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The number of different types and the actual number of malware and computer attacks is constantly increas-

ing. Therefore, detecting and counteracting malware and computer attacks remains a pressing issue. Users of 

corporate networks suffer the greatest damage. Many effective tools of various kinds have been developed to 

detect and counteract these effects. However, the dynamism in the development of new malware and the diver-
sity of computer attacks encourage detection and countermeasure developers to constantly improve their tools 

and create new ones. The object of research in this paper is deception systems. The task of this study is to de-

velop the elements of the theory and practice of creating such systems. Deception systems occupy a special 

place among the means of detecting and counteracting malware and computer attacks. These systems confuse 

attackers, but they also require constant changes and updates, as the peculiarities of their functioning become 

known over time. Therefore, the problem of creating deception systems whose functioning would remain in-

comprehensible to attackers is relevant. To solve this problem, we propose a new principle for the synthesis of 

such systems. Because the formation of such systems will be based on computer stations of a corporate net-

work, the system is positioned as a multi-computer system. The system proposes the use of combined baits and 

traps to create false attack targets. All components of such a system form a shadow computer network. This 

study develops a principle for synthesizing multi-computer systems with combined baits and traps and a deci-
sion-making controller for detecting and countering IEDs and spacecraft. The principle is based on the pres-

ence of a controller for decisions made in the system and the use of specialized functionality for detection and 

counteraction. According to the developed principle of synthesizing such systems, this paper identifies a subset 

of systems with deception technologies that must have a controller and specialized functionality. The decision-

making controller in the system is separate from the decision-making center. Its task is to choose the options 

for the next steps of the system, which are formed in the center of the system, depending on the recurrence of 

events. Moreover, prolonged recurrence of external events requires the system center to form a sequence of 

next steps. If they are repeated, the attacker has the opportunity to study the functioning of the system. The 

controller in the system chooses different answers from different possible answers for the same repeated suspi-

cious events. Thus, an attacker, when investigating a corporate network, receives different answers to the same 

queries. Specialized functionality, in accordance with the principle of synthesis of such systems, is implemented 

in the system architecture. It affects the change of system architecture in the process of its functioning as a re-
sult of internal and external influences. This paper also considers a possible variant of the architecture of such 

deception systems, in particular, the architecture of a system with partial centralization. To synthesize such 

systems, a new method for synthesizing partially centralized systems for detecting malware in computer envi-

ronments has been developed based on analytical expressions that determine the security state of such systems 

and their components. In addition, the experiments showed that the loss of 10-20% of the components does not 

affect the performance of the task. The results of the experiments were processed using ROC analysis and the 

algorithm for constructing the ROC curve. The results of the experiments made it possible to determine the de-

gree of degradation of the systems constructed in this manner. Conclusions. This paper presents a new princi-

ple for the synthesis of multi-computer systems with combined decoys and traps and a decision-making con-

troller for detecting and counteracting IEDs and spacecraft, as well as methods for synthesizing partially cen-

tralized systems for detecting malware in computer networks. 
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1. Introduction 
 

1.1. Motivation 
 
Malware continues to be actively developed and 

distributed. An important element of counteracting it is 

properly synthesized systems that can detect malware 

and counteract it by creating false attack objects.  

An area of development of such systems is the de-

velopment of systems whose behavioral logic and archi-

tecture are difficult or impossible for attackers to under-

stand. 
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Having created such systems, they can be filled 

with functionality as needed, which can further position 

them as deception systems, network baits, and highly 

specialized systems for detecting a specific class of 

malware. Such systems include deception systems. 

Due to the specifics of the tasks they are supposed 

to perform, the actual task is to develop new principles 

of their synthesis, which will allow the attacker to create 

new features in such systems that will be difficult for 

him to understand. One class of such systems is partially 

centralized distributed systems for detecting malware, 

as described in [1]. 

The functioning of partially centralized distributed 

systems in accordance with the principles of self-

organization and adaptability is ensured not only by the 

organization of communication between their compo-

nents or the implementation of certain specially oriented 

tasks for which they are created, but primarily by inter-

nal mechanisms, methods, and algorithms that enable 

such systems to solve tasks without user intervention, 

independently make decisions on the next steps of the 

system, and adapt to changes in the external environ-

ment. 

 

1.2. Previous works 

 

There are many various studies devoted to the 

problem of malware detection. Despite the large number 

of different methods for detecting and mitigating 

cyberattacks caused by malware, the steady increase in 

their number confirms that this problem is not solved 

today. 

A variant of the architecture of partially central-

ized systems for detecting malicious software in com-

puter networks is presented in [1]. The feature of the 

described architecture is that it should enable such sys-

tems to function according to the principles of self-

organization and adaptability. This will give them op-

portunities to determine their next steps in the process 

of unionization. 

Such systems can be used to counter and detect 

malware. 

The systems synthesized in this way function as 

centralized, but their decisions are made in part of the 

components defined by the system in a decentralized 

manner. To implement the internal mechanism of their 

functioning, it is necessary to develop a method for or-

ganizing their functioning. 

The peculiarity of the synthesized system, which is 

related to its centralization, decentralization, and hybrid 

architecture, concerns the center of the system. This 

class of systems can be specified according to the prin-

ciple of their synthesis, which requires appropriate de-

velopment. 
 

1.3. State of the art 

 

To use deception technology, various types of 

baits and traps [2] have been developed that mimic the 

operation of real systems. The market offers several 

solutions based on the use of deception technology and 

malware. Let's take a look at the characteristic features 

of such systems. 

The main features of the Acalvio ShadowPlex sys-

tem [3] are the patented architecture of the deception 

farm and autonomous deception. This system automates 

and simplifies the configuration and deployment of baits 

and traps using predefined deceptive objects and objects 

that are generated and placed by the system based on 

recommendations and artificial intelligence. It supports 

a significant number of deceptive objects, including 

baits that mimic hosts running operating systems, in-

cluding IoT hosts, endpoint baits, fake registry entries, 

credentials, and shared disks. 

One of the first systems to use deception technolo-

gy to add response capabilities was the Attivo 

ThreatDefend Deception and Response Platform [4]. 

The system can be deployed locally, in the cloud, in 

data centers, or in a hybrid environment. Similar to oth-

er systems, deceptive objects are designed to identify 

intruders trying to access the network and data. This 

system not only detects access attempts but also ensures 

that the deceptive object interacts with the attacker, 

simulating the reaction that the attacker can expect from 

real objects. In other words, simultaneously with net-

work protection, the study of malicious intentions and 

tactics is ensured.  

The Proofpoint Identity Threat Defense system [5] 

creates a deceptive environment for the attacker. The 

agentless architecture prevents attackers from detecting 

deceptive objects. The system detects any changes in 

the environment and activates deceptive capabilities to 

ensure that the attacker is stopped before gaining access 

to corporate network resources. Protection against at-

tacks and early response is provided for email services, 

mobile communications, social networks, and desktop 

workstations.  

The CounterCraft Cyber Deception Platform [6] 

system uses active baits to detect intruders. These baits 

can be deployed as endpoints, servers, or in online plat-

forms and are flexible to customize. The system is de-

signed to facilitate online interaction with attackers. The 

system provides the ability to deploy quickly and con-

trol based on data collected in the environment by 

agents.  

The Fidelis Deception platform [7] allows the user 

to quickly and dynamically create a deceptive environ-

ment that contains baits and traps for user applications, 

services, network connections, integrated credentials of 

the active directory, memory, endpoints, and servers. 
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All actions that occur in the deceptive environment are 

tracked and available to the administrator to make deci-

sions about studying the actions of intruders, neutraliz-

ing attacks, and protecting against them. The advantages 

of the Fidelis Deception platform are as follows: auto-

matic creation of a realistic deception environment that 

includes baits and traps of various types; building real 

operating system baits along with simulated baits cover-

ing the entire corporate network; fast deployment and 

efficiency from the start; high accuracy with no false 

positives; constant updating of the intelligent deception 

environment; and proactive protection. 

The CommVault system [8] provides several data 

management solutions for data protection, management, 

and optimization. In the area of cybersecurity, 

CommVault offers risk analysis and full data protection, 

including auto-recovery, threat scanning, active directo-

ry, and database protection. The system’s modules 

combine early warning capabilities with rapid response 

capabilities to neutralize attacks in time before damage 

can occur. “Zero-day” attacks are also detected and neu-

tralized that are difficult or impossible to detect using 

traditional technologies. The system also makes it pos-

sible to immediately detect and neutralize hidden at-

tacks that are spreading in the network environment. In 

other words, this system enables identification and pre-

vention of attacks even before they start. 

The Labyrinth Deception Platform [9, 10] creates a 

deceptive environment that simulates the services and 

content of the real part of the network. The solution is 

based on the so-called Points, which are intelligent hosts 

that simulate software, content, routers, and devices. 

These deception points detect malicious activity within 

the corporate network, providing comprehensive protec-

tion against possible attacks. The deceptive environment 

encourages attackers to take actions that allow detection 

and tracking of their activity. 

Bait, traps, and generally false targets for attacks in 

corporate networks can vary. Let's consider some of the 

research papers that discuss some types of such false 

attack targets and methods of their organization and use.  

The article [11] proposes a new type of decoy sys-

tem based on deception security technology. The dy-

namic deception method is adapted to collect unused IP 

addresses in the network. The security properties of 

deceptive elements are tested in the study [12] with the 

help of attackers using reinforcement learning. For test-

ing, deceptive elements are included in the Microsoft 

CyberBattleSim research environment. The success of 

attackers depends on the number and location of decep-

tive elements. The purpose of cyber deception is to dis-

tort the state of the network to mislead attackers, falsify 

their conclusions, and distract them from their goals. 

The article [13] proposes a two-phase deception method 

based on bait localization. In the first phase, a proactive 

decoy localization policy is developed, and in the sec-

ond phase, a reactive deception approach is proposed 

that dynamically determines the location of baits ac-

cording to updates of the intrusion detection system. 

Thus, the defense system partially tracks the activity of 

the attacker.  

The strategy [14] for locating baits in the network 

should consider not only aspects of the protected net-

work but also the preferences of attackers. To achieve 

this goal, we propose a game-theoretic method that gen-

erates an optimal decoy placement strategy in accord-

ance with an attack-defense scenario. The study [15] 

proposes a new method for cyber-manipulation using 

decoy localization and software diversity to improve 

network security. The study [16] proposes a scalable 

algorithm for placing baits over an attack graph. The 

authors express a two-person zero-sum strategic game 

between a defender and an attacker. This formulation 

reflects the importance of different nodes within the 

network.  

When using baits, certain compromises must be 

made [17]. On the one hand, decoy systems and services 

must be relevant and attractive to the attacker, and on 

the other hand, computational and related costs must be 

consistent with the functional and budgetary constraints 

of the system. Therefore, it is impossible to create a 

single, unchanging decoy configuration for different 

types of systems and to consider all possible types of 

attackers. 

Detecting malicious packets among a significant 

amount of normal activity is time-consuming [18]. The 

range of vulnerabilities is expanding with the develop-

ment of technologies such as IoT, industrial automation, 

CPS, and digital twins. Baits are used in malicious 

packet identification to eliminate false positives. In ad-

dition to analyzing and reporting intrusion patterns, they 

are also used to prevent access to operational devices by 

mimicking real systems operating on the network and 

capturing and detaining attackers. Baits in computer 

networks are effective when they deceive cybercrimi-

nals in such a way that they do not consider themselves 

to be real decoys [19]. Therefore, to make decoy decep-

tion more effective, it is necessary to apply it in a more 

diverse way. Much of the critical data of organizations 

is now stored in databases, which is an attractive target 

for attackers [20]. The introduction of digital technolo-

gies and the increase in the number of connections be-

tween organizations, together with the growing com-

plexity of information systems, leads to an increase in 

the spread of attacks. At the same time, the improve-

ment of attackers’' skills leads to more "sophisticated" 

attacks. 

For researchers in the field of cybersecurity [21], 

the question remains how to eliminate virtual machine 

artifacts to effectively build deceptive "baits" for col-
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lecting and analyzing malware. The method of using 

Linux containers for this purpose is investigated. Today, 

the reactions of computer systems are, in most cases, 

predictable [22], which provides attackers with infor-

mation on how to access them. It has been shown that 

deception technologies are used in many successful 

computer hacks, including phishing, social engineering, 

and drive-by-downloads attacks.  

Paper [23] provides an overview of the problem of 

baits and defense strategies based on deception technol-

ogy. The author defines the phenomenon of baits and 

summarizes their advantages and disadvantages, and 

their legal and ethical aspects. Baits are classified into 

different categories, and examples of baits that are ac-

tively being developed and those that have had a signif-

icant impact are presented. Baits are designed to distract 

attackers from computer resources [24]. Baits also track 

attacker activity and help researchers study attack pat-

terns. However, baits can also be identified by attackers 

using various identification methods. A decoy [25] is a 

tool with an isolated and separated network that mimics 

a real network of value to attackers. It can be seen as a 

fake system that looks like the real thing and aims to 

attract attackers, interact with them, and monitor the 

interaction between the attackers and the infected de-

vice. At the same time, baits are becoming an important 

entity for information cybersecurity researchers to rec-

ognize attacks and in deception technology. Today, a 

significant number of devices are connected to the In-

ternet [26], which increases the need to protect them 

from cyberattacks. The decoy-based deception mecha-

nism is considered to be a method to ensure the security 

of modern IoT networks. 

The tactic of confusing the attacker is presented 

in [27]. A self-adaptive system that incorporates resili-

ence mechanisms is presented in [28]. The analysis of 

computer attacks and malware in terms of the imple-

mentation of the developed methods in detection sys-

tems is presented in [29, 30]. An important feature in 

the development of detection methods is to take into 

account the peculiarities of their implementation direct-

ly in systems [31]. 

In [32], a model and training method for malware 

traffic detection based on a decision tree ensemble is 

presented. methods and technologies for ensuring cy-

bersecurity of industrial and web-oriented systems and 

networks are presented in [33]. Another cyber attack 

detection system based on information-extreme machine 

learning is presented in [34]. In the study [35] an over-

view of cyber threats and vulnerabilities is presented. 

The article [36] presents the consistency issue and relat-

ed trade-offs in distributed replicated systems and data-

bases. The study [37] presents a method for classifying 

malware using images that use dual attention and con-

volutional neural networks. In [38], state-of-the-art 

malware classification approaches are presented. The 

study [39] proposes an unsupervised deep learning ap-

proach that employs an artificial neural network to de-

tect anomalies in an insider cyber security attack scenar-

io. 

Thus, the use of false decoy and trap attacks is a 

promising and actively developing area of research. The 

creation and management of such false objects requires 

the development of a distributed system for operation in 

a corporate network, which would organize the func-

tioning of the entire system at the levels of interaction of 

its components, decision-making, and autonomous op-

eration of individual components. In this regard, the 

principle of synthesizing such systems using false attack 

objects and, accordingly, sets of baits and traps needs to 

be developed. 
 

1.4. The purpose and tasks of research 
 

From the above review of literature sources, it fol-

lows that the following task needs to be solved: the de-

velopment of a new principle for synthesizing deception 

systems and a method for synthesizing partially central-

ized distributed systems. 

The aim of this paper is to develop a principle of 

multi-computer deception systems for malware and 

computer attack detection based on baits and traps and 

to develop a method of creating partially-centralized 

systems as a class of deception system. Such systems 

should confuse attackers, which will improve the effec-

tiveness of countering malware and cyberattacks. 

The paper structure is as follows. 

Section 1 is devoted to previous work. Section 2 

presents the Related works section – a brief analysis of 

the very modern and the latest ideas and methods ad-

dressed to solve the problem of IoT malware detection 

with its advantages and disadvantages. Sections 3 and 4 

discuss the main idea of the research: the development 

of the principle of synthesis of multicomputer systems 

of combined bait and traps and the method of creating 

partially centralized systems for detecting malware in 

computer networks. Section 5 describes the experi-

mental results of this research. In addition, conclusions 

present the obtained results of the research. 
 

3. Principle of synthesis  

of multi-computer systems using combined 

anti-virus bait and traps  

and the decision-making controller  

for detecting malware and computer  

attacks in corporate networks 
 

Users of computer networks need systems for de-

tecting malicious software and computer attacks that 

will allow, in addition to ensuring security at various 
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stages of possible penetration of computer systems or 

stations that are connected to the network, for the stage 

when at all previous stages such detections were not 

made, but penetration of the system could have oc-

curred. Among the systems for detecting malware and 

computer attacks, there are systems that, in addition to 

detecting threats, create false targets for attacks in com-

puter networks, which allows administrators of such 

networks to monitor processes in networks that are ma-

licious or abnormal and need to be stopped. Therefore, 

systems focused on the detection of malware and com-

puter attacks that have passed certain stages of protec-

tion, which used traditional means and systems of pre-

vention, detection, and counteraction, the purpose of 

which and possible configuration options for use are 

known to attackers, are promising for development. 

Among such systems, a special place in the classifica-

tion is occupied by prevention, detection, and counter-

action systems with a certain set of baits and traps for 

malware and computer attacks. Their use creates false 

attack targets for the attacker and allows the information 

about such attacks and the spread of malware in com-

puter stations in the network to be saved. 

To improve the effectiveness of systems for detect-

ing and counteracting malware and computer attacks 

through the use of baits and traps, it is necessary to inte-

grate these tools into complex systems involving all 

computer stations in the network and organize their op-

eration in such a way that they can jointly and without 

user intervention respond to malicious and anomalous 

processes. Thus, it is necessary to build not just one bait 

and trap in a particular computer station but a network 

of bait and traps to provide comprehensive protection of 

a computer network at the stage when computer attacks 

have managed to pass through firewalling and malware 

has managed to overcome scanning by antivirus tools 

and systems.  Such a system of baits and traps can be a 

combined system, and to achieve an effective result, it 

should include shadow baits and traps that will allow 

you to establish and track the attacker’s behavior during 

the attack, as well as detect malware and computer at-

tacks with a higher probability. The effectiveness of 

such tools depends on the organizational component of 

the system.   

Such a principle should define the general re-

quirements for the construction of elements of the theo-

ry of creating multi-computer systems with combined 

baits and traps and a decision-making controller to de-

tect and counteract malware and computer attacks. 

When describing these systems, the guiding principle 

encompasses the fundamental traits that enable the sys-

tem to operate effectively. Without formalization and a 

clear demonstration of its proper functionality, the sys-

tem will fail to achieve its intended purpose. In addition, 

the principle of synthesis of such systems will allow the 

formation of a class of such systems and will develop 

elements of the theory of multicomputer systems in 

terms of systems that combine specialized functionality 

with a decision-making controller to detect malware 

using combined baits and traps. 

In the context of the development of elements of 

the theory of multicomputer systems, this principle is a 

systematic principle because it refers to the definition of 

the mechanisms of system functioning. In this case, it is 

necessary to specify such features and characteristic 

properties of the systems that reflect the smallest num-

ber of factors that will determine how the system will 

function. 

The principle of the synthesis of multicomputer 

systems with combined baits and traps and a decision-

making controller for detecting and counteracting mal-

ware and computer attacks is set by considering the de-

tails of the system's decision-making controller and  

specialized functionality for detecting malware using 

combined baits and traps. 

The architecture of multicomputer systems, taking 

into account the principle of synthesis of such systems, 

can be centralized, decentralized, or hybrid with differ-

ent degrees of centralization. Accordingly, the decision-

making center of such multicomputer systems may be 

located in one or more components of the system, and 

this, like the architecture, will not affect the principle of 

system synthesis and its non-fulfilment. The centre can 

move between components depending on the current 

state of the system. In addition, the architecture of such 

systems can be flexibly rebuilt, if necessary, when the 

external environment changes and the system is affect-

ed, which characterizes the specifics of the tasks it per-

forms. However, such features do not affect the re-

quirement of the principle of synthesis of such systems. 

The peculiarity of the proposed principle of system syn-

thesis is that it ensures control over the decisions made 

in the decision-making center, i.e., the mandatory pres-

ence of a decision-making controller. At the same time, 

the decision controller should be able to influence their 

implementation by approving or rejecting the proposed 

next steps of the system, as well as approving another 

close or alternative solution. Such features of a decision 

controller are required because the system is designed to 

perform specific tasks associated with the interaction of 

system components or elements with malware and com-

puter attacks. Accordingly, attackers can repeat their 

actions many times in the same way, which will bring 

the system and its respective components to the same 

state. Because of such testing of the system, the attacker 

will be able to study its behavior and in a certain time 

will be able to bypass it. Therefore, the system’s deci-

sion controller should influence the final decision-

making by selecting the next steps of the system as a 

reaction to changes in the external environment and the 
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state of the system and its components. Such a change 

in the choice of the next steps of the system will lead to 

complications for the attacker in terms of studying the 

behavior of detection tools for countering malware and 

computer attacks in corporate networks.  

The requirement to combine in such systems spe-

cialized functionality for processing events in a corpo-

rate network, i.e., spatial distribution, and the presence 

of a decision-making subsystem in which decisions will 

be developed, and their implementation is possible only 

after approval by the controller, establishes factors for 

developing the principle of synthesis of multi-computer 

systems with combined baits and traps and a decision-

making controller for detecting and counteracting mal-

ware and computer attacks. In particular, we formalize 

the systems, their components, and their properties that 

are necessary to fulfill the requirements of the principle 

of system synthesis. 

Let us denote by the symbol 𝔓 the principle of the 

synthesis of multicomputer systems with combined baits 

and traps and a decision-making controller to detect and 

counteract malware and computer attacks. Then, as a 

mapping from the entire set of multicomputer systems 

ℭ, it will form a subset of systems 𝔖 for which the re-

quirement of the principle 𝔓 will be fulfilled. That is, 

the given mapping by the formula ℭ
𝔓
→𝔖  will form a 

class of systems with the requirements set by the princi-

ple 𝔓, and it is necessary to detail the components of 

such systems for their further synthesis. Let us define 

each of the defining components and properties that 

need to be implemented in the architecture of such sys-

tems as a subset 𝔙𝑖 (i = 1,2,… , n𝔙, n𝔙 is the number) 

The presence of possible variants among  

𝔙𝑖  (i = 1,2,… , n𝔙, n𝔙 is the number) is acceptable. For 

example, such systems may be centralised, decentralised 

or hybrid with a certain degree of centralization, which 

may also provide opportunities for their division into 

separate types, and at the same time they will meet the 

requirements of the 𝔓 principle.  

Let us consider possible variants of components 

and defining properties for the class of systems 𝔖: 𝔙1is 

type of system architecture (centralised, decentralised, 

hybrid); 𝔙2 is types and number of centres in the system 

architecture (integral in one component, divided into 

equivalent parts in different components, hierarchically 

divided in different components, integral hierarchical in 

different components); 𝔙3 – adaptability of the system 

when external conditions change (change of its func-

tioning algorithms, change of system architecture, 

change of functioning algorithms and change of system 

architecture); 𝔙4 – the nature of changes in the centre of 

the system (change in parameter values, change in the 

architecture of the centre, change in parameter values 

and change in the architecture of the centre); 𝔙5 – self-

organization of the system (creation of the organization 

of functioning of a complex system, reproduction of the 

organization of functioning of a complex system, im-

provement of the organization of functioning of a com-

plex system), 𝔙6 – flexibility of the system (quick re-

configuration of the system under the influence of ex-

ternal events, latent reconfiguration of the system);  

𝔙7 – independence in decision-making (decision-

making by the entire system centre, decision-making by 

a part of the system centre); 𝔙8 – influence on the sys-

tem (internal events, external events, internal and exter-

nal events); 𝔙9 – multi-agency in the system for deci-

sion-making (multi-agency, single-agency, no agents);  

𝔙10 – control of decisions in the system (presence of a 

controller, absence of a controller); 𝔙11 – availability of 

specialised functionality in the system (formation of 

internal events in the system by specialised functionality 

based on the results of execution of the Each of the 

characteristics 𝔙𝑖 (i = n𝔙, n𝔙 is the number of charac-

teristics) is a set that contains typical elements related to 

systems ℭ. When applying the principle 𝔓, systems of 

type ℭ are synthesised. To synthesize systems according 

to the principle 𝔓, that is, the formation of the set ℭ 

according to the definition of the direct product of sets 

𝔙𝑖 (i = n𝔙, n𝔙 is the number of characteristics) is as 

follows: 

 

𝔖 = {(𝔳1, 𝔳2, … , 𝔳11)|(𝔳1, 𝔳2, … , 𝔳11)  ∈ 

∈ 𝔙1 ×𝔙2 ×…×𝔙10,1 ×𝔙11},    (1) 

 

where 𝔙i (i = n𝔙, n𝔙  is the number of characteristics) 

are subsets with elements that characterize the features 

of the system architecture; 𝔳10 is an element that deter-

mines the presence of a controller in the system; set 

𝔙10,1 is a one-element set; 𝔳1, 𝔳2, … , 𝔳11 are the designa-

tions of elements in sets 𝔙1, 𝔙2, … ,𝔙11, respectively. 

Thus, the number of systems of type 𝔖 according 

to the 𝔓 principle is different, but according to formula 

(1), they are all united by the presence of a controller in 

their architecture. The number of subsets 𝔙𝑖  (i = n𝔙, 

n𝔙 is the number of characteristics) can be different, 

including less than 𝑛𝔙, but the presence of the one-

element set 𝔙10,1  and the set 𝔙11 in the direct product 

of sets is mandatory. 

Such a division of the system architecture by in-

ternal structure makes it possible to determine the nec-

essary elements and components in the system architec-

ture, which will contain a controller and specialized 

functionality, and is the basis for developing the concept 

and methodological foundations for the synthesis of 

such systems. In contrast to the known principles of the 

synthesis of multi-computer systems with combined 

baits and traps and a decision-making controller for de-

tecting and countering malware and attacks, the pro-
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posed principle of the synthesis of such systems con-

tains two defining requirements for the system architec-

ture. The decision-making controller is separated from 

the system center, which makes it possible to form its 

architecture separately from the architecture of the sys-

tem center and, as a result, to make decisions on the 

decisions developed in the system center independently 

of it. This is due to the specifics of the system and gives 

the system an advantage over attackers or their tools, as 

it generates different final system responses under the 

same initial conditions at different times, which confus-

es attackers.    

Let us consider a method for synthesizing systems 

with partial centralization in their architecture.  Simul-

taneously, the synthesis method does not define a con-

troller, but primarily implements partial centralization 

and investigates the degree of degradation of such sys-

tems depending on the time of their operation and the 

impact of malware and computer attacks. 

 

4. Method for creating partially  

centralized systems for detecting malware 

in computer networks 
 

A method for creating partially centralized systems 

to detect malware in computer networks was developed. 

The generalized scheme is presented in Fig. 1. 

In partially centralized distributed systems, it is 

necessary to synthesize the following principles of op-

eration, functional features and characteristics: 1) for-

mation of the system from components; 2) communica-

tion between system components; 3) maintaining the 

integrity of the system; 4) partial centralization;  

5) migration of the decision-making center of the sys-

tem; 6) assessment of the state of components and the 

system; 7) evaluation of the results of distributed calcu-

lations in components; 8) formation of a decision in 

several components; 9) reorganization of the system 

architecture; 10) determination of further steps of the 

system at the current time; 11) completion of the func-

tioning of the components and the system. 

Let’s detail each of the given principles of func-

tioning and characteristics. All of these must be synthe-

sized in such systems completely. Because of such a 

synthesis, the system will become self-organized, adap-

tive, and partially centralized. 

Formation of system S from components can be 

performed at the beginning of its installation and activa-

tion, during operation if necessary, and after turning on 

the computer stations in the network. In addition, new 

components can be added to the system or existing ones 

can be removed. In addition, some of the computer sta-

tions in which the components are installed may be 

turned off for a long time; therefore, the system will 

contain a smaller number of components. 

 

 
Fig. 1. Generalized scheme of the method 

 

Computer stations with system components can be 

turned on at the same time or at different times. Com-

puter stations may not be turned off, that is, they may be 

turned on all the time. These cases will influence the 

formation of system S. Let's set them in the system so 

that its decision-making center can consider these cases 

and their variations in the process of system formation 

and functioning, and as an active last event. Variants of 

the formation of the system are defined as a set,  

 

MS
var,1 = {mS,1

var,1,mS,2
var,1,⋯ ,mS,n

MS
var,1

var,1 },  

 

where nMS
var,1 is the number of options. For example, 

the following elements: mS,1
var,1

 – characterizes the for-

mation of the system at its beginning and activation; 

mS,2
var,1

 - characterizes the formation of the system in the 

process of functioning as needed; mS,3
var,1

 – characterizes 

the formation of the system after turning on computer 

stations in the network. The options that are set by the 

plural MS
var,1

, there can be only one at the current mo-

ment of time. That is, system S will analyze the last 

version of its formation. To determine the last variant of 

system formation, we introduce a predicate on the ele-

ments of the set as follows: MS
var,1. The options that are 
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set by the plural, there can be only one at the current 

moment of time. That is, the system analyzes the last 

version of its formation. To determine the last variant of 

system formation, we introduce a predicate on the ele-

ments of the set as follows: The options that are set by 

the plural, there can be only one at the current moment 

of time. That is, the system analyzes the last version of 

its formation. To determine the last variant of system 

formation, we introduce a predicate on the elements of 

the set as follows:  

 

PS
var,1(mS,q

var,1) = {
0,mS,q

var,1  —  not current version,

q,mS,q
var,1  —   current version,

 

q = 1,2,… , nMS
var,1 .                   (2) 

 

Similarly, we introduce the set of variations by the 

set MS
var,2 = {mS,1

var,2,mS,2
var,2,⋯ ,mS,n

MS
var,2

var,2 }, here 

nMS
var,2 is the number of variations. For example, the 

following elements: mS,1
var,2

– supplementing the system 

with new components; mS,2
var,2

– removal of components 

from the system. For variations given by a set of cases 

MS
var,2

, we introduce a predicate, the value of which will 

reflect their presence or absence, so 

 

PS
var,2(mS,q

var,2) = {
0,mS,q

var,2  −  not current version,

q,mS,q
var,2  −   current version,

 

 q = 1,2,… , nMS
var,2 .                         (3) 

 

Similarly, we introduce the set of variations by the 

set MS
var,3 = {mS,1

var,3,mS,2
var,3,⋯ ,mS,n

MS
var,3

var,3 }, where 

nMS
var,3

 
is the number of variations. For example, the 

following elements: mS,1
var,3

– computer stations, in which 

there are system components, turned on at the same 

time; mS,2
var,3 – computer stations in which there are sys-

tem components that are turned on at different times; 

mS,3
var,3

 – computer stations, in which system compo-

nents are present, are not turned off for the entire time 

of system operation. For variations given by a set of 

cases MS
var,3

, we introduce a predicate, the value of 

which will reflect their presence or absence:  

 

PS
var,3(mS,q

var,3) = {
0,mS,q

var,3  —  not current version,

q,mS,q
var,3  —   current version,

 

 q = 1,2,… , nMS
var,3 .                     (4) 

 

Similarly, we introduce the set of variations by the 

set  

 

MS
var,4 = {mS,1

var,4,mS,2
var,4,⋯ ,mS,n

MS
var,4

var,4 }, 

 

where nMS
var,4 is the number of variations. For example, 

the following elements: mS,1
var,4

 
– part of the computer 

stations in which the components are installed may be 

turned off for a long time, the system will contain a 

smaller part of the components, and at this time its cur-

rent formation may occur caused by certain events 

without these components; mS,2
var,4

 
– the new formation 

of the system did not occur without the components that 

were located in the switched off computer stations. For 

variations given by a set of cases MS
var,4

, we introduce a 

predicate, the value of which will reflect their presence 

or absence: 

 

PS
var,4(mS,q

var,4) = {
0,mS,q

var,4  —  not current version,

q, mS,q
var,4  —   current version,

 

q = 1,2,… , nMS
var,4.                    (5) 

 

Formulas (2) – (5) describe the stage at which sys-

tem S is formed and specify its variants. The results of 

the predicate calculation form part of the input data for 

the system’s decision-making center. After installing all 

the components of the system in the computer stations 

in the network, considering the components with and 

without the decision center, when the system is first 

started, the components with the decision center check 

the predicate values for the various elements of the set  

MS
var,1

 and establish that all values are equal to zero. 

Then, the system will independently, without a user or 

administrator, begin the initial formation of its compo-

nents from the existing subset functions, and after the 

completion of such formation, it will proceed to the di-

vision of components with a decision-making center 

into active and inactive ones.  

To ensure communication between components in 

system S, we will organize communication between 

components not only using the standard sending of mes-

sages with the appropriate number of confirmation mes-

sages, but also with the sequential addition of certain 

tasks to them, the result of which is known in the com-

ponents that plan to send the main message or task, as 

well as conducting an analysis of the time spent be-

tween sending the first connection request and receiving 

the results of the test task. In general, the entire system 

S will act as one big sensor that will respond to changes 

in the operation of its parts, including communication 

between components. If all the components are turned 

off at the same time, then they could fix a certain task in 

themselves, the execution of which they should perform 

after the next turn on. Shutting down computer stations 

may be correct, and then such an action of fixing the 
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same control task for its use as confirmation of the legit-

imacy of the connection with the corresponding compo-

nent could be implemented and fixed statically. Howev-

er, it may happen that the computer station will turn off 

in an emergency, and such fixation of a certain control 

task will not happen. Thus, the introduction of redun-

dancy in the organization of communication between 

components requires consideration of options with ena-

bled and disabled computer stations and synchronization 

of the time during which the components are active and 

establish communication with each other. Therefore, 

let’s introduce a set of options 

  

MS
var,5 = {mS,1

var,5,mS,2
var,5,⋯ ,mS,n

MS
var,5

var,5 },  

 

where nMS
var,5 is the number of options that arise when 

redundancy is introduced to organize communication 

between components. The elements of the set are as 

follows: mS,1
var,5

– computer stations in which system 

components are available, turned on at the same time;
 

mS,2
var,5

 – computer stations, in which system compo-

nents are present, are turned on at different times, and a 

part may be turned off after a certain time of operation, 

and a certain part may be turned on after this time, or 

not turn on at all for a long time. Accordingly, the sys-

tem S components should also be active only when the 

computer stations are turned on and functioning. Let’s 

also introduce a set of options

  

MS
var,6 = {mS,1

var,6,mS,2
var,6,⋯ ,mS,n

MS
var,6

var,6 }, 

 

where nMS
var,6

 
is the number of options that arise when 

the computer stations, in which the system components 

are installed, are terminated. The elements of the set are 

as follows: mS,1
var,6

 – computer stations, in which the 

system components are present, turned off correctly at 

the same time; mS,2
var,6

 
– computer stations, in which 

there are system components, turned off by emergency 

at the same time;
 
mS,3
var,6

 – computer stations that have 

system components, turned off at different times cor-

rectly; mS,4
var,6

– computer stations, in which there are 

system components, turned off at different times, partly 

correctly and partly in an emergency. According to the 

given sets, it is possible to form two-element sets that 

characterize the events related to communication in the 

system depending on the computer stations as follows: 

 

{mS,1
var,5;mS,1

var,6}; {mS,1
var,5;mS,2

var,6}; {mS,1
var,5;mS,3

var,6};  

{mS,1
var,5;mS,4

var,6}; {mS,2
var,5;mS,1

var,6}; {mS,2
var,5;mS,2

var,6}; 

{mS,2
var,5;mS,3

var,6}; {mS,2
var,5;mS,4

var,6}. 

 

For individual computer stations, it is necessary to 

develop similar tasks in sets because, according to them, 

communication between individual components in the 

system will be ensured. In general, in the system, com-

munication between components and sending messages 

will be established according to the following relations: 

"one to all" (mS,1
var,7

); "all to one" (mS,2
var,7

);  "to each 

other" (mS,3
var,7

);  "one to a certain number, but not to all" 

(mS,4
var,7

); "a certain number, but not all, to one" 

(mS,5
var,7

); "a certain number, but not all, to a certain 

number, but not to all" (mS,6
var,7

). Let's define these rela-

tions as a set  

 

MS
var,7 = {mS,1

var,7,mS,2
var,7,⋯ ,mS,n

MS
var,7

var,7 }, 

 

where nMS
var,7

 
 is the number of and nMS

var,7 = 6. 

To specify the connection between individual 

computer stations, we introduce a set of options 

 

MS
var,8 = {mS,1

var,8,mS,2
var,8,⋯ ,mS,n

MS
var,8

var,8 }, 

 

where nMS
var,8 is the number of options that arise in the 

process of establishing a connection between the com-

puter stations in which the system components are in-

stalled. The elements of the set are as follows: mS,1
var,8

 
– 

a computer station in which the system component is 

present, turned on; mS,2
var,8

 
– the computer station, in 

which the system component is present, is turned off 

correctly; mS,3
var,8

 – a computer station, in which a sys-

tem component is present, is turned off by emergency. 

According to the given set, we will form two-element 

subsets that characterize the state of the computer sta-

tions regarding their start and end of work as follows: 

{mS,1
var,8;mS,2

var,8}; {mS,1
var,8;mS,3

var,8}. Therefore, if the state 

of the computer station, in which the system S compo-

nent is present, is characterized by the subset 

{mS,1
var,8;mS,2

var,8}, then the messages it receives and sends 

will be considered by the decision-making center to be 

executed correctly. Otherwise, that is, for a subset 

{mS,1
var,8;mS,3

var,8}, the decision-making center records 

such an event and, when the computer station is turned 

on next, processes an additional special procedure for 

establishing communication with this component to 

update this component in the system. In addition, when 

performing a standard communication action between 

any two components of the system, regardless of the 

type of element of the set MS
var,7

, the performance of an 
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additional check is mandatory and consists of the per-

formance of a certain task of the component that plans 

to establish a connection and an equally certain task 

from the component with which communication is 

planned. 

Thus, the establishment of communication be-

tween system components in different nodes in the net-

work will be carried out considering the types of rela-

tions that allow the synthesis of partial centralization 

and additional verification of the legitimacy of the com-

ponent. 

An enterprise’s corporate network can have several 

segments. Components of system S can be installed in 

different parts of the network and remotely in home 

computer stations. Within the corporate network, 

switches may fail or there may be other reasons that will 

cause the system to be divided into two or more unrelat-

ed subsystems. That is, the system in the process of 

functioning can disintegrate into unrelated parts. Then, 

each of the parts transforms itself into a reduced system 

S and continues to work if at least two active compo-

nents with a decision-making center remain in each of 

the parts. If one of the parts does not have active com-

ponents with a decision center and is inactive, then the 

components of this part block the operation of the com-

puter stations and issue a corresponding message to the 

administrator. If components with a decision center are 

inactive at the moment of a certain emergency or inten-

tional separation of the second part, which will contain 

all active components with a decision center of the sys-

tem, then their transfer to the active state will occur af-

ter another communication session and establish the 

absence of active components with the center decision-

making. Maintaining the integrity of system S during its 

operation will be ensured by the periodic exchange of 

messages between the system components according to 

relations from the set MS
var,7

, which will be chosen ran-

domly. In addition to these two cases, which character-

ize ensuring the integrity of the system, there is also a 

case related to the partial centralization synthesis in sys-

tem S. If part of the active components, which contain 

the decision-making center of the system, is removed 

from the system for certain reasons, then the remaining 

part will begin the procedure of forming the system 

from the existing components. However, if there are less 

than two such components, then all active components, 

including those without the functionality with a deci-

sion-making center, will block the operation of comput-

er stations and will issue a corresponding message to the 

system administrator. Thus, the given organization of 

system integrity support considers the possibility of 

synthesis in system S of partial centralization and adapt-

ability.  

The partial centralization of the system is specified 

in its designed architecture, in particular by the follow-

ing formula (4, [1]). The system is partially centralized 

because all its components are divided into two subsets: 

a subset of components that can be the center of the 

system and a subset of components that lack functions 

to ensure the functioning of the decision-making center 

of the system. The management of the entire system 

occurs from the components in which the decision-

making center of the system is located. Therefore, it is 

centralized. Partial centralization is ensured by the fact 

that the components of system S, in which the decision-

making center of system S for decision-making is locat-

ed, develop proposals separately in each of these com-

ponents, that is, decentralized, and agree to it jointly by 

all. Thus, the system is not fully centralized.  

We will consider partial centralization in relation 

to the components that may contain the decision-making 

center of the system. Most of the installed components 

of system S in computer stations must contain function-

ality that ensures the functioning of the decision-making 

center of the system. After the installation of the system 

is completed, the system is started for the first time with 

all the computer stations in which the system compo-

nents are installed turned on. At this stage of the sys-

tem’s functioning, all components that may have a deci-

sion-making center of the system will participate in the 

preparation of the first final decision to determine the 

first step of the system. This solution will reduce the 

number of active components of the decision-making 

center by switching some of them to an inactive state. 

Let's set the set of states into which system S can go  

 

MS
st = {mS,1

st ,mS,2
st ,⋯ ,mS,n

MS
st

st }, 

 

where nMSst  
is the number of states. Then, mS,1

st

 
– the 

state of the system in which the active components of 

the decision-making center are updated. The decision to 

transition to this state is determined by the active com-

ponents of the system’s decision-making center. Imple-

mentation of system management is determined by the 

decision-making center of the system. Decisions will be 

formed and instructions will be sent to the components 

for their implementation. The formation of the decision 

in the system will be carried out in the active compo-

nents of the decision-making center. If we consider 

them collectively with the number of more than one, at 

the architectural level, they can be positioned as a de-

centralized subsystem. Therefore, the formation of the 

final solution will be performed according to the solu-

tions that will be obtained from the active components 

and their processing. The completion of the process of 

working out the final solution will be the transition of 

the system to a state. The transfer of the decision from 

the active components of the decision-making center of 

the system to the specified components will be per-
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formed according to the relation set by one of the ele-

ments mS,5
var,7

 or mS,6
var,7

,  and will transfer the system to 

the next state. Thus, the main steps in the synthesis of 

partial centralization in the system are to ensure the im-

plementation of the formation of components in which 

the decision-making center will function, the formation 

of decisions in the components and the final decision, 

and the processing of the final decision in terms of send-

ing it to the components in which it should be done. To 

form decisions, the corresponding components receive 

certain messages or results in the process of system op-

eration.  

The elements of the set of states MS
st

 will specify 

the current states of the system as a whole and its com-

ponents. Transitions from state to state are set in ordered 

pairs (mS,p
st , mS,q

st ), where  p is the number of the current 

state of the system and q is the number of the next state 

of the system. Both states of the system will necessarily 

apply to its component. In particular, the transition from 

the current state to the next state may not cover all com-

ponents of the system in terms of performing certain 

actions to achieve a complete transition of the entire 

system to the next state. Thus, the set states MS
st

  will 

characterize the system as a whole, and for the system 

components MS
st, they will be the same according to the 

list of elements of the set, but the state of individual 

components will be specified separately, because the 

components may not be in the same state at the same 

time. Individual components of the system can change 

their state according to the elements of the set MS
st more 

often than the system. When the system transitions from 

state to state, a certain part of the components may be 

involved in the process, and their states may also change 

as a result. It is assumed that the functioning of the sys-

tem is possible in the presence of at least two compo-

nents, which can be the center of the functioning of the 

system. Thus, scaling the system through its states for a 

minimal number of components is admissible. The tran-

sition from state to state is provided by a certain set of 

functions. In one cycle, the system can change several 

states if it decides to do so. The system can form new 

states by combining the states known to it. In a certain 

state, the system receives current and input data, for the 

processing of which appropriate functions will be in-

volved. As a result, a field of events for processing is 

formed, which is defined by the set of events  

 

MS
pd
= {mS,1

pd
,mS,2

pd
, … ,mS,n

MS
st

pd
 }, 

 

where MS
pd

  is the number of events.  

When the number of enabled computer stations 

changes, the number of components in the system 

changes, particularly those that may have a decision-

making center in the system. Moreover, during a certain 

time of the system's operation, events may occur that 

will require a change in the state of the system in rela-

tion to some components that may contain the system’s 

decision-making center. Therefore, the migration of the 

decision-making center of the system between certain 

components must be specified by certain appropriate 

functions for its implementation by the system itself. 

Considering the target orientation of system S for 

the detection of malicious software, it is necessary to 

determine, in addition to the current state of the compo-

nents and the system, the security state of the computer 

stations in which the components are installed and their 

own security state. Thus, to ensure the proper function-

ing of the system and to make decisions regarding its 

further functioning, the following states need to be tak-

en into account: the state of the system, the states of 

components, and the states of computer stations. The 

values of these states will be determined not only with 

respect to their safety in relation to the effects of mali-

cious software but also with respect to the general load-

ing of computer station resources and the load of exe-

cuted tasks in the component. We integrate the general 

states of the components and computer stations into one 

system component state indicator according to formula 

(53, [1]), according to which we calculate the value for 

each component a3,S1,n
′ . We determine the state of the 

system as a whole according to the states of its compo-

nents, considering the values a3,S1,n
′  for all components 

that are currently active in the system, as follows: 

 

aS,t
st,1 =

1

p
∙ ∑ a3,Si,n,q

′p
q=1 ,   (6) 

 

where p is the number of active system components in 

enabled computer stations; p = 1,2,… , n, n – the num-

ber of components in system S; a3,SI,n,q
′  – the value 

a3,S1,n
′  in the q ith component.  

In the components of system S, calculations will 

be carried out and transferred to the active components, 

in which the decision-making center of the system will 

function. In the active components of the decision-

making center, certain tasks can also be performed and 

their results obtained. Under certain circumstances, not 

all components can receive the result of the assigned 

task and transmit it within the given time intervals. In 

addition, in certain components, the results of the per-

formance of the assigned task may be different from the 

results obtained from most components that were in-

volved in its performance. Not all the results of the as-

signed task will have clear expected numerical values. 

For the formation of the final result for its use in deter-

mining the further steps of the system in the compo-

nents of the decision-making center, it is necessary to 

divide the components from which the results of the 
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task were obtained into two classes. All tasks that can 

be performed by the system are divided into subset 

functions that can perform them and types of compo-

nents in which they can be performed. The states of the 

components will constantly change. They do not have 

static numerical values. The values of the characteristic 

indicators of the system components, depending on the 

types of tasks performed are determined by formulas 

(12, [1]), (44, [1]) and (53, [1]). Calculate each value  

a1,Si
′ , a2,Sk+1,n

′ , a3,S1,n
′  for individual components of the 

system, functions with five arguments fa1,Si
′ , fa2,Sk+1,n

’ , 

fa3,S1,n
’  are used, respectively. For task types, only one of 

the three values will be calculated. But its value will be 

obtained according to the five arguments of the corre-

sponding function. Let's consider options for defining 

the functions fa1,Si
′ , fa2,Sk+1,n

’ , fa3,S1,n
’  . 

The first option can be used to determine the val-

ues of the functions fa1,Si
′ , fa2,Sk+1,n

’ ,  fa3,S1,n
’  is given by 

the arithmetic mean value of all five arguments as fol-

lows:  

 

A1,SI
’ = fa1,SI

’ (a1,SI,1
’ , a1,SI,2

’ , a1,SI,3
’ , a1.SI,4

’ , a1,SI,5
’ ) =∙ 

= 
1

5
∙ ∑ a1,SI,q

’5
q=1 ,                           (7) 

 

a2,Sk+1,n
' =

fa2,Sk+1,n
' (a2,Sk+1,n,1

' , a2,Sk+1,n,2
' , a2,Sk+1,n,3,

' a2,Sk+1,n,4,
' a2,Sk+1,n,5)=

'   

= 
1

5
∙ ∑ a2,Sk+1,n,q

’5
q=1 ,                           (8) 

 

A3,SI,n
’ =

fa3,SI,n
’ (a3,SI,n,1

’ , a3,SI,n,2
’ , a3,SI,n,3

’ , a3,SI,n,4
’ , a3,SI,n,5

’ ) =∙ 

= 
1

5
∙ ∑ a3,SI,n,q

’5
q=1 ,                           (9) 

 

After obtaining values according to formulas (7) – 

(9) for each of the components to which the task was 

sent for execution, it is necessary to divide these values 

into two classes. The first class will include those values 

that are equal to or are closest to one on the numerical 

axis, and the rest will be included in the second class. 

Then, the results of the task, which are obtained from 

components with values from the first class, will be ac-

cepted with the appropriate degree of confidence. If 

they are numerical, the arithmetic mean value will be 

calculated as the final result. If the values of the per-

formed task are non-numeric, then the result of the exe-

cution will be accepted as completed if the first class is 

not empty. If the first class is empty, the task is per-

formed again. To form two classes, we form an interval 

for the values (a1,Si
′ , a2,Sk+1,n

′ , a3,S1,n
′ ) from the compo-

nents so, so that the minimum of them is the lower limit 

of the interval, and the upper limit of the interval is the 

number one. The interval formed in this way will con-

stantly change for each new task, since the lower limit 

will be changed. Let's set the lower limit for the first 

class as 20% of the deviation from unity to the lower 

limit, and for the second class, respectively, as 80% of 

the deviation from the lower limit of the interval. The 

common value of the two classes will be assigned to the 

first class, then the values of the second class will be in 

the interval with an open upper border. Let's define an 

interval with classes as follows: and for the second 

class, respectively, as 80% deviation from the lower 

limit of the interval. The common value of the two clas-

ses will be assigned to the first class, then the values of 

the second class will be in the interval with an open 

upper border. Let's define an interval with classes as 

follows: and for the second class, respectively, as 80% 

deviation from the lower limit of the interval. The 

common value of the two classes will be assigned to the 

first class, then the values of the second class will be in 

the interval with an open upper border. Let's define an 

interval with classes as follows: 

 

A1,S
’ = min (a1,S1

’ , a1,S2
’ ,… , a1,Sp

’ ) ; p ≤ I; 

a1,S
' = min(a2,Sk+1

' , a2,Sk+2
' ,… , a2,Sp

' ) ; p ≤ n; 

a1,S
' = min (a3,S1

' , a3,S2
' , … , a3,Sp

' ) ; 1 ≤ p ≤ n,      (10) 

 

where [a1,S
′ ; 1] – the range of all values; a2,S

′ = 1−

0,2 ∗ (1 − a2,S
′ ; 1) – the limit value of both classes; 

[a2,S
′ ; 1]  – range for values from the first class; 

[a1,S
′ ; a2,S

′ ] – range for values from the second class 

Thus, the clustering of values performed according 

to formula (10) allows the decision-making center of the 

system to accept the results of the task in the given 

components. 

However, when evaluating the results of distribut-

ed calculations in components according to the first op-

tion, the weight of the value of a certain characteristic 

indicator is leveled and can affect the assignment to a 

certain class. This is because, according to formulas (7) 

– (9), all terms are considered equivalent, regardless of 

their weight. Considering their weights in the overall 

resulting value is complicated, because these weights do 

not have established values and require the involvement 

of experts to determine them, which will affect the re-

duction of the self- organization of the system and their 

possible accuracy, in connection with the constant 

changes of states in computer stations. Therefore, con-

sider the second option for determining the values of the 

functions fa1,Si
′ , fa2,Sk+1,n

’ ,  fa3,S1,n
’  . 

To perform clustering into two classes according 

to the second option, we consider a five-dimensional 
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space in which the five arguments of the functions fa1,Si
′ , 

fa2,Sk+1,n
’ , fa3,S1,n

’   will set the points. Thus, when obtain-

ing the values of the arguments of the functions from 

the system components in which the task was per-

formed, the coordinates of points in the five-

dimensional space will be formed from them, with the 

subsequent division of the points into two classes. The 

choice of the classification algorithm and the metric will 

be made based on the fact that the valuable values for 

the system will be those that will be closest to the value 

equal to one. Accordingly, it is necessary to choose a 

classification algorithm and metric in such a way that 

the first class is formed, in which the element 

(1;1;1;1;1) would be, or the cluster would be formed in 

its absence, but with coverage of the area of the points 

closest to it.  

Let’s consider the known metrics and select a met-

ric for use in classification. The Euclidean distance met-

ric specifies the geometric distance between objects in 

space. The squared Euclidean distance metric is charac-

terized by giving more weight to the most distant ob-

jects. The Manhattan distance metric reduces the impact 

of individual long distances. The power-law distance 

metric is used when it is necessary to increase or de-

crease the weight for the dimensions of objects that dif-

fer significantly. Its disadvantage is the need to set two 

parameters. The Chebyshev metric is used if two objects 

differ by at least one coordinate. From the analyzed 

metrics, we will choose the Chebyshev metric, since 

according to it, it is possible to distinguish between two 

objects that differ by one coordinate, because the rest of 

the metrics with several different numerical coordinates 

can lead to certain identical distance calculations, which 

is inadmissible for the construction of the second variant 

of clustering. The Chebyshev metric defines the dis-

tance as follows: 

 

ρ(x, x′) = max
q=1,2,…,5

(|xq − xq
′ |),      (11) 

 

where xq
′  is the coordinate of the center of the cluster;  

q = 1,2,… , 5;  xq is the coordinate of a point in space. 

For clustering, we will use the k-means method 

because, according to its application results, all objects 

will be divided into relatively homogeneous classes. 

Achieving division into classes is ensured by minimiz-

ing the sum of squared distances between each of the 

five values of the characteristic indicators, i.e., the ar-

guments of the functions    fa1,Si
′ , fa2,Sk+1,n

’ ,  fa3,S1,n
’  and 

the center of the cluster, which is set as follows:  

 

dv = ∑ ( max
q=1,2,…,5

(|αw,Si,1,q
' -xq

' |))
2

p2
i=p1

,  (12) 

 

where xq
’  is the coordinate of the center of the cluster;  

q = 1,2,… , 5;  for the value function fa1,SI
’ , p1 = 1,   p2  

is the number of active components with the decision-

making center of the system; for the function fa2,Sk+1,n
′

 
 

value  p1 = k + 1,  p2  is the number of active compo-

nents without functionality for the decision-making cen-

ter of the system and  p2 ≤ n; for the function fa3,S1,n
′ ,

 
value p1 = 1,   p2 is the number of active components 

and  p2 ≤ n. 
At a certain step of the iteration, the value of the 

element specified by five coordinates will be chosen as 

the center of the cluster. We quantitatively establish two 

clusters for separating values. We record the values ob-

tained from the components in which the task was per-

formed in all active components that form the decision-

making center of the system. Let us take as the center of 

the first cluster the value given by the coordinates 

(1;1;1;1;1), and as the center of the second cluster, the 

value of the characteristic indicator, which is the most 

distant from the point with coordinates (1;1;1;1;1). If 

there are several such values, we take the last consid-

ered value that is suitable as the center of the cluster. 

The rest of the values are distributed between two clas-

ses according to formula (12), depending on the dis-

tance to the two centers of the two clusters in such a 

way that the class includes the value with the smallest 

distance according to the Chebyshev metric (formula 

(11)). To achieve the stability of clusters, that is, to as-

sign the same values to the clusters, the centers of the 

clusters need to be clarified through repeated iterative 

calculations. To select the next center of the cluster, we 

find the arithmetic mean value of all the values of the 

characteristic indicators that are part of a certain cluster. 

The search for such centers is carried out until the same 

values that were in the previous step of the iteration at 

another cluster center remain in the clusters. As a result, 

it is achieved that the variance between classes will be 

maximized and that between elements will be mini-

mized. To clarify the center of the cluster in the active 

components of the decision-making center, it is neces-

sary to organize iterative steps. In the future, at the next 

steps of the tasks, these clusters will be needed at the 

next stages of the same task to evaluate the discrepancy. 

In addition, in the presence of previous stories from the 

performance of the same assigned task, the decision-

making center of the system will average the values of 

the class limits based on the results of previous calcula-

tions to avoid system degradation, correct the assess-

ment of task performance in the system, and fix the re-

sult of the completed task. Thus, the classification ac-

cording to the k-means method is divided into two clas-

ses according to the second variant of the values of the 

characteristic indicators of the active components and 
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the functions fa1,Si
′ , fa2,Sk+1,n

’ , fa3,S1,n
’ , as implementing 

the calculation of these values according to the Cheby-

shev metric. 

To determine the components in which the task set 

by the system will be performed, the decision-making 

center of the system determines their security level 

through a survey of all components, which is calculated 

according to formula (6). Then, the center of decision-

making according to the first variant of division into 

classes (formulas (7) – (9)) determines half of the com-

ponents, i.e., a factor of 0.5 is put into formula (9) in-

stead of 0.2, in which the given task will be performed. 

If the assigned task requires immediate execution or has 

a status related to security research in components, it is 

performed by all components. A smaller number of 

components may be involved in the performance of the 

task, if there are many of them, but this number cannot 

be less than ten components. This is because of the need 

to have a sufficient sample of values to correctly deter-

mine the final result. At the same time, a certain part 

may not have enough time to complete it in the set time. 

If the number of components in the system is small, e.g., 

less than ten, all components are involved in the per-

formance of the assigned task. Each of the function sets 

and functions subsets in the components and the system 

as a whole have priorities that affect the number of 

components involved in performing the assigned tasks. 

These functions in components have clear connections 

with the tasks for which they are intended, which affect 

the number of components involved in performing the 

assigned tasks. These functions in components have 

clear connections with the tasks for which they are in-

tended, which affect the number of components in-

volved in performing the assigned tasks. These func-

tions in the components have clear connections with the 

tasks for which they are intended. 

The formation of a decision-making center can be 

carried out quantitatively from two to all components in 

which the corresponding functionality is installed. Deci-

sions about the number of active components of the 

decision-making center are made from the moment the 

system is started by all components in which the sys-

tem's decision-making center is present. If active com-

ponents with a decision center stop working during sys-

tem operation and the system continues, then the deci-

sion center adds new components to maintain the num-

ber of such components. To do this, he transfers them to 

the active state. The decision on the number of active 

components is made randomly by each active compo-

nent, and then their arithmetic mean value is found and 

its fractional part is discarded. 

In the process of functioning of the system, infor-

mation is accumulated in its components, which can be 

the decision-making center of the system. This infor-

mation is necessary to consider when making subse-

quent decisions about the next steps. However, not all 

components will have the same information about the 

passed system states, so mechanisms and functions must 

be introduced into them, which will allow it to be up-

dated to a certain level. Such information, which needs 

to be saved for use in determining the next steps of the 

system and which applies exclusively to ensuring the 

functioning of the system, includes: information about 

the number of components in the system over time since 

the start of its operation and the state of their activity or 

non-activity; information about all the tasks performed 

in the system and the components involved for this, as 

well as the decisions that were made and the primary 

results for their adoption. To update the current infor-

mation in all components of the decision center, you 

need to perform a task, because of which the database of 

information on the latest events in the system will be 

updated and sent to all components of the decision cen-

ter that are located in enabled computer stations. For 

components of the decision center that are located in 

non-enabled computer stations, such information will be 

updated the next time they are enabled. Saving such 

information will enable the system administrator to ana-

lyze and find the reason for stopping the system or 

computer stations by its components, to make decisions 

about further steps by the system, and to optimize the 

performance of assigned tasks. To update the current 

information in all components of the decision center, 

you need to perform a task, because of which the data-

base of information on the latest events in the system 

will be updated and sent to all components of the deci-

sion center that are located in enabled computer sta-

tions. For components of the decision center that are 

located in non-enabled computer stations, such infor-

mation will be updated the next time they are enabled. 

Saving such information will enable the system admin-

istrator to analyze and find the reason for stopping the 

system or computer stations by its components, to make 

decisions about further steps by the system, and to op-

timize the performance of assigned tasks. To update the 

current information in all components of the decision 

center, you need to perform a task, because of which the 

database of information on the latest events in the sys-

tem will be updated and sent to all components of the 

decision center that are located in enabled computer 

stations. For components of the decision center that are 

located in non-enabled computer stations, such infor-

mation will be updated the next time they are enabled. 

Saving such information will enable the system admin-

istrator to analyze and find the reason for stopping the 

system or computer stations by its components, to make 

decisions about further steps by the system, and to per-

form optimization in the performance of assigned tasks. 

as a result, the database of information on the latest 
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events in the system will be updated and sent to all 

components of the decision-making center located in the 

enabled computer stations. For components of the deci-

sion center that are located in non-enabled computer 

stations, such information will be updated the next time 

they are enabled. Saving such information will enable 

the system administrator to analyze and find the reason 

for stopping the system or computer stations by its 

components, to make decisions about further steps by 

the system, and to perform optimization in the perfor-

mance of assigned tasks. as a result the database of in-

formation on the latest events in the system will be up-

dated and sent to all components of the decision-making 

center located in the enabled computer stations. For 

components of the decision center that are located in 

non-enabled computer stations, such information will be 

updated the next time they are enabled. Saving such 

information will enable the system administrator to ana-

lyze and find the reason for stopping the system or 

computer stations by its components, to make decisions 

about further steps by the system, and to optimize the 

performance of assigned tasks. such information will be 

updated the next time they are turned on. Saving such 

information will enable the system administrator to ana-

lyze and find the reason for stopping the system or 

computer stations by its components, to make decisions 

about further steps by the system, and to optimize the 

performance of assigned tasks. such information will be 

updated the next time they are turned on. Saving such 

information will enable the system administrator to ana-

lyze and find the reason for stopping the system or 

computer stations by its components, to make decisions 

about further steps by the system, and to optimize the 

performance of assigned tasks. 

Reconstruction of the system architecture may also 

be necessary in the case of the detection of anomalous 

events or malicious manifestations in the computer net-

work or stations. In this case, some of the system com-

ponents can turn off the computer stations and inform 

the decision-making center of the system about with-

drawal from the system. Such events can be partially 

detected by components with existing functionality be-

cause of the establishment of communication between 

components at the beginning of work after turning on 

computer stations or when problems with the function-

ing of components are established in a certain computer 

station. Events of this type are processed by appropriate 

functions-subsets and the decision-making center per-

forms management actions to rebuild the system archi-

tecture according to the element from the set of 

events MS
pd

. 

The determination of further system steps and the 

transition to them at the current time depends on the 

events in the system, which are set by the set MS
pd

, the 

results of event processing by the functions of the sys-

tem components, the set of options for steps, which are 

set by the set of states  MS
st,  the results of the decision-

making center of the system; and the possibility of per-

forming the specified transition to the next state at the 

current time, since changes may have occurred in the 

system during preparatory measures; and the immediate 

execution of the transition with verification of its com-

plete completion. 

Events in system S will be processed by certain 

functions. If events occur at computer stations and in the 

network, the system may process them if they are visi-

ble to its sensors. System S must control all objects and 

processes that can be assessed as anomalies or malicious 

influences in the future. To achieve this, it must have 

sufficient sensors and functions to process the results. If 

there are not enough, the system may not be able to de-

tect, for example, malware in computer networks. In 

addition, events can occur within the system itself. They 

can be caused by both external and internal influences. 

However, we will consider all events to occur in com-

puter stations and networks and should be processed 

without division into types. The division into types of 

such influences and manifestations will be used in the 

development of methods for targeted analysis by type to 

identify anomalous manifestations and malicious mani-

festations caused by the types of relevant means. Events 

defined by the elements of a set MS
pd

, are systematised 

precisely through the characteristics of the elements. An 

increase in the number of elements of the set MS
pd

 will 

require an increase in the number of functions in the 

system components. Events can also be specified by 

combinations of elements. In addition, events can simul-

taneously occur in different nodes in the network and be 

visible to system components.  

The results of event processing by the functions of 

the system components will be used to determine further 

steps of the system by its decision-making center and, as 

a result, will lead to the appearance of new events. In 

general, the system will constantly monitor and process 

events. However, not all events will lead to a change of 

state or transition to the next state. 

The set of options for steps, which are given by the 

set of states MS
st, determines the ability of system S to 

perform the tasks that relate to the organization of its 

functioning in accordance with the principles of self-

organization and adaptability. If the system S states are 

few, i.e., the elements of the set MS
st, then the pairs of 

elements that will be used to set the options for steps 

will also be few. This provides an opportunity to ensure 

proper stability for system S. However, filling the com-

ponents with function sets for solving specialized tasks, 

as well as the environment in computer stations, will be 

rapidly changing, so the number of elements of the set 
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MS
st cannot be a small number. In this regard, the num-

ber of states can be a large number; therefore, the num-

ber of variants of steps and their combinations will also 

be quite large; as a result, it is impossible to describe 

them all unambiguously. To solve this problem, it is 

necessary to set the rules by which the system will form 

and determine the steps for further transition to the next 

state, i.e. the rules for selecting options from several 

formed steps. At the same time, a set of states MS
st 

should be initially formed, the number of elements of 

which should be further increased by forming new states 

in the system as combinations of basic states. Such 

combinations are formed according to the combination 

of different states of all components of the system into a 

single state of the entire system. During its operation, 

each component changes its state. Thus, some possible 

combinations of basic states will add new elements to 

the set of states MS
st. This will be done by the decision-

making centre of the system. Let's define the following 

basic states of the system S, i.e. elements of the state 

set: MS
st: mS,1

st   – the state of the system, in which the 

active components of the decision-making center have 

been updated; mS,2
st  – the state of the system, in which 

the evaluation of the state of the components and the 

system was carried out; mS,3
st  – the state of the system, in 

which the communication between the system compo-

nents is carried out; mS,4
st  – the state of the system, in 

which further steps of the system are determined at the 

current time; mS,5
st  – the state of the system, in which the 

migration of the decision-making center of the system 

was carried out; mS,6
st  – the state of the system, in which 

the restructuring of the system architecture was carried 

out; mS,7
st  – the state of the system, in which the deci-

sion-making center is formed in several components; 

mS,8
st  – the state of the system, in which the evaluation of 

the results of distributed calculations in components is 

carried out; mS,9
st – the state of the system, in which the 

functioning of components and others has been com-

pleted. For components, the same states will also exist, 

but if, for example, the system updates the active com-

ponents of the decision center, then in the components, 

the states can be as follows: the functionality for activat-

ing the decision-making center of the system in the 

component is disabled; the functionality for activating 

the decision-making center of the system in the compo-

nent is activated; and the state of the component has not 

changed, i.e., a transition to the same state has occurred. 

Transitions from state to state of system S are 

shown in Fig. 1. For example, the selected segment in 

the figure shows the transition from state mS,7
st  to state or 

mS,3
st  vice versa, depending on the coordinate of the 

transition vector in the ordered pair (mS,7
st ; mS,3

st ) or 

(mS,3
st ; mS,7

st ). 

Thus, system S will be in a state shown in Fig. 2. 

The details of the effects and means of changing the 

state are shown in Fig. 3 with an indication of the con-

nections that can be influenced. 

 

 
 

Fig. 2. System states and possible transitions  

between them 

 

 
Fig. 3. Relationship between events, functions,  

and states 

 

Two types of functions are highlighted in the de-

picted connection of events, functions, and states. The 

first type includes multiple functions in the components 

that do not belong to the functions of the decision-

making center of the system, and the second type in-

cludes functions that form the decision-making center of 

the system. The highlighted segments between the two 

types of functions indicate that they refer to components 

that may be the center of the system’s decision-making. 

Depicted in Fig. 2 and 3 States refer exclusively to 

the system as a whole. The details of states in specific 

components are similar to the images in Fig. 1 and 2. 

System components can be in different states at the 

same time, and the state of the system is uniquely de-

termined by the states of its components and the deci-

sion center components. A specific component of the 
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system can be in several states at the same time, which 

will be considered as a certain state formed by a combi-

nation of basic states. For example, system S adds com-

ponents that became active as a result of turning on the 

computer stations, and the system component at this 

time evaluates the security level in the computer station. 

Then, these two states in the component will be com-

bined into one at the current time, and the system will 

record the state of this component. 

For the transition from state to state of system S, 

we will consider the activity of subset functions (matrix 

analysis from formula (6, [1])), the values of character-

istic indicators (formulas (12, [1]), (44, [1]), (53, [1]), 

options for forming a system according to a set   MS
var,1

 

(formula (2)), and variations in forming a system ac-

cording to sets  MS
var,2

,  MS
var,3

,  MS
var,4

 (formulas  

(3) – (5)), introduction of redundancy in the organiza-

tion of communication according to sets  MS
var,5

 and 

 MS
var,6

, type of relationship for establishing communi-

cation between components and sending messages ac-

cording to the set
 
 MS

var,7
, specifying the connection of 

individual computer stations among themselves accord-

ing to the set of options  MS
var,8

, the set of events
 
 MS

pd
, 

the state of the system as a whole (formula (6)), the 

choice of options for calculating trust in the results of 

distributed calculations (formula (7) – (9) or according 

to clustering (formula (12))) and the set of states
 
 MS

st. 

Let's set the next state of the system S through its cur-

rent state and indicators of components and the system 

as follows: 

 

mS,p
st = Fq→p

S

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mS,q
st

MS
st

MS
pd

MS,k,I
α1,Si
′

α2,Sk+1,n
′

α3,S1,n
′

MS
var,1

MS
var,2

MS
var,3

MS
var,4

MS
var,5

MS
var,6

MS
var,7

MS
var,8

fα1,Si
′

fα2,Sk+1,n
′

fα3,S1,n
′

αS,t
st,1

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,       (13) 

where Fq→p
S  is a function that determines the next state 

of the system and sets the transition between the states.  

When determining the next state of the system, 

there will be as many options as there are elements in 

the set MS
st. The result of the selection can be the same 

state in which the system is already. In addition, the 

system can detect a state that is not in the set of states. 

This can happen when a combination of several states is 

established in a certain component or several compo-

nents, which are set in the plural MS
st by the basic con-

stituent elements. Then, the system supplements this set 

of states with a new element formed by a combination 

of certain elements in certain components. However, the 

set of states is not formed in full from all the combina-

tions at the beginning, but only from those that will ap-

pear during the functioning of the system.  

Because the arguments of the function Fq→p
S  are da-

ta of different types and the function must set rules ac-

cording to which a discrete value will be determined, we 

set this function  Fq→p
S  as a general rule, which will con-

tain a combination of the logical operators "AND" and 

"OR" and the negation "NOT" in the logical expression 

of local functions, which are assigned to each argument. 

Let be the Fq→p,b
S  b-th local function, where  

b = 1,2,… ,19, whose argument is the b-th argument of 

the function Fq→p
S  . The values of the local functions are 

discrete values {0} and {1}, where the value {0} will 

mean the fulfillment of the conditions for transition to 

the next state, and the value {0} will mean the fulfill-

ment of such conditions. In a logical expression that 

forms a rule for defining a function, the values of local 

functions Fq→p
S  can be combined with each other in full 

or in part, and can also form composite conditions, from 

which it is sufficient to move to a new state of fulfill-

ment of one of the conditions.  

For example, to change to a state mS,1
st  in which the 

active decision center components are updated, you 

need to change the components that the system decision 

center will be in. The reasons for this change will be the 

updated data of such indicators and the results of the 

current state of the system indicators. If the previous 

state mS,2
st  of the system , in which the assessment of the 

state of the components and the system is carried out, 

and it is established that the value αS,t
st,1 = 0.23 is signif-

icantly less than the threshold value, then regardless of 

the remaining indicators, the system performs the func-

tions necessary to update the active components of the 

decision-making center.  

The given transitions from state to state will also 

maintain the integrity of the system and ensure its sta-

bility. Formula (13) defines the system S at the level of 

the states it can be in and the transitions between them, 
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which actually determines the processes that will func-

tion in it. 

The decision-making center of the system accord-

ing to formula (13) receives the result and establishes 

the possibility of carrying out the specified transition to 

the next state at the current time, since changes may 

have occurred in the system during preparatory 

measures. 

The execution of the transition between the system 

states is provided by a subset function that checks its 

complete completion according to the communication 

specially specified in this case. If part of the system 

components did not have time to complete this transi-

tion, then in the future, when they are active, they re-

produce the missed states in their history of states, re-

new the current indicators, and return to the current state 

of the system. 

Completion of the functioning of the components 

and the system can be followed by their return to the 

performance of tasks when the computer stations are 

turned on, or when a given command is given to block 

part of the components or the system, or the removal of 

the components or the system as a whole from nodes in 

the network. 

As a result, we set the main general steps of the 

method of organizing the functioning of partially cen-

tralized distributed systems according to the principles 

of self-organization and adaptability. 

Step 1. Formation of the system S from compo-

nents.  

1.1. If system S is formed after the initial installa-

tion of all components (element mS,1
var,1

 of the character-

istic set MS
var,1

, element mS,1
var,3

 of the set MS
var,3

), then 

each of its components receives information about the 

location of the remaining components in the computer 

network, records such information in its internal data-

base and waits for the initial launch of one of the com-

ponents by the administrator for subsequent initial 

launches of the remaining components after the indica-

tion from it about its start of operation.  

1.2. If the computer stations are switched on con-

stantly (element mS,3
var,1

 of the characteristic set MS
var,1

, 

element mS,3
var,3

 of the set MS
var,3

), then the formation of 

system S from components will be performed once and 

further changes (element mS,2
var,1

 of the characteristic set 

MS
var,1

 ) will be performed by the system itself when 

certain events occur. 

1.3. If system S is formed after turning on comput-

er stations in the network at the same time (element 

mS,3
var,1

 of the characteristic set mS,3
var,1

, element mS,1
var,3

 of 

the set MS
var,3

), then for its further functioning, all com-

ponents perform a special procedure for exchanging 

messages to start functioning. 

1.4. If the computer stations (element mS,3
var,1

 of the 

characteristic set MS
var,1

, element mS,1
var,3

 of the set 

MS
var,3

), in which the system components are installed, 

are turned on at different times, then the components 

that were in the first turned on computer stations form 

the system, and the rest are added to it after performing 

a special addition procedure of components in dynamic 

mode.  

1.5. If new components are added to system S or 

existing components are removed (an element mS,2
var,1

 of 

the characteristic set MS
var,1

), then a special procedure 

for adding or removing components is used, followed 

by the formation of system S from existing active com-

ponents that function in enabled computer stations. 

Supplementing system S with new components or re-

moving existing components can be performed after 

substeps 1.1-1.4. The special procedure for adding and 

removing components involves the participation of the 

system administrator, the transition to the detail of sub-

step 1.5 and the subsequent execution of substep 1.1. 

1.5.1. Supplementing the system with new compo-

nents (element mS,1
var,2

  of the set MS
var,2

, element mS,1
var,3

 

of the set MS
var,3

, element mS,2
var,4

 of the characteristic set 

MS
var,4

) is performed when all computer stations in 

which the system S components are installed. Each 

component of system S is supplemented with infor-

mation about new components, and new components are 

supplemented with information about all system com-

ponents. 

1.5.2. The removal of components from the system 

S(element
 
mS,2
var,2

 of the set MS
var,2

, element mS,2
var,3

 of the 

set MS
var,3

) is performed using one computer station, in 

which the component containing the decision-making 

center of the system is installed. Through the compo-

nent interface with administrator access rights, we pro-

vide an instruction to remove a specific component. 

Next, this system component sends a message about the 

withdrawal of the specified component to the rest of the 

system components that are active, i.e., they function in 

enabled computer stations. Components that will not be 

on computer stations that are turned on, i.e., will not 

receive this message about the removal of a specific 

component, but will receive this message when the 

computer stations in which they are installed are turned 

on, from the active components of the system's deci-

sion-making center. 

1.5.3. When removing a single component at the 

current time (element
 
mS,2
var,3

 set MS
var,3

) in which the 

decision center of the system is located, it is necessary 

to enable the computer station in which the component 

with the functionality of the decision center is present, 

or to use the passive component with the decision center 

at this current time. In this case, the passive component 



ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2023, no. 4(108)               ISSN 2663-2012 (online) 

130 

or the attached component receives first an instruction 

about their sole control of the system, and then about 

the withdrawal of the given component. 

1.5.4. The completion of sub-steps 1.5.1-1.5.3 is 

carried out by determining the last variant of system 

formation according to formula (2), according to which 

we calculate the predicate PS
var,2(mS,q

var,2) (q =

1,2,… , nMS
var,2)

 
 on the elements of the set MS

var,2
.  

1.5.5. After performing substep 1.5.4, we return to 

substep 1.5. 

1.6. If the computer stations in which the system S 

components are installed (element mS,2
var,1

 of the charac-

teristic set MS
var,1

, element MS,1
var,4

 of the characteristic 

set MS
var,4

) are not turned on for a long time, then the 

system is formed from the components that are in the 

switched on computer stations. 

1.7. Step 1 is completed by determining the last 

variant of system formation according to formula (2) of 

substeps 1.2-1.4 and 1.6, according to which we calcu-

late the predicate PS
var,1(mS,q

var,1) (q = 1,2,… , nMS
var,1) on 

the elements of the set MS
var,1

, according to formula (4) 

of substeps 1.2-1.4 and 1.6, according to which we cal-

culate the predicate PS
var,3(mS,q

var,3) (q = 1,2,… , nMS
var,3) 

on the elements of the set MS
var,3

 and according to for-

mula (5) of substeps 1.5.1 and 1.6, according to which 

we calculate the predicate PS
var,4(mS,q

var,4)  

(q = 1,2,… , nMS
var,4) on the elements of the set MS

var,4
. 

1.8. Depending on the events that will exclusively 

affect the formation of the system S architecture, and 

the results from substep 1.7, we return to one of sub-

steps 1.2 - 1.4 or 1.6.  

The results of substeps 1.5, 1.7, 1.8 are transmitted 

to the decision center of system S and processed by one 

of the defined substeps of the following steps.  

The determination of the last variant of system 

formation according to formula (2) for the elements of 

the characteristic set MS
var,1

 and sub-steps 1.2-1.4 and 

1.6 does not completely complete step 1, but only fixes 

the state of the system S after the complete execution of 

one of the sub-steps in certain time intervals, when no 

changes will occur in the system in its architecture. The 

execution of step 1 will be constant and independent of 

the rest of the steps because the architecture of the sys-

tem may change constantly and will require the system 

S itself to react to such events through the execution of 

substeps of step 1.  

We present the results of the substeps of step 1 in 

the table of their conjugation with the corresponding 

elements of the sets and the values of the predicates. As 

a result, we will receive information about the result of 

a certain substep and use it to make decisions about fur-

ther steps of system S.  

Step 2. Establish and maintain communication be-

tween system components. 

2.1. If from the computer stations that have system 

components, at the current time when system S starts, 

there is only one computer station that is turned on (an 

element  mS,2
var,8

 of the set MS
var,8

), then the system S 

component will use the "one to all" relationship after its 

loading (an element  mS,1
var,7

 of the set MS
var,7

) , accord-

ing to which a message will be sent to all system S 

components to establish communication with them. 

2.2. If from the computer stations in which the sys-

tem components are present, at the current moment of 

time at the current start of system S, all (element  mS,1
var,5

 

of the set MS
var,5

) are turned on and the decision-making 

center determines that the given component addresses 

all the remaining components, then the given system 

component will use the relation "one to all" (element 

 mS,1
var,7

 of the set MS
var,7

), according to which a message 

will be sent to all components of the system S to main-

tain communication with the rest. 

2.3. If one component is missing in system S be-

cause of the non-activation of the corresponding com-

puter station, then all the remaining components period-

ically contact it to check its presence in order to form a 

complete system, that is, we perform the "all to one" 

relationship (element  mS,2
var,7

 of the set MS
var,7

). 

2.4. If a decision is made in system S to send a 

message to maintain and check the connection with a 

given component for certain reasons, then all the re-

maining components refer to it, i.e., we perform the "all-

to-one" relation (element  mS,2
var,7

 of the set MS
var,7

). 

2.5. If a decision is made in the system S to send a 

message from a specific component to maintain and 

check communication with a given component for cer-

tain reasons, then we perform a "one-to-one" relation-

ship (element  mS,3
var,7

 of the set MS
var,7

). 

2.6. If a decision is made in the system S to send a 

message from a specific component to maintain and 

check communication with a certain number of compo-

nents, but not all, for certain reasons, then we perform 

the relation "one to a certain number, but not to all" (an 

element  mS,4
var,7

 
of the set MS

var,7
 ). 

2.7. If a decision has been made in the system to 

send a message from a certain number of specified, but 

not all, components to one to support and verify com-

munication with a given component for certain reasons, 

then we perform the relation "a certain number, but not 

all, to one" ( element  mS,5
var,7

 
of the set MS

var,7
). 

2.8. If a decision is made in the system to send a 

message from a certain number of specified, but not all, 

components to a certain number to support and check 

communication with them for certain reasons, then we 

perform the relation "a certain number, but not all, to a 
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certain number, but not to all" ( element  mS,6
var,7

 
of the 

set MS
var,7

). 

2.9. If a component is sent a message or an instruc-

tion, and it is currently turned off together with the 

computer station, then it sends a message to all compo-

nents that are active, that is, those that are in the com-

puter stations that are turned on, and we perform a one-

to-one relationship to a certain number, but not to all" 

(an element  mS,4
var,7

 
of the set MS

var,7
 ) and commands or 

messages sent to her are nullified. 

2.10. If a component is sent a message or instruc-

tion and it is currently shutting down along with the 

computer station, then it does not send a shutdown mes-

sage to all components that are active, that is, those that 

are in the computer stations that are turned on. When 

the next time the computer station is turned on, the 

component notifies all other active components about 

the previous emergency event and communicates with 

them, performing a one-to-some, but not all, relation-

ship (an element  mS,4
var,7

 
of the set MS

var,7
), but the 

commands or messages that were sent to it from certain 

components are canceled. 

2.11. If when establishing a connection between 

system components, the standard part (according to the 

"flowering" scheme only to confirm the establishment 

of the connection and the activity of the components) 

and the additional part (according to the use of redun-

dancy to additionally confirm the legitimacy of the 

components) were successfully completed for all system 

components in the computer stations that are turned on 

at the same time (an element  mS,1
var,5

 of the set MS
var,5

), 

then system S will continue to function in regular mode. 

2.12. If when establishing a connection between 

system components, the standard part (according to the 

"flowering" scheme only to confirm the establishment 

of the connection and the activity of the components) 

and the additional part (according to the use of redun-

dancy to additionally confirm the legitimacy of the 

components) were successfully completed for all system 

components in the computer stations that are turned on 

at different times, and a part may be turned off after a 

certain time of operation, and a certain part may be 

turned on after this time or not turn on at all for a long 

certain time (an element  mS,2
var,5

 of the set MS
var,5

), then 

the system S will continue to function in regular mode 

as part of active component in enabled computer sta-

tions. 

2.13. If, for the cases of substeps 2.11, 2.12, when 

establishing a connection between system components, 

the standard part (according to the "flowering" scheme 

only to confirm the establishment of a connection and 

the activity of the components) is not completed suc-

cessfully, then the system components that established 

such a fact about a certain component report about such 

a result to the decision-making center of the system. 

2.13.1. If such a message is received from two 

components that have attempted to communicate with 

each other, then the decision center instructs them to 

retry the connection in the standard part of the proce-

dure. In addition, it instructs another component to es-

tablish communication with these two components, and 

these three components must inform the decision-

making center about the performance results. 

2.13.2. If such a message is received from one of 

the two components that were attempting to communi-

cate with each other, then the decision center instructs 

that component and the other two active components to 

attempt to establish communication according to the 

standard part of the procedure and inform these three 

components of the results and must inform the decision-

making center. 

2.14. If it is confirmed in substeps 2.13.1 and 

2.13.2 that there are problems with establishing com-

munication with a certain component according to the 

standard part of the communication establishment pro-

cedure, then such a component will be added to the list 

of components that need to be investigated by the deci-

sion-making center and will be periodically tested for 

connection with a certain number of components (an 

element  mS,2
var,5

 
of the set MS

var,5
). 

2.15. If, for the cases of substeps 2.11, 2.12, when 

establishing communication between the system  

components, the standard part (according to the "flower-

ing" scheme only to confirm the establishment of com-

munication and the activity of the components) is com-

pleted successfully, and the additional part is not com-

pleted successfully. Then, the system components that 

have established such a fact about a certain component, 

such a result is reported to the decision-making center 

of the system (an element  mS,2
var,5

 
of the set MS

var,5
). 

2.15.1. If such a message is received from two 

components that were trying to establish a connection 

with each other, then the decision center instructs them 

to retry the establishment of the connection in an addi-

tional part of the procedure, additionally instructing 

another component to establish a connection with these 

two components and these three components must in-

form the decision-making center about the performance 

results. 

2.15.2. If such a message was received from one of 

the two components that attempted to establish commu-

nication with each other, then the decision center in-

structs this component and two other active components 

to attempt to establish communication according to an 

additional part of the procedure and the results of the 

execution of these three components must be provided 

to the decision-making center. 
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2.16. If it is confirmed in substeps 2.13.1 and 

2.13.2 that there are problems with establishing com-

munication with a certain component by an additional 

part of the communication establishment procedure, 

then such a component is investigated by the decision-

making center (an element mS,2
var,5

 
of the set MS

var,5
) 

through immediate testing of communication with it by 

a certain number of components. When problems are 

detected, it is removed from the system and a corre-

sponding message about such an event is sent to the 

system administrator.  

2.17. If the computer stations in which the system 

components are present are turned off correctly at the 

same time (an element mS,1
var,6

 
of the set MS

var,6
 ), then the 

system components in them store information about the 

correct completion of their operation and start work 

with standard specified actions the next time. 

2.18. If the computer stations, in which the system 

components are present, are disabled at the same time 

(an element  mS,2
var,6

 of the set MS
var,6

), then the compo-

nents did not complete the correct exit and when the 

computer systems are turned on, the components in-

stalled in them will perform the correct restart procedure 

execution of unfinished previous tasks along with the 

initial boot procedure. 

2.19. If the computer stations, in which the system 

components are present, are turned off correctly at dif-

ferent times (an element mS,3
var,6

 
of the set MS

var,6
), then 

the system components in them store information about 

the correct completion of their operation and the next 

time start work with standard specified actions, consid-

ering the time of turning off the rest of the components 

in relation to a certain component.  
2.20. If the computer stations, which have system 

components, are turned off at different times partially 

correctly (element mS,2
var,8

 of the set MS
var,8

) and partially 

accidentally (element  mS,4
var,6

 
of the set MS

var,6
, element 

 mS,3
var,8

 of the set MS
var,8

), then for the components that 

were in the computer stations that were turned off cor-

rectly, we perform substep 2.19 and substep 2.18. 

Step 3. Ensuring system integrity. 

3.1. If system S is divided into two or more unre-

lated subsystems within the corporate network because 

of equipment failure for a certain time, then each of the 

parts will reform itself into a reduced system S and will 

continue to work, provided that in each of the parts 

there are no less than two active components with a de-

cision center. 

3.1.1. If one of the parts does not have active com-

ponents with a decision center and is inactive, then the 

components of this part block the operation of the com-

puter stations and issue a corresponding message to the 

administrator. 

3.1.2. If components with a decision center are in-

active at the moment of a certain emergency or inten-

tional separation of the second part, which will contain 

all active components with a decision center of the sys-

tem, then their transfer to the active state will occur af-

ter another communication session and establish the 

absence of active components with the center decision-

making. 

3.2. If part of the active components, which con-

tain the decision-making center of the system, is re-

moved from the system for certain reasons, then the 

remaining part will start the procedure of forming the 

system from the existing components. 

3.3. If there are no available active components 

with a decision center, the available components block 

the computer stations and issue a corresponding mes-

sage to the administrator. 

Step 4. Organization of partial centralization. 

4.1. The formation of a decision regarding the 

number of components (element mS,1
st  of the set MS

st),) in 

which the decision-making center of the system will 

function is determined by all components of the system, 

in which the functionality of the decision-making center 

is available, at the first start of the system. The number 

of active components of the decision-making center will 

be less than two-thirds and more than one. Each compo-

nent at the beginning of the start of the system randomly 

generates a number from the interval from two to two-

thirds of the number of components of the center, and 

all these components exchange such numbers among 

themselves and find the average arithmetic number 

among these numbers and discard the fractional part 

in it. 

4.2. If at the next start of the system not all com-

ponents with the decision-making center of the system 

will be active in the enabled computer stations, then the 

available components will decide on the number of ac-

tive components (element mS,1
st  of the set MS

st) in which 

the decision-making center will be located. When turn-

ing on computer stations with components in which the 

decision-making center was active at the previous stage 

of operation, such components receive a message from 

the decision-making center about the transition to the 

passive state of their decision-making center function-

ality. 

4.3. To select certain components of the decision 

center to be active, after performing substep 4.1, each 

component randomly generates numbers from a range 

of one to a number equal to the number of components 

with the decision center. After the formation of such 

sequences of numbers, results are exchanged between 

all components with a decision-making center. In all 

sequences, the numbers are sorted in non-descending 

order, and after sorting, the whole part is calculated 
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from the arithmetic mean value of the numbers with the 

same index. 

4.4. To select certain components of the decision 

center to be active, after performing substep 4.2, each 

component randomly generates a number from one to a 

number equal to the number of active components with 

the decision center at the current time. After the for-

mation of such sequences of numbers, the results are 

exchanged between all active components with the deci-

sion-making center. In all sequences, the numbers are 

sorted by non-decreasing order, and after sorting, a 

whole part of the arithmetic mean value of the numbers 

with the same index is calculated. 

4.5. If there are two such active components at 

substep 4.4, then they will perform the functionality of 

the decision-making center, and when components with 

the functionality of the decision-making center appear 

in the system, they will perform substep 4.4. 

4.6. If there are less than two such active compo-

nents at substep 4.4, then the functionality of the deci-

sion-making center will be in one component. Substep 

4.5 will be performed when components with the func-

tionality of the decision-making center appear in the 

system. 

4.7. If the enabled computer stations have compo-

nents that do not have decision center components, then 

each of the components records events, and the system 

does not function normally. 

4.8. Tasks for the system regarding its further steps 

or for certain components are formed separately in each 

of the active components of the decision-making center, 

and after a decision has been agreed between them, such 

a task is notified for execution. 

For the substeps of step 4, there may be other algo-

rithms for determining the number of components with 

a decision-making center and directly components of a 

decision-making center. For example, there may be 

weighted averages, harmonic averages, etc. In addition, 

the functionality can contain several algorithms, and at 

the current time, all components can use one of them. 

Step 5. Migration of the decision-making center of 

the system. 

5.1. If all the components of the decision-making 

center are active at the current moment of time, some of 

them form the decision-making center, and the rest are 

in a passive state, then periodically some of the active 

components will become passive and vice versa passive 

components will become active. The decision on the 

next review of the components involved in the for-

mation of the decision-making center will be made by 

the currently active components. 

5.2. If the security status in the computer station 

has decreased according to the system assessment and 

the component in it is an active component of the deci-

sion-making center, then the rest of the system compo-

nents decide to transfer this component to a passive 

state and make the other component active. 

5.3. If not all components of the decision-making 

center are active at the current moment due to their 

computer stations not being turned on, some of the ac-

tive ones form the decision-making center, and the re-

maining components with the decision-making center 

are in a passive state, then the decision-making center 

will supplement the number of active components at the 

expense of passives. 

Step 6. Evaluation of the state of the components 

and the system. 

6.1. We calculate the general states of the compo-

nents and computer stations α3,S1,n
′  according to equa-

tion (53, [1]). 

6.2. We calculate the state of the system as a 

whole according to equation (6). 

Step 7. Evaluation of the results of the distributed 

calculations in components. 

7.1. The values of the characteristic indicators of 

the system components, depending on the types of per-

formed tasks, are determined by formulas (12, [1]), (44, 

[1]) and (53, [1]) and sent to all active components of 

the decision-making center. 

7.2. If the results of calculations carried out in dif-

ferent components of the system are the same and each 

of the components participating in their processing re-

ceived the same values during the specified time inter-

val, then one of the obtained results is accepted as the 

final value of the distributed calculations. 

7.3. If the results of the calculations performed in 

different components of the system are not the same and 

each of the components participating in their processing 

received the same set of values during the specified time 

interval, then the percentage of the largest number of 

identical values of the calculation results to all the re-

ceived values is determined. 

7.3.1. If the percentage of values of calculation re-

sults is equal to 
N−1

N
∙ 100% (N – number of values), 

then the component in which the result is different from 

the rest will be sent additional verification values for 

calculations to check its legitimacy, and one of the N −

1 obtained results is accepted as the final value of dis-

tributed calculations. If the component that will be 

checked because of a different value of the result from 

the rest belongs to the active components of the decision 

center, then it will be sent for processing the received 

set of values, and the rest of the active components of 

the decision center will examine its response and make 

decisions about its further functioning in the system. 

7.3.2. If the percentage of the values of the calcu-

lation results is less than 
N−1

N
∙ 100% (N – the number of 

values) and more than 50%, then the components in 

which the result is different from the rest will be sent 
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additional verification values for calculations to check 

its legitimacy, and one of the results obtained, which 

was more than 50, is accepted as the final value of dis-

tributed computing. If the component that will be 

checked because of a different value of the result from 

the rest belongs to the active components of the decision 

center, then it will be sent for processing the received 

set of values, and the rest of the active components of 

the decision center will examine its response and make 

decisions about its further functioning in the system. 

7.3.3. If the percentage of values of the calculation 

results is less than 50% from the number of all among 

the largest number of one value, then the calculation 

results are not accepted and the system begins to per-

form self-testing. After completion, if successful, it will 

retry this task or reject its execution.  

The value of the characteristic indicators of the 

system components, depending on the types of tasks 

performed can be determined by formulas (7) – (12) 

depending on the features of processing. Clusters of 

such values can be formed by taking into account time 

delays when transmitting the results of distributed cal-

culations. Niche formulas for determining the values of 

the characteristic indicators of the system components 

may also be applicable. 

Step 8. Determination of components in which the 

task set by the system will be performed. 

8.1. To determine the components in which the 

task set by the system will be performed, we determine 

the security level of all components according to formu-

la (5), according to the first variant of division into clas-

ses (formulas (7) – (10)) and, thus, determine half of the 

components, putting in the formula (10) factor 0.5 in-

stead of 0.2. 

8.2. If the assigned task requires immediate execu-

tion or has a status related to security research in com-

ponents, it is performed by all components. 

8.3. We involve a smaller number of components, 

if there are many of them, to perform the assigned task 

as required (by a decision made or by an instruction to 

perform), but this number cannot be less than ten com-

ponents. 

8.4. If the number of components in the system is 

small, e.g., less than ten, all components are involved in 

the performance of the assigned task. 

8.5. Processing of accumulated information in the 

components of the decision-making center of the sys-

tem, formation of the base of decisions made in these 

components and provision of such a base to all compo-

nents of the decision-making center. 

8.6. Decision to perform a specific function in 

components depending on the current data in the sys-

tem. 

Step 9. Reconstruction of the system architecture 

in the presence of critical events. 

9.1. If anomalous events or malicious manifesta-

tions are detected in the computer network or stations 

and the components report them, the system architecture 

rebuilding procedure is launched. 

9.2. If in certain components of the system, long-

term functioning of subsystems for detecting anomalous 

events or malicious manifestations is detected, and at 

the same time, such components inform the decision-

making center about the need to continue the execution 

of the task, and the time limits for the execution of such 

tasks have already been passed, then the system is de-

termined with the need to rebuild its architecture with-

out considering these components, and in their presence, 

the functionality of the decision-making center is trans-

ferred from an active state to a passive one. 

9.3. If the system is in a critical state according to 

the calculated value of the security level, then it re-

moves a part of the components with the largest values 

of the critical state from its architecture and recalculates 

the current state. 

9.3.1. If after such a reconstruction, the security 

status is not critical, it continues to function. 

9.3.2. If the security status remains critical after 

such a rebuild, it stops functioning and issues a message 

to the administrator. 

Step 10. Determination of further steps of the sys-

tem at the current time. 

10.1. We determine the next state of system S 

through its current state and indicators of components 

and the system according to equation (53, [1]).  

10.2 If an event from a set MS
pd

 has occurred in the 

system, it is processed by the functions of the system 

components, and the decision-making center selects a 

state variant from a set of states MS
st, evaluates the pos-

sibility of performing a specified transition to the next 

state at the current moment of time, and directly per-

forms the transition with verification of its complete 

completion. 

10.3. If an event occurred in the system that is not 

from the set MS
st

,
  it is processed by the functions of the 

decision-making center. 

10.3.1. If a state variant is selected from a set of 

states, an evaluation of the possibility of performing a 

specified transition to the next state at the current mo-

ment of time is performed. The transition is then per-

formed directly with a check of its complete comple-

tion, and the set of events is supplemented by this event. 

10.3.2. If a state option is selected from a set of 

states MS
st, an evaluation of the possibility of performing 

a specified transition to the next state at the current 

moment of time is carried out, then the transition is then 

carried out directly with a check of its complete comple-

tion. If the event remains active after the system state 
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changes, the system blocks the components and reports 

a problem administrator. 

10.4. If among the elements of the set of events 

MS
pd

 
there is no event that occurred specifically in the 

system and needs to be processed, then the decision-

making center of the system returns the system to its 

previous state and analyzes the presence of this event. 

10.4.1. If the event is present after a change in the 

system state, then the system components block the pro-

cesses in the computer stations, and the entire system 

transitions to a critical security state and add the event 

to the set of events. 

10.4.2. If the event is absent after changing the 

state of the system to the previous one, then the system 

adds this event to the set of events and fixes the state of 

the system in which it disappears. 

10.5. If the event, which is among the elements of 

the set of events
 
MS
pd

, does not require transition to the 

next state, then it is processed and the system remains in 

the current state.  

10.5.1 If part of the system components did not 

have time to complete the transition to the specified 

state for certain reasons, then in the future, when they 

are active, they reproduce the missed states in their his-

tory of states, renew the current indicators, and return to 

the current state of the system. 

Step 11. Completing the functioning of the com-

ponents and the system. 

11.1. Completion of the functioning of the compo-

nents and the system at the current moment in time with 

their subsequent return to the performance of tasks 

when the computer stations are turned on. 

11.2. Blocking of part of the components or sys-

tem by the decision-making center of the system. 

11.3. Completion of the functioning of a part of the 

components at the current moment of time with their 

subsequent return to the performance of tasks when the 

computer stations are turned on. 

11.4. Removal of components or the entire system 

from nodes in the network. 

Thus, the developed method for organizing the 

functioning of partially centralized distributed systems 

makes it possible to create them according to the princi-

ples of self-organization and adaptability. Partial cen-

tralization of such distributed systems is achieved by 

separating the components of the decision-making cen-

ter of the system, in each of which a decision is made 

separately, which is later coordinated with the rest of the 

decisions.  

At the same time, the components of the decision-

making center function according to the principle of 

decentralization, and the entire system functions accord-

ing to the principle of centralization. In the developed 

method of functioning of this type of system, the distri-

bution of components was carried out in relation to the 

decision-making center, which made it possible to im-

plement partial centralization compatible with the prin-

ciples of self-organization and adaptability. 
 

5. Experiments 
 

5.1. Experimental settings 
 

The degree of degradation of system S in the process 

of its functioning and the degradation of its components 

will be considered in the context of the loss of some com-

ponents by the system and, as a result, either the removal 

of some components irrevocably from the system or a de-

crease in the system's performance due to the loss of some 

components or their incorrect functioning.  

The degree of system degradation correlates with 

the degree of sustainability [1, 40, 41]. However, the 

system’s stability reflects the ability to continue func-

tionality and fulfill its tasks despite changes in the oper-

ating environment with minimal change or loss of func-

tionality, and degradation reflects the ability to fulfill its 

tasks after a complete or partial loss of component func-

tionality and approaching or transitioning to both a state 

of failure and a state of complete shutdown. Thus, the 

common feature of both system characteristics is the 

ability to continue performing the assigned tasks. The 

difference is that stability is the probability of continu-

ing operation, and degradation is the probability of ap-

proaching a state of failure. 

The degree of degradation of the system as a 

whole will depend on the number of components in the 

system, the time of operation of the system and its com-

ponents, the events that the system will process, and the 

impact on the environment in which the system and its 

components will operate. When determining the system 

degradation factor, we will consider the number of 

components in the system, the operating time of the 

system and components, and the values of the security 

levels of the components and the system at the current 

time. Then, we define the system degradation factor as 

follows: 

 

kS,t
d = 1 − (

n

k
)
− 

∑ α1,Si
′i

r=1

k1
+

∑ α2,Sk+1,n
′n

r=i+1

k2

αS,t
st,1 ∙t

,       (14) 

 

where αS,t
st,1

 is the value of the system security level calcu-

lated by formula (12, [1]); k is the number of active com-

ponents in the system; k1  is the number of active compo-

nents with a decision-making center in the system;  k2 is 

the number of active components without a decision-

making center in the system; α1,Si
′ , α2,Sk+1,n

′  – are the val-

ues of the security levels of the system components calcu-
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lated by formulas [1]); k = k1 + k2; n is the number of 

components in the system; t is the system operation time. 

If there are many components in the system, the loss 

of some of them will not significantly affect the degree of 

system degradation because the system architecture at the 

component level is centralized and, therefore, the tasks 

can be assigned to the remaining active components.  

If the degradation indicator relates directly to a par-

ticular component, if it is at the stage of removal by the 

system itself, this does not significantly affect the degree 

of degradation of the entire system. 

If all components of the system function normally, 

then k = n and the degradation factor kS,t
d = 0. If  k <

𝑛, then the value of the degradation coefficient will be 

different from zero and will indicate the degree of sys-

tem degradation. 

Let's set up an experiment to determine the degree 

of system degradation.  

The values of the significance levels of the charac-

teristic indicators are the same as those in the previous 

experiment.  

Consider system S at the level of its components. 

Two indicators can be received from each component to 

the system’s decision-making center:  

1) the value of the component's safety level;  

2) the fulfillment of the task.  

Then, four cases are possible: 

1) the value of the component’s safety level corre-

sponds to the permissible value and the task is obtained 

correctly; 

2) the safety level of the component corresponds to 

the permissible value, but the task is performed incor-

rectly; 

3) the safety level of the component does not cor-

respond to the permissible value and the task is per-

formed incorrectly or not completed within the specified 

time; 

4) the security level of the component does not 

correspond to the permissible value, but the task is per-

formed correctly.  

We will create a file of the results of work over a 

long period of time in the system, recording the results 

of the values of the components’ security levels and the 

results of the tasks performed. After a certain period of 

system operation, we will process the results stored in 

the specified file. 

 

5.2. Case study 
 

The experiment was conducted in five series over 

five days.  

In the first series of the experiment, out of 100 

components of the system, 9 components produced a 

negative result, and the rest produced a positive result.  

Thus, the task set during the experiment was cor-

rectly performed using 91 components.  

In the second series of the experiment, out of 100 

system components, 10 components produced a nega-

tive result and the rest produced a positive result.  

In the third series of the experiment, out of 100 

components of the system, 10 components gave a nega-

tive result and the rest gave a positive result. 

In the fourth series of the experiment, out of 100 

components of the system, 10 components gave a nega-

tive result and the rest gave a positive result.  

In the fifth series of the experiment, out of 100 

components of the system, 9 components produced a 

negative result, and the rest produced a positive result.  

In addition, the security status of each of the 10 

components was obtained from the given file for each 

series of experiments.  

As a result, it was found that the negative result in 

the series of the experiment was obtained from compo-

nents with a high and low level of security. This affect-

ed the system degradation rate. The fewer components 

with a high level of security and a negative result of the 

task, the lower the level of system degradation at the 

current time.  

To assess the approach performance, ROC analysis 

was used [42, 43]. It provides a more comprehensive 

view of a method’s performance than a single accuracy 

score, helping us to make informed decisions about 

method selection and parameter tuning [44, 45].  

The results of the experiment are presented in the 

form of ROC curve graphs and tables of the values of 

security levels and task performance. The values of the 

degree of system degradation for the series of experi-

ments are given in Tables 1–21 and Figs. 4–13. 

 

Table 1 

The value of the degree of system degradation 

 
Series of the experiment 

Average value 
1 2 3 4 5 

Degradation  

factor 
0.15 0.25 0.21 0.21 0.27 0.21 
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Fig.4. Experiment 1.1 (9 zeros) 

 

Table 2 

Results of experiment 1.1: 1– detected, 0 – not detected 

Network host Detection result 

1-10 1 1 1 1 1 1 0 1 1 1 

11-20 1 1 1 1 1 1 1 1 1 1 

21-30 1 1 1 1 1 0 1 0 1 1 

31-40 0 1 1 1 1 1 1 1 0 1 

41-50 0 1 1 1 1 1 1 1 1 1 

51-60 1 1 1 0 1 1 1 1 1 0 

61-70 1 1 1 1 1 1 1 1 1 1 

71-80 1 1 1 1 1 1 1 1 1 1 

81-90 1 1 1 1 1 1 1 1 1 1 

91-100 1 1 1 1 1 0 1 1 1 1 

 

Table 3 

Results of experiment 1.1 

Network host Statistical probability of malware detection 

1-10 0.9860 0.9860 0.9930 0.9740 0.9888 0.9804 0.9800 0.8748 0.9959 0.9760 

11-20 0.9900 0.9970 0.976 0.9790 0.9849 0.9967 0.9850 0.9783 0.9860 0.9872 

21-30 0.9820 0.9700 0.919 0.9850 0.9814 0.5994 0.9808 0.9770 0.9761 0.9944 

31-40 0.6730 0.9720 0.9810 0.2700 0.9051 0.9974 0.9796 0.9799 0.9084 0.9930 

41-50 0.1340 0.9990 0.9750 0.9790 0.9906 0.9742 0.9854 0.9916 0.9979 0.9920 

51-60 0.7880 0.9820 0.9770 0.9860 0.8780 0.9953 0.9899 0.9945 0.9938 0.1889 

61-70 0.9793 0.4386 0.9996 0.9931 0.9029 0.9912 0.9879 0.9926 0.9849 0.8906 

71-80 0.9720 0.9991 0.9730 0.9864 0.9821 0.9732 0.9917 0.9884 0.7225 0.9870 

81-90 0.9943 0.9873 0.9983 0.0671 0.9533 0.9937 0.9842 0.9949 0.9797 0.9993 

91-100 0.9783 0.9722 0.9554 0.9949 0.9977 0.2542 0.9941 0.9861 0.9839 0.9293 
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Fig.5. Experiment 1.2 (10 zeros) 

 

Table 4 

Results of experiment 1.2: 1– detected, 0 – not detected 

Network host Detection result 

1-10 1 1 1 1 1 1 1 1 1 1 

11-20 1 1 1 1 1 1 1 1 0 1 

21-30 0 1 0 1 1 0 1 1 1 1 

31-40 1 1 1 1 1 1 1 1 1 1 

41-50 1 1 1 1 1 1 1 0 1 1 

51-60 1 1 1 0 1 1 1 1 1 1 

61-70 1 1 1 1 1 1 1 1 1 1 

71-80 1 1 0 1 0 1 1 1 1 1 

81-90 1 1 1 1 1 1 1 1 1 1 

91-100 1 1 1 1 0 1 0 1 1 1 

 
Table 5

Results of experiment 1.2 

Network host Statistical probability of malware detection 

1-10 0.9844 0.9905 0.9762 0.9882 0.9641 0.9964 0.9740 0.9233 0.9988 0.9746 

11-20 0.9746 0.9747 0.9727 0.9836 0.9901 0.9949 0.7714 0.2393 0.9228 0.9913 

21-30 0.9987 0.9852 0.9108 0.9937 0.7070 0.7605 0.8793 0.9886 0.9885 0.9737 

31-40 0.9737 0.9785 0.9921 0.9823 0.9949 0.9981 0.9820 0.9716 0.9871 0.9924 

41-50 0.9796 0.9848 0.9766 0.9982 0.9845 0.9862 0.9766 0.0012 0.9718 0.9946 

51-60 0.9931 0.9759 0.9969 0.9345 0.9897 0.9358 0.9710 0.9827 0.9847 0.9875 

61-70 0.9725 0.9898 0.9401 0.9867 0.9914 0.9846 0.9885 0.9456 0.9894 0.9814 

71-80 0.9731 0.2410 0.5323 0.9772 0.4249 0.9857 0.9824 0.9765 0.9958 0.9958 

81-90 0.9785 0.9885 0.9934 0.9105 0.5369 0.9815 0.9749 0.9939 0.9734 0.9748 

91-100 0.3235 0.9954 0.9875 0.9876 0.9978 0.9873 0.9703 0.9943 0.9883 0.9844 
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Fig.6. Experiment 1.3 (10 zeros) 

 

Table 6 

Results of experiment 1.3: 1– detected, 0 – not detected 

Network host Detection result 

1-10 1 1 1 1 1 1 1 1 1 1 

11-20 1 1 1 1 1 1 1 1 1 1 

21-30 1 1 1 0 1 1 1 1 1 1 

31-40 1 1 1 1 1 0 1 1 1 1 

41-50 1 0 1 1 1 1 1 1 0 1 

51-60 1 1 1 1 1 1 1 1 0 1 

61-70 0 1 1 1 1 1 1 1 1 1 

71-80 1 1 1 1 1 1 1 1 1 1 

81-90 1 1 1 0 1 1 0 1 1 1 

91-100 1 1 0 1 1 1 1 1 0 1 

 
Table 7 

Results of experiment 1.3 

Network host Statistical probability of malware detection 

1-10 0.9885 0.9976 0.9881 0.9911 0.9923 0.9816 0.9775 0.9711 0.9842 0.9894 

11-20 0.9784 0.9855 0.9774 0.9789 0.9248 0.9967 0.9958 0.9763 0.9820 0.7904 

21-30 0.9777 0.9990 0.9886 0.3202 0.9948 0.9897 0.9864 0.9775 0.9712 0.9770 

31-40 0.9808 0.9890 0.9996 0.9762 0.9927 0.9530 0.3404 0.9748 0.9943 0.9843 

41-50 0.9735 0.9963 0.9891 0.1759 0.9973 0.9711 0.9712 0.9997 0.0510 0.3235 

51-60 0.9851 0.9929 0.9175 0.9918 0.9910 0.9838 0.3394 0.9802 0.9751 0.9820 

61-70 0.2833 0.9768 0.9808 0.0895 0.9725 0.9854 0.9950 0.9971 0.9917 0.9815 

71-80 0.9789 0.9908 0.9964 0.8739 0.9724 0.9845 0.9738 0.9776 0.9965 0.9142 

81-90 0.9352 0.9863 0.8711 0.4908 0.9937 0.9952 0.9116 0.9825 0.9893 0.9764 

91-100 0.9885 0.9903 0.9880 0.9804 0.9809 0.9751 0.9939 0.9654 0.8532 0.9933 
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Fig.7. Experiment 1.4 (10 zeros) 

 

Table 8 

Results of experiment 1.4: 1– detected, 0 – not detected 

Network host Detection result 

1-10 1 1 1 1 1 1 1 1 1 1 

11-20 1 1 0 1 0 1 1 1 0 1 

21-30 1 1 1 1 1 0 1 1 1 1 

31-40 1 1 0 1 1 1 1 1 1 1 

41-50 1 1 1 1 1 1 1 1 1 1 

51-60 1 1 1 1 1 1 1 0 1 1 

61-70 0 1 1 1 1 1 1 1 1 1 

71-80 1 1 1 1 1 1 1 1 1 1 

81-90 1 0 1 1 1 1 1 0 1 0 

91-100 1 1 1 1 1 1 1 1 1 1 

 
Table 9 

Results of experiment 1.4 

Network host Statistical probability of malware detection 

1-10 0.9716 0.9850 0.9830 0.9971 0.9889 0.9995 0.9876 0.9952 0.9841 0.9864 

11-20 0.9754 0.9890 0.8815 0.9860 0.9844 0.9494 0.9728 0.9964 0.9701 0.4440 

21-30 0.9904 0.9870 0.9844 0.9796 0.9880 0.0566 0.9905 0.9984 0.9730 0.9853 

31-40 0.9733 0.9864 0.5237 0.3030 0.9933 0.9820 0.9969 0.9569 0.9718 0.2197 

41-50 0.9725 0.9985 0.9705 0.9734 0.9704 0.9765 0.8759 0.9893 0.9855 0.9774 

51-60 0.9758 0.9727 0.9811 0.6721 0.9881 0.9844 0.3351 0.9024 0.9952 0.9779 

61-70 0.1017 0.9834 0.9802 0.9952 0.9995 0.9089 0.9754 0.9737 0.9874 0.9799 

71-80 0.9780 0.9865 0.9754 0.9904 0.9717 0.9710 0.6912 0.9624 0.9970 0.9954 

81-90 0.9819 0.9421 0.9829 0.9825 0.9919 0.9822 0.9986 0.9974 0.9985 0.9576 

91-100 0.9787 0.9966 0.9763 0.9739 0.6408 0.9972 0.9821 0.9160 0.9724 0.9980 
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Fig.8. Experiment 1.5 (9 zeros) 
 

Table 10 

Results of experiment 1.5: 1– detected, 0 – not detected 

Network host Detection result 

1-10 1 1 0 1 1 1 1 1 1 1 

11-20 1 1 0 1 1 1 0 1 1 0 

21-30 1 1 1 1 1 1 1 1 1 1 

31-40 1 1 1 1 1 1 1 1 1 0 

41-50 1 1 1 0 1 1 1 1 1 0 

51-60 1 1 1 1 1 1 1 1 1 1 

61-70 1 1 1 1 1 1 0 1 1 1 

71-80 1 1 1 1 1 1 1 1 1 1 

81-90 1 1 1 1 1 1 1 1 0 1 

91-100 1 1 1 1 1 1 1 1 1 1 

 

Table 11 

Results of experiment 1.5 

Network host  Statistical probability of malware detection 

1-10 0.0061 0.9888 0.8821 0.9968 0.9764 0.9701 0.9964 0.9771 0.9773 0.9892 

11-20 0.9791 0.8605 0.9965 0.4362 0.9817 0.9940 0.9494 0.9888 0.9910 0.4073 

21-30 0.9859 0.9967 0.9779 0.9770 0.9952 0.9849 0.9746 0.9769 0.9095 0.9869 

31-40 0.9788 0.9887 0.9915 0.9784 0.9824 0.9809 0.9934 0.9741 0.9971 0.9787 

41-50 0.9850 0.9935 0.9903 0.9745 0.5002 0.9739 0.9984 0.9966 0.9855 0.0363 

51-60 0.9993 0.2872 0.9395 0.9948 0.9934 0.9757 0.9829 0.9704 0.9798 0.9740 

61-70 0.9835 0.9872 0.9938 0.9826 0.9860 0.8861 0.9379 0.9863 0.8905 0.9716 

71-80 0.9943 0.9800 0.9769 0.9947 0.9063 0.9750 0.9708 0.9987 0.9904 0.9958 

81-90 0.9201 0.1974 0.8860 0.9777 0.9966 0.9976 0.9790 0.9722 0.8993 0.9725 

91-100 0.9919 0.9834 0.3147 0.9751 0.9859 0.9890 0.9704 0.9841 0.9966 0.9734 
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Fig.9. Experiment 2.1 (19 zeros) 

 

Table 12 

Results of experiment 2.1: 1– detected, 0 – not detected 

Network host Detection result 

1-10 1 1 1 1 1 1 0 1 1 1 

11-20 1 1 1 1 1 1 1 1 1 1 

21-30 1 0 1 1 1 0 0 0 0 0 

31-40 1 0 1 1 1 1 1 1 1 1 

41-50 1 0 1 1 1 1 1 1 1 1 

51-60 1 1 1 1 1 1 1 1 1 1 

61-70 1 1 0 1 0 1 1 1 0 1 

71-80 1 1 1 1 1 1 1 1 1 0 

81-90 1 1 0 1 0 1 1 0 1 1 

91-100 1 1 1 1 1 1 1 0 0 0 

 
Table 13 

Results of experiment 2.1 

Network host Statistical probability of malware detection 

1-10 0.9832 0.9864 0.5353 0.9819 0.9925 0.9857 0.6537 0.9727 0.9775 0.9834 

11-20 0.9891 0.9913 0.9998 0.9980 0.9728 0.8728 0.9749 0.9991 0.9879 0.9772 

21-30 0.9721 0.9790 0.9944 0.9723 0.9806 0.4872 0.9202 0.1254 0.9911 0.8648 

31-40 0.6905 0.9752 0.9895 0.9850 0.9785 0.9949 0.9946 0.9981 0.9700 0.9892 

41-50 0.9702 0.8504 0.9732 0.9810 0.9772 0.9804 0.9775 0.9816 0.9826 0.9892 

51-60 0.9936 0.9781 0.9953 0.9922 0.9948 0.9755 0.8839 0.9883 0.9910 0.9733 

61-70 0.9729 0.9879 0.9281 0.9944 0.3046 0.9276 0.9971 0.9836 0.9721 0.9772 

71-80 0.9920 0.9712 0.9827 0.9862 0.9986 0.0465 0.9735 0.9894 0.9733 0.9995 

81-90 0.9775 0.9882 0.9266 0.9949 0.9492 0.9928 0.9975 0.9970 0.9764 0.9864 

91-100 0.9935 0.9758 0.9924 0.9843 0.9875 0.4382 0.9725 0.5992 0.2718 0.9210 
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Fig.10. Experiment 2.2. (19 zeros) 

 

Table 14 

Results of experiment 2.2: 1– detected, 0 – not detected 

Network host Detection result 

1-10 1 0 1 1 1 1 1 1 1 1 

11-20 1 0 1 0 1 1 1 1 1 1 

21-30 1 1 1 1 1 1 1 1 1 1 

31-40 0 1 1 1 0 1 0 1 0 1 

41-50 1 1 1 1 1 0 1 1 1 1 

51-60 0 1 1 0 0 1 1 1 1 1 

61-70 1 0 1 1 1 1 1 1 1 1 

71-80 0 0 1 1 1 1 1 1 1 1 

81-90 0 1 1 0 1 1 1 1 1 1 

91-100 1 1 1 0 1 1 1 0 0 1 

 
Table 15 

Results of experiment 2.2 

Network host Statistical probability of malware detection 

1-10 0.9751 0.9899 0.9861 0.9949 0.9780 0.9753 0.8889 0.9843 0.9936 0.9739 

11-20 0.9715 0.0874 0.9709 0.9741 0.9908 0.9855 0.9863 0.9943 0.8618 0.9851 

21-30 0.9783 0.9736 0.9966 0.9991 0.9983 0.9891 0.9727 0.9722 0.9032 0.9710 

31-40 0.4778 0.9743 0.9891 0.9937 0.9166 0.9813 0.9946 0.9791 0.9796 0.4640 

41-50 0.9851 0.9778 0.9920 0.9749 0.9976 0.2077 0.9725 0.9722 0.9931 0.9945 

51-60 0.5608 0.9927 0.9988 0.9840 0.9936 0.9827 0.9983 0.9700 0.9994 0.9871 

61-70 0.9804 0.8812 0.9790 0.9748 0.9900 0.9905 0.9938 0.9805 0.9775 0.9804 

71-80 0.4204 0.9978 0.9927 0.9786 0.9882 0.9930 0.9954 0.9971 0.9879 0.0053 

81-90 0.7280 0.9961 0.9824 0.9102 0.9935 0.9774 0.9866 0.9769 0.9452 0.9003 

91-100 0.8660 0.9818 0.9776 0.9108 0.9899 0.9974 0.9702 0.5273 0.5088 0.9972 
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Fig.11. Experiment 2.3 (15 zeros) 

 

Table 16 

Results of experiment 2.3: 1– detected, 0 – not detected 

Network host Detection result 

1-10 1 1 1 1 1 1 0 1 1 1 

11-20 0 1 1 0 1 1 0 1 1 1 

21-30 1 1 1 1 0 1 1 1 0 0 

31-40 0 1 0 1 1 1 1 1 1 1 

41-50 1 1 1 1 1 1 1 1 1 1 

51-60 1 1 0 1 1 1 1 1 1 1 

61-70 1 1 1 1 1 1 1 1 1 1 

71-80 1 1 1 1 1 1 0 1 0 1 

81-90 1 1 1 1 1 0 0 1 1 1 

91-100 0 1 1 1 1 1 1 1 1 1 

 
Table 17 

Results of experiment 2.3 

Network host Statistical probability of malware detection 

1-10 0.9970 0.9741 0.9938 0.9757 0.9709 0.9738 0.3687 0.9738 0.9981 0.9782 

11-20 0.9983 0.9891 0.9962 0.9810 0.5633 0.9756 0.8612 0.9777 0.9792 0.9705 

21-30 0.9876 0.9989 0.9955 0.9702 0.5038 0.9808 0.9734 0.9862 0.9825 0.9419 

31-40 0.9966 0.9745 0.8740 0.9718 0.9814 0.9917 0.9729 0.9900 0.9789 0.9880 

41-50 0.9746 0.9831 0.9704 0.8985 0.9779 0.9853 0.9765 0.9804 0.9924 0.9824 

51-60 0.9717 0.9817 0.9400 0.9948 0.9791 0.9947 0.1103 0.9716 0.8662 0.9877 

61-70 0.9844 0.9760 0.9772 0.9934 0.9885 0.5457 0.9915 0.9820 0.9839 0.9912 

71-80 0.9820 0.9704 0.3890 0.9877 0.9834 0.9978 0.2787 0.5436 0.9864 0.9734 

81-90 0.9971 0.9253 0.9972 0.9889 0.9704 0.6856 0.9599 0.9889 0.9718 0.9902 

91-100 0.9085 0.8730 0.9855 0.9912 0.9944 0.7198 0.9793 0.9803 0.9900 0.9958 
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Fig.12. Experiment 2.4 (18 zeros) 

 

Table 18 

Results of experiment 2.4: 1– detected, 0 – not detected 

Network host Detection result 

1-10 1 1 1 1 1 1 1 1 1 0 

11-20 1 1 1 1 0 1 1 1 1 0 

21-30 1 1 0 0 1 0 1 1 1 1 

31-40 1 1 1 1 1 1 1 0 1 1 

41-50 1 1 1 1 1 1 1 0 1 1 

51-60 1 1 1 1 1 1 1 0 1 0 

61-70 1 1 1 1 1 1 1 0 0 1 

71-80 1 1 1 1 1 0 1 1 1 1 

81-90 1 0 1 1 1 0 1 1 1 1 

91-100 1 1 1 0 0 1 1 0 1 1 

 

Table 19 

Results of experiment 2.4 

Network host Statistical probability of malware detection 

1-10 0.9765 0.9912 0.9712 0.9885 0.9901 0.9711 0.9701 0.8980 0.9959 0.9783 

11-20 0.9860 0.9857 0.9870 0.9800 0.7357 0.9368 0.9995 0.9717 0.9819 0.9937 

21-30 0.9878 0.9793 0.7196 0.9211 0.9796 0.9966 0.9897 0.2062 0.9842 0.3416 

31-40 0.9985 0.9965 0.9831 0.7355 0.9798 0.9810 0.9938 0.9022 0.9986 0.9700 

41-50 0.9789 0.9715 0.9833 0.9937 0.9974 0.9860 0.9941 0.8740 0.9925 0.9703 

51-60 0.9843 0.9775 0.9792 0.9990 0.9763 0.9512 0.9768 0.4622 0.9999 0.9740 

61-70 0.9986 0.9737 0.9756 0.9894 0.9738 0.9724 0.9898 0.9708 0.4407 0.9862 

71-80 0.9812 0.9912 0.9984 0.9815 0.9908 0.1746 0.9933 0.9878 0.9813 0.9955 

81-90 0.9768 0.8746 0.9999 0.9784 0.9913 0.9169 0.9824 0.9849 0.2310 0.9986 

91-100 0.9920 0.9815 0.9712 0.0720 0.8537 0.9807 0.9964 0.8598 0.9887 0.9789 
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Fig.13. Experiment 2.5 (18 zeros) 

 

Table 20 

Results of experiment 2.5: 1– detected, 0 – not detected 

Network host Detection result 

1-10 1 1 1 1 1 1 1 1 1 1 

11-20 1 1 1 1 1 1 1 1 0 1 

21-30 0 1 1 1 1 1 1 1 1 1 

31-40 0 1 1 1 1 1 0 1 0 1 

41-50 1 1 1 0 0 1 1 1 1 1 

51-60 1 0 1 1 0 1 1 0 1 1 

61-70 1 1 1 1 1 1 1 1 1 1 

71-80 1 0 1 1 0 0 1 1 1 0 

81-90 0 1 1 1 1 1 1 1 1 1 

91-100 1 1 0 0 0 1 1 1 1 1 

 
Table 21 

Results of experiment 2.5 

Network host Statistical probability of malware detection 

1-10 0.9939 0.8900 0.9704 0.9728 0.9126 0.9792 0.2426 0.9749 0.9833 0.9930 

11-20 0.9501 0.9914 0.9838 0.9976 0.8607 0.9980 0.9838 0.9971 0.9816 0.9881 

21-30 0.3499 0.9954 0.9785 0.6896 0.9881 0.9897 0.4901 0.9799 0.1005 0.9730 

31-40 0.9786 0.9806 0.9861 0.9997 0.9708 0.9913 0.1580 0.9960 0.9736 0.9987 

41-50 0.9832 0.9963 0.9959 0.9807 0.9160 0.9959 0.9706 0.9723 0.9813 0.9745 

51-60 0.9710 0.5165 0.8680 0.9945 0.8908 0.9903 0.9963 0.9927 0.9769 0.9808 

61-70 0.9809 0.1474 0.9801 0.9726 0.9835 0.9836 0.9709 0.9891 0.9718 0.9751 

71-80 0.5900 0.9637 0.9702 0.9786 0.9813 0.9744 0.9722 0.8968 0.9811 0.9947 

81-90 0.9861 0.9945 0.9838 0.9704 0.9701 0.9750 0.9810 0.9915 0.9748 0.9784 

91-100 0.9893 0.9786 0.9797 0.9747 0.4821 0.9969 0.9966 0.9818 0.9490 0.9776 
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5.3. Discussion 

 

For the second task, a similar series of experiments 

were conducted. The number of negative results was 19, 

19, 15, 18, 18, respectively, for five series of the exper-

iments. The degree of system degradation did not in-

crease. This indicates that the system architecture pro-

vides a low level of degradation.  

The results of the experiment confirm that the sys-

tem can perform the task regardless of the components 

with a high degree of security, which gave a negative 

result, and the components with a low level of security, 

which also gave a negative result.  

Most of the system components performed the task 

correctly and evaluated the results of all components to 

provide a consistent solution. 

 

Conclusion and Future Work 
 

The developed principle of the synthesis of multi-

computer systems with combined baits and traps and a 

decision-making controller for detecting and counteract-

ing malware and computer attacks is the basis of the 

concept of creating such systems. To detail the architec-

ture of multicomputer systems with combined baits and 

traps and a decision-making controller for detecting and 

counteracting malware and computer attacks, which 

corresponds to the proposed principle of synthesis of 

such systems, it is necessary to develop a conceptual 

model of its architecture. The implementation of a deci-

sion-making controller through the development of a 

method for synthesizing systems with a controller will 

be the direction of further research. 

Ensuring the organization of the functioning of 

partially centralized distributed systems, as one of the 

types of systems defined according to the developed 

principle, in computer networks is implemented by two 

developed methods. 

The developed method of synthesis of mathemati-

cal models of security levels of system components 

makes it possible to obtain new mathematical mod-

els [1] of security levels of system components for a 

comprehensive description of processes that will take 

place in partially distributed systems and will be related 

to the evaluation of security of system components. It 

can be applied to discrete and continuous characteristic 

indicators. According to them, the values of the charac-

teristic indicators of the security levels in the system 

components will be used to evaluate the results of dis-

tributed calculations obtained from various system 

components to determine the degree of trust in them. 

The method for organizing the functioning of par-

tially centralized distributed systems makes it possible 

to create such systems. For the operation of this type of 

system, the distribution of components was carried out 

according to the relationship to the decision-making 

center, which made it possible to implement partial cen-

tralization compatible with the principles of self-

organization and adaptability, which set mechanisms for 

independent decision-making regarding further steps in 

the system and restructuring of its architecture as need-

ed. 

Thus, partially centralized distributed systems can 

be created using the two developed methods and filled 

with specialized functionality. 

The direction of further research will be the devel-

opment of specialized methods and their implementa-

tion in partially centralized systems, which can be de-

ception systems, network baits, and narrowly special-

ized systems for detecting malicious software. 
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ПРИНЦИП І МЕТОД СИНТЕЗУ СИСТЕМ ОБМАНУ ДЛЯ ВИЯВЛЕННЯ ЗЛОВМИСНОГО 

ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ І КОМП'ЮТЕРНИХ АТАК  

Антоніна Каштальян, Сергій Лисенко, Богдан Савенко,  

Томаш Сочор, Тетяна Кисіль 

Кількість різних типів та безпосередньо сама кількість зловмисного програмного забезпечення і 

комп’ютерних атак постійно збільшуються. Тому, виявлення та протидія зловмисному програмному забез-

печенню та комп’ютерним атакам залишаються актуальною проблемою сьогодення. Особливо найбільшої 

шкоди зазнають користувачі корпоративних мереж. Для виявлення та протидії їм розроблено багато ефекти-

вних засобів різноманітного спрямування. Але динамічність в розробці нового зловмисного програмного 

забезпечення та урізноманітнення проведення комп’ютерних атак спонукають розробників засобів виявлен-

ня та протидії постійно вдосконалювати свої засоби та створювати нові. Об’єктом дослідження в роботі є 

системи обману. Результати цієї роботи розвивають елементи теорії та практики створення таких систем. 

Особливе місце серед засобів виявлення та протидія зловмисному програмному забезпеченню та 

комп’ютерним атакам займають системи обману. Ці системи заплутують зловмисників, але теж потребують 

постійних змін та оновлень. оскільки з часом особливості їх функціонування стають відомими. Тому, актуа-

льною є проблема створення систем обману, функціонування яких залишалось би незрозумілим для зловми-

сників. Для вирішення цієї проблеми в роботі пропонується но-вий принцип синтезу таких систем. Оскільки 

формування таких систем буде на базі комп’ютерних станцій корпоративної мережі, тоді систему позиціо-

новано як мультикомп’ютерну. В системі запропоновано використовувати комбіновані приманки та пастки 

для створення хибних об’єктів атак. Всі компоненти такої системи формують тіньову комп’ютерну мережу. 

В роботі розроблено принцип синтезу мультикомп’ютерних систем з комбінованими приманками і пастками 

та контролером прийняття рішень для виявлення та протидії зловмисному програмному забезпеченню та 

комп’ютерних атакам. В основу принципу закладено наявність контролера за прийнятими в системі рішен-

нями та використання спеціалізованого функціоналу з виявлення та протидії. Згідно розробленого принципу 

синтезу таких систем в роботі виділено підмножину систем з технологіями обману, в яких обов’язково по-

винен бути контролер та спеціалізований функціонал. Контролер за прийнятими рішеннями в системі є ві-

докремленим від центру прийняття рішень. Його завданням є вибір варіантів наступних кроків системи, які 

сформовані в центрі системи, в залежності від повторюваності подій. Причому тривале повторення зовніш-

ніх подій вимагає від центру системи формування послідовності наступних кроків. За умови їх повторення 

зловмисник отримує можливість вивчати функціонування системи. Контролер в системі вибирає з різних 

можливих варіантів відповідей при однакових повторюваних підозрілих подіях різні відповіді. Таким чи-

ном, зловмисник при дослідженні корпоративної мережі на одні й ті ж запити отримує різні варіанти відпо-

відей. Спеціалізований функціонал згідно принципу синтезу таких систем імплементовано в архітектуру 

систем. Він впливає на її зміну архітектури системи в процесі її функціонування в результаті внутрішніх та 

зовнішніх впливів. В роботі також розглянуто можливий варіант архітектури таких систем обману, зокрема, 

архітектура системи з частковою централізацією. Для синтезу таких систем розроблено новий метод синтезу 

частково централізованих систем для виявлення зловмисного програмного забезпечення в комп’ютерних 

мережах, який базується на розроблених аналітичних виразах, що визначають стан безпеки таких систем та 

їх компонентів. Проведено експериментальні дослідження розробленої системи на предмет можливості її 

функціонування тривалий час та виконання поставлених завдань в умовах втрати нею частини компонентів. 

Результати двох експериментів з п’ятьма серіями підтвердили ефективність запропонованого рішення. Крім 

того, за результатами експериментів було встановлено, що втрата 10-20% компонентів не впливає на вико-

нання поставленого завдання. Результати експериментів були опрацьовані з використанням ROC-аналізу та 

алгоритму побудови ROC-кривої. Результати експериментів дали змогу визначити ступінь деградації так 

побудованих систем. 

Ключові слова: системи обману; синтез систем обману; принцип синтезу систем. контролер. розподі-

лені системи; павутина; пастка; приманки; виявлення шкідливого програмного забезпечення; часткова 

централізація. 
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