurately the information can
be decoded.

Steps a-d are typically repeated several times on different
“resample runs”, where different training and test sets are
“created on each run”, which can lead to more accurate results.

The NeuroDecodeR package comes with one or more
implementations of each of these object types, as listed in Table 1. A
description of how to use these objects to run a decoding analysis is
shown in the Results section below.

The advantage of this modular design is that it allows researchers
to easily try out different analyses to gain additional insights and to
make sure the results are robust to particular analysis choices. For
example, as described below in the Results section, one can use the

ds_generalization datasource instead of the ds_basic
datasource to run a generalization analysis which can assess whether
there is abstract information in the neural data.

Each of these object types are defined by an interface which specifies
exactly which methods each object must have to work with the other
object types in the package. This design allows users to add new
implementations of the objects to their analysis. For example, a researcher
could create a new classifier by implementing an S3 object that has a
get_predictions() method.1 More information on how to
implement the methods needed to create new NeuroDecodeR objects is
available on the NeuroDecodeR’s documentation: https://emeyers.
github.io/NeuroDecodeR/articles/NDR_object_specification.html.

Data formats

Raster format
In order to use the NeuroDecodeR package, neural data must be put

into a particular format called “raster format.” In this format, data from
each recording site is in a separate “raster data” file. The data in each of
these raster data files consists of a data frame where each row corresponds
to one experimental trial, and each column must start with the prefix
site_info., labels., or time. Columns that start with the prefix
site_info. contain meta-information about the recording site.
Columns that start with the prefix labels. contain information about
which experimental conditions were present. Columns that start with the
prefix time. contain the neural activity that occurred at a particular
point in time.

To illustrate the data formats NeuroDecodeR package uses, and
how to run a decoding analyses, we will use data from the “Friewald
Tsao Face Views AM data set” (Freiwald and Tsao, 2010). This data
set consists of recordings made from neurons in the macaque anterior
medial face patch (AM) while monkeys viewed a random sequence
of images where each image was presented for 200 ms with a 200 ms
inter-stimulus interval. The images shown consisted of faces from 25
different people taken from 8 different head orientations (Figure 1A).
For readers who are interested in replicating the analyses described
below, a zip file that contains a directory with raster data from this
experiment can be downloaded from http://www.readout.info/
downloads/datasets/freiwald-tsao-face-views-am-dataset/. When
this data archive is unzipped, a directory will be created called
Freiwald_Tsao_faceviews_AM_data/ that has 193 files of data in
raster format that we will use in the analyses.

Figure 1A shows example stimuli from the experiment conducted
by Freiwald and Tsao (2010) and Figure 1B shows data from one neuron
that is in raster format. From looking at the raster format data (Figure 1B)
we see the that the “site_info” columns consists of site_info.monkey
which contain information about the name of the monkey and site_
info.region which contains information about the brain region where
the recording was made. We also have “labels” columns that list what
stimulus occurred on each experimental trial including labels.

1 Experimenting with different classification algorithms is useful for gaining

insight into the ‘neural code’ and for assessing the maximum amount of

information that could be extracted by a sequence of downstream areas

(Meyers et al., 2015; Glaser et al., 2020).

https://doi.org/10.3389/fninf.2023.1275903
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://emeyers.github.io/NeuroDecodeR/
https://emeyers.github.io/NeuroDecodeR/
https://github.com/emeyers/NeuroDecodeR
https://github.com/emeyers/NeuroDecodeR
https://emeyers.github.io/NeuroDecodeR/articles/NDR_object_specification.html
https://emeyers.github.io/NeuroDecodeR/articles/NDR_object_specification.html
http://www.readout.info/downloads/datasets/freiwald-tsao-face-views-am-dataset/
http://www.readout.info/downloads/datasets/freiwald-tsao-face-views-am-dataset/

Meyers 10.3389/fninf.2023.1275903

Frontiers in Neuroinformatics 04 frontiersin.org

person which indicates who the person was in each image that was
presented, labels.orientation which indicate the head orientation
in each image, and labels.orient_person_combo which combines
the head orientation and person information. Finally, we have the “time”
columns which contain the recorded data, including time.2_3, which
contains the neural activity that occurred in the time window [2 3)
milliseconds after the stimulus onset. Since the recordings are neuronal
spiking activity, each data value in these “time” columns is either a 1
indicating a neuron produced an action potential or a 0 indicating that
it did not. As described below, we can visualize raster format data using
the plot(raster_data) function, which will produce plots such as
the one shown in Figure 1C.

When analyzing data from a new experiment, one can put data
into raster format by saving data in comma separated value (csv) files
with the appropriate column names (i.e., columns names that start
with site_info., labels. and time.). The data can then later
be loaded in raster format using the read_raster_data()
function. Alternatively, one can save them in the MATLAB Neural
Decoding Toolbox raster format2 and then convert the files into R
using the convert_matlab_raster_data() function.

Binned format
Once one has created a directory that has data files from each

recording site in raster format, one can convert this data to “binned
format” using the create_binned_data() function. After this
conversion is done, the rest of decoding process relies only on data in
binned format. Data in “binned format” is similar to data in raster
format in that it contains the same site_info., labels. and time.
columns.; however, the binned data time. columns contain data at a
coarser temporal resolution that is created by averaging activity in
sliding time windows. For example, the Friewald Tsao Face Views
raster data is recorded at millisecond resolution, as indicated by the
fact that the time bins are successive numbers; i.e., time.1_2,

2 http://www.readout.info/toolbox-design/data-formats/raster-format/

time.2_3, time.3_4, etc. However, as described in the Results
section, we can use the create_binned_data() to create averaged
firing rates in 30 ms bins sampled every 10 ms, which will give us time
bins columns with values time.1_31, time.11_41, time.21_51,
etc. Additionally, data in binned format contains data from all
recording sites as rows in the data table, and there is a siteID column
that indicates which recording site the data in each row came from.
The reason for binning the data is that it is usually computationally
too expensive in terms of memory and runtime to analyze data at a
very high temporal resolution. Additionally, firing rates averaged over
longer time periods usually lead to higher decoding accuracies which
can give clearer results (Meyers et al., 2009).

Results

In the following sections, we describe how to use the NeuroDecodeR
package to run two different decoding analyses. The analyses described
below can be replicated by downloading the raster data at http://www.
readout.info/downloads/datasets/freiwald-tsao-face-views-am-dataset/.

Viewing raster data

As mentioned above, to illustrate how to use the NeuroDecodeR
package we will analyze the “Friewald Tsao Face Views AM data set” which
consists of 193 files in raster format that are stored in a directory called
Freiwald_Tsao_faceviews_AM_data/. To begin we will load one of
these raster format files using the read_raster_data() function, and
then we can plot the data using the plot() function as follows:

 raster_dir_name
<- "Freiwald_Tsao_faceviews_AM_data"

 raster_data <- read_raster_data(file.path(raster_
 dir_name, "raster_data_bert_am_site021.rda"))

plot(raster_data)

TABLE 1 A list of implementations NeuroDecodeR objects that come with the NeuroDecodeR package.

Datasources (ds):

 ds_basic: creates training and test splits of the data, including the ability to create pseudo-populations.

 ds_generalization: allows one run of generalization analysis by training the classifier on one set of conditions (labels) and then test the classifier on a different related set

of conditions.

Feature-preprocessors (fp):

 fp_zscore: calculates the mean and standard deviation of each feature on the training set, and then z-score normalizes the training and test set features using these values.

 fp_select_k_features: finds the k most selective features on the training data, and then eliminates all other features from the training and test set.

Classifiers (cl):

 cl_max_correlation: A maximum correlation coefficient classifier.

 cl_poisson_naive_bayes: A Poisson Naïve Bayes classifier.

 cl_svm: A support vector machine classifier.

Result metrics (rm):

 rm_main_results: Calculates three measures of decoding accuracy: (1) The classification accuracy (zone-one loss); (2) Normalized rank results; (3) Decision values. The

associated plot function can create line plots and temporal cross-decoding (TCD) plots.

 rm_confusion_matrix: Creates a confusion matrix showing how often trials from class i were predicted to belong to class j.

Cross-validators (cv):

 cv_standard: Takes ds, fp, cl, and rm. objects, and using the run_decoding() function, a cross-validation loop is run several times to create the decoding results.

The package also includes a number of additional functions that are useful for processing data, plotting, and saving/loading results.
For more details on these objects, see Supplementary Table S1, and the online documentation at: https://emeyers.github.io/NeuroDecodeR/reference/index.html.

https://doi.org/10.3389/fninf.2023.1275903
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
http://www.readout.info/toolbox-design/data-formats/raster-format/
http://www.readout.info/downloads/datasets/freiwald-tsao-face-views-am-dataset/
http://www.readout.info/downloads/datasets/freiwald-tsao-face-views-am-dataset/
https://emeyers.github.io/NeuroDecodeR/reference/index.html

Meyers 10.3389/fninf.2023.1275903

Frontiers in Neuroinformatics 05 frontiersin.org

The results from visualizing the raster data for this neuron are
shown in Figure 1C. In the plot, the x-axis corresponds to time from
the stimulus onset, y-axis corresponds to different experimental trials,
and black tick marks on the plot corresponds to the time when action
potentials occurred.

While one does not need to visualize raster data to run a decoding
analysis, it can be useful to visually examine raster data from a few sites
to make sure the data conform to expectations. For example, in the
Freiwald and Tsao experiment, images were shown every 400 ms (i.e.,
images were presented for 200 ms followed by a 200 ms interstimulus
interval). When looking at the plot of the raster data example neuron
shown in Figure 1C, we see that there is a large increase in spiking
activity a little before 200 ms post stimulus onset, which corresponds
to the response latency of this neuron, and then another large increase
in spiking activity a little before 600 ms post stimulus onset, which
corresponds to the response of the next stimulus. Seeing that the
pattern of responses matches what we expect based on the design of
the experiment is a good sanity check that we have correctly formatted
the data.

Binning the data

As we also mentioned above, all decoding analyses use data that
is in binned format which can be created from raster data files using
the create_binned_data() function. The create_binned_
data() function takes the following arguments:

 1. A string specifying the path to a directory that contains the
raster data files.

 2. A string specifying a prefix that will be appended to the saved
binned data file name.

 3. A number specifying the bin width which neural activity will
be averaged over.

 4. A number specifying the sampling interval indicating the
frequency with which to repeat the binning process.3

3 There are also a few additional optional arguments to control the binning

process. To see all the arguments, one can view the function documentation

FIGURE 1

Stimuli and raster data from the Friewald Tsao Face Views AM data set. (A) Example of the 8 head orientation stimuli from 1 of the 25 individuals in the
Friewald and Tsao Face Views data set (the full data set consists of 25 individuals from these 8 head orientations). The labels below each image
correspond the labels.orientation column in the raster data. (B) An example of data in raster format. Each row corresponds to an experimental
trial, and the columns start with either site_info., labels., or time. Which is required for data to be in raster format. (C) A visualization of data
that is in raster format created by using the plot(raster_data) function.

https://doi.org/10.3389/fninf.2023.1275903
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Meyers 10.3389/fninf.2023.1275903

Frontiers in Neuroinformatics 06 frontiersin.org

For our analysis, we will average the activity in 30 ms bins, and
we will sample the data at 10 ms intervals. This can be achieved by
running the following command:

binned_file_name <- create_binned_data(raster_dir_name,
 save_prefix_name = "FV_AM",
 bin_width = 30,
 sampling_interval = 10)

The resulting binned data is in a file called FV_

AM_30bins_10sampled.Rda which we will use for all the
subsequent decoding analyses in this paper.

Decoding analysis 1: decoding face identity
using left profile images

As a first demonstration of how to run a decoding analysis,
we will decode which of the 25 individuals were shown on each trial
using only the left profile images. To do this, we will use the labels.
orient_person_combo column of the binned data, and we will
only use the label levels that start with “left profile” which
correspond to trials when left profile images were shown; i.e.,
we will use the label levels "left profile 1", "left profile 2",
up to "left profile 25", which corresponds to a trials where a left
profile image of person 1 was shown, up to trials when a left profile
image of person 25 was shown, and we are excluding trials when
faces of other orientations were shown such as "right profile 1",
and "frontal 10", etc.

Assessing how many recording sites and
cross-validation splits to use

Before starting to run a decoding analysis, it is useful to assess
how many trials were collected from each recording site for each
stimulus that was shown; for example, for neuron with siteID 7,
how many trials were recorded when the image "left profile 3"
was shown, etc. By examining this information across all the sites
that were recorded, one can assess how many cross-validations
splits to use, and whether specific sites should be excluded from
further analyses because not enough trials were recorded from a
given site. This is particularly important when creating pseudo-
populations from experiments where data from different sites were
recorded in different experimental sessions, since it is likely that
sites that were recorded in different sessions will have different
numbers of trials for each stimulus. If one uses k cross-validation
splits, then only sites that have at least k trial repetitions of all the
stimuli can be included in the analysis. Therefore, finding the sites
that have enough repetitions of all the stimuli is an important first
step so that one can tell which sites have enough data to be included
in the analysis.

To visualize how many sites have at least k repetitions of each
stimulus for different values of k, we can use the get_num_label_
repetitions() function, along with the associated plot() function
as shown here:

by typing? create_binned_data.

label_info <- get_num_label_repetitions(binned_
data = "FV_AM_30bins_10sampled.Rda",
labels = "orient_person_combo")

plot(label_info, show_legend = FALSE)

The results from running this code, shown in Figure 2, illustrate
the trade-off between the number of cross-validation splits
we would like to use (k), and the number of neurons available. To
interpret this plot, we will focus on the black dashed line which
shows how many sites have k repetitions of all the stimuli. From
looking at this black dashed line, we see that there are a little less
than 150 neurons that have 3 repetitions of each of the 25 stimuli,
and there are a little more than 75 neurons that have 4 repetitions
of each stimulus. Thus, if we run a 3 fold cross-validation, our
pseudo-population vectors could consist of a little less than 150
neurons, and if we run a 4 fold cross-validation analysis, our
pseudo-population vectors could consist of a little more than 75
neurons. In the subsequent analyses, we will run a 3 fold cross-
validation, although a 4 fold cross-validation with fewer neurons
would also be a reasonable choice.4

The colored lines on the plot show how many sites have at least k
repetitions for each specific stimulus, where there is a different
colored line corresponding to each stimulus that was shown in the
experiment. If one of these colored lines was close to the black dashed
line, this would indicate that there was a stimulus that had fewer
repetitions than the other stimuli and we might consider excluding
this stimulus from our analysis to make more sites available to use in
our analysis.

To restrict our subsequent analyses to only use sites that have 3
repetitions of all stimuli, we can use the get_siteIDs_with_k_
label_repetitions() functions which will give us the site IDs of
all neurons that have at least 3 trial repetitions of all the stimuli. The code
below shows how we can store this information in an object called
sites_to_use which we will use in our subsequent analyses.

sites_to_use <- get_siteIDs_with_k_label_repetitions(
"FV_AM_30bins_10sampled.Rda",
labels = "orient_person_combo",
k = 3)

Running the decoding analysis
Now that we have binned the data, and we have decided to use

3 cross-validation splits, we are ready to run the decoding analysis.
To do this, we will first create a vector with the 25 strings that
contain the names of label level for trials when left profile images
were shown. We can do this by creating a vector of strings to restrict
our decoding analysis to only decode trials when the left profile
images were shown.

left_profile_levels <- paste("left profile", 1:25)

4 Using only 3 cross-validation splits is generally considered a very low

number for decoding analyses, and we would prefer to use 6 or more splits.

However, given that the AM brain region is highly selective for faces, as you will

see below, this analysis still gives useful results.

https://doi.org/10.3389/fninf.2023.1275903
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Meyers 10.3389/fninf.2023.1275903

Frontiers in Neuroinformatics 07 frontiersin.org

We can then run a decoding analysis by creating each of the 5 object
types described in the Method section. For our first analysis we will use a:

 1. ds_basic data source to create pseudo-populations of data. The
arguments we pass to this constructor are: (a) the name of the
binned data file; (b) the variable we want to decode (e.g.,
"orient_person_combo"); (c) the number of cross-validation
splits to use; (d) a vector with the levels we want to use (i.e., the
levels that start with "left profile")5 and (e) the site IDs for all
the sites that have at least 3 label repetitions.6

 2. fp_zscore feature preprocessor to normalize the data. This
feature preprocessor ensures that neurons with higher firing rates
do not dominate over neurons with lower firing rates. Feature

5 If the label_levels argument is not specified, all available label levels

will be used in decoding, which would be 200 stimuli in this case (i.e., 25

individuals from 8 head orientations).

6 If this argument is not specified, then all sites that have at least 3 repetitions

for the label_levels specified will be used. This is slightly different than

the sites we have selected since we are only using sites that have at least 3

repetitions for all 200 stimuli, rather than at least 3 repetitions for only the

left-profile images. The reason we are using only sites with 3 repetitions of all

stimuli, is so that we can make a fair comparison to decoding right profile

images in the second analyses that is described below.

pre-processes are put into a list which allow the analysis to
contain more than one feature pre-processor, although we will
only use one here.

 3. cl_max_correlation classifier to make our predictions.
 4. rm_main_results and rm_confusion_matrix result

metrics to show our decoding accuracies. Result metrics
are also put into a list which allows us to use two result
metrics here.

 5. cv_standard cross-validator to run the full decoding analysis.
The arguments we pass to this constructor are: (a) the data source;
(b) the classifier; (c) the feature pre-processor; (d) the result
metrics; and (e) a number specifying how many resample
runs to use.

We set up these decoding objects using the code below:

ds <- ds_basic(binned_data = "FV_AM_30bins_10
sampled.Rda",
labels = "orient_person_combo",
num_cv_splits = 3,

label_levels = left_profile_levels,

site_IDs_to_use = sites_to_use)

fps <- list(fp_zscore())
cl <- cl_max_correlation()
rms <- list(rm_main_results(), rm_confusion_matrix())

FIGURE 2

A plot showing how many sites (i.e., neurons) have at least k repetitions of all label levels for the orient_person_combo label. The black dashed line
shows how many sites have at least k repetitions of for all label levels, and the colored traces show how many sites have at least k repetitions for each
specific label level in the data set; since there are 8 * 25  =  200 label levels (i.e., stimuli), there are 200 colored lines on this plot. As expected, as the
number of repeated conditions k increases, there are fewer sites available that have k repetitions of all the label levels. When running a decoding
analysis, one needs to select a number of cross-validation splits k, and only sites that have at least k repetitions of all label levels can be used in the
analysis. Thus, there is a trade-off between how many cross-validation splits to use and how many sites are available for decoding. The black dashed
line is useful for selecting the number cross-validations splits k to use so that one has both a reasonable number of cross-validation splits and a
reasonable number of sites available. Additionally, the colored lines are useful for assessing if particular label level (e.g., stimulus) have far fewer
repetitions which would be the case if a particular colored line was much closer to the black dashed line than the other colored lines (which is not the
case here). If a particular label level has far fewer repetitions than other label levels, then one can exclude the label level from the analysis in order to
increase the number of sites available for decoding.

https://doi.org/10.3389/fninf.2023.1275903
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Meyers 10.3389/fninf.2023.1275903

Frontiers in Neuroinformatics 08 frontiersin.org

cv <- cv_standard(datasource = ds,
classifier = cl,

feature_preprocessors = fps,

result_metrics = rms)

We can then run the decoding analysis using the cross-validators
run_decoding() method as shown below where we can store the results
from this analysis in a list that we usually name DECODING_RESULTS:

DECODING_RESULTS <- run_decoding(cv)

The run_decoding() function runs the decoding process in
parallel, where the number of parallel cores can be specified by the
optional num_parallel_cores argument to the cv_standard
object (by default runs the code in parallel using half the cores that are
available on the computer used for running the analysis).7

Plotting the results
The DECODING_RESULTS object created by running the run_

decoding() function is a list that contains result metric objects
which now hold the compiled results. Additionally, the DECODING_
RESULTS object contains a list called cross_validation_
parameters which stores the parameters that were used to generate
the results. To see this for the DECODING_RESULTS object we created
above, we can print out the names of the values stored in the
DECODING_RESULTS object using:

names(DECODING_RESULTS)

 [1] "rm_main_results" "rm_confusion_matrix"
"cross_validation_paramaters"

If we examine the DECODING_RESULTS$cross_validation_
parameters list, we see it contains the objects used in the decoding
analysis including ds, fp, cl, and rm objects, along with information
about the analyses stored in the parameter_df data frame. If
we examine the result metrics stored in the DECODING_RESULTS
object, we see it holds the compiled results. In particular, the original
empty result metrics that were passed to the cross-validator now hold
the actual decoding results that were compiled from running run_
decoding(cv) method. We can plot the results stored in these result
metrics using their plot() functions.

The rm_main_results results metric plot() function creates
a line plot of the decoding results as a function of time, as well as
temporal cross decoding (TCD) plots. To create line plots, we use the
plot() functions type = "line" argument. By default only the
classification accuracy is plotted (i.e., the zero–one loss results), but
we can also include normalized rank results, and the decision values
on the plot by setting the results_to_show = "all" argument. The
full call to the plot function then becomes:

7 The code took a little over 8 min on the system we tested it on. However,

the run time will obviously depend on the specifications of the computer

you use for the analysis. If you would like the code to run faster, you can try

binning the code using a larger sampling interval of 30 ms, which cut down

the run time on our computer to be a little over 2 min.

plot (DECODING_RESULTS$rm_main_

results,

type = "line",
results_to_show = "all")

The results are show in Figure 3A. From looking at the results
we see that the decoding accuracy rises above the chance level of 1/25
around 150 ms after stimulus onset, and the zero–one loss, normalized
rank and raw decision value results look similar, which is often the case.
If we want to plot a TCD plot, we set the type = "TCD".

plot(DECODING_RESULTS$rm_main_results, type = "TCD")

This TCD plot is in shown in Figure 3B. From looking at the
TCD we do not see a strong diagonal yellow region in the plot
which would indicate that the decoding accuracy is only high when
training and testing the classifier at the same point in time. Thus,
information appears to be contained in a stationary neural code
where the same patterns of neural activity codes information at
different points in time, rather than a dynamic population code
where the patterns of neural activity that code information change
in time.

The rm_confusion_matrix result metric plot() function
allows one to view a sequence of confusion matrices for each time
period that was decoded. Because we binned the data with a
relatively small sampling interval of 10 ms, plotting a sequence of
confusion matrices for all decoded time bins will be rather cluttered,
so instead we will just plot the confusion matrix that starts around
200 ms after stimulus onset, which we can do by setting the
argument start_time_to_plot = 200:

plot (DECODING_RESULTS$rm_confusion_matrix,

plot_only_one_train_time = 206)

The results are shown in Figure 4. The y-axis on the plot shows the
true class, and the x-axis on the plot shows the predicted class, and
consequently diagonal elements on the plot are correct predictions.
From looking at Figure 4, we see that some classes (i.e., face identities)
were predicted more accurately than others, for example, the person
10 was correctly predicted about 60% of the time.

Saving and logging the results
After running an analysis, it is useful to save the results so that

one can replot them at a later time, and compare the results to those
from other analyses that have been run. Rather than using R’s save()
function to save the results, it is useful to use the NeuroDecodeR’s
log_save_results() function. This function not only saves the
results, but it also creates a “manifest file” that keeps track of the
parameters that were used in each decoding analysis that has run.
This manifest file can then be used to search through all previous
results that have been run, and to load previous results based on
parameter values using the log_load_results_from_params()
function.

To save the results using the log_save_results() function,
we pass the DECODING_RESULTS list, along with a directory name
where we would like to save the results. Additionally, we can also set the
result_name argument to a string which will give a name to the results
that can be used to reload the results using the

https://doi.org/10.3389/fninf.2023.1275903
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Meyers 10.3389/fninf.2023.1275903

Frontiers in Neuroinformatics 09 frontiersin.org

log_load_results_from_result_name() function. For the
analysis we ran above, we can save the results to a directory called
“results” using the following:

log_save_results(DECODING_RESULTS,

save_directory_name = "results",
 result_name = "Left profile
face decoding")

Decoding analysis 2: testing generalization
across head orientations

To further illustrate the capabilities of the NeuroDecodeR package,
we now demonstrate how to run a generalization analysis where a

classifier is trained on one set of conditions and then tested on a related
set of conditions. In particular, we will train the classifier to distinguish
between the 25 individuals using trials when left-profile face images
were shown, as we did previously, but rather than testing the classifier
on the same left-profile images (from different trials), we will instead
test to see if the classifier can distinguish between the 25 individuals on
trials when right-profile images were shown. If the classifier is able to
classify the right-profile images at a high level of accuracy, this indicates
that the neural representation contains information about face identity
that is abstracted from the specific low-level visual features the classifier
was trained on; i.e., anterior-medial face patch contains a representation
of face identity that is invariant to the orientation of an individual’s
head (Meyers et al., 2015).

Running this generalization analysis is very similar to running the
basic decoding analysis we did above, however, we will use the ds_
generalization data source rather than the ds_basic data

FIGURE 3

Results from decoding face identity (using only the left-profile face images) compiled by the rm_main_results object. (A) A line plot showing the
classification accuracy (zero–one loss), normalized rank, and decision value results based on running the plot(rm_main_results,
type = "line") function. As can be seen, the decoding accuracy increases above chance levels approximate 100 ms after stimulus onset. For the
zero–one loss results, chance accuracy is 4% since there are 25 classes. (B) A temporal cross-decoding (TCD) plot based on using the plot(rm_
main_results, type = "TCD") function. The lack of a strong diagonal band on the plot indicates that information is not contained in a highly
dynamic code. Overall, the reason the classification accuracy is relatively low is because we are only training the classifier on two examples from each class.

https://doi.org/10.3389/fninf.2023.1275903
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Meyers 10.3389/fninf.2023.1275903

Frontiers in Neuroinformatics 10 frontiersin.org

source. The data, and all other NeuroDecodeR objects in this analysis
will be the same as we used previously, which illustrates how the
modular nature of the object in the NeuroDecodeR package allows
one to easily run a range of analyses.

To create the ds_generalization data source, we will first
create a vector of 25 strings that list all the right profile image names
in the same order as the vector of left profile image names that
we created previously. This can be done using:

right_profile_levels <- paste("right profile", 1:25)

We can then create the ds_generalization datasource by
specifying the same binned_file_name, label_to_decode,

num_cv_splits, and site_IDs_to_use8 arguments as was done
with the ds_basic, along with setting the train_label_levels

8 It is possible that different sites have different numbers of left and right

profile trials, which would make different sites available for decoding left profile

and right profile images. By setting the site_IDs_to_use in both the basic

and generalization analyses using only sites that have at least 3 repetitions for

all head orientation images, we guarantee that the same sites will be used in

our basic decoding analysis (train and test left) and in our generalization analysis

(train left test right). This allows a fair comparison of these analyses since

differences in decoding accuracies cannot be due to different neurons

being used.

to be the left_profile_levels, and the test_label_levels to
be the right_profile_levels. Thus, the code for creating the ds_
generalization is:

ds <- ds_generalization(binned_file_name,
labels = "orient_person_combo",
num_cv_splits = 3,

train_label_levels = left_profile_levels,

test_label_levels = right_profile_levels,

site_IDs_to_use = sites_to_use)

Now that the generalization data source has been created, we can
create the other NeuroDecodeR objects, run the analysis, and save
the results as was done before. To make the code run a little faster,
we will omit using the rm_confusion_matrix, and we will omit
creating the temporal cross decoding results by setting run_
TCD = FALSE in the cross-validator.

fps <- list(fp_zscore())
cl <- cl_max_correlation()
rms <- list(rm_main_results())
cv <- cv_standard(datasource = ds,

classifier = cl,

feature_preprocessors = fps,

result_metrics = rms,

run_TCD = FALSE)

FIGURE 4

A Confusion matrix decoding face identity (using only the left-profile face images) compiled by the rm_confusion_matrix object. The confusion
matrix is shown at 206  ms post stimulus onset using the function plot(rm_confusion_matrix, plot_only_one_train_time = 206).
Elements on the diagonal indicate a high level of correct predictions while elements off the diagonal indicate patterns of mistakes; for example,
we that images of person 5 were fairly frequently classified as person 8.

https://doi.org/10.3389/fninf.2023.1275903
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Meyers 10.3389/fninf.2023.1275903

Frontiers in Neuroinformatics 11 frontiersin.org

DECODING_RESULTS <- run_decoding(cv)

log_save_results(DECODING_RESULTS,

save_directory_name = "results",
 result_name = "Train left profile, test
right profile")

Once the analysis has finished running and we have saved the
results, we can use plot_main_results() function to compare
the results we created when training and testing the classifier on the
left-profile images (that were created in the first analysis above) to
the generalization results we just ran. To do this we will create a
vector of strings that have the result names that we created when
we saved the DECODING_RESULT objects from our two analyses.
We will then pass the name of the directory holding the results,
along with these result names to create a line plot that compares
the results:

result_names <- c("Left profile face decoding",
"Train left profile, test

right profile")

plot_main_result s(results_dir_name = "results",
result_names)

The resulting plot from running this code is shown in
Figure 5. As can be seen, there is a similar level of decoding
accuracies when the classifier is tested on the left and right profile
images, which suggests that the neural representation of identity
is highly invariant to the pose of the head, at least between left and

right profile images. We encourage the reader to experiment with
assessing the invariance across other head orientations, such as
training on the front facing images and testing on the profile
images.9

Piping together NeuroDecodeR objects
A popular way to write data analysis code in R is to use the pipe

operator to string together a sequence of data analysis functions. The
NeuroDecodeR package also supports the pipe operator to create a
sequence of functions that are needed to run a decoding analysis.
This can be done by:

 1. Starting with a binned data file name
 2. piping it to a data source
 3. piping together feature-preprocessors, a classifier, and

result metrics
 4. piping this to a cross-validator.

The code below illustrates how to run the same basic analysis
as our first analysis above using the pipe operator. For the sake of
novelty, we will decode the right profile images, and we
plot the results from all the analyses we have run (see
Supplementary Figure S1).

"FV_AM_30bins_10sampled.Rda" |>
ds_basic(labels = "orient_person_combo",

num_cv_splits = 3,

label_levels = right_profile_levels,

site_IDs_to_use = sites_to_use) |>

fp_zscore() |>

cl_max_correlation() |>

rm_main_results() |>

rm_confusion_matrix() |>

cv_standard(run_TCD = FALSE) |>

run_decoding() |>

 log_save_results(save_directory_

name = "results",
 result_name = "Right profile face

decoding")

 result_ names <- c(result_names, "Right profile

face decoding")

 plot_ma in_results(results_dir_name = "results",
result_names)

Discussion

In this paper, we introduced the NeuroDecodeR package,
described the design and data formats used by the package, and gave
examples of how to run a basic decoding and generalization analysis.
We also described the benefits of using the package, including the fact

9 Spoiler, decoding accuracy on the frontal images is higher, and there is

less invariance generalizing from the frontal images to the profile images.

FIGURE 5

Comparison of basic identity decoding results to generalization
analysis results. The plot shows the results from classifying the 25
individual face identities using a basic decoding analysis where
the classifier was trained and tested using on left profile face
images (red trace) to generalization analysis results where the
classifier was trained on left profile images and tested on right
profile images (cyan trace). As can be seen, the classification
accuracies are fairly similar for the basic and generalization
analysis indicating that face identity information in brain region
AM is contained in a code that is highly invariance to the pose of
the head across left and right profile images. The x-axis shows the
time from stimulus onset in milliseconds, and the y-axis is the
classification accuracy (0–1 loss).

https://doi.org/10.3389/fninf.2023.1275903
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Meyers 10.3389/fninf.2023.1275903

Frontiers in Neuroinformatics 12 frontiersin.org

that the modular design of the package makes it easy to run a range
of different decoding analyses, the decoding code is parallelized
which speeds up the run time of analyses, and a system that makes it
easy to save and manage decoding results. Additionally, using the R
programming language to run decoding analyses has several benefits
including that it is a free/open source language, and that R has a
strong ecosystem for creating reproducible analyses. In particular,
we highly recommend that users of the NeuroDecodeR package take
advantage of these reproducible features in R by creating R Markdown
documents that contain the code used for each analysis so that it is
easy to recreate any analysis run.10

The description of the NeuroDecodeR package in this paper
is based on the package’s initial release, however, we anticipate
continuing to develop and extend the package. A few directions
we are interested in extending the package include adding
additional NeuroDecodeR objects (e.g., additional data sources
and classifiers), and writing code that can give estimates of the
memory usage and runtime that particular analysis will take
which will enable users to choose decoding parameters based
on the computing system they are using for their analyses. For
example, users could bin their data at a higher temporal
resolution if they are running their analyses on a more powerful
computer. We also plan to create a shiny app for the package
that will allow users to generate R Markdown documents that
contain all the code needed to run an analysis by clicking buttons
on a graphical user interface. This “NeuroShiny” app will further
shorten the time it takes to run decoding analyses, and
will enable neuroscientists with little programming experience
to run reproducible decoding analyses on their data. Finally,
we anticipate creating other types of analyses that use the
same binned and raster formats described in this paper, which
will allow researchers to easily run a whole range of different
types of analyses once they have put their data into the
proper format.

In summary, we believe that the NeuroDecodeR package will
be of great benefit to neuroscientists who are interested in using
decoding to analyze their data, and should also offer an entry point
for statisticians who are familiar with the R programming language
to become involved in analyzing neural data. We hope that this
package will lead to new insights into how the brain processes
information and will help to speed up the pace of discovery
in neuroscience.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found at: http://www.readout.info/downloads/datasets/
freiwald-tsao-face-views-am-dataset.

10 The fact that the decoding parameters are saved in the DECODING_

RESULTS also allows one to easily verify the parameters that were used in an

analysis. However the use of R Markdown to save the code as a pdf allows one

to directly store the code used which can make it easier to read.

Ethics statement

The animal study was approved by Ethics committee at Harvard
Medical School. The study was conducted in accordance with the local
legislation and institutional requirements.

Author contributions

EM: Conceptualization, Data curation, Funding acquisition,
Investigation, Methodology, Project administration, Resources,
Software, Validation, Visualization, Writing – original draft, Writing
– review & editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. The work was
supported by NSF grant NCS-FO: 1835268/1834994 and by the
Center for Brains, Minds and Machines, funded by The National
Science Foundation (NSF) STC award (CCF- 1231216).

Acknowledgments

We would like to thank Tomaso Poggio for his continued
support, and Xinzhu Fang, Sukolta Rithichoo, Xinyao Lu, Boming
Zhang, Yongyi Peng, Elisa Loy, and Jenny Pan, for helping to test
the NeuroDecodeR package. We would also like to thank Doris
Tsao, Winrich Friewald, Christos Constantinidis, Robert
Desimone and Ying Zhang for their willingness to share data
they collected.

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fninf.2023.1275903/
full#supplementary-material

https://doi.org/10.3389/fninf.2023.1275903
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
http://www.readout.info/downloads/datasets/freiwald-tsao-face-views-am-dataset
http://www.readout.info/downloads/datasets/freiwald-tsao-face-views-am-dataset
https://www.frontiersin.org/articles/10.3389/fninf.2023.1275903/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fninf.2023.1275903/full#supplementary-material

Meyers 10.3389/fninf.2023.1275903

Frontiers in Neuroinformatics 13 frontiersin.org

References
Averbeck, B. B., Latham, P. E., and Pouget, A. (2006). Neural correlations, population

coding and computation. Nat. Rev. Neurosci. 7, 358–366. doi: 10.1038/nrn1888

Brown, E. N., Frank, L. M., Tang, D., Quirk, M. C., and Wilson, M. A. (1998). A
statistical paradigm for neural spike train decoding applied to position prediction from
ensemble firing patterns of rat hippocampal place cells. J. Neurosci. 18, 7411–7425. doi:
10.1523/JNEUROSCI.18-18-07411.1998

Brown, E. N., Kass, R. E., and Mitra, P. P. (2004). Multiple neural spike train data
analysis: state-of-the-art and future challenges. Nat. Neurosci. 7, 456–461. doi: 10.1038/
nn1228

Carlson, T. A., Hogendoorn, H., Kanai, R., Mesik, J., and Turret, J. (2011). High
temporal resolution decoding of object position and category. J. Vis. 11:9. doi:
10.1167/11.10.9

Crowe, D. A., Averbeck, B. B., and Chafee, M. (2010). Rapid sequences of population
activity patterns dynamically encode task-critical spatial information in parietal cortex.
J. Neurosci. Off. J. Soc. Neurosci. 30, 11640–11653. doi: 10.1523/
JNEUROSCI.0954-10.2010

Freiwald, W. A., and Tsao, D. Y. (2010). Functional compartmentalization and
viewpoint generalization within the macaque face-processing system. Science 330,
845–851. doi: 10.1126/science.1194908

Georgopoulos, A., Schwartz, A., and Kettner, R. (1986). Neuronal population coding
of movement direction. Science 233, 1416–1419. doi: 10.1126/science.3749885

Glaser, J. I., Benjamin, A. S., Chowdhury, R. H., Perich, M. G., Miller, L. E., and
Kording, K. P. (2020). Machine learning for neural decoding. ENeuro 7, 1–16. doi:
10.1523/ENEURO.0506-19.2020

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby, J. V., and
Pollmann, S. (2009). PyMVPA: a python toolbox for multivariate pattern analysis of
fMRI data. Neuroinformatics 7, 37–53. doi: 10.1007/S12021-008-9041-Y

Haynes, J.-D., and Rees, G. (2006). Decoding mental states from brain activity in
humans. Nat. Rev. Neurosci. 7, 523–534. doi: 10.1038/nrn1931

Hebart, M. N., Görgen, K., and Haynes, J. D. (2015). The decoding toolbox (TDT): a
versatile software package for multivariate analyses of functional imaging data. Frontiers.
Neuroinformatics 8:88. doi: 10.3389/FNINF.2014.00088/BIBTEX

Hung, C. P., Kreiman, G., Poggio, T., and DiCarlo, J. J. (2005). Fast readout of object
identity from macaque inferior temporal cortex. Science 310, 863–866. doi: 10.1126/
science.1117593

Isik, L., Meyers, E. M., Leibo, J. Z., and Poggio, T. (2014). The dynamics of invariant
object recognition in the human visual system. J. Neurophysiol. 111, 91–102. doi:
10.1152/jn.00394.2013

Jacobs, A. L., Fridman, G., Douglas, R. M., Alam, N. M., Latham, P., Prusky, G. T., et al.
(2009). Ruling out and ruling in neural codes. Proc. Natl. Acad. Sci. 106, 5936–5941. doi:
10.1073/pnas.0900573106

King, J.-R., and Dehaene, S. (2014). Characterizing the dynamics of mental
representations: the temporal generalization method. Trends Cogn. Sci. 18, 203–210. doi:
10.1016/j.tics.2014.01.002

Meyers, E. M. (2013). The neural decoding toolbox. Front. Neuroinformatics 7:8. doi:
10.3389/fninf.2013.00008

Meyers, E. M. (2018). Dynamic population coding and its relationship to working
memory. J. Neurophysiol. 120, 2260–2268. doi: 10.1152/jn.00225.2018

Meyers, E. M., Borzello, M., Freiwald, W. A., and Tsao, D. (2015). Intelligent information
loss: the coding of facial identity, head pose, and non-face information in the macaque face
patch system. J. Neurosci. 35, 7069–7081. doi: 10.1523/JNEUROSCI.3086-14.2015

Meyers, E. M., Freedman, D. J., Kreiman, G., Miller, E. K., and Poggio, T. (2008).
Dynamic population coding of category information in inferior temporal and prefrontal
cortex. J. Neurophysiol. 100, 1407–1419. doi: 10.1152/jn.90248.2008

Meyers, E., Freedman, D., Kreiman, G., Miller, E., and Poggio, T. (2009). Decoding
dynamic patterns of neural activity using a ‘biologically plausible’ fixed set of weights
(Abstract). J. Comput. Neurosci. doi: 10.3389/conf.neuro.06.2009.03.354

Meyers, E. M., and Kreiman, G. (2012). “Tutorial on pattern classification in cell
recording” in Visual population codes. eds. N. Kriegeskorte and G. Kreiman (Boston,
MA: MIT Press), 517–538.

Meyers, E. M., Liang, A., Katsuki, F., and Constantinidis, C. (2018). Differential
processing of isolated object and multi-item pop-out displays in LIP and PFC. Cereb.
Cortex 28, 3816–3828. doi: 10.1093/cercor/bhx243

Meyers, E. M., Qi, X.-L., and Constantinidis, C. (2012). Incorporation of new
information into prefrontal cortical activity after learning working memory tasks. Proc.
Natl. Acad. Sci. U. S. A. 109, 4651–4656. doi: 10.1073/pnas.1201022109

Nirenberg, S., and Latham, P. E. (2003). Decoding neuronal spike trains: how
important are correlations? Proc. Natl. Acad. Sci. U. S. A. 100, 7348–7353. doi: 10.1073/
pnas.1131895100

O’Toole, A. J., Jiang, F., Abdi, H., Pénard, N., Dunlop, J. P., and Parent, M. A. (2007).
Theoretical, statistical, and practical perspectives on pattern-based classification
approaches to the analysis of functional neuroimaging data. J. Cogn. Neurosci. 19,
1735–1752. doi: 10.1162/jocn.2007.19.11.1735

Oosterhof, N. N., Connolly, A. C., and Haxby, J. V. (2016). CoSMoMVPA: multi-
modal multivariate pattern analysis of neuroimaging data in matlab/GNU octave. Front.
Neuroinformatics 10:27. doi: 10.3389/FNINF.2016.00027

Peng, Y., Zhang, X., Li, Y., Su, Q., Wang, S., Liu, F., et al. (2020). MVPANI: a toolkit
with friendly graphical user Interface for multivariate pattern analysis of neuroimaging
data. Front. Neurosci. 14:545. doi: 10.3389/fnins.2020.00545

Pereira, F., Mitchell, T., and Botvinick, M. (2009). Machine learning classifiers and
fMRI: a tutorial overview. NeuroImage 45, S199–S209. doi: 10.1016/j.
neuroimage.2008.11.007

Quian Quiroga, R., and Panzeri, S. (2009). Extracting information from neuronal
populations: information theory and decoding approaches. Nat. Rev. Neurosci. 10,
173–185. doi: 10.1038/nrn2578

Quiroga, R. Q., Nadasdy, Z., and Ben-Shaul, Y. (2004). Unsupervised spike detection
and sorting with wavelets and superparamagnetic clustering. Neural Comput. 16,
1661–1687. doi: 10.1162/089976604774201631

R Core Team (2021). R: A language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing. Availble at: https://www.R-project.org/.

Rikhye, R. v., Gilra, A., and Halassa, M. M. (2018). Thalamic regulation of switching
between cortical representations enables cognitive flexibility. Nat. Neurosci. 21,
1753–1763. doi: 10.1038/s41593-018-0269-z

Rutishauser, U., Ye, S., Koroma, M., Tudusciuc, O., Ross, I. B., Chung, J. M., et al.
(2015). Representation of retrieval confidence by single neurons in the human medial
temporal lobe. Nat. Neurosci. 18, 1041–1050. doi: 10.1038/nn.4041

Saha, S., Mamun, K. A., Ahmed, K., Mostafa, R., Naik, G. R., Darvishi, S., et al. (2021).
Progress in brain computer Interface: challenges and opportunities. Front. Syst. Neurosci.
15:578875. doi: 10.3389/FNSYS.2021.578875

Semedo, J. D., Gokcen, E., Machens, C. K., Kohn, A., Yu, B. M., Larry Abbott, E., et al.
(2020). Statistical methods for dissecting interactions between brain areas this review
comes from a themed issue on whole-brain interactions between neural circuits. Curr.
Opin. Neurobiol. 65, 59–69. doi: 10.1016/j.conb.2020.09.009

Steinmetz, N. A., Aydin, C., Lebedeva, A., Okun, M., Pachitariu, M., Bauza, M., et al.
(2021). Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain
recordings. Science (New York, N.Y.) 372:ABF4588. doi: 10.1126/SCIENCE.ABF4588

Stevenson, I. H., and Kording, K. P. (2011). How advances in neural recording affect
data analysis. Nat. Neurosci. 14, 139–142. doi: 10.1038/nn.2731

Tingley, D., and Buzsáki, G. (2018). Transformation of a spatial map across the
hippocampal-lateral septal circuit. Neuron 98, 1229–1242.e5. doi: 10.1016/J.
NEURON.2018.04.028

Tong, F., and Pratte, M. S. (2012). Decoding patterns of human brain activity. Annu.
Rev. Psychol. 63, 483–509. doi: 10.1146/annurev-psych-120710-100412

Volkova, K., Lebedev, M. A., Kaplan, A., and Ossadtchi, A. (2019). Decoding
movement from Electrocorticographic activity: a review. Front. Neuroinform. 13:74. doi:
10.3389/FNINF.2019.00074/BIBTEX

Weaverdyck, M. E., Lieberman, M. D., and Parkinson, C. (2020). Tools of the trade
multivoxel pattern analysis in fMRI: a practical introduction for social and affective
neuroscientists. Soc. Cogn. Affect. Neurosci. 15, 487–509. doi: 10.1093/SCAN/NSAA057

Wessberg, J., Stambaugh, C. R., Kralik, J. D., Beck, P. D., Laubach, M., Chapin, J. K.,
et al. (2000). Real-time prediction of hand trajectory by ensembles of cortical neurons
in primates. Nature 408, 361–365. doi: 10.1038/35042582

Williamson, R. C., Doiron, B., Smith, M. A., Yu, B. M., Sahani, M., and Pillow, J.
(2019). Bridging large-scale neuronal recordings and large-scale network models using
dimensionality reduction this review comes from a themed issue on machine learning,
big data, and neuroscience. Curr. Opin. Neurobiol. 55, 40–47. doi: 10.1016/j.
conb.2018.12.009

Zhang, Y., Meyers, E. M., Bichot, N. P., Serre, T., Poggio, T. A., and Desimone, R.
(2011). Object decoding with attention in inferior temporal cortex. Proc. Natl. Acad. Sci.
U. S. A. 108, 8850–8855. doi: 10.1073/pnas.1100999108

https://doi.org/10.3389/fninf.2023.1275903
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://doi.org/10.1038/nrn1888
https://doi.org/10.1523/JNEUROSCI.18-18-07411.1998
https://doi.org/10.1038/nn1228
https://doi.org/10.1038/nn1228
https://doi.org/10.1167/11.10.9
https://doi.org/10.1523/JNEUROSCI.0954-10.2010
https://doi.org/10.1523/JNEUROSCI.0954-10.2010
https://doi.org/10.1126/science.1194908
https://doi.org/10.1126/science.3749885
https://doi.org/10.1523/ENEURO.0506-19.2020
https://doi.org/10.1007/S12021-008-9041-Y
https://doi.org/10.1038/nrn1931
https://doi.org/10.3389/FNINF.2014.00088/BIBTEX
https://doi.org/10.1126/science.1117593
https://doi.org/10.1126/science.1117593
https://doi.org/10.1152/jn.00394.2013
https://doi.org/10.1073/pnas.0900573106
https://doi.org/10.1016/j.tics.2014.01.002
https://doi.org/10.3389/fninf.2013.00008
https://doi.org/10.1152/jn.00225.2018
https://doi.org/10.1523/JNEUROSCI.3086-14.2015
https://doi.org/10.1152/jn.90248.2008
https://doi.org/10.3389/conf.neuro.06.2009.03.354
https://doi.org/10.1093/cercor/bhx243
https://doi.org/10.1073/pnas.1201022109
https://doi.org/10.1073/pnas.1131895100
https://doi.org/10.1073/pnas.1131895100
https://doi.org/10.1162/jocn.2007.19.11.1735
https://doi.org/10.3389/FNINF.2016.00027
https://doi.org/10.3389/fnins.2020.00545
https://doi.org/10.1016/j.neuroimage.2008.11.007
https://doi.org/10.1016/j.neuroimage.2008.11.007
https://doi.org/10.1038/nrn2578
https://doi.org/10.1162/089976604774201631
https://www.R-project.org/
https://doi.org/10.1038/s41593-018-0269-z
https://doi.org/10.1038/nn.4041
https://doi.org/10.3389/FNSYS.2021.578875
https://doi.org/10.1016/j.conb.2020.09.009
https://doi.org/10.1126/SCIENCE.ABF4588
https://doi.org/10.1038/nn.2731
https://doi.org/10.1016/J.NEURON.2018.04.028
https://doi.org/10.1016/J.NEURON.2018.04.028
https://doi.org/10.1146/annurev-psych-120710-100412
https://doi.org/10.3389/FNINF.2019.00074/BIBTEX
https://doi.org/10.1093/SCAN/NSAA057
https://doi.org/10.1038/35042582
https://doi.org/10.1016/j.conb.2018.12.009
https://doi.org/10.1016/j.conb.2018.12.009
https://doi.org/10.1073/pnas.1100999108

	NeuroDecodeR: a package for neural decoding in R
	Introduction
	Methods
	A brief overview of neural population decoding
	Installing the NeuroDecodeR package
	Design of the NeuroDecodeR package
	Data formats
	Raster format
	Binned format

	Results
	Viewing raster data
	Binning the data
	Decoding analysis 1: decoding face identity using left profile images
	Assessing how many recording sites and cross-validation splits to use
	Running the decoding analysis
	Plotting the results
	Saving and logging the results
	Decoding analysis 2: testing generalization across head orientations
	Piping together NeuroDecodeR objects

	Discussion
	Data availability statement
	Ethics statement
	Author contributions

	References

