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THE SCIENTIFIC BASIS, SOME RESULTS, AND PERSPECTIVES OF MODELING EVOLUTIONARILY 

CONDITIONED NOOGENESIS OF ARTIFICIAL CREATURES IN VIRTUAL BIOCENOSES 

This research aimed to gain a profound understanding of virtual biocenoses intricate digital ecosystems, with the goal of elucidating and replicating the 

emergence and evolution of intelligence in artificial creatures – referred to as noogenesis. A comprehensive analysis of existing studies within virtual 

biocenoses was undertaken to glean valuable insights into the complexities of modeling dynamic ecosystems where artificial agents engaged in intricate 
interactions. The pivotal role of neural networks in shaping the adaptive behaviors of artificial creatures within these environments was underscored. A 

meticulous investigation into neural networks' evolution methodologies revealed the evolution of their architecture complexity over time, culminating 

in the facilitation of flexible and intelligent behaviors. However, a lack of study existed in the domain of nurturing evolutionary-based communication 
and cooperation capabilities within virtual biocenoses. In response to this gap, a model was introduced and substantiated through simulation experiments. 

The simulation results vividly illustrated the model's remarkable capacity to engender adaptive creatures endowed with the capability to efficiently 

respond to dynamic environmental changes. These adaptive entities displayed efficient optimization of energy consumption and resource acquisition. 
Moreover, they manifested both intellectual and physical transformations attributed to the evolution and encoding principles inspired by the 

NeuroEvolution of Augmented Topologies. Significantly, it became apparent that the evolutionary processes intrinsic to the model were inextricably 

linked to the environment itself, thus harmonizing seamlessly with the overarching goal of this research. Future research directions in this field were 
outlined. These pathways provided a foundation for further exploration into the evolution of artificial creatures in virtual biocenoses and the emergence 

of advanced communication and cooperation capabilities. These advancements hold the potential to move artificial life and artificial intelligence to new 
levels of understanding and capability. 

Keywords: agent-based modeling, artificial life, artificial intelligence, growing neural networks, evolution, noogenesis, evolutionary design.  

Introduction. In the dynamic landscape of modern 

science and technology, the study of biocenoses, complex 

ecological communities recreated within virtual environ-

ments where artificial agents interact, holds profound 

significance. These virtual ecosystems mirror the intricate 

interplay observed in natural habitats and serve as the 

backdrop for the process of noogenesis modeling – the 

emergence and development of intelligence and knowled-

ge. Understanding and harnessing the mechanisms under-

lying intelligence within these virtual biocenoses have 

implications in various domains and applications.  

Artificial agents, ranging from autonomous entities to 

coordinated swarms, have permeated diverse fields, 

including research, business practices, and creative arts. 

Within the realm of Artificial Life, notable simulations like 

PolyWorld [1] and EcoSim [2] employ virtual agents to 

model the evolution of digital organisms within dynamic 

3D environments, emulating aspects of natural ecosystems. 

These simulations have paved the way for exploring the 

evolution of intelligent behaviors and complex interactions 

among artificial entities.  

Neural Networks have emerged as a powerful model 

for controlling agents, enabling them to exhibit advanced 

and unpredictable behaviors. Crucially, the control of such 

agents often involves machine learning techniques, with a 

primary focus on reinforcement learning. This versatility is 

evident in various applications, from generating nuanced 

non-verbal facial expressions synchronized with agent 

speech [3] to orchestrating intricate team dynamics in 

competitive video games against professional human 

players [4].  

Furthermore, within the realms of artificial intelli-

gence and evolutionary algorithms, the concept of "Evolu-

tionary design" has gained prominence. This approach, 

rooted in the principle of gradual cost function compli-

cation reminiscent of natural evolutionary processes, offers 

a systematic means to synthesize and optimize intricate 

systems [5, 6]. The article [6] proposes to use an evolu-

tionary approach to the design of multi-tier filters for a new 

generation of radio-telecommunication systems for ultra-

high-speed and ultra-wideband information transmission. 

The essence of the method is to replace traditional multi-

parameter optimization of a complex structure with 

evolutionary optimization of previous, more superficial 

structures. It allows us to find global extrema on a limited 

number of optimization parameters and use them as initial 

ones for optimizing subsequent increasingly complex 

descendant structures with a more significant number of 

parameters. Methodologically, this is an alternative 

approach to the design of complex systems, regardless of 

their nature, based on the principles of evolution from the 

simplest forms. Our study of virtual biocenoses from these 

positions will make it possible in the future to formulate 

general methodological principles of such evolutionary 

design.  

In the context of advancing technology and scientific 

inquiry, the study of biological evolution through virtual 

models stands as a critically important endeavor. These 

studies provide valuable insights that enhance our 

understanding of intelligence and offer the potential for 

innovative applications and interdisciplinary solutions. 

This paper embarks on a rigorous exploration, analysis, and 
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expansion of knowledge within virtual biocenoses. We are 

going to elucidate the mechanisms underpinning evo-

lutionary-based communication and cooperation capabi-

lities. 

Goals of the study. To analyze existing models 

incorporating biological evolution, the use of neural 

networks for controlling virtual agents, and the evolution of 

neural networks influenced by genetic factors. Through 

comparative analysis, we aim to provide a comprehensive 

overview of the current state of research, highlighting both 

achievements and limitations. 

Build a basic model of artificial creature evolution in 

virtual biocenose capable of further complexification. Stu-

dy its capability to model the evolution process. 

To investigate the intricate interplay among evolu-

tionary theory, artificial neural networks, and the design of 

virtual agents within simulated environments, specifically 

focusing on the emergence of communication, socializa-

tion, and intelligence. 

Furthermore, to establish a conceptual framework for 

an innovative evolutionary design approach applied to 

developing creatures and their intelligence within virtual 

biocenoses. Drawing insights from evolutionary biology, 

neural network control, and artificial life systems, we aim 

to pave the way for novel methodologies that promote the 

emergence and growth of intelligence in artificial ecosys-

tems. 

Models of biological evolution. Darwin and Walla-

ce's theory is the bedrock of contemporary evolutionary 

models, elucidating the principles of variation, selection, 

and heredity [7]. These principles have given rise to various 

computational paradigms aimed at replicating these pro-

cesses in simulated virtual reality. 

Genetic Algorithms (GAs) Introduced by John H. 

Holland [8], GAs are optimization and search techniques 

emulating genetic variation and selection. GAs maintains 

candidate solution populations, favoring fitter individuals 

through selection pressure while preserving diversity via 

recombination and mutation. GAs finds applications in 

complex optimization problems, machine learning, and 

evolutionary design. 

Genetic Programming (GP), as an extension of GAs, 

GP evolves computer programs and algorithmic structures 

[9]. These programs are represented as trees and undergo 

genetic operations like crossover and mutation. GP is 

utilized in automated program generation, symbolic 

regression, and diverse problem-solving domains.  

Artificial Life (ALife) is an interdisciplinary field 

introduced by Langton in the 1990s [10, 11] that focuses on 

emulating lifelike behaviors, patterns, and systems within 

computational environments. It employs evolutionary 

concepts to simulate lifelike behaviors, exploring self-

organization, emergence, and adaptation. Typical tools in 

ALife include cellular automata, agent-based simulations, 

and virtual ecosystems.  

Valentin Turchin's Theory of Metasystem Transitions 

introduces a modern outlook on complex system evolution 

[12]. This theory suggests that systems can progress to 

higher organizational levels through a series of transitions, 

each marked by the emergence of new control mechanisms 

at a higher level. It extends the concept of evolution beyond 

genetics and biology to encompass control hierarchies and 

metasystems.  

Incorporating these computational models and 

theories, our research will advance the understanding of 

evolutionary processes in both natural and artificial realms. 

Models of biological evolution. In the realm of 

Artificial Life (ALife), various models have emerged, each 

with distinct attributes and methodologies. This review 

offers a comparative analysis of these models, focusing on 

key features like neural networks, learning, topology 

evolution, encoding, environment, and communication and 

cooperation capabilities. 

Early ALife models, pioneered by Langton [10, 11], 

centered on principles of cellular automata to study self-

organization and basic lifelike patterns. These models 

lacked complexity and adaptability. 

Tierra by Thomas Ray introduced self-replicating 

computer programs [13], delving into the evolutionary 

dynamics of digital code within computational environ-

ments. Though devoid of neural networks, it marked prog-

ress in illustrating the evolution in digital systems. Inspired 

by Tierra, Avida [14] featured organisms as code segments 

in a 2D grid. It exhibited self-replication through mutations 

and local interactions. Communication was limited to the 

local neighborhood, fostering diversity. Avida supported 

genetic encoding, dynamic topology evolution, and Pois-

son-random mutations but operated in a simplified digital 

environment. 

Larry Yaeger's PolyWorld [15] expanded the horizons 

of ALife by simulating 3D artificial creatures, each under 

the control of evolving neural networks. Notably, 

PolyWorld leverages evolving neural networks as the 

cognitive substrate for its virtual organisms, fostering 

dynamic topological changes in network architecture as a 

result of natural selection. These networks serve as the 

neural underpinning for various learning methods and 

behaviors exhibited by artificial organisms. Encoding in 

PolyWorld is grounded in software-coded genetics, and the 

environment is structured to accommodate predation, 

mimicry, sexual reproduction, and communication, 

rendering it a complex and competitive ecological crucible. 

The communication and cooperation abilities of the agents 

within this environment give rise to emergent behaviors, as 

their actions are shaped by individual survival strategies 

and group dynamics. In essence, PolyWorld is a 

noteworthy platform where neural networks, learning 

methods, topology evolution, encoding, environmental 

characteristics, and communication abilities intersect to 

explore the dynamics of evolving digital lifeforms. Since 

PolyWorld is a simulated 3D environment, it allowed 

agents to receive a sensory input based on image and color 

sensors as an input for a neural network agent control 

center. The communication is limited by signaling via agent 

color changing. The study focuses on successful survival 

strategies and has a static genome size, which limits neural 

network topology complexity. That limits its ability to 

simulate meta-system transition and observability of 

evolution.  

Framsticks [16, 17] featured artificial creatures const-

ructed from stick-like components, aiming to simulate crea-

ture-environment interactions in a highly configurable 3D 
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environment. At the same time, it had limitations in topo-

logy evolution and communication. 

EcoSim [2] introduced an individual-based predator-

prey model employing Fuzzy Cognitive Maps (FCMs) for 

agent behavior modeling. It allowed agents to assess their 

environment and evolve unique FCMs. EcoSim incorpo-

rated species concepts and provided insights into macro-

evolutionary processes. However, predefined agent beha-

viors limited innovation. 

Summarizing these studies achieved behavior similar 

to biological natural objects at some scale focusing on 

different aspects. Only PolyWorld and Framsticks utilize 

agent control on neural-based or neural network appro-

aches. Learning strategies vary from clearly evolutionary-

based to Hebbian-learning in PolyWorld, which enables 

behavioral difference even in agents with identical 

phenotypes. Models utilize different environments, from 

purely static in Tierra, Avida, and EcoSim, to static but a 

highly per-session configurable environment with limited 

resources in PolyWorld and Framsticks. The mentioned 

studies do not have a highly dynamic environment that 

evolves with the population, gradually increasing the 

complexity and driving the population to open-ended 

evolution. None of the mentioned studies utilize the 

potentially infinitely growing and adapting neural network 

separately but in sync with the creature's body to enable the 

possibility of meta-system transition in the context of the 

evolutionary progression of artificial creatures. 

Core challenges in evolutionary modeling of 

virtual biocenoses. The endeavor to model virtual 

biocenoses encompassing artificial life forms unveils a 

spectrum of intricate challenges that merit meticulous 

consideration within the scientific discourse. In this section, 

we explore these core challenges, delving into the comp-

lexities underpinning virtual ecosystems' evolutionary 

modeling.  

 Genetic Encoding of Phenotypes and Structural 

Congruence. Central to the efficacy of evolutionary mode-

ling lies the genetic encoding of phenotypes and the align-

ment between an organism's physical structure and its 

neural architecture [18]. This alignment, sometimes invol-

ving pruning mechanisms, necessitates meticulous design 

to ensure that the neural system accurately embodies the 

intended physical attributes.  

 Stability of Evolution and Preservation of Useful 

Innovation. Sustaining the stability of evolution while safe-

guarding opportunities for innovation presents a multi-

faceted challenge. It includes the study of neuro complexi-

fication, a process vital in preventing the population from 

becoming entrenched in local optima or succumbing to 

collapse within highly intricate environmental set-

tings [19].  

 Environmental Complexity and Neural Network 

Elaboration. The environment in which virtual biocenoses 

evolve plays a pivotal role in shaping the complications and 

elaboration of neural networks. Understanding the environ-

mental conditions that give rise to neural complexity is 

crucial for comprehending the dynamics of artificial life 

systems.  

 Lifelong Learning or Open-Ended Evolution. 

Enabling virtual organisms to engage in lifelong learning is 

imperative for facilitating open-ended evolution. This 

approach prevents populations from stagnating within 

minimal optima and bolsters adaptability, even in dynamic 

and intricate environments. Notable contributions from 

researchers such as Larry Yaeger, Tim Taylor, L. B. Soros, 

Kenneth O. Stanley, Rui Wang, Joel Lehman, Jeff Clune, 

and Jonathan C. Brant have illuminated pathways in this 

regard [20–25].  

 Environmental Prerequisites for Communication 

and Socialization. Formulating artificial agents' communi-

cation and socialization behavior hinges on understanding 

the environmental prerequisites that foster these intricate 

interactions.  

These insights underscore the need for careful 

consideration of genetic encoding methods, the role of 

environmental complexity in shaping neural networks, and 

the importance of lifelong learning mechanisms in 

evolutionary systems. Addressing these challenges will be 

essential for advancing the modeling of virtual biocenoses 

and understanding the emergent behaviors of artificial life 

forms. 

Neural networks that control agents and other 

virtual objects. In the ever-evolving realm of artificial 

intelligence and virtual environments, neural networks 

(NNs) have become pivotal in controlling virtual entities 

across various applications. 

Karl Sims utilized Recurrent Neural Networks 

(RNNs) to evolve virtual creatures' neural systems [26]. 

Focused on morphology and sensory input, it excelled in 

single-agent environments, primarily for applications in 

gaming. 

Non-verbal facial behaviors in virtual agents using 

Generative Adversarial Networks (GANs) and RNNs with 

Long Short-Term Memory (LSTM) cells were studied in 

[3] – the training process involved supervised learning, 

resulting in realistic facial expressions for gaming and 

cinematography. 

The research emphasized energy-efficient control for 

mobile agents, employing fully connected spiking neural 

networks and Spike-Timing-Dependent Plasticity (STDP)-

-based unsupervised learning [27]. Promising for autono-

mous mobile agents, it showcased energy-efficient control 

mechanisms. 

Exploring multi-agent scenarios, this study investi-

gated the emergence of tool use behaviors [28]. It employed 

fully connected RNNs with LSTM cells and Reinforcement 

Learning (RL), promoting competition and coordination 

among agents. It is vital for gaming, where tool use beha-

viors are crucial. 

RNNs with LSTM cells facilitated infant agents' 

learning from parent agents in a virtual 3D environment 

[29]. RL drove interaction, revealing the potential for 

virtual agents to exhibit curiosity-driven behaviors and 

engage in social interactions. 

Convolutional Neural Networks (CNNs) and RNNs 

with LSTM cells to control a robot hand solving a Rubik's 

Cube studied in [30]. Although single-agent, it hinted at 

robotics and automated problem-solving applications. 
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Using Graph Neural Networks (GNNs), the study 

trained control admissibility models with spatial data [31]. 

RL methodologies were applied, promising applications in 

the enterprise, robotics, and complex environments.  

Investigated the emergence of maps within 'blind' AI 

navigation agents' memories [32]. RNNs with LSTM cells 

utilized GPS, compass, and touch sensor data – valuable 

insights into spatial cognition development.  

Achieved performance enough to beat the team of 

professional players in the Dota 2 video game through self-

play reinforcement learning [4]. RNNs with LSTM cells 

controlled agents, facilitating multi-agent interactions 

within the gaming domain.  

In summary, NNs are pivotal in controlling virtual 

entities across diverse applications. From evolutionary 

algorithms to GANs, these studies contribute to gaming, 

cinematography, autonomous agents, virtual software 

agents, robotics, and more. A common theme is the single-

agent focus, suggesting opportunities for exploring multi-

agent interactions and collaborations. Additionally, when 

applying to NN, Evolution Strategies could surpass RL in 

certain aspects, offering avenues for future research [33].  

Evolving Neural Networks under the Influence of 

Genetic Operators. In the dynamic fields of artificial 

intelligence and evolutionary computation, the evolution of 

neural networks under the influence of genetic operators 

has emerged as a captivating and highly promising research 

frontier, finding applications in various domains, including 

robotics and gaming.  

Carl Sims' pioneering work [26] centers on the evo-

lution of virtual creatures within physical environments. 

Neural networks govern creature behavior and undergo 

coevolution with creature morphological structures through 

genetic algorithms. This approach has implications for em-

bodied AI, particularly in evolving robots with adaptable 

neural control systems.  

The NeuroEvolution of Augmenting Topologies 

(NEAT) algorithm [34] refines neural network structures 

iteratively across generations. NEAT preserves population 

diversity, making it versatile for domains like robotics and 

gaming. It introduces principled crossover, speciation, and 

incremental growth, providing expedited learning and 

insights into the evolution of increasingly intricate 

solutions. NEAT serves as a cornerstone in the continuum 

of neural network evolution methodologies, establishing a 

framework for subsequent advancements in this evolving 

field, leading to more than 61 extensions [35]. Real-Time 

NEAT (rtNEAT) [36] empowers neural networks to adapt 

continuously to changing conditions in real-time environ-

ments, ideal for autonomous robotics and adaptive game 

AI. rtNEAT creates a new genre of video games, enabling 

evolving and adapting agents during gameplay. 

HyperNEAT [37] and the following ES-HyperNEAT [38] 

focus on evolving neural networks with the capacity for 

dynamic behaviors. It employs generative encoding, 

connective compositional pattern-producing networks 

(CPPNs), and hypercube-based NeuroEvolution of Aug-

menting Topologies (HyperNEAT) to optimize neural net-

works controlling agents with intricate morphologies and 

behaviors. The Coevolution of Brain and Morphology in 

Robotics (NEAT-M) [39] explores the concurrent 

evolution of robot structures and neural control systems. 

Genetic algorithms optimize both, leading to adaptive 

robots, significantly impacting embodied AI within 

robotics and autonomous systems. CoDeepNEAT extends 

NEAT's principles to evolve architectures tailored for deep 

networks, making it vital in domains relying on deep 

learning.  

These studies collectively advance neural network 

evolution, showcasing their effectiveness in optimizing 

architectures for various tasks and understanding the 

interplay between neural networks, morphologies, and 

behaviors. However, computational complexity and the 

need for multi-agent exploration remain challenges, lea-

ving room for further research. Furthermore, while the 

mentioned investigations excel in single-agent scenarios, 

there is room for further exploration of multi-agent interact-

tions and collaborations. Many mentioned investigations 

primarily focus on single-agent environments, leaving 

untapped potential in domains requiring coordination 

among multiple agents. 

Our Approach. In the realm of artificial intelligence 

and the emergence of intelligence, a significant research 

gap exists in the domain of lifelong evolution applied to 

multi-agent open problems. This void encompasses scena-

rios where creatures can undergo intellectual and physical 

transformations through NEAT-inspired evolution and 

encoding mechanisms. Specifically, these transformations 

target the facilitation of communication and socialization 

among creatures. Moreover, this model is unique because 

it drives evolution and selection processes primarily 

through interactions with the environment, without external 

algorithmic control.  

To better comprehend the core principles of artificial 

intelligence and how intelligence evolves, there is a need 

for a significant shift in focus. Instead of emphasizing 

complex models, we should start with basic models, 

gradually evolving them into more sophisticated structures 

[6]. This approach promises to offer deeper insights into the 

fundamental principles governing intelligence and its 

development. 

Model Overview. The proposed model logically 

continues the previous study [40] and operates within a 2D 

spatial environment possessing finite dimensions. Within 

this environment reside creatures, each comprising two 

integral components: a physical body and a control center 

represented by a neural network. The foundational structure 

of a creature's physical body takes the form of a circle. 

Additionally, creatures can be equipped with sensors to 

perceive environmental information and effectors to enact 

various actions, including movement and rotation. The 

neural network of each creature serves as the interface 

between sensory inputs and motor outputs. 

Genetic Encoding. The model encodes creatures' 

physical attributes and their neural networks within their 

respective genomes. Inspired by NEAT [34], this encoding 

encompasses the topology and assignment of weights of the 

neural network, all meticulously derived from the genetic 

information contained within the creature's single 

genotype. The critical update was to add specific types of 

nodes representing the different physical attributes, such as 

sensors and effectors. Similar updates were made in [39]. 
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The genetic encoding of creatures is captured as a genome, 

denoted as , which consists of genes representing various 

attributes of the creature. Each gene is represented as a 

tuple , where  denotes the innovation number,  

denotes the gene type, and  represents the value associ-

ated with that gene, its role is different for each gene type. 

The gene type  encompassed within the genome includes: 

 food_sensor : Represented as , 

where  represents the placement of the sensor within the 

creature's circular body.  

 wall_sensor : Represented as , 

with the same attributes as food sensors. 

 bot_sensor : Represented as , with 

the same attributes as food sensors.  

 energy_sensor : Represented as , 

value is not used for . 

 neural_node : Represented as , 

where AF signifies the activation function applied within 

the neural node . The neural 

node does not have its own bias. 

 movement_effector : Represented as 

, where  indicates the movement effector's 

reactivity value. 

 rotation_effector : Represented as 

, where RV indicates the rotation effector's 

reactivity value.  

 neural_connection : Represented as 

,  denotes the source neural node,  

represents the target neural node, and  signifies the 

weight of the connection. 

 creatures_body_node : Represented as 

, where  indicates the size of the creature's 

main circular body. This node cannot establish a neural 

connection. 

So . Inno-

vation number  is a global counter that helps track gene 

history [34] while not playing the role of crossover in this 

model. 

Mutation Mechanisms. Define the mutation process 

 as a stochastic function that takes as input a creature's 

genotype  and returns a modified genotype , 

  (1) 

Mutation could be different 

. It is 

picked randomly, , where 

is a picked mutation type,  is a weighted probability for 

each possible type, which is a hyperparameter for the 

current model. When , the type of node 

picked randomly between available types 

, where  is a picked node type, 

 is a weighted probability for each possible type, which 

is also a hyperparameter for the current model. The 

additional  is also being added: 1 for sensors and 

effectors and 2 for . When two random connectable 

nodes within the whole genotype are picked, and two 

connections are created between them with random 

coefficients to reduce the initial impact of newly connected 

nodes, the maximum weight of the connection is limited to 

. When , the random gen is picked 

from the genotype, and its associated value is randomly 

changed. When , two random 

connectable nodes within the creature genotype are being 

picked, and a connection between them is being created 

with random weight also upper limited to  for reduction 

of initial impact which enhance population stability as 

previous experiments shown, recurrent connections are 

allowed. When  mutation occurs, the 

random gen is selected and removed. If it is a node with 

some connections, all related connections are also being 

removed. Since the current model uses clonal replication, 

there is no need to preserve disabled nodes for further 

crossover operation like in the original NEAT approach 

[34]. 

Sensory and Motor Capabilities. Creatures are 

equipped with limited-length ray sensors, the placement 

and object type reactivity of which are encoded within the 

creature's genotype. These sensors can detect objects such 

as obstacles, food sources, and other creatures. They 

activate on the range . The closer the intersection to 

the source of the ray, the higher the activation, zero, when 

there is no intersection. The energy sensor is not 

represented as physical and activates with the amount of the 

creature's energy. Creature effectors encompass actions for 

movement (forward propulsion) and rotation. If a creature 

has several movement and rotation effectors, their effect is 

summarized. 

Simulation Setup. The simulation is initialized with 

a carefully constructed set of conditions. The initial 

population of creatures is introduced into the 2D spatial 

environment, and their placement within this environment 

is randomized to ensure spatial diversity. Each creature in 

the initial population possesses a minimal genetic structure, 

including essential basic functionality components. These 

components consist of one food sensor, an energy sensor, a 

neural node, and movement and rotation effectors. The 

connections between these elements are initialized with 

random weights, giving the creatures a degree of variability 

in their initial behaviors. The sample for the initial creature 

phenotype is shown in fig. 1 a–b. Each one is also given the 

introductory amount of energy to survive for the first time. 

Additionally, food resources are distributed randomly 

across the environment. These food sources serve as vital 

sustenance for the creatures, motivating them to explore 

and interact with their surroundings. The random 

placement of food resources introduces an element of 

uncertainty and competition, driving the creatures to adapt 

and develop diverse foraging strategies. Wall-like obstacles 

are strategically positioned at random locations within the 

environment. These obstacles create physical barriers that 

creatures must navigate around, adding complexity to their 

interactions with the environment and fostering the 

development of obstacle-avoidance behaviors. 

Simulation Dynamics. The simulation proceeds in 

discrete time intervals referred to as ticks. It initiates with a 

population of creatures, accompanied by randomly 

distributed obstacles and food sources within the envi-

ronment. Creatures possess an energy resource that is 
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expended as they perform actions over time. Creatures 

whose energy reserves deplete below a critical threshold 

die. During each simulation tick, sensor activations are 

conveyed through the creature's neural network, subse-

quently dictating actions based on effector activations. 

Creatures can restore their energy by colliding with and 

collecting food sources. When a creature's energy surpasses 

a predefined threshold, it creates an offspring using clonal 

reproduction with a mutated parent's genotype using (1), 

transferring half of its own energy to this offspring. The 

model incorporates the cyclical introduction of food 

resources into the environment at specified intervals. These 

intervals are governed by a food restoration schedule 

encompassing high and low food influx periods. Addi-

tionally, obstacles are strategically repositioned at periodic 

intervals, and how will be shown in future studies – fos-

tering speciation and innovative adaptations among creatu-

res. This environmental dynamism serves to shuffle ecolo-

gical niches, engendering competition among creatures for 

limited resources. 

 

 

Fig. 1. Sample initial artificial creature phenotype: 

a – in environment, b – its neural network 

In this model, the creatures' primary objective is the 

population's survival, achieved through personal survival 

and the generation of offspring. The population, as a whole, 

can progress towards this objective through mutations that 

allow enhanced adaptability to the environment. In addition 

to the base model [40], this version introduces several 

enhancements, including support sensors for obstacle and 

bot detection, recurrent connections in the hidden layer, 

food seasoning, random wall placement, energy sensing, 

and an energy penalty associated with genotype size. This 

model was implemented as simulation software and 

subjected to a series of experiments for study and analysis. 

Results. Emergence of Adaptive Agents. The model 

presented in this study effectively demonstrated the 

emergence of adaptive agents within virtual biocenoses. 

These agents displayed the capacity to respond to dynamic 

changes in their environment over successive simulation 

intervals. These agents evolved strategies through evoluti-

onary processes that enabled them to proficiently acquire 

food resources while efficiently managing their energy 

levels. 

Emerged behaviors. For several experiments, 

artificial creatures have embraced different behaviors, 

including seeking food by forward or circular movements, 

reducing movement to save energy and prolong life, 

detecting obstacles and turnaround from them, detecting 

bots around, and increasing speed to win in local 

competition for a food resource. This model enables 

creatures to develop a variety of strategies. In several 

experiments, most of the population developed a strategy 

to rotate in place and wait for food to appear in their field 

of sensitivity, as soon as they notice it, they move forward 

as fast as possible. This strategy is similar to the one in 

saying by Confucius, "If you sit by the river long enough, 

the bodies of your enemies will float by". 

Metasystem Transitions. In several experimental 

instances, we observed intriguing phenomena characterized 

by metasystem transitions [40]. These phenomena require 

an additional investigation into the underlying precondi-

tions that triggered such transitions. 

Evolutionary Trends in Neural Network Comp-

lexity. Our experimental findings unveiled a captivating 

trend in the evolutionary dynamics of neural networks 

within virtual biocenoses. as illustrated in fig. 2, a. fig. 2, b 

provides a visual representation of a creature within the 

simulated environment. Initially, there was a noticeable 

growth in the size and complexity of these neural networks, 

possibly driven by the pursuit of heightened cognitive 

capabilities. However, a remarkable adaptation emerged 

during the course of our simulations. Artificial agents 

within the system, when confronted with the increased 

energy consumption associated with larger genotype sizes, 

exhibited a strategic shift towards evolving more compact 

neural networks, fig. 2, a. This adaptation appeared to be a 

deliberate response aimed at conserving energy resources 

while simultaneously maintaining a degree of variability 

within the agent population. Since nodes in creatures' 

neural networks do not have bias, they emerged that the 

energy sensor is adaptive bias, and the hidden neural node 

with sigmoid activation function became static bias due to 

the nature of this function. These results underscore the 

dynamic and context-sensitive nature of evolution within 

artificial environments, highlighting the innovative 

strategies employed by virtual agents to optimize their 

cognitive resources while preserving population diversity.  

Genotype evolution dynamics displayed a trend in 

controlled genotype growth with dominance of genes 

represented neural links as shown in fig. 3. Biocenose state 

over simulation displayed the rapid population size growth. 

At the same time, initial resources were highly available. 

The population sought an adaptation to limited food 

resources per creature and reached near equilibrium plateau 

for a given environment near tick 106 as shown in fig. 4. 

a 

b 

body 

sensor 

neural connection 

weight 

energy color 

indicator 
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Fig. 3. Distribution of gene types amount, average in population 

genotypes over simulation time 

 

Fig. 4. Simulation dynamics of biocenose 

 

Conclusions. While acknowledging the valuable 

contributions of previous studies, it is essential to note that 

some of these endeavors have leaned towards employing 

complex models within static environments. 

Furthermore, some of these investigations have pri-

marily focused on locomotion movement patterns develop-

ment as a separate issue, which may have diverted their 

attention from the broader context of communication and 

socialization processes within artificial environments. 

Modeling the evolution of artificial life's simplest 

form will allow investigation of the emergence and deve-

lopment of intellect, in contrast to complex models prima-

rily constrained to study strategies. Attaining this under-

standing can be facilitated by gradually increasing model 

complexity as it is required for evolving neural networks. 

The complexification could be both in creatures' potential 

abilities and environment influence them. 

The interest in modeling the emergence of commu-

nication and socialization is in exploring and studying the 

ability of evolving agents to form enough physical and 

neural enhancements to be able for these functions. Model 

potentially allows us to study social formations in the 

evolving agents when reflection communication could 

transform into a social one. It is necessary to study if 

unconditional, acquired features are sufficient to formulate 

communicational behavior or if artificial creature needs 

personal experience. 

The proposed model creates the basis for the 

complexity of a virtual biocenosis, which will stimulate the 

progressive development of artificial life forms to increase 

their intellectual component. The conducted studies show 

that even in the simplest models, the main trends in 

biological evolution are observed, both metasystem 

transitions of the neural network and its simplification to 

occupy a specific ecological niche. In the future, it will be 

necessary to determine the conditions for strengthening the 

first trend and eliminating the second. 

Future research. Dynamic Environment Complexi-

fication: Building upon these results, future enhancements 

could involve further complexification of the environment. 

This might include introducing additional environmental 

factors or challenges to stimulate more intricate agent 

behaviors. 

Complex Effectors and Sensors: The model's capacity 

to accommodate more complex effectors and sensors opens 

doors for research into advanced agent capabilities, poten-

tially leading to more sophisticated communication and 

socialization. 

 

Fig. 2. Artificial creature phenotype, generation 2888, simulation tick 107: 

 a – its neural network, b – its body in the environment  

a b 
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To study the ability to apply evolutionary design in 

gaming (Video Games), cinematography, and business, as 

well as research in AI, communication, and socialization. 

The perspective of applying this approach is based on the 

fact that it is too hard to create complex virtual objects in 

perfect form directly. Evolutionary design could offer a 

reliable possibility to grow perfect artificial creatures from 

simplest to target environments where they can act for 

business needs.  
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НАУКОВІ ОСНОВИ, ДЕЯКІ РЕЗУЛЬТАТИ ТА ПЕРСПЕКТИВИ МОДЕЛЮВАННЯ ЕВОЛЮЦІЙНО 

ОБУМОВЛЕНОГО НООГЕНЕЗУ ШТУЧНИХ СТВОРІНЬ У ВІРТУАЛЬНИХ БІОЦЕНОЗАХ 

Це дослідження мало на меті отримати глибоке розуміння складних цифрових екосистем віртуальних біоценозів з метою з’ясувати та 
відтворити появу та еволюцію інтелекту в штучних створінь, що називається ноогенезом. Було проведено комплексний аналіз існуючих 

досліджень у віртуальних біоценозах, щоб отримати цінну інформацію про складність моделювання динамічних екосистем, де штучні 

створіння беруть участь у комплексній взаємодії. Було підкреслено ключову роль нейронних мереж у формуванні адаптивної поведінки 
штучних створінь у цих середовищах. Ретельне дослідження методології еволюції нейронних мереж виявило еволюцію складності їхньої 

архітектури з часом, кульмінацією якої стало сприяння гнучкій та інтелектуальній поведінці. Однак існував брак досліджень у сфері розвитку 
еволюційних можливостей спілкування та співпраці у віртуальних біоценозах. У відповідь на цю прогалину була введена модель та 

обґрунтована шляхом імітаційних експериментів. Результати моделювання яскраво проілюстрували дивовижну здатність моделі породжувати 

адаптивних істот, наділених здатністю ефективно реагувати на динамічні зміни навколишнього середовища. Ці адаптивні штучні істоти 
показали ефективну оптимізацію споживання енергії та отримання ресурсів. Крім того, вони продемонстрували як інтелектуальні, так і фізичні 

трансформації, пов’язані з принципами еволюцієї та кодування, натхненними нейроеволюцією доповнених топологій. Важливо, що стало 

очевидним, що еволюційні процеси, властиві моделі, були нерозривно пов’язані з самим середовищем, таким чином бездоганно узгоджуючись 
із головною метою цього дослідження. Були окреслені майбутні напрями досліджень у цій галузі. Ці напрями забезпечили основу для 

подальшого дослідження еволюції штучних створінь у віртуальних біоценозах і появи передових можливостей спілкування та співпраці. Ці 

досягнення містять потенціал для підняття штучного життя та штучного інтелекту на новий рівень розуміння та можливостей.  
Ключові слова: агентне моделювання, штучне життя, штучний інтелект, зростаючі нейронні мережі, еволюція, ноогенез, 

еволюційний дизайн. 
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