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Abstract: In this paper, a biophysical fractional diffusive cancer model with virotherapy is thoroughly 

analyzed and analytically simulated. The goal of this biophysical model is to represent both the 

dynamics of cancer development and the results of virotherapy, which uses viruses to target and destroy 

cancer cells. The Caputo sense is applied to the fractional derivatives. We look at the governing model's 

existence and uniqueness. For analytical solutions, the Laplace residual power series approach is used. 

The study investigates the model's dynamic behavior, shedding light on the development of cancer and 

the effects of virotherapy. The research advances our knowledge of cancer modeling and treatment 

options. Numerical simulations show the agreement between the analytical results and the related 

numerical solutions, proving the usefulness of the analytical solution. 
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1. Introduction 

Cancer stands as one of the most lethal diseases worldwide, ranking as the second leading cause 

of death globally. According to the World Health Organization, approximately 9.6 million lives were 

claimed by cancer in 2018 alone, accounting for about 1 in 6 deaths. Developing countries bear the 

highest impact of this burden, contributing nearly 70% of the annual cancer-related fatalities. In 

response, policymakers have recognized the significance of prioritizing cancer prevention and control 



504 

AIMS Biophysics  Volume 10, Issue 4, 503−522. 

to safeguard the nation's productivity [1,2]. Researchers have also devoted considerable time and effort 

to discovering effective treatments, enhancing the efficiency of current low-cost therapies and 

exploring methods to boost patients' immune systems in their battle against cancer [3,4]. 

In recent times, significant progress has been made in developing cancer therapies that can 

effectively target tumors without harming healthy neighboring tissues. Genetic engineering has played 

a pivotal role in this pursuit, leading to the discovery of a promising cancer treatment involving 

genetically altered viruses [5]. These engineered viruses, known as oncolytic viruses, have the unique 

ability to infect cancer cells specifically. They grow within the abnormal tumor cells and destroy them 

without affecting the surrounding healthy cells or normal tissue. The process involves the oncolytic 

viruses interacting with the tumor cell, leading to a burst of new oncolytic viruses. The burst size, 

which measures the number of new viruses resulting from the lysis of an infected tumor cell, serves as 

an important indicator of the oncolytic virus's replicability [6]. The treatment of cancer varies 

according to individual situations, and different therapies may be employed alone or in combination, 

including surgery, radiotherapy, chemotherapy, hormone therapy, immunotherapy and virotherapy. 

Virotherapy has emerged as a promising approach, wherein a reprogrammed virus, termed an oncolytic 

virus, is utilized. Oncolytic viruses effectively infect and destroy cancer cells, harnessing the cell's 

genetic machinery to replicate themselves and spread to neighboring uninfected cells [7]. This 

innovative treatment holds immense potential in the ongoing fight against cancer. 

Biophysics is a branch of physics that is concerned with studying biological phenomena 

depending on physical theories, laws, methods and physical quantities. The biophysics concept was 

introduced in 1892 by Karl Pearson and then expanded and developed to solve extremely difficult 

problems cannot be solved. Biophysics includes different biological and medical branches, which will 

be listed as the following: Firstly, it is concerned with studying the structure of many biological 

phenomena, like DNA, and analyzing its data depending on physical laws and theories. Another 

biophysical field is the construction of mathematical models (for viruses, pathogens, proteins etc.), 

developing the needed computer codes, and performing the simulation of the studied case to find the 

required target. Moreover, building models computationally of the human body, like the brain and 

nervous systems, is an important biophysical field that gives a better understanding of their working 

and also tells us how molecules, like blood hormones and other liquids and gases, move around the 

body. Biophysics used physical and geometrical optics to develop medical imaging like PET scans, 

CT scans and MRIs. It developed medical devices that are used in radiation therapy, cardiology, 

defibrillators, pacemakers, artificial heart valves and other fields. It’s also used in ecosystems that give 

us detailed information about the human body, like a pregnant woman's follow-up. 

Biophysical models that are expressed mathematically have proven valuable in understanding and 

addressing various biological and medical challenges, encompassing cancer models involving diverse 

therapies [8,9], prey-predator models [9], epidemic models [10–13], HIV infection models [14–16], 

COVID-19 models [17], food chain models [18], smoking models [19], glycolysis models [20], 

drinking population models [21] and vector–host disease models [22]. Among these, some researchers 

have investigated mathematical models concerning cancer treated with virotherapy, investigating the 

intricate interaction between the virus and the tumor. Wodarz's foundational biophysical model 

explored tumor growth in the presence of virotherapy treatment [23], and subsequent modifications of 

the model aimed to explore the correlation between burst size and virus replicability. The findings 

revealed that larger burst sizes correspond to a decrease in cancer cells [24]. Conversely, other models 

have focused on understanding the immune system's response to virotherapy. As the immune system 

https://en.wikipedia.org/wiki/Karl_Pearson
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perceives viruses as foreign entities and acts to eliminate them, it may manifest a negative response to 

virotherapy, potentially compromising the effectiveness of the viral treatment [25]. Numerous studies 

have also explored the dynamics of interactions between uninfected and infected cells, as well as 

various immune responses [26,27]. In this context, a review of Wodarz's fundamental model of 

oncolytic virus replication [28,29] is utilized. This model investigates tumor growth and the infection 

term through a system of ordinary differential equations (ODEs). In this work, the branch of biophysics 

is concerned with developing a mathematical model in medicine, where the analysis and analytical 

simulation for a diffusive cancer model in the fractional form is considered. The present study aims to 

conduct a comprehensive analysis and develop analytical simulations for a fractional diffusive cancer 

model incorporating virotherapy, utilizing the Caputo operator. The objective is to gain a deeper 

understanding of the dynamics of the cancer-virus interaction and evaluate the potential efficacy of 

virotherapy as a treatment strategy for cancer. 

The authors in [30] have reformulated the model of oncolytic virus replication that studies the 

tumor growth and the infection term common with virotherapy and immune response and its impact 

in both uninfected and infected cells by considering five populations, as follows: 

𝜕𝜙1(𝑡, 𝑥)

𝜕𝑡
− 𝑎1

𝜕2𝜙1(𝑡, 𝑥)

𝜕𝑥2
= 𝑝1𝜙1(1 − 𝜙1 − 𝜙2) − 𝑝2𝜙1𝜙3 − 𝑝3𝜙1𝜙5, 

𝜕𝜙2(𝑡, 𝑥)

𝜕𝑡
− 𝑎2

𝜕2𝜙2(𝑡, 𝑥)

𝜕𝑥2
= 𝑝2𝜙1𝜙3 − 𝜙2 − 𝜇1𝜙2𝜙5, 

𝜕𝜙3(𝑡, 𝑥)

𝜕𝑡
− 𝑎3

𝜕2𝜙3(𝑡, 𝑥)

𝜕𝑥2
= 𝑝4𝜙2 − 𝑝2𝜙1𝜙3 − 𝑝5𝜙3 − 𝑝6𝜙3𝜙5, 

𝜕𝜙4(𝑡, 𝑥)

𝜕𝑡
− 𝑎4

𝜕2𝜙4(𝑡, 𝑥)

𝜕𝑥2
= 𝑝7 − 𝑝8𝜙4 − 𝑠1𝜙2𝜙4 − 𝑠2𝜙1𝜙4, 

𝜕𝜙5(𝑡,𝑥)

𝜕𝑡
− 𝑎5

𝜕2𝜙5(𝑡,𝑥)

𝜕𝑥2 = 𝑠1𝜙2𝜙4 + 𝑠2𝜙1𝜙4 − 𝜇2𝜙5,       (1) 

subject to the initial population data 𝜙𝑖(0, 𝑥) = 𝜙𝑖
0, 𝑖 = 1, … ,5. In model (1), the parameters 𝑎𝑖 , 𝑖 =

1, … ,5  denote the diffusion terms. The five-cell population are 𝜙1(𝑡, 𝑥)  uninfected cancer cells, 

𝜙2(𝑡, 𝑥)  infected cancer cells, 𝜙3(𝑡, 𝑥)  free virus, 𝜙4(𝑡, 𝑥)  naive immune cells and 𝜙5(𝑡, 𝑥) 

activated immune cells. The description of parameters that appear in (1) can be arranged as, see [31,32].  

In this work, we introduce a moderation for model (1) by substituting the time derivative with the 

Caputo fractional derivative. This modification makes the sides of the equations in the model (1) have 

not the same dimension, which requires using an auxiliary parameter 𝜎 , see [33]. Based on this 

discussion, we present the following fractional diffusive cancer model with virotherapy: 

1

𝜎1−𝛼
𝒟𝑐,𝑡

𝛼 𝜙1(𝑡, 𝑥)  − 𝑎1

𝜕2𝜙1(𝑡, 𝑥)

𝜕𝑥2
= 𝑝1𝜙1(1 − 𝜙1 − 𝜙2) − 𝑝2𝜙1𝜙3 − 𝑝3𝜙1𝜙5, 

1

𝜎1−𝛼
𝒟𝑐,𝑡

𝛼 𝜙2(𝑡, 𝑥) − 𝑎2

𝜕2𝜙2(𝑡, 𝑥)

𝜕𝑥2
= 𝑝2𝜙1𝜙3 − 𝜙2 − 𝜇1𝜙2𝜙5, 

1

𝜎1−𝛼
𝒟𝑐,𝑡

𝛼 𝜙3(𝑡, 𝑥) − 𝑎3

𝜕2𝜙3(𝑡, 𝑥)

𝜕𝑥2
= 𝑝4𝜙2 − 𝑝2𝜙1𝜙3 − 𝑝5𝜙3 − 𝑝6𝜙3𝜙5, 
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1

𝜎1−𝛼
𝒟𝑐,𝑡

𝛼 𝜙4(𝑡, 𝑥) − 𝑎4

𝜕2𝜙4(𝑡, 𝑥)

𝜕𝑥2
= 𝑝7 − 𝑝8𝜙4 − 𝑠1𝜙2𝜙4 − 𝑠2𝜙1𝜙4, 

1

𝜎1−𝛼
𝒟𝑐,𝑡

𝛼 𝜙5(𝑡, 𝑥) − 𝑎5
𝜕2𝜙5(𝑡,𝑥)

𝜕𝑥2
= 𝑠1𝜙2𝜙4 + 𝑠2𝜙1𝜙4 − 𝜇2𝜙5,     (2) 

where 𝒟𝑐,𝑡
𝛼   denotes the Caputo fractional derivative concerning the time 𝑡  of order 𝛼 > 0 . The 

urgent need to progress cancer research serves as the inspiration for our paper. Understanding the 

complicated dynamics of cancer growth and the effectiveness of treatment approaches is crucial since 

cancer creates significant issues around the world. Our research is driven by the objective to advance 

cancer research through illuminating cancer modeling and therapeutic strategies. We specifically look 

at how fractional calculus can be used, especially in the Caputo sense, to improve our understanding 

of how cancer progresses. In addition, our research explores the potential topic of virotherapy, which 

uses viruses to target and treat cancer cells. We examine the potential of virotherapy and assess its 

potency as a cancer treatment strategy within a mathematical modeling framework.  

The existence and uniqueness of the governing model (2) are examined in this paper. In order to solve 

the cancer model, it applies the Laplace residual power series method (LRPSM) [34] as an analytical 

tool, demonstrating its applicability and usefulness in solving real-world issues, which combine the 

power series method and the Laplace transform method [35]  

The paper is organized as an introduction in the first section. In Section 2, we present the definition of 

the Caputo derivative and some of its properties. Section 3 is devoted to investigating the existence 

and uniqueness of the proposed model. The LRPSM is employed to obtain analytical solutions in 

Section 4. In Section 5, we present some obtained numerical results in tables and figures. Discussion 

about the obtained results is presented in Section 6. Finally, some conclusions are provided in Section 7. 

2. Preliminaries 

This section is devoted to  introducing some basic concepts about fractional calculus and the 

essential properties and results that will be useful in our work.  

Definition 1. [36] For an integrable function 𝜙, the Caputo derivative of fractional order 𝛼 ∈ (0,1) 

is given by: 

𝒟𝑐,𝑡
𝛼 𝜙(𝑡, 𝑥) =

1

Γ(𝑚−𝛼)
∫

𝜕𝑚𝜙(𝑡,𝑥)

𝜕𝑡𝑚 

(𝑡−𝜏)𝛼−𝑚+1 𝑑𝜏
𝑡

0
,        (3) 

where 𝑡 ≥ 0, 𝑚 = [𝛼] + 1 . The Riemann-Liouville fractional integral of order 𝛼, 𝑅𝑒(𝛼) > 0  is 

given by: 

ℐ𝑡
𝛼𝜙(𝑡, 𝑥) =

1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝜙(𝜏, 𝑥)𝑑𝜏

𝑡

0
.      (4) 

Lemma 1. [36] For 0 < α < 1 and t ≥ 0, we get the following property for the Caputo derivative: 

ℐ𝑡
𝛼𝒟𝑐,𝑡

𝛼 𝜙(𝑡, 𝑥) = 𝜙(𝑡, 𝑥) − ∑
𝜕𝑖𝜙(0,𝑥)

𝜕𝑖𝑡 

𝑚−1
𝑖=0  

𝑡𝑖

𝑖!
.      (5) 

Definition 2. [36] Let 𝜙(𝑡, 𝑥) be a piecewise continuous function on [0, ∞) × 𝐼 and of exponential 

order 𝜂. The Laplace transformation (LT) of 𝜙(𝑡, 𝑥) is defined as: 
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Φ(𝑠, 𝑥) = ℒ{𝜙(𝑡, 𝑥)} = ∫ 𝑒−𝑠𝑡𝜙(𝑡, 𝑥)𝑑𝑡
∞

0
, 𝑠 > 𝜂,      (6) 

while the inverse Laplace transformation of Φ(𝑠, 𝑥) is given by: 

𝜙(𝑡, 𝑥) = ℒ−1{Φ(𝑠, 𝑥)} = ∫ 𝑒𝑠𝑡Φ(𝑠, 𝑥)𝑑𝑠
𝑣+𝑖∞

𝑣−𝑖∞
, 𝑣 = 𝑅𝑒(𝑠) > 𝑣0,    (7) 

where 𝑣0 lies in the right half plane of the absolute convergence of the Laplace integral. 

Lemma 2. [37] Let 𝜙(𝑡, 𝑥) be a piecewise continuous function on [0, ∞) × 𝐼 and of exponential 

order 𝜂. Then the Laplace transformation of 𝒟𝑡
𝛼𝜙(𝑡, 𝑥), 0 < 𝛼 < 1 is given by: 

ℒ{𝒟𝑐,𝑡
𝛼 𝜙(𝑡, 𝑥)} = 𝑠𝛼Φ(𝑠, 𝑥) − ∑ 𝑠𝛼−𝑖−1 𝜕𝑖𝜙(0,𝑥)

𝜕𝑖𝑡 

𝑚−1
𝑖=0  .     (8) 

3. Existence and uniqueness analysis 

This section is devoted to show that the fractional model (2) has a unique solution using the fixed point 

theorem. Toachive our goal, the model (2) can be written as: 

𝜎𝛼−1𝒟𝑐,𝑡
𝛼 𝜙𝑖(𝑡, 𝑥) = ℱ𝑖(𝑡, 𝜙𝑖), 𝑖 = 1, … ,5,      (9) 

such that 

ℱ1(𝑡, 𝜙1) = 𝑎1

𝜕2𝜙1(𝑡, 𝑥)

𝜕𝑥2
+ 𝑝1𝜙1(1 − 𝜙1 − 𝜙2) − 𝑝2𝜙1𝜙3 − 𝑝3𝜙1𝜙5, 

ℱ2(𝑡, 𝜙2) = 𝑎2

𝜕2𝜙2(𝑡, 𝑥)

𝜕𝑥2
+ 𝑝2𝜙1𝜙3 − 𝜙2 − 𝜇1𝜙2𝜙5, 

ℱ3(𝑡, 𝜙3) = 𝑎3

𝜕2𝜙3(𝑡, 𝑥)

𝜕𝑥2
+ 𝑝4𝜙2 − 𝑝2𝜙1𝜙3 − 𝑝5𝜙3 − 𝑝6𝜙3𝜙5, 

ℱ4(𝑡, 𝜙4) = 𝑎4

𝜕2𝜙4(𝑡, 𝑥)

𝜕𝑥2
+ 𝑝7 − 𝑝8𝜙4 − 𝑠1𝜙2𝜙4 − 𝑠2𝜙1𝜙4, 

ℱ5(𝑡, 𝜙5) = 𝑎5
𝜕2𝜙5(𝑡,𝑥)

𝜕𝑥2 + 𝑠1𝜙2𝜙4 + 𝑠2𝜙1𝜙4 − 𝜇2𝜙5.      (10) 

Apply the Riemann-Liouville fractional integral to both sides of the model (9) with the aid of Lemma 

1 and (10) to get: 

𝜙𝑖(𝑡, 𝑥) − 𝜙𝑖
0 =

𝜎1−𝛼

Γ(𝛼)
∫ ℱ𝑖(𝑡, 𝜙𝑖)(𝑡 − 𝜏)𝛼−1𝑑𝜏

𝑡

0
, 𝑖 = 1, … ,5.     (11) 

To show that the kernels ℱi(t, ϕi), i = 1, … ,5  satisfy the Lipschitz condition we introduce the 

following assumption: 

𝒞1:  For the continuous functions ϕi  and ϕi
̅̅ ̅, i = 1, … ,5  belong to L [0,1] , there exist constants 

ωi, ω̅i, ω∗ ∈ ℕ, i = 1, … ,5, such that the following hold true: 

‖𝜙𝑖(𝑡, 𝑥)‖ ≤ 𝜔𝑖 ,          (12) 
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‖
𝜕2𝜙𝑖(𝑡,𝑥)

𝜕𝑥2 −
𝜕2𝜙𝑖

̅̅ ̅(𝑡,𝑥)

𝜕𝑥2 ‖ ≤ �̅�𝑖‖𝜙𝑖(𝑡, 𝑥) − 𝜙�̅�(𝑡, 𝑥)‖,     (13) 

‖𝜙1
2(𝑡, 𝑥) − �̅�1

2(𝑡, 𝑥)‖ ≤ 𝜔∗‖𝜙1(𝑡, 𝑥) − �̅�1(𝑡, 𝑥)‖,     (14) 

for i = 1, … ,5. Now, we can introduce the following result: 

Theorem 1. The kernels ℱi(t, ϕi), i = 1, … ,5  satisfy the Lipschitz conditions and contraction, 

provided that the assumption 𝒞1 and the following inequalities are satisfied: 

𝛽1 = 𝑎1�̅�1 + 𝑝1 + 𝑝1𝜔∗ + 𝑝1𝜔2 + 𝑝2𝜔3 + 𝑝3𝜔5 < 1,    (15) 

𝛽2 = 𝑎2�̅�2 + 1 + 𝜇1𝜔5 < 1,          (16) 

𝛽3 = 𝑎3�̅�3 + 𝑝2𝜔1 + 𝑝5 + 𝑝6𝜔5 < 1,        (17) 

𝛽4 = 𝑎4�̅�4 + 𝑝8 + 𝑠1𝜔2 + 𝑠2𝜔1 < 1,        (18) 

𝛽5 = 𝑎5�̅�5 + 𝜇2 < 1.           (19) 

Proof. Using the definition of ℱ1(t, ϕ1) in (10) with aid of assumption 𝒞1, we get: 

‖ℱ1(𝑡, 𝜙1) − ℱ1(𝑡, �̅�1)‖ = ‖𝑎1 (
𝜕2𝜙1(𝑡,𝑥)

𝜕𝑥2 −
𝜕2�̅�1(𝑡,𝑥)

𝜕𝑥2 ) + 𝑝1(𝜙1 − �̅�1) − 𝑝1 (𝜙1
2 − 𝜙�̅�

2
) − 𝑝1𝜙2(𝜙1 − �̅�1) −

𝑝2𝜙3(𝜙1 − �̅�1) − 𝑝3𝜙5(𝜙1 − �̅�1)‖ ≤ (𝑎1 ‖
𝜕2𝜙1(𝑡,𝑥)

𝜕𝑥2 −
𝜕2�̅�1(𝑡,𝑥)

𝜕𝑥2 ‖ + 𝑝1‖𝜙1 − �̅�1‖ + 𝑝1 ‖𝜙1
2 − 𝜙�̅�

2
‖ +

𝑝1‖𝜙2‖‖𝜙1 − �̅�1‖ + 𝑝2‖𝜙3‖‖𝜙1 − �̅�1‖ + 𝑝3‖𝜙5‖‖𝜙1 − �̅�1‖) ≤ (𝑎1�̅�1 + 𝑝1 + 𝑝1𝜔∗ + 𝑝1𝜔2 + 𝑝2𝜔3 +

𝑝3𝜔5)‖𝜙1 − �̅�1‖ ≤ 𝛽1‖𝜙1 − �̅�1‖.        (20) 

Now, we show that the kernel ℱ2(t, ϕ2) satisfies the Lipschitz condition.  

‖ℱ2(𝑡, 𝜙2) − ℱ2(𝑡, �̅�2)‖ = ‖𝑎2 (
𝜕2𝜙2(𝑡,𝑥)

𝜕𝑥2 −
𝜕2�̅�2(𝑡,𝑥)

𝜕𝑥2 ) − (𝜙2 − �̅�2) − 𝜇1𝜙5(𝜙2 − �̅�2)‖ ≤ (𝑎2 ‖
𝜕2𝜙2(𝑡,𝑥)

𝜕𝑥2 −

𝜕2�̅�2(𝑡,𝑥)

𝜕𝑥2 ‖ + ‖𝜙2 − �̅�2‖ + 𝜇1‖𝜙5‖‖𝜙2 − �̅�2‖) ≤ (𝑎2�̅�2 + 1 + 𝜇1𝜔5)‖𝜙2 − �̅�2‖ ≤ 𝛽2‖𝜙2 − �̅�2‖.  (21) 

We are going to prove that ℱ3(t, ϕ3) satisfies the Lipschitz condition. 

‖ℱ3(𝑡, 𝜙3) − ℱ3(𝑡, �̅�3)‖ = ‖𝑎3 (
𝜕2𝜙3(𝑡,𝑥)

𝜕𝑥2 −
𝜕2�̅�3(𝑡,𝑥)

𝜕𝑥2 ) − 𝑝2𝜙1(𝜙3 − �̅�3) − 𝑝5(𝜙3 − �̅�3) −

𝑝6𝜙5(𝜙3 − �̅�3)‖ ≤ (𝑎3 ‖
𝜕2𝜙3(𝑡,𝑥)

𝜕𝑥2 −
𝜕2�̅�3(𝑡,𝑥)

𝜕𝑥2 ‖ + 𝑝2‖𝜙1‖‖𝜙3 − �̅�3‖ + 𝑝5‖𝜙3 − �̅�3‖ +

𝑝6‖𝜙5‖‖𝜙3 − �̅�3‖) ≤ (𝑎3�̅�3 + 𝑝2𝜔1 + 𝑝5 + 𝑝6𝜔5)‖𝜙3 − �̅�3‖ ≤ 𝛽3‖𝜙3 − �̅�3‖.   (22) 

Regarding the kernel ℱ4(t, ϕ4) , we can see that it achieves the Lipschitz condition through the 

following: 
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‖ℱ4(𝑡, 𝜙4) − ℱ4(𝑡, �̅�4)‖ = ‖𝑎4 (
𝜕2𝜙4(𝑡,𝑥)

𝜕𝑥2 −
𝜕2�̅�4(𝑡,𝑥)

𝜕𝑥2 ) − 𝑝8(𝜙4 − �̅�4) − 𝑠1𝜙2(𝜙4 − �̅�4) − 𝑠2𝜙1(𝜙4 − �̅�4)‖ ≤

(𝑎4 ‖
𝜕2𝜙4(𝑡,𝑥)

𝜕𝑥2 −
𝜕2�̅�4(𝑡,𝑥)

𝜕𝑥2 ‖ + 𝑝8‖𝜙4 − �̅�4‖ + 𝑠1‖𝜙2‖‖𝜙4 − �̅�4‖ + 𝑠2‖𝜙1‖‖𝜙4 − �̅�4‖) ≤ (𝑎4�̅�4 + 𝑝8 + 𝑠1𝜔2 +

𝑠2𝜔1)‖𝜙4 − �̅�4‖ ≤ 𝛽4‖𝜙4 − �̅�4‖.        (23) 

Finally, for the kernel ℱ5(t, ϕ5), we obtain: 

‖ℱ5(𝑡, 𝜙5) − ℱ5(𝑡, �̅�5)‖ = ‖𝑎5 (
𝜕2𝜙5(𝑡,𝑥)

𝜕𝑥2 −
𝜕2�̅�5(𝑡,𝑥)

𝜕𝑥2 ) − 𝜇2(𝜙5 − �̅�5)‖ ≤ (𝑎5 ‖
𝜕2𝜙5(𝑡,𝑥)

𝜕𝑥2 −
𝜕2�̅�5(𝑡,𝑥)

𝜕𝑥2 ‖ +

𝜇2‖𝜙5 − �̅�5‖) ≤ (𝑎5�̅�5 + 𝜇2)‖𝜙5 − �̅�5‖ ≤ 𝛽5‖𝜙5 − �̅�5‖.     (24) 

From the discussion in (20)–(24) with aid (15)–(19), we obtain that the kernels ℱi(t, ϕi), i = 1, … ,5 

satisfy the Lipschitz conditions and contraction.  

According to (11), we define the following recursions: 

Ψ𝑖,𝑞(𝑡) = 𝜙𝑖,𝑞(𝑡, 𝑥) − 𝜙𝑖,𝑞−1(𝑡, 𝑥) =
𝜎1−𝛼

Γ(𝛼)
∫ (ℱ𝑖(𝑡, 𝜙𝑖,𝑞−1) − ℱ𝑖(𝑡, 𝜙𝑖,𝑞−2)) (𝑡 − 𝜏)𝛼−1𝑑𝜏

𝑡

0 .  (25) 

We take the norm for the sides of (25) with the help of Theorem 1 and we obtain: 

‖Ψ𝑖,𝑞(𝑡)‖ = ‖𝜙𝑖,𝑞(𝑡, 𝑥) − 𝜙𝑖,𝑞−1(𝑡, 𝑥)‖ = ‖
𝜎1−𝛼

Γ(𝛼)
∫ (ℱ𝑖(𝑡, 𝜙𝑖,𝑞−1) − ℱ𝑖(𝑡, 𝜙𝑖,𝑞−2)) (𝑡 − 𝜏)𝛼−1𝑑𝜏

𝑡

0
‖ ≤

𝜎1−𝛼

Γ(𝛼)
∫ ‖ℱ𝑖(𝑡, 𝜙𝑖,𝑞−1) − ℱ𝑖(𝑡, 𝜙𝑖,𝑞−2)‖(𝑡 − 𝜏)𝛼−1𝑑𝜏

𝑡

0
≤

𝜎1−𝛼

Γ(𝛼)
 𝛽𝑖 ∫ ‖Ψ𝑖,𝑞−1(𝜏)‖𝑑𝜏

𝑡

0
,  (26) 

for i = 1, … , 5. Now, we can present the following result: 

Theorem 2. The fractional diffusive cancer model (2) has a solution provided that the assumption 𝒞1 

and the following inequality holds the true: 

𝛽∗ = max
𝑖=1,…,5

𝛽𝑖 < 1.        (27) 

Proof. Firstly, we define:  

𝒬𝑖,𝑞(𝑡) = 𝜙𝑖,𝑞+1(𝑡, 𝑥) − 𝜙𝑖(𝑡, 𝑥), 𝑖 = 1, … ,5.    (28) 

Using the results obtained in (26), we obtain: 

‖𝒬𝑖,𝑞(𝑡)‖ = ‖𝜙𝑖,𝑞+1(𝑡, 𝑥) − 𝜙𝑖,1(𝑡, 𝑥)‖ ≤ (
𝜎1−𝛼

Γ(𝛼)
)

𝑞

‖𝜙𝑖,1(𝑡, 𝑥) − 𝜙𝑖(𝑡, 𝑥)‖𝛽∗𝑞 ,  (29) 

for i = 1, … ,5. This means the functions 𝒬i,q(t) → 0 as q → ∞ for i = 1, … ,5. This completes the 

proof.  
For the uniqueness analysis for the solution of the model (2), we introduce the following Theorem: 

Theorem 3. The fractional diffusive cancer model (2) has a unique solution provided that the 

assumption 𝒞1 and the following inequality hold: 

1 −
𝜎1−𝛼

Γ(𝛼)
𝛽𝑖 ≤ 0,         (30) 
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for i = 1, … ,5. 

Proof. Assume that the model (2) has another pair of solutions ϕi
∗(t, x), i = 1, … ,5. Then, ϕi

∗ satisfies 

the integral system: 

𝜙𝑖
∗(𝑡, 𝑥) = 𝜙𝑖

0 +
𝜎1−𝛼

Γ(𝛼)
∫ ℱ𝑖(𝑡, 𝜙𝑖

∗)(𝑡 − 𝜏)𝛼−1𝑑𝜏
𝑡

0
, 𝑖 = 1, … ,5.   (31) 

Consequently, with the help of (11) and (31), one has: 

‖𝜙𝑖(𝑡, 𝑥) − 𝜙𝑖
∗(𝑡, 𝑥)‖ ≤

𝜎1−𝛼

Γ(𝛼)
∫ ‖ℱ𝑖(𝑡, 𝜙𝑖) − ℱ𝑖(𝑡, 𝜙𝑖

∗)‖(𝑡 − 𝜏)𝛼−1𝑑𝜏
𝑡

0
≤

𝜎1−𝛼

Γ(𝛼)
 𝛽𝑖‖𝜙𝑖(𝑡, 𝑥) − 𝜙𝑖

∗(𝑡, 𝑥)‖, (32) 

for i = 1, … , 5. Thus, we conclude: 

(1 −
𝜎1−𝛼

Γ(𝛼)
 𝛽𝑖) ‖𝜙𝑖(𝑡, 𝑥) − 𝜙𝑖

∗(𝑡, 𝑥)‖ ≤ 0.     (33) 

Therefore, using the assumption (30) and the obtained result (33), we observe that ‖ϕi(t, x) −

ϕi
∗(t, x) = 0‖ for i = 1, … ,5, which implies ϕi(t, x) = ϕi

∗(t, x).  

4. Laplace residual power series solutions 

In this section, we try to utilize the LRPSM to construct an analytical solution for the fractional 

diffusive cancer model (2). This method was investigated in many works in the literature. As a first 

step, we take the Laplace transformation with respect to temporal variable t to both sides for the 

equations in the biophysical model (2), and we get: 

1

𝜎1−𝛼 ℒ{𝒟𝑐,𝑡
𝛼 𝜙1(𝑡, 𝑥)} = 𝑎1ℒ {

𝜕2𝜙1(𝑡,𝑥)

𝜕𝑥2 } + 𝑝1ℒ{𝜙1} − 𝑝1ℒ{𝜙1
2} − 𝑝1ℒ{𝜙1𝜙2} − 𝑝2ℒ{𝜙1𝜙3} − 𝑝3ℒ{𝜙1𝜙5}, (34) 

1

𝜎1−𝛼 ℒ{𝒟𝑐,𝑡
𝛼 𝜙2(𝑡, 𝑥)} = 𝑎2ℒ {

𝜕2𝜙2(𝑡,𝑥)

𝜕𝑥2 } + 𝑝2ℒ{𝜙1𝜙3} − ℒ{𝜙2} − 𝜇1ℒ{𝜙2𝜙5},  (35) 

1

𝜎1−𝛼 ℒ{𝒟𝑐,𝑡
𝛼 𝜙3(𝑡, 𝑥)} = 𝑎3ℒ {

𝜕2𝜙3(𝑡,𝑥)

𝜕𝑥2 } + 𝑝4ℒ{𝜙2} − 𝑝2ℒ{𝜙1𝜙3} − 𝑝5ℒ{𝜙3} − 𝑝6ℒ{𝜙3𝜙5},  (36) 

1

𝜎1−𝛼 ℒ{𝒟𝑐,𝑡
𝛼 𝜙4(𝑡, 𝑥)} = 𝑎4ℒ {

𝜕2𝜙4(𝑡,𝑥)

𝜕𝑥2 } +
𝑝7

𝑠
− 𝑝8ℒ{𝜙4} − 𝑠1ℒ{𝜙2𝜙4} − 𝑠2ℒ{𝜙1𝜙4}, (37) 

1

𝜎1−𝛼 ℒ{𝒟𝑐,𝑡
𝛼 𝜙5(𝑡, 𝑥)} = 𝑎5ℒ {

𝜕2𝜙5(𝑡,𝑥)

𝜕𝑥2 } + 𝑠1ℒ{𝜙2𝜙4} + 𝑠2ℒ{𝜙1𝜙4} − 𝜇2ℒ{𝜙5}.  (38) 

Assume that ℒ{ϕi(t, x)} = Φi(s, x) for i = 1, … ,5. Using Lemma 2, then we can rewrite Eqs (34)–

(38) as: 

Φ1(𝑠, 𝑥) =
𝜙1

0

𝑠
+

𝜎1−𝛼

𝑠𝛼 (𝑎1
𝜕2Φ1(𝑠,𝑥)

𝜕𝑥2 + 𝑝1Φ1(𝑠, 𝑥) − 𝑝1ℒ{(ℒ−1{Φ1(𝑠, 𝑥)})2} − 𝑝1ℒ{ℒ−1{Φ1(𝑠, 𝑥)}ℒ−1{Φ2(𝑠, 𝑥)}} −

𝑝2ℒ{ℒ−1{Φ1(𝑠, 𝑥)}ℒ−1{Φ3(𝑠, 𝑥)}} − 𝑝3ℒ{ℒ−1{Φ1(𝑠, 𝑥)}ℒ−1{Φ5(𝑠, 𝑥)}}),    (39) 
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Φ2(𝑠, 𝑥) =
𝜙2

0

𝑠
+

𝜎1−𝛼

𝑠𝛼 (𝑎2
𝜕2Φ2(𝑠,𝑥)

𝜕𝑥2 + 𝑝2ℒ{ℒ−1{Φ1(𝑠, 𝑥)}ℒ−1{Φ3(𝑠, 𝑥)}} − Φ2(𝑠, 𝑥) −

𝜇1ℒ{ℒ−1{Φ2(𝑠, 𝑥)}ℒ−1{Φ5(𝑠, 𝑥)}}),       (40) 

Φ3(𝑠, 𝑥) =
𝜙3

0

𝑠
+

𝜎1−𝛼

𝑠𝛼 (𝑎3
𝜕2Φ3(𝑠,𝑥)

𝜕𝑥2 + 𝑝4Φ2(𝑠, 𝑥) − 𝑝2ℒ{ℒ−1{Φ1(𝑠, 𝑥)}ℒ−1{Φ3(𝑠, 𝑥)}} − 𝑝5Φ3(𝑠, 𝑥) −

𝑝6ℒ{ℒ−1{Φ3(𝑠, 𝑥)}ℒ−1{Φ5(𝑠, 𝑥)}}),       (41) 

Φ4(𝑠, 𝑥) =
𝜙4

0

𝑠
+

𝜎1−𝛼

𝑠𝛼 (𝑎4
𝜕2Φ4(𝑠,𝑥)

𝜕𝑥2 +
𝑝7

𝑠
− 𝑝8Φ4(𝑠, 𝑥) − 𝑠1ℒ{ℒ−1{Φ2(𝑠, 𝑥)}ℒ−1{Φ4(𝑠, 𝑥)}} −

𝑠2ℒ{ℒ−1{Φ1(𝑠, 𝑥)}ℒ−1{Φ4(𝑠, 𝑥)}}),       (42) 

Φ5(𝑠, 𝑥) =
𝜙5

0

𝑠
+

𝜎1−𝛼

𝑠𝛼 (𝑎5
𝜕2Φ5(𝑠,𝑥)

𝜕𝑥2 + 𝑠1ℒ{ℒ−1{Φ2(𝑠, 𝑥)}ℒ−1{Φ4(𝑠, 𝑥)}} + 𝑠2ℒ{ℒ−1{Φ1(𝑠, 𝑥)}ℒ−1{Φ4(𝑠, 𝑥)}} −

𝜇2Φ5(𝑠, 𝑥)).            (43) 

The proposed technique assumes that the solution of the system (39)–(43) can be given in the following 

form: 

Φ𝑖(𝑠, 𝑥) = ∑
𝑏𝑖,𝑟(𝑥)

𝑠𝑟𝛼+1
∞
𝑟=0 ,          (44) 

for i = 1, … ,5. Hence, the nth-truncated solution can be written as: 

Φ𝑖
n(𝑠, 𝑥) = ∑

𝑏𝑖,𝑟(𝑥)

𝑠𝑟𝛼+1
𝑛
𝑟=0 ,          (45) 

for i = 1, … ,5. It is important to note here that the discussion of series convergence (44) has been 

presented in detail in the literature. To determine the initial guess bi,0(x), we present the following 

Lemma: 

Lemma 3. [37] Let ϕ(t, x)  be a piecewise continuous function on [0, ∞) × I  and suppose that 

Φ(s, x) = ℒ{ϕ(t, x)}. Then,  

lim
𝑠→∞

𝑠Φ(𝑠, 𝑥) = 𝜙(𝑥, 0), 𝑥 ∈ 𝐼.       (46) 

According to this lemma, we obtain the initial guess bi,0(x) = ϕi
0, for i = 1, … ,5. Therefore, the nth-

truncated solution (45) is:  

Φ𝑖
n(𝑠, 𝑥) =

𝜙𝑖
0

𝑠
+ ∑

𝑏𝑖,𝑟(𝑥)

𝑠𝑟𝛼+1
𝑛
𝑟=1 .        (47) 

for i = 1, … ,5. Now, define the Laplace residual functions, LResi(s, x), related to (39), (43) as: 
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𝐿𝑅𝑒𝑠1(𝑠, 𝑥) = Φ1(𝑠, 𝑥) −
𝜙1

0

𝑠
−

𝜎1−𝛼

𝑠𝛼 (𝑎1
𝜕2Φ1(𝑠,𝑥)

𝜕𝑥2 + 𝑝1Φ1(𝑠, 𝑥) − 𝑝1ℒ{(ℒ−1{Φ1(𝑠, 𝑥)})2} −

𝑝1ℒ{ℒ−1{Φ1(𝑠, 𝑥)}ℒ−1{Φ2(𝑠, 𝑥)}} − 𝑝2ℒ{ℒ−1{Φ1(𝑠, 𝑥)}ℒ−1{Φ3(𝑠, 𝑥)}} − 𝑝3ℒ{ℒ−1{Φ1(𝑠, 𝑥)}ℒ−1{Φ5(𝑠, 𝑥)}})

 (48) 

𝐿𝑅𝑒𝑠2(𝑠, 𝑥) = Φ2(𝑠, 𝑥) −
𝜙2

0

𝑠
−

𝜎1−𝛼

𝑠𝛼 (𝑎2
𝜕2Φ2(𝑠,𝑥)

𝜕𝑥2 + 𝑝2ℒ{ℒ−1{Φ1(𝑠, 𝑥)}ℒ−1{Φ3(𝑠, 𝑥)}} − Φ2(𝑠, 𝑥) −

𝜇1ℒ{ℒ−1{Φ2(𝑠, 𝑥)}ℒ−1{Φ5(𝑠, 𝑥)}}),         (49) 

𝐿𝑅𝑒𝑠3(𝑠, 𝑥) = Φ3(𝑠, 𝑥) −
𝜙3

0

𝑠
−

𝜎1−𝛼

𝑠𝛼 (𝑎3
𝜕2Φ3(𝑠,𝑥)

𝜕𝑥2 + 𝑝4Φ2(𝑠, 𝑥) − 𝑝2ℒ{ℒ−1{Φ1(𝑠, 𝑥)}ℒ−1{Φ3(𝑠, 𝑥)}} −

𝑝5Φ3(𝑠, 𝑥) − 𝑝6ℒ{ℒ−1{Φ3(𝑠, 𝑥)}ℒ−1{Φ5(𝑠, 𝑥)}}),         (50) 

𝐿𝑅𝑒𝑠4(𝑠, 𝑥) = Φ4(𝑠, 𝑥) −
𝜙4

0

𝑠
−

𝜎1−𝛼

𝑠𝛼 (𝑎4
𝜕2Φ4(𝑠,𝑥)

𝜕𝑥2 +
𝑝7

𝑠
− 𝑝8Φ4(𝑠, 𝑥) − 𝑠1ℒ{ℒ−1{Φ2(𝑠, 𝑥)}ℒ−1{Φ4(𝑠, 𝑥)}} −

𝑠2ℒ{ℒ−1{Φ1(𝑠, 𝑥)}ℒ−1{Φ4(𝑠, 𝑥)}}),         (51) 

𝐿𝑅𝑒𝑠5(𝑠, 𝑥) = Φ5(𝑠, 𝑥) −
𝜙5

0

𝑠
−

𝜎1−𝛼

𝑠𝛼 (𝑎5
𝜕2Φ5(𝑠,𝑥)

𝜕𝑥2 + 𝑠1ℒ{ℒ−1{Φ2(𝑠, 𝑥)}ℒ−1{Φ4(𝑠, 𝑥)}} +

𝑠2ℒ{ℒ−1{Φ1(𝑠, 𝑥)}ℒ−1{Φ4(𝑠, 𝑥)}} − 𝜇2Φ5(𝑠, 𝑥)).      (52) 

Consequently, the nth-truncated Laplace residual functions, LResi
n(s, x) gives: 

𝐿𝑅𝑒𝑠1
𝑛(𝑠, 𝑥) = Φ1

𝑛(𝑠, 𝑥) −
𝜙1

0

𝑠
−

𝜎1−𝛼

𝑠𝛼 (𝑎1
𝜕2Φ1

𝑛(𝑠,𝑥)

𝜕𝑥2 + 𝑝1Φ1
n(𝑠, 𝑥) − 𝑝1ℒ{(ℒ−1{Φ1

𝑛(𝑠, 𝑥)})2} −

𝑝1ℒ{ℒ−1{Φ1
𝑛(𝑠, 𝑥)}ℒ−1{Φ2

𝑛(𝑠, 𝑥)}} − 𝑝2ℒ{ℒ−1{Φ1
𝑛(𝑠, 𝑥)}ℒ−1{Φ3

𝑛(𝑠, 𝑥)}} − 𝑝3ℒ{ℒ−1{Φ1
𝑛(𝑠, 𝑥)}ℒ−1{Φ5

𝑛(𝑠, 𝑥)}}),

 (53) 

𝐿𝑅𝑒𝑠2
𝑛(𝑠, 𝑥) = Φ2

𝑛(𝑠, 𝑥) −
𝜙2

0

𝑠
−

𝜎1−𝛼

𝑠𝛼 (𝑎2
𝜕2Φ2

𝑛(𝑠,𝑥)

𝜕𝑥2 + 𝑝2ℒ{ℒ−1{Φ1
𝑛(𝑠, 𝑥)}ℒ−1{Φ3

𝑛(𝑠, 𝑥)}} − Φ2
𝑛(𝑠, 𝑥) −

𝜇1ℒ{ℒ−1{Φ2
𝑛(𝑠, 𝑥)}ℒ−1{Φ5

𝑛(𝑠, 𝑥)}}),          (54) 

𝐿𝑅𝑒𝑠3
𝑛(𝑠, 𝑥) = Φ3

𝑛(𝑠, 𝑥) −
𝜙3

0

𝑠
−

𝜎1−𝛼

𝑠𝛼 (𝑎3
𝜕2Φ3

𝑛(𝑠,𝑥)

𝜕𝑥2 + 𝑝4Φ2
𝑛(𝑠, 𝑥) − 𝑝2ℒ{ℒ−1{Φ1

𝑛(𝑠, 𝑥)}ℒ−1{Φ3
𝑛(𝑠, 𝑥)}} −

𝑝5Φ3
𝑛(𝑠, 𝑥) − 𝑝6ℒ{ℒ−1{Φ3

𝑛(𝑠, 𝑥)}ℒ−1{Φ5
𝑛(𝑠, 𝑥)}}),          (55) 

𝐿𝑅𝑒𝑠3
𝑛(𝑠, 𝑥) = Φ3

𝑛(𝑠, 𝑥) −
𝜙3

0

𝑠
−

𝜎1−𝛼

𝑠𝛼 (𝑎3
𝜕2Φ3

𝑛(𝑠,𝑥)

𝜕𝑥2 + 𝑝4Φ2
𝑛(𝑠, 𝑥) − 𝑝2ℒ{ℒ−1{Φ1

𝑛(𝑠, 𝑥)}ℒ−1{Φ3
𝑛(𝑠, 𝑥)}} −

𝑝5Φ3
𝑛(𝑠, 𝑥) − 𝑝6ℒ{ℒ−1{Φ3

𝑛(𝑠, 𝑥)}ℒ−1{Φ5
𝑛(𝑠, 𝑥)}}),          (56) 
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𝐿𝑅𝑒𝑠5
𝑛(𝑠, 𝑥) = Φ5

𝑛(𝑠, 𝑥) −
𝜙5

0

𝑠
−

𝜎1−𝛼

𝑠𝛼 (𝑎5
𝜕2Φ5

𝑛(𝑠,𝑥)

𝜕𝑥2 + 𝑠1ℒ{ℒ−1{Φ2
𝑛(𝑠, 𝑥)}ℒ−1{Φ4

𝑛(𝑠, 𝑥)}} +

𝑠2ℒ{ℒ−1{Φ1
𝑛(𝑠, 𝑥)}ℒ−1{Φ4

𝑛(𝑠, 𝑥)}} − 𝜇2Φ5
𝑛(𝑠, 𝑥)).       (57) 

Substitute the nth-truncated solution (47) into (53)–(57) and multiply both sides by snα+1, n = 1,2, …, 

then solve the obtained algebraic system: 

lim
𝑠→∞

𝑠𝑛𝛼+1𝐿𝑅𝑒𝑠𝑖
𝑛(𝑠, 𝑥) = 0 , 𝑖 = 1, … ,5,       (58) 

recursively, we can construct the desired coefficients bi,r(x), r = 1,2, … , n, i = 1, … ,5. Substitute the 

obtained coefficients bi,r(x), r = 1,2, … , n, i = 1, … ,5,  into (47) and take the inverse Laplace 

transformation to get the nth-approximating solution for the model (2). Mathematica software 

packages have been used to carry out numerical operations and implement these steps, and good results 

have been obtained, which are shown in the tables and graphics that follow.   

5. Numerical results 

Mathematica software packages have been used to carry out numerical operations and implement 

the LRPSM steps, and good results have been obtained, which are shown in the following tables and 

graphics. We consider the parameters values as: 

𝑝1 = 0.36, 𝑝2 = 0.11, 𝑝3 = 0.36, 𝑝4 = 2, 𝑝5 = 0.2, 𝑝6 = 0.16, 𝑝7 = 0.2, 𝑝8 = 0.036, 

𝑠1 = 0.2, 𝑠2 = 0.6, 𝜇1 = 0.2, 𝜇2 = 0.2, 𝜎 = 1,      (59) 

where the diffusion terms have been ignored. The initial conditions are considered to be: 

𝜙1
0 = 0.9, 𝜙2

0 = 0.5, 𝜙3
0 = 0.5, 𝜙4

0 = 0.1, 𝜙5
0 = 0.2.     (60) 

Table 1. The obtained approximating solution and consecutive error for 𝜙1(𝑡, 𝑥). 

𝜙1 𝛼 = 0.7 𝛼 = 0.8 𝛼 = 0.9 

𝑡 𝑛 = 12 Cons. error 𝑛 = 12 Cons. error 𝑛 = 12 Cons. error 

0.0 0.9 0. 0.9 0. 0.9 0. 

0.05 0.869556 1.50134 × 10−6 0.877364 2.60966 × 10−7 0.883454 3.88549 × 10−8 

0.10 0.853121 7.94671 × 10−6 0.862143 1.93827 × 10−6 0.870032 3.91385 × 10−7 

0.15 0.84067 0.0000180642 0.849575 5.57897 × 10−6 0.858074 1.35895 × 10−6 

0.20 0.830679 0.0000269554 0.838806 0.0000104534 0.847238 2.94107 × 10−6 

0.25 0.822476 0.0000270297 0.829438 0.0000144484 0.837352 4.63598 × 10−6 

0.30 0.815675 8.46132 × 10−6 0.821235 0.0000140161 0.828313 5.28832 × 10−6 

0.35 0.810025 0.000040525 0.814038 4.14269 × 10−6 0.820051 2.96148 × 10−6 

0.40 0.805345 0.000133453 0.807733 0.0000216732 0.812508 5.17429 × 10−6 

0.45 0.801498 0.000285446 0.802227 0.0000714361 0.805644 0.0000229425 

0.50 0.798372 0.000513105 0.797448 0.000154666 0.799419 0.0000552528 
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Tables 1–5 show the constructed 12th-approximating solutions with the consecutive’s errors 

Cons. error = |ϕi
12(t, x) − ϕi

10(t, x)|  for i = 1, … ,5 , while the fractional derivative order α  was 

considered at different values, namely, α = 0.7, 0.8 and 0.9. 

Table 2. The obtained approximating solution and consecutive error for . 

ϕ2 α=0.7  α=0.8 

t n=12 Cns. error n=12 Cns. error n=12 Cns. error 

0.0 0.5 0. 0.5 0. 0.5 0. 

0.05 0.414695 0.0278302 0.46312 0.0144803 0.46312 0.00533069 

0.10 0.38382 0.0279867 0.436334 0.0166077 0.436334 0.00697546 

0.15 0.362181 0.0257097 0.413554 0.0165377 0.413554 0.0075667 

0.20 0.345027 0.0225955 0.393491 0.0154264 0.393491 0.00754935 

0.25 0.330471 0.0191055 0.375492 0.0136755 0.375492 0.00710043 

0.30 0.317513 0.0154189 0.359148 0.0114537 0.359148 0.00629806 

0.35 0.305529 0.0116211 0.344173 0.00883497 0.344173 0.00517247 

0.40 0.294078 0.00776245 0.330348 0.00585034 0.330348 0.00372742 

0.45 0.282863 00.00388074 0.3175 0.00251017 0.3175 0.00195099 

0.50 0.271599 0.0000100722 0.305488 0.00118415 0.305488 0.000178169 

Table 3. The obtained approximating solution and consecutive error for 𝜙3(𝑡, 𝑥). 

𝜙3 𝛼 = 0.7 𝛼 = 0.8 𝛼 = 0.9 

𝑡 𝑛 = 12 Cons. error 𝑛 = 12 Cons. error 𝑛 = 12 Cons. error 

0.0 0.5 0. 0.5 0. 0.5 0. 

0.05 0.644472 0.045007 0.599373 0.0244092 0.564569 0.00919114 

0.10 0.692191 0.0419884 0.649591 0.0267009 0.610252 0.011673 

0.15 0.723653 0.0353151 0.686508 0.0251402 0.648133 0.0122183 

0.20 0.747336 0.0276257 0.715764 0.0218049 0.680626 0.0116462 

0.25 0.76662 0.0196291 0.739875 0.0174025 0.708973 0.0102803 

0.30 0.783305 0.011576 0.760276 0.0122192 0.733963 0.0082597 

0.35 0.798523 0.00357516 0.777902 0.00637158 0.756154 0.00563334 

0.40 0.813068 0.00431047 0.793425 0.00009915 0.775972 0.0024003 

0.45 0.827543 0.0120294 0.807359 0.00718621 0.793758 0.00146972 

0.50 0.842434 0.0195285 0.820122 0.0148963 0.809796 0.00602461 
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Table 4. The obtained approximating solution and consecutive error for 𝜙4(𝑡, 𝑥). 

       

  Cons. error  Cons. error  Cons. error 

       

       

       

       

       

       

       

       

       

       

       

Table 5. The approximating solution and consecutive error for . 

    

  Cons. error  Cons. error  Cons. error 

       

       

       

       

       

       

       

       

       

       

       

In Tables 6–10, we present the obtained approximating solution, absolute error and relative error 

at derivative order 𝛼 = 1. The obtained LRPS approximating solutionswere compared with the results 

introduced in [1] to get the absolute error and relative error 

Table 6. The obtained approximating solution, absolute error and relative error for  at . 

  n=10   n=12  

t ϕ110 Absolute error Relative error ϕ112 Absolute error Relative error 

0.0 0.9 0. 0. 0.9 0. 0. 

0.1 0.877745 7.17257*10-11 8.17158*10-11 0.876644 5.69753*10-13 6.49109*10-13 

0.2 0.856335 3.58754*10-8 4.18941*10-8 0.85535 1.1399*10-9 1.33114*10-9 

0.3 0.836492 1.32805*10-6 1.58764*10-6 0.836107 9.49436*10-8 1.13502*10-7 

0.4 0.81874 0.0000168147 0.0000205378 0.8189 2.13707*10-6 2.61025*10-6 

0.5 0.803419 0.000117807 0.000146654 0.803705 0.0000233949 0.0000291234 
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Table 7. The obtained approximating solution, absolute error and relative error for  at . 

  n=10   n=12  

t Φ210 Absolute error Relative error Φ312 Absolute error Relative error 

0.0 0.5 0. 0. 0.5 0. 0. 

0.1 0.46058 4.18554*10-13 9.08754*10-13 0.436334 8.88178*10-16 1.92839*10-15 

0.2 0.421527 2.13127*10-10 5.05606*10-10 0.393491 1.62209*10-12 3.84813*10-12 

0.3 0.383196 8.11667*10-9 2.11815*10-8 0.359148 1.38989*10*-10 3.62711*10-10 

0.4 0.345913 1.06703*10-7 3.08468*10-7 0.330348 3.24831*10-9 9.39054*10-9 

0.5 0.30997 7.82004*10-7 2.52285*10-6 0.305488 3.71971*10-8 1.20003*10-7 

Table 8. The obtained approximating solution, absolute error and relative error for  at . 

  n=10   n=12  

t Φ310 Absolute error Relative error Φ312 Absolute error Relative error 

0.0 0.5 0. 0. 0.5 0. 0. 

0.1 0.563571 2.3348*10-13 4.14286*10-13 0.577673 3.33067*10-16 5.90994*10-16 

0.2 0.626687 1.19007*10-10 1.89898*10-10 0.644734 6.94445*10-13 1.10812*10-12 

0.3 0.688906 4.54208*10-9 6.59318*10-9 0.702467 5.96421*10*-11 8.6575*10-11 

0.4 0.749811 5.98891*10-8 7.98722*10-8 0.752006 1.39805*10-9 1.86454*10-9 

0.5 0.809021 4.40555*10-7 5.44553*10-7 0.794359 1.60693*10-8 1.98626*10-8 

Table 9. The obtained approximating solution, absolute error and relative error for  at . 

  n=10   n=12  

t Φ410 Absolute error Relative error Φ412 Absolute error Relative error 

0.0 0.1 0. 0. 0.1 0. 0. 

0.1 0.113305 1.38778*10-17 1.22481*10-16 0.112931 0. 0. 

0.2 0.126608 0. 0. 0.125314 2.77556*10-17 2.19224*10-16 

0.3 0.139907 2.77556*10-16 1.98386*10-15 0.137249 2.77556*10-17 1.98386*10-16 

0.4 0.153199 3.80251*10-15 2.48207*10-14 0.148832 2.77556*10-17 1.81173*10-16 

0.5 0.166482 2.81164*10-14 1.68885*10-13 0.160154 2.77556*10-17 1.66718*10-16 

Table 10. The obtained approximating solution, absolute error and relative error for 

𝜙5(𝑡, 𝑥) at 𝛼 = 1. 

  n=10   n=12  

t Φ510 Absolute error Relative error Φ512 Absolute error Relative error 

0.0 0.2 0. 0. 0.2 0. 0. 

0.1 0.204026 6.09755*10-16 2.98862*10-15 0.20266 8.67362*10-19 4.25124*10-18 

0.2 0.208039 3.11725*10-13 1.4984*10-12 0.205764 8.20524*10-16 3.9441*10-15 

0.3 0.212026 1.19446*10-11 5.63358*10-11 0.209207 7.06882*10-14 3.33395*10-13 

0.4 0.215974 1.58357*10-10 7.33224*10-10 0.212889 1.66606*10-12 7.71418*10-12 

0.5 0.219872 1.17299*10-9 5.33485*10-9 0.216713 1.92826*10-11 8.76991*10-11 
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For more demonstration, we present Figure 1 that shows the LRPS approximating solutions at 

different fractional derivative orders. In addition, we show the comparative results obtained at different 

approximate levels, namely, n = 10 and n = 12.  

 

Figure 1. (Left): 2D plots of the obtained approximating solutions when 𝑛 = 12; (Right): 

Comparison between the obtained numerical solution when 𝑛 = 12  and 𝑛 = 10 , with (a) 

𝜙1(𝑡, 𝑥), (b) 𝜙2(𝑡, 𝑥), (c) 𝜙3(𝑡, 𝑥), (d) 𝜙4(𝑡, 𝑥) and (e) 𝜙5(𝑡, 𝑥). 

6. Discussion 

The present study investigates the dynamics of a fractional diffusive cancer model incorporating 

virotherapy, a promising approach that utilizes viruses to combat cancer cells. The model utilizes the 

Caputo fractional derivative to describe the non-local dynamics of the cancer cells and the virotherapy 
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treatment. The study employs analytical techniques and simulation methods to gain insights into the 

behavior of the model under various scenarios. The findings shed light on the potential efficacy of 

virotherapy in controlling cancer growth and highlight the significance of fractional calculus in 

modeling complex biological systems. 

Initially, the present study focused on and refined the model of oncolytic virus replication. This 

model investigates the intricate relationship between tumor growth, virotherapy's infection dynamics, 

immune response and their collective impact on both infected and uninfected cells. To achieve a 

comprehensive understanding, we have precisely considered five distinct populations within the 

system as speculated in [1]. We proposed a modification (1) to the model by incorporating the Caputo 

fractional derivative in place of the traditional time derivative. This alteration leads to a difference in 

dimensions on the sides of the equations in the model (1). Consequently, to address this disparity, we 

introduce an auxiliary parameter σ, as referenced in [3] for diffusive cancer models with virotherapy. 

The results from equation [9] show the uniqueness of our model for virotherapy's infection 

dynamics. This section interprets the findings from both the analytical stability analysis and the 

numerical simulations. It elaborates on the implications of the results for virotherapy as a potential 

cancer treatment strategy and discusses the potential challenges and limitations of the model in 

capturing the complexity of cancer dynamics. Furthermore, we also analyzed the LRPSM to derive an 

analytical solution for the fractional diffusive cancer model (2). Numerical operations using 

Mathematica software packages were used to implement the LRPSM steps, and we obtained very 

significant results. The results are demonstrated in Tables 1–10 and Figures 1a–1e.  

The results in Tables 1–10 and Figures 1a–1e showed that during virotherapy, the number of 

infected cells reduces but the number of healthy cells also decrease. But according to our results, if 

there is a high concentration of Za, there will be an increase of healthy cells. For centuries, researchers 

have extensively explored the immune response against cancer cells. It has been established that the 

immune system actively surveils the body to identify and target abnormal cells. In our investigation, 

we focused on the diffusion coefficient of the immune system, denoted as d5, in the context of cancer 

treatment. To study the effect of the treatment on cancer growth, we employed the tanh-expansion 

method to obtain solutions for model (6). The solution, represented by equation (23), reveals that the 

diffusion coefficient d5 is influenced by d1, d2, d3 and d4. Specifically, we observed that the diffusion 

of activated immune system cells (d5) increases when the diffusion coefficients of the virus (d2) or 

infected cells (d3) decrease. Conversely, the diffusion of activated immune system cells (d5) decreases 

as the diffusion of the virus (d2) or infected cells (d3) increases. These findings shed light on the 

intricate interactions between different components within the system and provide valuable insights 

into the role of diffusion coefficients in the treatment's impact on cancer growth and immune response. 

Based on the results obtained from the analytical simulation of the diffusive cancer model with 

virotherapy using the Caputo operator, we predict that this approach can potentially help reduce the 

side effects of virotherapy. The use of the Caputo fractional derivative allows for a more accurate 

representation of the underlying dynamics, which could lead to improved treatment strategies and 

better management of the therapy's impact on both infected and uninfected cells. By gaining deeper 

insights into the system's behavior through analytical methods, it may be possible to optimize the 

treatment and enhance its efficacy while minimizing undesirable side effects, thereby advancing the 

field of virotherapy for cancer treatment. The combination of analytical techniques and numerical 

simulations enhances our understanding of the system's behavior, paving the way for more effective 

and targeted cancer treatments in the future. The study's findings contribute to the growing field of 
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fractional calculus applications in modeling complex biological systems and hold promise for 

advancements in cancer therapy. 

7. Conclusions  

We have studied the existence and uniqueness of the solution to this proposed and important 

model by presenting the main theories in this work. In addition, the LRPSM was applied to derive 

approximate solutions for the presented fractional model. The steps of this method were implemented 

using Mathematica software packages and good results were extracted. The results obtained were 

presented through tables showing the approximate solutions of the model. Moreover, a comparison of 

the derived solutions with other results presented in the literature was introduced to evaluate the 

efficiency of this method and its smoothness of use to solve such systems. As a future work, this 

fractional model can be studied by considering another fractional operator, such as the Atangana-

Baleanu fractional operator, and comparing the results to clarify the extent to which the results are 

affected by changing the fractional operator. Also, other numerical techniques can be used to derive 

approximate solutions for this model and compare them with the results presented in this work, 

considering different values of the parameters. To provide a thorough understanding of cancer 

dynamics, future research may investigate more intricate and realistic cancer models, taking into 

account elements like tumor heterogeneity, geographical impacts and varying immune responses. The 

mathematical model can be improved through experimental validation, which includes observations 

of cancer cell and immune system behavior in response to virotherapy. Performing a sensitivity 

analysis to look at parameter variations might give insights into how robust the results are and help 

pinpoint important elements affecting results. Through clinical trials and case studies, it is possible to 

examine the clinical applicability of virotherapy for particular cancer types and determine its viability 

and effectiveness in actual treatment situations. 
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