

AIMS Geosciences, 9(4): 632–651. DOI: 10.3934/geosci.2023034 Received: 11 January 2023 Revised: 18 September 2023 Accepted: 25 September 2023 Published: 11 October 2023

http://www.aimspress.com/journal/geosciences

Theory article

Study on the spatial variation of sensitivity of soil nutrient system in Xinjiang,

China

Yang Sheng^{1,2}, Dehua Sun² and Weizhong Liu^{1,2,*}

- ¹ School of Economy and Management, Xinjiang University, Urumchi 830000, China
- ² Arid Region Rural Development Resarch Center, Xinjiang Agricultural University, Urumchi 830052, China
- * Correspondence: Email: lwz@xjau.edu.cn; Tel.: +86-130-9500-1728.

Supplementary Information

Table S1

LUI calculation dataset information based on county.

Dimension	Index	Formula	Property explanation		
Input	Mechanical input index ^a	Total power of agricultural	Total power of agricultural machinery: total power of		
		machinery/cultivated land area	tractors, supporting agricultural tools and water-saving		
			irrigation machinery (kw)		
	Fertilizer input index ^a	Amount of fertilizer applied/cultivated	Amount of fertilizer applied: total amount of nitrogen		
		land area	fertilizer, phosphorus fertilizer, potassium fertilizer and		
			organic fertilizer (t)		
	Irrigation index ^a	Effective irrigation area/cultivated land	Unit of effective irrigation area: hm ²		
		area			
	Electricity consumption index	Rural electricity consumption/cultivated	Unit of rural electricity consumption: kw·h		
	a	land area			
	Labor input index ^a	Number of agricultural labor	The number of agricultural labor force is the number of		
		force/cultivated land area	people engaged in agriculture		
Output	Grain yield per unit ^a	Total grain output/cultivated land area	Total grain output: total output of wheat, barley, maize and		
			rice (t)		
	Average land output ^a	Total agricultural output/cultivated land area	Unit of total agricultural output: RMB 10,000 yuan		

System	Multiple crop index ^a	Sown area of crops/cultivated area	Unit of effective sown area of crops: hm ²		
Yield gap index ^b 1/(max		1/(maximum grain yield per unit - average	Unit of maximum grain yield per unit and average grain		
		grain yield per unit)	yield per unit: kg		
	Cultivated land utilization	$W \times (A_1 \times L_1 + \dots + A_n \times L_n)$	W is the proportion of sown area of main crops in		
	index ^a		cultivated land (%); A is the unit yield of main crops (kg);		
			L is the sowing area of main crops (hm ²); 1n is the		
			main crop type		

Note: a means the data is from *Xinjiang Statistical Yearbook* (2010-2020); b indicates that the data is obtained through investigation with the county-level competent agricultural department; the unit of cultivated land area is hm².

Table S2

LUI dataset index weight.

Index	Mechanical	Fertilizer	Irrigation	Electricity	Labor	Grain	Average	Multiple	Yield	Cultivated
	input index	input index	index	consumption	input	yield	land	crop index	gap	land
				index	index	per	output		index	utilization
						unit				index
Weight	0.059	0.153	0.064	0.155	0.114	0.013	0.093	0.062	0.142	0.143

Table S3

Climate tendency rate of temperature and precipitation in entire Xinjiang and farming divisions (/10a).

Farming divisions	Temperature (°C)	Precipitation (mm)	
1960~2008 entire Xinjiang (A)	0.332*	15.401*	
2009~2019 entire Xinjiang (A)	1.086*	-11.924*	
Southern part of Junggar Basin (B)	0.131*	1.870*	
Northern part of Junggar Basin (C)	0.194*	-2.581*	
Ili River Valley (D)	0.411*	-0.734*	
Tuha Basin (E)	0.038*	0.654*	
Western part of Tarim Basin (F)	0.217*	-0.247*	
Southern part of Tarim Basin (G)	0.102*	2.125*	
Northern part of Tarim Basin (H)	0.230*	0.828^{*}	

Note: * means it has passed Mann-Kendall significance test that is α≤0.05.

Table S4

Year	Soil nutrients	R ²	RSS	Model
2009	Total nitrogen	0.938	3.404E-0.6	Spherical
	Available phosphorus	0.895	7.344E-0.4	Exponential
	Rapid available potassium	0.872	1.322E-0.3	Exponential
	Organic matter	0.868	8.543E-0.3	Exponential
2019	Total nitrogen	0.935	2.517E-0.6	Spherical
	Available phosphorus	0.891	0.666E-0.5	Exponential
	Rapid available potassium	0.875	2.290E-0.4	Exponential
	Organic matter	0.891	2.506E-0.4	Exponential

Selection of spatial interpolation model of soil nutrients.

Table S5

Sensitivity classes.

Class	Index	Sensitivity
Ι	$0.00 \le S \le 0.05$	Minimum sensitivity
Π	$0.05 \le S \le 0.20$	Medium
III	$0.20 \le S \le 1.00$	High
IV	$1.00 \leq \mathbf{S} $	Very high

Table S6

Grading standard of of second general survey of soil nutrients in China.

Nutriont	Grades					
Nutrient	Extremely	Abundant	More abundant	Medium	Short	Extremely
	abundant					short
Total nitrogen	>2.0	1.5~2.0	1.0~1.5	0.75~1.0	0.5~0.75	≤0.5
(g/kg)						
Available	>40	20~40	10~20	5~10	3~5	≤3
phosphorus						
(mg/kg)						
Rapid available	>200	150~200	100~150	50~100	30~50	≤30
potassium (mg/kg)						
Organic matter >	>40	30~40	20~30	10~20	6~10	≤6
(g/kg)						

Fig S1. Time Series Changes of LUI, Temperature and Precipitation in Xinjiang and Farming Divisions. (a): LUI changes in Xinjiang and 7 farming divisions. (b): Average value and variation trend of temperature during 1960-2019. (c): Average value and variation trend of temperature during 2009-2019. (d): Average value and variation trend of precipitation during 1960-2019. (d): Average value and variation trend of precipitation during 2009-2019. (f): Variation of temperature in 7 farming divisions. (g): Variation of precipitation in 7 farming divisions.

Fig S2. Spatial Variation of LUI, temperature and precipitation in Xinjiang. (a): Spatial distribution of LUI in 2009. (b): Spatial distribution of LUI in 2019. (c): LUI variation during 2009-2019. (d): Spatial distribution of temperature in 2009. (e): Spatial distribution of temperature in 2019. (f): Spatial distribution of temperature variation during 2009-2019. (g): Spatial distribution of precipitation in 2009. (h): Spatial distribution of precipitation in 2019. (i): Spatial distribution of precipitation variation during 2009-2019. Annual average of temperature and precipitation usage.

Fig S3. Change of soil nutrients in Xinjiang and farming divisions. (a), (b), (d) and (e) are the statistics of soil total nitrogen, available phosphorus, rapid available potassium and organic matter content in 2009 and 2019, respectively. (c): Average value changes of total nitrogen and available phosphorus during 2009-2019. (f): Average value changes of rapid available potassium and organic matter during 2009-2019. (g), (h), (i) and (k) are the statistics of soil total nitrogen, available phosphorus, rapid available potassium and organic matter content in 7 farming divisions, respectively.

Fig S4. Spatial variation of soil nutrients in Xinjiang.

© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)