
ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

112

UDC 004.491.052.42 doi: 10.32620/reks.2023.4.10

Antonina KASHTALIAN1, Sergii LYSENKO1, Bohdan SAVENKO1,

Tomas SOCHOR2, Tetiana KYSIL1

1 Khmelnitsky National University, Khmelnitsky, Ukraine
2 Prigo University, Havirov, Czech Republic

PRINCIPLE AND METHOD OF DECEPTION SYSTEMS SYNTHESIZING

FOR MALWARE AND COMPUTER ATTACKS DETECTION

The number of different types and the actual number of malware and computer attacks is constantly increas-

ing. Therefore, detecting and counteracting malware and computer attacks remains a pressing issue. Users of

corporate networks suffer the greatest damage. Many effective tools of various kinds have been developed to

detect and counteract these effects. However, the dynamism in the development of new malware and the diver-
sity of computer attacks encourage detection and countermeasure developers to constantly improve their tools

and create new ones. The object of research in this paper is deception systems. The task of this study is to de-

velop the elements of the theory and practice of creating such systems. Deception systems occupy a special

place among the means of detecting and counteracting malware and computer attacks. These systems confuse

attackers, but they also require constant changes and updates, as the peculiarities of their functioning become

known over time. Therefore, the problem of creating deception systems whose functioning would remain in-

comprehensible to attackers is relevant. To solve this problem, we propose a new principle for the synthesis of

such systems. Because the formation of such systems will be based on computer stations of a corporate net-

work, the system is positioned as a multi-computer system. The system proposes the use of combined baits and

traps to create false attack targets. All components of such a system form a shadow computer network. This

study develops a principle for synthesizing multi-computer systems with combined baits and traps and a deci-
sion-making controller for detecting and countering IEDs and spacecraft. The principle is based on the pres-

ence of a controller for decisions made in the system and the use of specialized functionality for detection and

counteraction. According to the developed principle of synthesizing such systems, this paper identifies a subset

of systems with deception technologies that must have a controller and specialized functionality. The decision-

making controller in the system is separate from the decision-making center. Its task is to choose the options

for the next steps of the system, which are formed in the center of the system, depending on the recurrence of

events. Moreover, prolonged recurrence of external events requires the system center to form a sequence of

next steps. If they are repeated, the attacker has the opportunity to study the functioning of the system. The

controller in the system chooses different answers from different possible answers for the same repeated suspi-

cious events. Thus, an attacker, when investigating a corporate network, receives different answers to the same

queries. Specialized functionality, in accordance with the principle of synthesis of such systems, is implemented

in the system architecture. It affects the change of system architecture in the process of its functioning as a re-
sult of internal and external influences. This paper also considers a possible variant of the architecture of such

deception systems, in particular, the architecture of a system with partial centralization. To synthesize such

systems, a new method for synthesizing partially centralized systems for detecting malware in computer envi-

ronments has been developed based on analytical expressions that determine the security state of such systems

and their components. In addition, the experiments showed that the loss of 10-20% of the components does not

affect the performance of the task. The results of the experiments were processed using ROC analysis and the

algorithm for constructing the ROC curve. The results of the experiments made it possible to determine the de-

gree of degradation of the systems constructed in this manner. Conclusions. This paper presents a new princi-

ple for the synthesis of multi-computer systems with combined decoys and traps and a decision-making con-

troller for detecting and counteracting IEDs and spacecraft, as well as methods for synthesizing partially cen-

tralized systems for detecting malware in computer networks.

Keywords: deception systems; deception systems synthesizing; principle of systems synthesis, controller, dis-

tributed systems; honeynet; trap; baits; malware detection; partial centralization.

1. Introduction

1.1. Motivation

Malware continues to be actively developed and

distributed. An important element of counteracting it is

properly synthesized systems that can detect malware

and counteract it by creating false attack objects.

An area of development of such systems is the de-

velopment of systems whose behavioral logic and archi-

tecture are difficult or impossible for attackers to under-

stand.

 Antonina Kashtalian, Sergii Lysenko, Bohdan Savenko, Tomas Sochor, Tetiana Kysil, 2023

Information security and functional safety

113

Having created such systems, they can be filled

with functionality as needed, which can further position

them as deception systems, network baits, and highly

specialized systems for detecting a specific class of

malware. Such systems include deception systems.

Due to the specifics of the tasks they are supposed

to perform, the actual task is to develop new principles

of their synthesis, which will allow the attacker to create

new features in such systems that will be difficult for

him to understand. One class of such systems is partially

centralized distributed systems for detecting malware,

as described in [1].

The functioning of partially centralized distributed

systems in accordance with the principles of self-

organization and adaptability is ensured not only by the

organization of communication between their compo-

nents or the implementation of certain specially oriented

tasks for which they are created, but primarily by inter-

nal mechanisms, methods, and algorithms that enable

such systems to solve tasks without user intervention,

independently make decisions on the next steps of the

system, and adapt to changes in the external environ-

ment.

1.2. Previous works

There are many various studies devoted to the

problem of malware detection. Despite the large number

of different methods for detecting and mitigating

cyberattacks caused by malware, the steady increase in

their number confirms that this problem is not solved

today.

A variant of the architecture of partially central-

ized systems for detecting malicious software in com-

puter networks is presented in [1]. The feature of the

described architecture is that it should enable such sys-

tems to function according to the principles of self-

organization and adaptability. This will give them op-

portunities to determine their next steps in the process

of unionization.

Such systems can be used to counter and detect

malware.

The systems synthesized in this way function as

centralized, but their decisions are made in part of the

components defined by the system in a decentralized

manner. To implement the internal mechanism of their

functioning, it is necessary to develop a method for or-

ganizing their functioning.

The peculiarity of the synthesized system, which is

related to its centralization, decentralization, and hybrid

architecture, concerns the center of the system. This

class of systems can be specified according to the prin-

ciple of their synthesis, which requires appropriate de-

velopment.

1.3. State of the art

To use deception technology, various types of

baits and traps [2] have been developed that mimic the

operation of real systems. The market offers several

solutions based on the use of deception technology and

malware. Let's take a look at the characteristic features

of such systems.

The main features of the Acalvio ShadowPlex sys-

tem [3] are the patented architecture of the deception

farm and autonomous deception. This system automates

and simplifies the configuration and deployment of baits

and traps using predefined deceptive objects and objects

that are generated and placed by the system based on

recommendations and artificial intelligence. It supports

a significant number of deceptive objects, including

baits that mimic hosts running operating systems, in-

cluding IoT hosts, endpoint baits, fake registry entries,

credentials, and shared disks.

One of the first systems to use deception technolo-

gy to add response capabilities was the Attivo

ThreatDefend Deception and Response Platform [4].

The system can be deployed locally, in the cloud, in

data centers, or in a hybrid environment. Similar to oth-

er systems, deceptive objects are designed to identify

intruders trying to access the network and data. This

system not only detects access attempts but also ensures

that the deceptive object interacts with the attacker,

simulating the reaction that the attacker can expect from

real objects. In other words, simultaneously with net-

work protection, the study of malicious intentions and

tactics is ensured.

The Proofpoint Identity Threat Defense system [5]

creates a deceptive environment for the attacker. The

agentless architecture prevents attackers from detecting

deceptive objects. The system detects any changes in

the environment and activates deceptive capabilities to

ensure that the attacker is stopped before gaining access

to corporate network resources. Protection against at-

tacks and early response is provided for email services,

mobile communications, social networks, and desktop

workstations.

The CounterCraft Cyber Deception Platform [6]

system uses active baits to detect intruders. These baits

can be deployed as endpoints, servers, or in online plat-

forms and are flexible to customize. The system is de-

signed to facilitate online interaction with attackers. The

system provides the ability to deploy quickly and con-

trol based on data collected in the environment by

agents.

The Fidelis Deception platform [7] allows the user

to quickly and dynamically create a deceptive environ-

ment that contains baits and traps for user applications,

services, network connections, integrated credentials of

the active directory, memory, endpoints, and servers.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

114

All actions that occur in the deceptive environment are

tracked and available to the administrator to make deci-

sions about studying the actions of intruders, neutraliz-

ing attacks, and protecting against them. The advantages

of the Fidelis Deception platform are as follows: auto-

matic creation of a realistic deception environment that

includes baits and traps of various types; building real

operating system baits along with simulated baits cover-

ing the entire corporate network; fast deployment and

efficiency from the start; high accuracy with no false

positives; constant updating of the intelligent deception

environment; and proactive protection.

The CommVault system [8] provides several data

management solutions for data protection, management,

and optimization. In the area of cybersecurity,

CommVault offers risk analysis and full data protection,

including auto-recovery, threat scanning, active directo-

ry, and database protection. The system’s modules

combine early warning capabilities with rapid response

capabilities to neutralize attacks in time before damage

can occur. “Zero-day” attacks are also detected and neu-

tralized that are difficult or impossible to detect using

traditional technologies. The system also makes it pos-

sible to immediately detect and neutralize hidden at-

tacks that are spreading in the network environment. In

other words, this system enables identification and pre-

vention of attacks even before they start.

The Labyrinth Deception Platform [9, 10] creates a

deceptive environment that simulates the services and

content of the real part of the network. The solution is

based on the so-called Points, which are intelligent hosts

that simulate software, content, routers, and devices.

These deception points detect malicious activity within

the corporate network, providing comprehensive protec-

tion against possible attacks. The deceptive environment

encourages attackers to take actions that allow detection

and tracking of their activity.

Bait, traps, and generally false targets for attacks in

corporate networks can vary. Let's consider some of the

research papers that discuss some types of such false

attack targets and methods of their organization and use.

The article [11] proposes a new type of decoy sys-

tem based on deception security technology. The dy-

namic deception method is adapted to collect unused IP

addresses in the network. The security properties of

deceptive elements are tested in the study [12] with the

help of attackers using reinforcement learning. For test-

ing, deceptive elements are included in the Microsoft

CyberBattleSim research environment. The success of

attackers depends on the number and location of decep-

tive elements. The purpose of cyber deception is to dis-

tort the state of the network to mislead attackers, falsify

their conclusions, and distract them from their goals.

The article [13] proposes a two-phase deception method

based on bait localization. In the first phase, a proactive

decoy localization policy is developed, and in the sec-

ond phase, a reactive deception approach is proposed

that dynamically determines the location of baits ac-

cording to updates of the intrusion detection system.

Thus, the defense system partially tracks the activity of

the attacker.

The strategy [14] for locating baits in the network

should consider not only aspects of the protected net-

work but also the preferences of attackers. To achieve

this goal, we propose a game-theoretic method that gen-

erates an optimal decoy placement strategy in accord-

ance with an attack-defense scenario. The study [15]

proposes a new method for cyber-manipulation using

decoy localization and software diversity to improve

network security. The study [16] proposes a scalable

algorithm for placing baits over an attack graph. The

authors express a two-person zero-sum strategic game

between a defender and an attacker. This formulation

reflects the importance of different nodes within the

network.

When using baits, certain compromises must be

made [17]. On the one hand, decoy systems and services

must be relevant and attractive to the attacker, and on

the other hand, computational and related costs must be

consistent with the functional and budgetary constraints

of the system. Therefore, it is impossible to create a

single, unchanging decoy configuration for different

types of systems and to consider all possible types of

attackers.

Detecting malicious packets among a significant

amount of normal activity is time-consuming [18]. The

range of vulnerabilities is expanding with the develop-

ment of technologies such as IoT, industrial automation,

CPS, and digital twins. Baits are used in malicious

packet identification to eliminate false positives. In ad-

dition to analyzing and reporting intrusion patterns, they

are also used to prevent access to operational devices by

mimicking real systems operating on the network and

capturing and detaining attackers. Baits in computer

networks are effective when they deceive cybercrimi-

nals in such a way that they do not consider themselves

to be real decoys [19]. Therefore, to make decoy decep-

tion more effective, it is necessary to apply it in a more

diverse way. Much of the critical data of organizations

is now stored in databases, which is an attractive target

for attackers [20]. The introduction of digital technolo-

gies and the increase in the number of connections be-

tween organizations, together with the growing com-

plexity of information systems, leads to an increase in

the spread of attacks. At the same time, the improve-

ment of attackers’' skills leads to more "sophisticated"

attacks.

For researchers in the field of cybersecurity [21],

the question remains how to eliminate virtual machine

artifacts to effectively build deceptive "baits" for col-

Information security and functional safety

115

lecting and analyzing malware. The method of using

Linux containers for this purpose is investigated. Today,

the reactions of computer systems are, in most cases,

predictable [22], which provides attackers with infor-

mation on how to access them. It has been shown that

deception technologies are used in many successful

computer hacks, including phishing, social engineering,

and drive-by-downloads attacks.

Paper [23] provides an overview of the problem of

baits and defense strategies based on deception technol-

ogy. The author defines the phenomenon of baits and

summarizes their advantages and disadvantages, and

their legal and ethical aspects. Baits are classified into

different categories, and examples of baits that are ac-

tively being developed and those that have had a signif-

icant impact are presented. Baits are designed to distract

attackers from computer resources [24]. Baits also track

attacker activity and help researchers study attack pat-

terns. However, baits can also be identified by attackers

using various identification methods. A decoy [25] is a

tool with an isolated and separated network that mimics

a real network of value to attackers. It can be seen as a

fake system that looks like the real thing and aims to

attract attackers, interact with them, and monitor the

interaction between the attackers and the infected de-

vice. At the same time, baits are becoming an important

entity for information cybersecurity researchers to rec-

ognize attacks and in deception technology. Today, a

significant number of devices are connected to the In-

ternet [26], which increases the need to protect them

from cyberattacks. The decoy-based deception mecha-

nism is considered to be a method to ensure the security

of modern IoT networks.

The tactic of confusing the attacker is presented

in [27]. A self-adaptive system that incorporates resili-

ence mechanisms is presented in [28]. The analysis of

computer attacks and malware in terms of the imple-

mentation of the developed methods in detection sys-

tems is presented in [29, 30]. An important feature in

the development of detection methods is to take into

account the peculiarities of their implementation direct-

ly in systems [31].

In [32], a model and training method for malware

traffic detection based on a decision tree ensemble is

presented. methods and technologies for ensuring cy-

bersecurity of industrial and web-oriented systems and

networks are presented in [33]. Another cyber attack

detection system based on information-extreme machine

learning is presented in [34]. In the study [35] an over-

view of cyber threats and vulnerabilities is presented.

The article [36] presents the consistency issue and relat-

ed trade-offs in distributed replicated systems and data-

bases. The study [37] presents a method for classifying

malware using images that use dual attention and con-

volutional neural networks. In [38], state-of-the-art

malware classification approaches are presented. The

study [39] proposes an unsupervised deep learning ap-

proach that employs an artificial neural network to de-

tect anomalies in an insider cyber security attack scenar-

io.

Thus, the use of false decoy and trap attacks is a

promising and actively developing area of research. The

creation and management of such false objects requires

the development of a distributed system for operation in

a corporate network, which would organize the func-

tioning of the entire system at the levels of interaction of

its components, decision-making, and autonomous op-

eration of individual components. In this regard, the

principle of synthesizing such systems using false attack

objects and, accordingly, sets of baits and traps needs to

be developed.

1.4. The purpose and tasks of research

From the above review of literature sources, it fol-

lows that the following task needs to be solved: the de-

velopment of a new principle for synthesizing deception

systems and a method for synthesizing partially central-

ized distributed systems.

The aim of this paper is to develop a principle of

multi-computer deception systems for malware and

computer attack detection based on baits and traps and

to develop a method of creating partially-centralized

systems as a class of deception system. Such systems

should confuse attackers, which will improve the effec-

tiveness of countering malware and cyberattacks.

The paper structure is as follows.

Section 1 is devoted to previous work. Section 2

presents the Related works section – a brief analysis of

the very modern and the latest ideas and methods ad-

dressed to solve the problem of IoT malware detection

with its advantages and disadvantages. Sections 3 and 4

discuss the main idea of the research: the development

of the principle of synthesis of multicomputer systems

of combined bait and traps and the method of creating

partially centralized systems for detecting malware in

computer networks. Section 5 describes the experi-

mental results of this research. In addition, conclusions

present the obtained results of the research.

3. Principle of synthesis

of multi-computer systems using combined

anti-virus bait and traps

and the decision-making controller

for detecting malware and computer

attacks in corporate networks

Users of computer networks need systems for de-

tecting malicious software and computer attacks that

will allow, in addition to ensuring security at various

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

116

stages of possible penetration of computer systems or

stations that are connected to the network, for the stage

when at all previous stages such detections were not

made, but penetration of the system could have oc-

curred. Among the systems for detecting malware and

computer attacks, there are systems that, in addition to

detecting threats, create false targets for attacks in com-

puter networks, which allows administrators of such

networks to monitor processes in networks that are ma-

licious or abnormal and need to be stopped. Therefore,

systems focused on the detection of malware and com-

puter attacks that have passed certain stages of protec-

tion, which used traditional means and systems of pre-

vention, detection, and counteraction, the purpose of

which and possible configuration options for use are

known to attackers, are promising for development.

Among such systems, a special place in the classifica-

tion is occupied by prevention, detection, and counter-

action systems with a certain set of baits and traps for

malware and computer attacks. Their use creates false

attack targets for the attacker and allows the information

about such attacks and the spread of malware in com-

puter stations in the network to be saved.

To improve the effectiveness of systems for detect-

ing and counteracting malware and computer attacks

through the use of baits and traps, it is necessary to inte-

grate these tools into complex systems involving all

computer stations in the network and organize their op-

eration in such a way that they can jointly and without

user intervention respond to malicious and anomalous

processes. Thus, it is necessary to build not just one bait

and trap in a particular computer station but a network

of bait and traps to provide comprehensive protection of

a computer network at the stage when computer attacks

have managed to pass through firewalling and malware

has managed to overcome scanning by antivirus tools

and systems. Such a system of baits and traps can be a

combined system, and to achieve an effective result, it

should include shadow baits and traps that will allow

you to establish and track the attacker’s behavior during

the attack, as well as detect malware and computer at-

tacks with a higher probability. The effectiveness of

such tools depends on the organizational component of

the system.

Such a principle should define the general re-

quirements for the construction of elements of the theo-

ry of creating multi-computer systems with combined

baits and traps and a decision-making controller to de-

tect and counteract malware and computer attacks.

When describing these systems, the guiding principle

encompasses the fundamental traits that enable the sys-

tem to operate effectively. Without formalization and a

clear demonstration of its proper functionality, the sys-

tem will fail to achieve its intended purpose. In addition,

the principle of synthesis of such systems will allow the

formation of a class of such systems and will develop

elements of the theory of multicomputer systems in

terms of systems that combine specialized functionality

with a decision-making controller to detect malware

using combined baits and traps.

In the context of the development of elements of

the theory of multicomputer systems, this principle is a

systematic principle because it refers to the definition of

the mechanisms of system functioning. In this case, it is

necessary to specify such features and characteristic

properties of the systems that reflect the smallest num-

ber of factors that will determine how the system will

function.

The principle of the synthesis of multicomputer

systems with combined baits and traps and a decision-

making controller for detecting and counteracting mal-

ware and computer attacks is set by considering the de-

tails of the system's decision-making controller and

specialized functionality for detecting malware using

combined baits and traps.

The architecture of multicomputer systems, taking

into account the principle of synthesis of such systems,

can be centralized, decentralized, or hybrid with differ-

ent degrees of centralization. Accordingly, the decision-

making center of such multicomputer systems may be

located in one or more components of the system, and

this, like the architecture, will not affect the principle of

system synthesis and its non-fulfilment. The centre can

move between components depending on the current

state of the system. In addition, the architecture of such

systems can be flexibly rebuilt, if necessary, when the

external environment changes and the system is affect-

ed, which characterizes the specifics of the tasks it per-

forms. However, such features do not affect the re-

quirement of the principle of synthesis of such systems.

The peculiarity of the proposed principle of system syn-

thesis is that it ensures control over the decisions made

in the decision-making center, i.e., the mandatory pres-

ence of a decision-making controller. At the same time,

the decision controller should be able to influence their

implementation by approving or rejecting the proposed

next steps of the system, as well as approving another

close or alternative solution. Such features of a decision

controller are required because the system is designed to

perform specific tasks associated with the interaction of

system components or elements with malware and com-

puter attacks. Accordingly, attackers can repeat their

actions many times in the same way, which will bring

the system and its respective components to the same

state. Because of such testing of the system, the attacker

will be able to study its behavior and in a certain time

will be able to bypass it. Therefore, the system’s deci-

sion controller should influence the final decision-

making by selecting the next steps of the system as a

reaction to changes in the external environment and the

Information security and functional safety

117

state of the system and its components. Such a change

in the choice of the next steps of the system will lead to

complications for the attacker in terms of studying the

behavior of detection tools for countering malware and

computer attacks in corporate networks.

The requirement to combine in such systems spe-

cialized functionality for processing events in a corpo-

rate network, i.e., spatial distribution, and the presence

of a decision-making subsystem in which decisions will

be developed, and their implementation is possible only

after approval by the controller, establishes factors for

developing the principle of synthesis of multi-computer

systems with combined baits and traps and a decision-

making controller for detecting and counteracting mal-

ware and computer attacks. In particular, we formalize

the systems, their components, and their properties that

are necessary to fulfill the requirements of the principle

of system synthesis.

Let us denote by the symbol 𝔓 the principle of the

synthesis of multicomputer systems with combined baits

and traps and a decision-making controller to detect and

counteract malware and computer attacks. Then, as a

mapping from the entire set of multicomputer systems

ℭ, it will form a subset of systems 𝔖 for which the re-

quirement of the principle 𝔓 will be fulfilled. That is,

the given mapping by the formula ℭ
𝔓
→𝔖 will form a

class of systems with the requirements set by the princi-

ple 𝔓, and it is necessary to detail the components of

such systems for their further synthesis. Let us define

each of the defining components and properties that

need to be implemented in the architecture of such sys-

tems as a subset 𝔙𝑖 (i = 1,2,… , n𝔙, n𝔙 is the number)

The presence of possible variants among

𝔙𝑖 (i = 1,2,… , n𝔙, n𝔙 is the number) is acceptable. For

example, such systems may be centralised, decentralised

or hybrid with a certain degree of centralization, which

may also provide opportunities for their division into

separate types, and at the same time they will meet the

requirements of the 𝔓 principle.

Let us consider possible variants of components

and defining properties for the class of systems 𝔖: 𝔙1is

type of system architecture (centralised, decentralised,

hybrid); 𝔙2 is types and number of centres in the system

architecture (integral in one component, divided into

equivalent parts in different components, hierarchically

divided in different components, integral hierarchical in

different components); 𝔙3 – adaptability of the system

when external conditions change (change of its func-

tioning algorithms, change of system architecture,

change of functioning algorithms and change of system

architecture); 𝔙4 – the nature of changes in the centre of

the system (change in parameter values, change in the

architecture of the centre, change in parameter values

and change in the architecture of the centre); 𝔙5 – self-

organization of the system (creation of the organization

of functioning of a complex system, reproduction of the

organization of functioning of a complex system, im-

provement of the organization of functioning of a com-

plex system), 𝔙6 – flexibility of the system (quick re-

configuration of the system under the influence of ex-

ternal events, latent reconfiguration of the system);

𝔙7 – independence in decision-making (decision-

making by the entire system centre, decision-making by

a part of the system centre); 𝔙8 – influence on the sys-

tem (internal events, external events, internal and exter-

nal events); 𝔙9 – multi-agency in the system for deci-

sion-making (multi-agency, single-agency, no agents);

𝔙10 – control of decisions in the system (presence of a

controller, absence of a controller); 𝔙11 – availability of

specialised functionality in the system (formation of

internal events in the system by specialised functionality

based on the results of execution of the Each of the

characteristics 𝔙𝑖 (i = n𝔙, n𝔙 is the number of charac-

teristics) is a set that contains typical elements related to

systems ℭ. When applying the principle 𝔓, systems of

type ℭ are synthesised. To synthesize systems according

to the principle 𝔓, that is, the formation of the set ℭ

according to the definition of the direct product of sets

𝔙𝑖 (i = n𝔙, n𝔙 is the number of characteristics) is as

follows:

𝔖 = {(𝔳1, 𝔳2, … , 𝔳11)|(𝔳1, 𝔳2, … , 𝔳11) ∈

∈ 𝔙1 ×𝔙2 ×…×𝔙10,1 ×𝔙11}, (1)

where 𝔙i (i = n𝔙, n𝔙 is the number of characteristics)

are subsets with elements that characterize the features

of the system architecture; 𝔳10 is an element that deter-

mines the presence of a controller in the system; set

𝔙10,1 is a one-element set; 𝔳1, 𝔳2, … , 𝔳11 are the designa-

tions of elements in sets 𝔙1, 𝔙2, … ,𝔙11, respectively.

Thus, the number of systems of type 𝔖 according

to the 𝔓 principle is different, but according to formula

(1), they are all united by the presence of a controller in

their architecture. The number of subsets 𝔙𝑖 (i = n𝔙,

n𝔙 is the number of characteristics) can be different,

including less than 𝑛𝔙, but the presence of the one-

element set 𝔙10,1 and the set 𝔙11 in the direct product

of sets is mandatory.

Such a division of the system architecture by in-

ternal structure makes it possible to determine the nec-

essary elements and components in the system architec-

ture, which will contain a controller and specialized

functionality, and is the basis for developing the concept

and methodological foundations for the synthesis of

such systems. In contrast to the known principles of the

synthesis of multi-computer systems with combined

baits and traps and a decision-making controller for de-

tecting and countering malware and attacks, the pro-

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

118

posed principle of the synthesis of such systems con-

tains two defining requirements for the system architec-

ture. The decision-making controller is separated from

the system center, which makes it possible to form its

architecture separately from the architecture of the sys-

tem center and, as a result, to make decisions on the

decisions developed in the system center independently

of it. This is due to the specifics of the system and gives

the system an advantage over attackers or their tools, as

it generates different final system responses under the

same initial conditions at different times, which confus-

es attackers.

Let us consider a method for synthesizing systems

with partial centralization in their architecture. Simul-

taneously, the synthesis method does not define a con-

troller, but primarily implements partial centralization

and investigates the degree of degradation of such sys-

tems depending on the time of their operation and the

impact of malware and computer attacks.

4. Method for creating partially

centralized systems for detecting malware

in computer networks

A method for creating partially centralized systems

to detect malware in computer networks was developed.

The generalized scheme is presented in Fig. 1.

In partially centralized distributed systems, it is

necessary to synthesize the following principles of op-

eration, functional features and characteristics: 1) for-

mation of the system from components; 2) communica-

tion between system components; 3) maintaining the

integrity of the system; 4) partial centralization;

5) migration of the decision-making center of the sys-

tem; 6) assessment of the state of components and the

system; 7) evaluation of the results of distributed calcu-

lations in components; 8) formation of a decision in

several components; 9) reorganization of the system

architecture; 10) determination of further steps of the

system at the current time; 11) completion of the func-

tioning of the components and the system.

Let’s detail each of the given principles of func-

tioning and characteristics. All of these must be synthe-

sized in such systems completely. Because of such a

synthesis, the system will become self-organized, adap-

tive, and partially centralized.

Formation of system S from components can be

performed at the beginning of its installation and activa-

tion, during operation if necessary, and after turning on

the computer stations in the network. In addition, new

components can be added to the system or existing ones

can be removed. In addition, some of the computer sta-

tions in which the components are installed may be

turned off for a long time; therefore, the system will

contain a smaller number of components.

Fig. 1. Generalized scheme of the method

Computer stations with system components can be

turned on at the same time or at different times. Com-

puter stations may not be turned off, that is, they may be

turned on all the time. These cases will influence the

formation of system S. Let's set them in the system so

that its decision-making center can consider these cases

and their variations in the process of system formation

and functioning, and as an active last event. Variants of

the formation of the system are defined as a set,

MS
var,1 = {mS,1

var,1,mS,2
var,1,⋯ ,mS,n

MS
var,1

var,1 },

where nMS
var,1 is the number of options. For example,

the following elements: mS,1
var,1

 – characterizes the for-

mation of the system at its beginning and activation;

mS,2
var,1

 - characterizes the formation of the system in the

process of functioning as needed; mS,3
var,1

 – characterizes

the formation of the system after turning on computer

stations in the network. The options that are set by the

plural MS
var,1

, there can be only one at the current mo-

ment of time. That is, system S will analyze the last

version of its formation. To determine the last variant of

system formation, we introduce a predicate on the ele-

ments of the set as follows: MS
var,1. The options that are

Ste
p 1

•Formation of the system from components

Step
2

•Establishing and maintaining communication
between system components

Step
3

•Ensuring system integrity

Step
4

•Organization of partial centralization

Step
5

•Migration of the decision-making center of
the system

Step
6

•Evaluation of the state of components and the
system

Step
7

•Evaluation of the results of distributed
calculations in components

Step
8

•Determination of components in which the
task set by the system will be performed

Step
9

•Reconstruction of the system architecture in
the presence of critical events

Step
10

•Determination of further steps of the system at
the current time

Step
11

•Completing the functioning of components
and the system

Information security and functional safety

119

set by the plural, there can be only one at the current

moment of time. That is, the system analyzes the last

version of its formation. To determine the last variant of

system formation, we introduce a predicate on the ele-

ments of the set as follows: The options that are set by

the plural, there can be only one at the current moment

of time. That is, the system analyzes the last version of

its formation. To determine the last variant of system

formation, we introduce a predicate on the elements of

the set as follows:

PS
var,1(mS,q

var,1) = {
0,mS,q

var,1 — not current version,

q,mS,q
var,1 — current version,

q = 1,2,… , nMS
var,1 . (2)

Similarly, we introduce the set of variations by the

set MS
var,2 = {mS,1

var,2,mS,2
var,2,⋯ ,mS,n

MS
var,2

var,2 }, here

nMS
var,2 is the number of variations. For example, the

following elements: mS,1
var,2

– supplementing the system

with new components; mS,2
var,2

– removal of components

from the system. For variations given by a set of cases

MS
var,2

, we introduce a predicate, the value of which will

reflect their presence or absence, so

PS
var,2(mS,q

var,2) = {
0,mS,q

var,2 − not current version,

q,mS,q
var,2 − current version,

 q = 1,2,… , nMS
var,2 . (3)

Similarly, we introduce the set of variations by the

set MS
var,3 = {mS,1

var,3,mS,2
var,3,⋯ ,mS,n

MS
var,3

var,3 }, where

nMS
var,3

is the number of variations. For example, the

following elements: mS,1
var,3

– computer stations, in which

there are system components, turned on at the same

time; mS,2
var,3 – computer stations in which there are sys-

tem components that are turned on at different times;

mS,3
var,3

 – computer stations, in which system compo-

nents are present, are not turned off for the entire time

of system operation. For variations given by a set of

cases MS
var,3

, we introduce a predicate, the value of

which will reflect their presence or absence:

PS
var,3(mS,q

var,3) = {
0,mS,q

var,3 — not current version,

q,mS,q
var,3 — current version,

 q = 1,2,… , nMS
var,3 . (4)

Similarly, we introduce the set of variations by the

set

MS
var,4 = {mS,1

var,4,mS,2
var,4,⋯ ,mS,n

MS
var,4

var,4 },

where nMS
var,4 is the number of variations. For example,

the following elements: mS,1
var,4

– part of the computer

stations in which the components are installed may be

turned off for a long time, the system will contain a

smaller part of the components, and at this time its cur-

rent formation may occur caused by certain events

without these components; mS,2
var,4

– the new formation

of the system did not occur without the components that

were located in the switched off computer stations. For

variations given by a set of cases MS
var,4

, we introduce a

predicate, the value of which will reflect their presence

or absence:

PS
var,4(mS,q

var,4) = {
0,mS,q

var,4 — not current version,

q, mS,q
var,4 — current version,

q = 1,2,… , nMS
var,4. (5)

Formulas (2) – (5) describe the stage at which sys-

tem S is formed and specify its variants. The results of

the predicate calculation form part of the input data for

the system’s decision-making center. After installing all

the components of the system in the computer stations

in the network, considering the components with and

without the decision center, when the system is first

started, the components with the decision center check

the predicate values for the various elements of the set

MS
var,1

 and establish that all values are equal to zero.

Then, the system will independently, without a user or

administrator, begin the initial formation of its compo-

nents from the existing subset functions, and after the

completion of such formation, it will proceed to the di-

vision of components with a decision-making center

into active and inactive ones.

To ensure communication between components in

system S, we will organize communication between

components not only using the standard sending of mes-

sages with the appropriate number of confirmation mes-

sages, but also with the sequential addition of certain

tasks to them, the result of which is known in the com-

ponents that plan to send the main message or task, as

well as conducting an analysis of the time spent be-

tween sending the first connection request and receiving

the results of the test task. In general, the entire system

S will act as one big sensor that will respond to changes

in the operation of its parts, including communication

between components. If all the components are turned

off at the same time, then they could fix a certain task in

themselves, the execution of which they should perform

after the next turn on. Shutting down computer stations

may be correct, and then such an action of fixing the

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

120

same control task for its use as confirmation of the legit-

imacy of the connection with the corresponding compo-

nent could be implemented and fixed statically. Howev-

er, it may happen that the computer station will turn off

in an emergency, and such fixation of a certain control

task will not happen. Thus, the introduction of redun-

dancy in the organization of communication between

components requires consideration of options with ena-

bled and disabled computer stations and synchronization

of the time during which the components are active and

establish communication with each other. Therefore,

let’s introduce a set of options

MS
var,5 = {mS,1

var,5,mS,2
var,5,⋯ ,mS,n

MS
var,5

var,5 },

where nMS
var,5 is the number of options that arise when

redundancy is introduced to organize communication

between components. The elements of the set are as

follows: mS,1
var,5

– computer stations in which system

components are available, turned on at the same time;

mS,2
var,5

 – computer stations, in which system compo-

nents are present, are turned on at different times, and a

part may be turned off after a certain time of operation,

and a certain part may be turned on after this time, or

not turn on at all for a long time. Accordingly, the sys-

tem S components should also be active only when the

computer stations are turned on and functioning. Let’s

also introduce a set of options

MS
var,6 = {mS,1

var,6,mS,2
var,6,⋯ ,mS,n

MS
var,6

var,6 },

where nMS
var,6

is the number of options that arise when

the computer stations, in which the system components

are installed, are terminated. The elements of the set are

as follows: mS,1
var,6

 – computer stations, in which the

system components are present, turned off correctly at

the same time; mS,2
var,6

– computer stations, in which

there are system components, turned off by emergency

at the same time;

mS,3
var,6

 – computer stations that have

system components, turned off at different times cor-

rectly; mS,4
var,6

– computer stations, in which there are

system components, turned off at different times, partly

correctly and partly in an emergency. According to the

given sets, it is possible to form two-element sets that

characterize the events related to communication in the

system depending on the computer stations as follows:

{mS,1
var,5;mS,1

var,6}; {mS,1
var,5;mS,2

var,6}; {mS,1
var,5;mS,3

var,6};

{mS,1
var,5;mS,4

var,6}; {mS,2
var,5;mS,1

var,6}; {mS,2
var,5;mS,2

var,6};

{mS,2
var,5;mS,3

var,6}; {mS,2
var,5;mS,4

var,6}.

For individual computer stations, it is necessary to

develop similar tasks in sets because, according to them,

communication between individual components in the

system will be ensured. In general, in the system, com-

munication between components and sending messages

will be established according to the following relations:

"one to all" (mS,1
var,7

); "all to one" (mS,2
var,7

); "to each

other" (mS,3
var,7

); "one to a certain number, but not to all"

(mS,4
var,7

); "a certain number, but not all, to one"

(mS,5
var,7

); "a certain number, but not all, to a certain

number, but not to all" (mS,6
var,7

). Let's define these rela-

tions as a set

MS
var,7 = {mS,1

var,7,mS,2
var,7,⋯ ,mS,n

MS
var,7

var,7 },

where nMS
var,7

 is the number of and nMS

var,7 = 6.

To specify the connection between individual

computer stations, we introduce a set of options

MS
var,8 = {mS,1

var,8,mS,2
var,8,⋯ ,mS,n

MS
var,8

var,8 },

where nMS
var,8 is the number of options that arise in the

process of establishing a connection between the com-

puter stations in which the system components are in-

stalled. The elements of the set are as follows: mS,1
var,8

–

a computer station in which the system component is

present, turned on; mS,2
var,8

– the computer station, in

which the system component is present, is turned off

correctly; mS,3
var,8

 – a computer station, in which a sys-

tem component is present, is turned off by emergency.

According to the given set, we will form two-element

subsets that characterize the state of the computer sta-

tions regarding their start and end of work as follows:

{mS,1
var,8;mS,2

var,8}; {mS,1
var,8;mS,3

var,8}. Therefore, if the state

of the computer station, in which the system S compo-

nent is present, is characterized by the subset

{mS,1
var,8;mS,2

var,8}, then the messages it receives and sends

will be considered by the decision-making center to be

executed correctly. Otherwise, that is, for a subset

{mS,1
var,8;mS,3

var,8}, the decision-making center records

such an event and, when the computer station is turned

on next, processes an additional special procedure for

establishing communication with this component to

update this component in the system. In addition, when

performing a standard communication action between

any two components of the system, regardless of the

type of element of the set MS
var,7

, the performance of an

Information security and functional safety

121

additional check is mandatory and consists of the per-

formance of a certain task of the component that plans

to establish a connection and an equally certain task

from the component with which communication is

planned.

Thus, the establishment of communication be-

tween system components in different nodes in the net-

work will be carried out considering the types of rela-

tions that allow the synthesis of partial centralization

and additional verification of the legitimacy of the com-

ponent.

An enterprise’s corporate network can have several

segments. Components of system S can be installed in

different parts of the network and remotely in home

computer stations. Within the corporate network,

switches may fail or there may be other reasons that will

cause the system to be divided into two or more unrelat-

ed subsystems. That is, the system in the process of

functioning can disintegrate into unrelated parts. Then,

each of the parts transforms itself into a reduced system

S and continues to work if at least two active compo-

nents with a decision-making center remain in each of

the parts. If one of the parts does not have active com-

ponents with a decision center and is inactive, then the

components of this part block the operation of the com-

puter stations and issue a corresponding message to the

administrator. If components with a decision center are

inactive at the moment of a certain emergency or inten-

tional separation of the second part, which will contain

all active components with a decision center of the sys-

tem, then their transfer to the active state will occur af-

ter another communication session and establish the

absence of active components with the center decision-

making. Maintaining the integrity of system S during its

operation will be ensured by the periodic exchange of

messages between the system components according to

relations from the set MS
var,7

, which will be chosen ran-

domly. In addition to these two cases, which character-

ize ensuring the integrity of the system, there is also a

case related to the partial centralization synthesis in sys-

tem S. If part of the active components, which contain

the decision-making center of the system, is removed

from the system for certain reasons, then the remaining

part will begin the procedure of forming the system

from the existing components. However, if there are less

than two such components, then all active components,

including those without the functionality with a deci-

sion-making center, will block the operation of comput-

er stations and will issue a corresponding message to the

system administrator. Thus, the given organization of

system integrity support considers the possibility of

synthesis in system S of partial centralization and adapt-

ability.

The partial centralization of the system is specified

in its designed architecture, in particular by the follow-

ing formula (4, [1]). The system is partially centralized

because all its components are divided into two subsets:

a subset of components that can be the center of the

system and a subset of components that lack functions

to ensure the functioning of the decision-making center

of the system. The management of the entire system

occurs from the components in which the decision-

making center of the system is located. Therefore, it is

centralized. Partial centralization is ensured by the fact

that the components of system S, in which the decision-

making center of system S for decision-making is locat-

ed, develop proposals separately in each of these com-

ponents, that is, decentralized, and agree to it jointly by

all. Thus, the system is not fully centralized.

We will consider partial centralization in relation

to the components that may contain the decision-making

center of the system. Most of the installed components

of system S in computer stations must contain function-

ality that ensures the functioning of the decision-making

center of the system. After the installation of the system

is completed, the system is started for the first time with

all the computer stations in which the system compo-

nents are installed turned on. At this stage of the sys-

tem’s functioning, all components that may have a deci-

sion-making center of the system will participate in the

preparation of the first final decision to determine the

first step of the system. This solution will reduce the

number of active components of the decision-making

center by switching some of them to an inactive state.

Let's set the set of states into which system S can go

MS
st = {mS,1

st ,mS,2
st ,⋯ ,mS,n

MS
st

st },

where nMSst
is the number of states. Then, mS,1

st

– the

state of the system in which the active components of

the decision-making center are updated. The decision to

transition to this state is determined by the active com-

ponents of the system’s decision-making center. Imple-

mentation of system management is determined by the

decision-making center of the system. Decisions will be

formed and instructions will be sent to the components

for their implementation. The formation of the decision

in the system will be carried out in the active compo-

nents of the decision-making center. If we consider

them collectively with the number of more than one, at

the architectural level, they can be positioned as a de-

centralized subsystem. Therefore, the formation of the

final solution will be performed according to the solu-

tions that will be obtained from the active components

and their processing. The completion of the process of

working out the final solution will be the transition of

the system to a state. The transfer of the decision from

the active components of the decision-making center of

the system to the specified components will be per-

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

122

formed according to the relation set by one of the ele-

ments mS,5
var,7

 or mS,6
var,7

, and will transfer the system to

the next state. Thus, the main steps in the synthesis of

partial centralization in the system are to ensure the im-

plementation of the formation of components in which

the decision-making center will function, the formation

of decisions in the components and the final decision,

and the processing of the final decision in terms of send-

ing it to the components in which it should be done. To

form decisions, the corresponding components receive

certain messages or results in the process of system op-

eration.

The elements of the set of states MS
st

 will specify

the current states of the system as a whole and its com-

ponents. Transitions from state to state are set in ordered

pairs (mS,p
st , mS,q

st), where p is the number of the current

state of the system and q is the number of the next state

of the system. Both states of the system will necessarily

apply to its component. In particular, the transition from

the current state to the next state may not cover all com-

ponents of the system in terms of performing certain

actions to achieve a complete transition of the entire

system to the next state. Thus, the set states MS
st

 will

characterize the system as a whole, and for the system

components MS
st, they will be the same according to the

list of elements of the set, but the state of individual

components will be specified separately, because the

components may not be in the same state at the same

time. Individual components of the system can change

their state according to the elements of the set MS
st more

often than the system. When the system transitions from

state to state, a certain part of the components may be

involved in the process, and their states may also change

as a result. It is assumed that the functioning of the sys-

tem is possible in the presence of at least two compo-

nents, which can be the center of the functioning of the

system. Thus, scaling the system through its states for a

minimal number of components is admissible. The tran-

sition from state to state is provided by a certain set of

functions. In one cycle, the system can change several

states if it decides to do so. The system can form new

states by combining the states known to it. In a certain

state, the system receives current and input data, for the

processing of which appropriate functions will be in-

volved. As a result, a field of events for processing is

formed, which is defined by the set of events

MS
pd
= {mS,1

pd
,mS,2

pd
, … ,mS,n

MS
st

pd
 },

where MS
pd

 is the number of events.

When the number of enabled computer stations

changes, the number of components in the system

changes, particularly those that may have a decision-

making center in the system. Moreover, during a certain

time of the system's operation, events may occur that

will require a change in the state of the system in rela-

tion to some components that may contain the system’s

decision-making center. Therefore, the migration of the

decision-making center of the system between certain

components must be specified by certain appropriate

functions for its implementation by the system itself.

Considering the target orientation of system S for

the detection of malicious software, it is necessary to

determine, in addition to the current state of the compo-

nents and the system, the security state of the computer

stations in which the components are installed and their

own security state. Thus, to ensure the proper function-

ing of the system and to make decisions regarding its

further functioning, the following states need to be tak-

en into account: the state of the system, the states of

components, and the states of computer stations. The

values of these states will be determined not only with

respect to their safety in relation to the effects of mali-

cious software but also with respect to the general load-

ing of computer station resources and the load of exe-

cuted tasks in the component. We integrate the general

states of the components and computer stations into one

system component state indicator according to formula

(53, [1]), according to which we calculate the value for

each component a3,S1,n
′ . We determine the state of the

system as a whole according to the states of its compo-

nents, considering the values a3,S1,n
′ for all components

that are currently active in the system, as follows:

aS,t
st,1 =

1

p
∙ ∑ a3,Si,n,q

′p
q=1 , (6)

where p is the number of active system components in

enabled computer stations; p = 1,2,… , n, n – the num-

ber of components in system S; a3,SI,n,q
′ – the value

a3,S1,n
′ in the q ith component.

In the components of system S, calculations will

be carried out and transferred to the active components,

in which the decision-making center of the system will

function. In the active components of the decision-

making center, certain tasks can also be performed and

their results obtained. Under certain circumstances, not

all components can receive the result of the assigned

task and transmit it within the given time intervals. In

addition, in certain components, the results of the per-

formance of the assigned task may be different from the

results obtained from most components that were in-

volved in its performance. Not all the results of the as-

signed task will have clear expected numerical values.

For the formation of the final result for its use in deter-

mining the further steps of the system in the compo-

nents of the decision-making center, it is necessary to

divide the components from which the results of the

Information security and functional safety

123

task were obtained into two classes. All tasks that can

be performed by the system are divided into subset

functions that can perform them and types of compo-

nents in which they can be performed. The states of the

components will constantly change. They do not have

static numerical values. The values of the characteristic

indicators of the system components, depending on the

types of tasks performed are determined by formulas

(12, [1]), (44, [1]) and (53, [1]). Calculate each value

a1,Si
′ , a2,Sk+1,n

′ , a3,S1,n
′ for individual components of the

system, functions with five arguments fa1,Si
′ , fa2,Sk+1,n

’ ,

fa3,S1,n
’ are used, respectively. For task types, only one of

the three values will be calculated. But its value will be

obtained according to the five arguments of the corre-

sponding function. Let's consider options for defining

the functions fa1,Si
′ , fa2,Sk+1,n

’ , fa3,S1,n
’ .

The first option can be used to determine the val-

ues of the functions fa1,Si
′ , fa2,Sk+1,n

’ , fa3,S1,n
’ is given by

the arithmetic mean value of all five arguments as fol-

lows:

A1,SI
’ = fa1,SI

’ (a1,SI,1
’ , a1,SI,2

’ , a1,SI,3
’ , a1.SI,4

’ , a1,SI,5
’) =∙

=
1

5
∙ ∑ a1,SI,q

’5
q=1 , (7)

a2,Sk+1,n
' =

fa2,Sk+1,n
' (a2,Sk+1,n,1

' , a2,Sk+1,n,2
' , a2,Sk+1,n,3,

' a2,Sk+1,n,4,
' a2,Sk+1,n,5)=

'

=
1

5
∙ ∑ a2,Sk+1,n,q

’5
q=1 , (8)

A3,SI,n
’ =

fa3,SI,n
’ (a3,SI,n,1

’ , a3,SI,n,2
’ , a3,SI,n,3

’ , a3,SI,n,4
’ , a3,SI,n,5

’) =∙

=
1

5
∙ ∑ a3,SI,n,q

’5
q=1 , (9)

After obtaining values according to formulas (7) –

(9) for each of the components to which the task was

sent for execution, it is necessary to divide these values

into two classes. The first class will include those values

that are equal to or are closest to one on the numerical

axis, and the rest will be included in the second class.

Then, the results of the task, which are obtained from

components with values from the first class, will be ac-

cepted with the appropriate degree of confidence. If

they are numerical, the arithmetic mean value will be

calculated as the final result. If the values of the per-

formed task are non-numeric, then the result of the exe-

cution will be accepted as completed if the first class is

not empty. If the first class is empty, the task is per-

formed again. To form two classes, we form an interval

for the values (a1,Si
′ , a2,Sk+1,n

′ , a3,S1,n
′) from the compo-

nents so, so that the minimum of them is the lower limit

of the interval, and the upper limit of the interval is the

number one. The interval formed in this way will con-

stantly change for each new task, since the lower limit

will be changed. Let's set the lower limit for the first

class as 20% of the deviation from unity to the lower

limit, and for the second class, respectively, as 80% of

the deviation from the lower limit of the interval. The

common value of the two classes will be assigned to the

first class, then the values of the second class will be in

the interval with an open upper border. Let's define an

interval with classes as follows: and for the second

class, respectively, as 80% deviation from the lower

limit of the interval. The common value of the two clas-

ses will be assigned to the first class, then the values of

the second class will be in the interval with an open

upper border. Let's define an interval with classes as

follows: and for the second class, respectively, as 80%

deviation from the lower limit of the interval. The

common value of the two classes will be assigned to the

first class, then the values of the second class will be in

the interval with an open upper border. Let's define an

interval with classes as follows:

A1,S
’ = min (a1,S1

’ , a1,S2
’ ,… , a1,Sp

’) ; p ≤ I;

a1,S
' = min(a2,Sk+1

' , a2,Sk+2
' ,… , a2,Sp

') ; p ≤ n;

a1,S
' = min (a3,S1

' , a3,S2
' , … , a3,Sp

') ; 1 ≤ p ≤ n, (10)

where [a1,S
′ ; 1] – the range of all values; a2,S

′ = 1−

0,2 ∗ (1 − a2,S
′ ; 1) – the limit value of both classes;

[a2,S
′ ; 1] – range for values from the first class;

[a1,S
′ ; a2,S

′] – range for values from the second class

Thus, the clustering of values performed according

to formula (10) allows the decision-making center of the

system to accept the results of the task in the given

components.

However, when evaluating the results of distribut-

ed calculations in components according to the first op-

tion, the weight of the value of a certain characteristic

indicator is leveled and can affect the assignment to a

certain class. This is because, according to formulas (7)

– (9), all terms are considered equivalent, regardless of

their weight. Considering their weights in the overall

resulting value is complicated, because these weights do

not have established values and require the involvement

of experts to determine them, which will affect the re-

duction of the self- organization of the system and their

possible accuracy, in connection with the constant

changes of states in computer stations. Therefore, con-

sider the second option for determining the values of the

functions fa1,Si
′ , fa2,Sk+1,n

’ , fa3,S1,n
’ .

To perform clustering into two classes according

to the second option, we consider a five-dimensional

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

124

space in which the five arguments of the functions fa1,Si
′ ,

fa2,Sk+1,n
’ , fa3,S1,n

’ will set the points. Thus, when obtain-

ing the values of the arguments of the functions from

the system components in which the task was per-

formed, the coordinates of points in the five-

dimensional space will be formed from them, with the

subsequent division of the points into two classes. The

choice of the classification algorithm and the metric will

be made based on the fact that the valuable values for

the system will be those that will be closest to the value

equal to one. Accordingly, it is necessary to choose a

classification algorithm and metric in such a way that

the first class is formed, in which the element

(1;1;1;1;1) would be, or the cluster would be formed in

its absence, but with coverage of the area of the points

closest to it.

Let’s consider the known metrics and select a met-

ric for use in classification. The Euclidean distance met-

ric specifies the geometric distance between objects in

space. The squared Euclidean distance metric is charac-

terized by giving more weight to the most distant ob-

jects. The Manhattan distance metric reduces the impact

of individual long distances. The power-law distance

metric is used when it is necessary to increase or de-

crease the weight for the dimensions of objects that dif-

fer significantly. Its disadvantage is the need to set two

parameters. The Chebyshev metric is used if two objects

differ by at least one coordinate. From the analyzed

metrics, we will choose the Chebyshev metric, since

according to it, it is possible to distinguish between two

objects that differ by one coordinate, because the rest of

the metrics with several different numerical coordinates

can lead to certain identical distance calculations, which

is inadmissible for the construction of the second variant

of clustering. The Chebyshev metric defines the dis-

tance as follows:

ρ(x, x′) = max
q=1,2,…,5

(|xq − xq
′ |), (11)

where xq
′ is the coordinate of the center of the cluster;

q = 1,2,… , 5; xq is the coordinate of a point in space.

For clustering, we will use the k-means method

because, according to its application results, all objects

will be divided into relatively homogeneous classes.

Achieving division into classes is ensured by minimiz-

ing the sum of squared distances between each of the

five values of the characteristic indicators, i.e., the ar-

guments of the functions fa1,Si
′ , fa2,Sk+1,n

’ , fa3,S1,n
’ and

the center of the cluster, which is set as follows:

dv = ∑ (max
q=1,2,…,5

(|αw,Si,1,q
' -xq

' |))
2

p2
i=p1

, (12)

where xq
’ is the coordinate of the center of the cluster;

q = 1,2,… , 5; for the value function fa1,SI
’ , p1 = 1, p2

is the number of active components with the decision-

making center of the system; for the function fa2,Sk+1,n
′

value p1 = k + 1, p2 is the number of active compo-

nents without functionality for the decision-making cen-

ter of the system and p2 ≤ n; for the function fa3,S1,n
′ ,

value p1 = 1, p2 is the number of active components

and p2 ≤ n.
At a certain step of the iteration, the value of the

element specified by five coordinates will be chosen as

the center of the cluster. We quantitatively establish two

clusters for separating values. We record the values ob-

tained from the components in which the task was per-

formed in all active components that form the decision-

making center of the system. Let us take as the center of

the first cluster the value given by the coordinates

(1;1;1;1;1), and as the center of the second cluster, the

value of the characteristic indicator, which is the most

distant from the point with coordinates (1;1;1;1;1). If

there are several such values, we take the last consid-

ered value that is suitable as the center of the cluster.

The rest of the values are distributed between two clas-

ses according to formula (12), depending on the dis-

tance to the two centers of the two clusters in such a

way that the class includes the value with the smallest

distance according to the Chebyshev metric (formula

(11)). To achieve the stability of clusters, that is, to as-

sign the same values to the clusters, the centers of the

clusters need to be clarified through repeated iterative

calculations. To select the next center of the cluster, we

find the arithmetic mean value of all the values of the

characteristic indicators that are part of a certain cluster.

The search for such centers is carried out until the same

values that were in the previous step of the iteration at

another cluster center remain in the clusters. As a result,

it is achieved that the variance between classes will be

maximized and that between elements will be mini-

mized. To clarify the center of the cluster in the active

components of the decision-making center, it is neces-

sary to organize iterative steps. In the future, at the next

steps of the tasks, these clusters will be needed at the

next stages of the same task to evaluate the discrepancy.

In addition, in the presence of previous stories from the

performance of the same assigned task, the decision-

making center of the system will average the values of

the class limits based on the results of previous calcula-

tions to avoid system degradation, correct the assess-

ment of task performance in the system, and fix the re-

sult of the completed task. Thus, the classification ac-

cording to the k-means method is divided into two clas-

ses according to the second variant of the values of the

characteristic indicators of the active components and

Information security and functional safety

125

the functions fa1,Si
′ , fa2,Sk+1,n

’ , fa3,S1,n
’ , as implementing

the calculation of these values according to the Cheby-

shev metric.

To determine the components in which the task set

by the system will be performed, the decision-making

center of the system determines their security level

through a survey of all components, which is calculated

according to formula (6). Then, the center of decision-

making according to the first variant of division into

classes (formulas (7) – (9)) determines half of the com-

ponents, i.e., a factor of 0.5 is put into formula (9) in-

stead of 0.2, in which the given task will be performed.

If the assigned task requires immediate execution or has

a status related to security research in components, it is

performed by all components. A smaller number of

components may be involved in the performance of the

task, if there are many of them, but this number cannot

be less than ten components. This is because of the need

to have a sufficient sample of values to correctly deter-

mine the final result. At the same time, a certain part

may not have enough time to complete it in the set time.

If the number of components in the system is small, e.g.,

less than ten, all components are involved in the per-

formance of the assigned task. Each of the function sets

and functions subsets in the components and the system

as a whole have priorities that affect the number of

components involved in performing the assigned tasks.

These functions in components have clear connections

with the tasks for which they are intended, which affect

the number of components involved in performing the

assigned tasks. These functions in components have

clear connections with the tasks for which they are in-

tended, which affect the number of components in-

volved in performing the assigned tasks. These func-

tions in the components have clear connections with the

tasks for which they are intended.

The formation of a decision-making center can be

carried out quantitatively from two to all components in

which the corresponding functionality is installed. Deci-

sions about the number of active components of the

decision-making center are made from the moment the

system is started by all components in which the sys-

tem's decision-making center is present. If active com-

ponents with a decision center stop working during sys-

tem operation and the system continues, then the deci-

sion center adds new components to maintain the num-

ber of such components. To do this, he transfers them to

the active state. The decision on the number of active

components is made randomly by each active compo-

nent, and then their arithmetic mean value is found and

its fractional part is discarded.

In the process of functioning of the system, infor-

mation is accumulated in its components, which can be

the decision-making center of the system. This infor-

mation is necessary to consider when making subse-

quent decisions about the next steps. However, not all

components will have the same information about the

passed system states, so mechanisms and functions must

be introduced into them, which will allow it to be up-

dated to a certain level. Such information, which needs

to be saved for use in determining the next steps of the

system and which applies exclusively to ensuring the

functioning of the system, includes: information about

the number of components in the system over time since

the start of its operation and the state of their activity or

non-activity; information about all the tasks performed

in the system and the components involved for this, as

well as the decisions that were made and the primary

results for their adoption. To update the current infor-

mation in all components of the decision center, you

need to perform a task, because of which the database of

information on the latest events in the system will be

updated and sent to all components of the decision cen-

ter that are located in enabled computer stations. For

components of the decision center that are located in

non-enabled computer stations, such information will be

updated the next time they are enabled. Saving such

information will enable the system administrator to ana-

lyze and find the reason for stopping the system or

computer stations by its components, to make decisions

about further steps by the system, and to optimize the

performance of assigned tasks. To update the current

information in all components of the decision center,

you need to perform a task, because of which the data-

base of information on the latest events in the system

will be updated and sent to all components of the deci-

sion center that are located in enabled computer sta-

tions. For components of the decision center that are

located in non-enabled computer stations, such infor-

mation will be updated the next time they are enabled.

Saving such information will enable the system admin-

istrator to analyze and find the reason for stopping the

system or computer stations by its components, to make

decisions about further steps by the system, and to op-

timize the performance of assigned tasks. To update the

current information in all components of the decision

center, you need to perform a task, because of which the

database of information on the latest events in the sys-

tem will be updated and sent to all components of the

decision center that are located in enabled computer

stations. For components of the decision center that are

located in non-enabled computer stations, such infor-

mation will be updated the next time they are enabled.

Saving such information will enable the system admin-

istrator to analyze and find the reason for stopping the

system or computer stations by its components, to make

decisions about further steps by the system, and to per-

form optimization in the performance of assigned tasks.

as a result, the database of information on the latest

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

126

events in the system will be updated and sent to all

components of the decision-making center located in the

enabled computer stations. For components of the deci-

sion center that are located in non-enabled computer

stations, such information will be updated the next time

they are enabled. Saving such information will enable

the system administrator to analyze and find the reason

for stopping the system or computer stations by its

components, to make decisions about further steps by

the system, and to perform optimization in the perfor-

mance of assigned tasks. as a result the database of in-

formation on the latest events in the system will be up-

dated and sent to all components of the decision-making

center located in the enabled computer stations. For

components of the decision center that are located in

non-enabled computer stations, such information will be

updated the next time they are enabled. Saving such

information will enable the system administrator to ana-

lyze and find the reason for stopping the system or

computer stations by its components, to make decisions

about further steps by the system, and to optimize the

performance of assigned tasks. such information will be

updated the next time they are turned on. Saving such

information will enable the system administrator to ana-

lyze and find the reason for stopping the system or

computer stations by its components, to make decisions

about further steps by the system, and to optimize the

performance of assigned tasks. such information will be

updated the next time they are turned on. Saving such

information will enable the system administrator to ana-

lyze and find the reason for stopping the system or

computer stations by its components, to make decisions

about further steps by the system, and to optimize the

performance of assigned tasks.

Reconstruction of the system architecture may also

be necessary in the case of the detection of anomalous

events or malicious manifestations in the computer net-

work or stations. In this case, some of the system com-

ponents can turn off the computer stations and inform

the decision-making center of the system about with-

drawal from the system. Such events can be partially

detected by components with existing functionality be-

cause of the establishment of communication between

components at the beginning of work after turning on

computer stations or when problems with the function-

ing of components are established in a certain computer

station. Events of this type are processed by appropriate

functions-subsets and the decision-making center per-

forms management actions to rebuild the system archi-

tecture according to the element from the set of

events MS
pd

.

The determination of further system steps and the

transition to them at the current time depends on the

events in the system, which are set by the set MS
pd

, the

results of event processing by the functions of the sys-

tem components, the set of options for steps, which are

set by the set of states MS
st, the results of the decision-

making center of the system; and the possibility of per-

forming the specified transition to the next state at the

current time, since changes may have occurred in the

system during preparatory measures; and the immediate

execution of the transition with verification of its com-

plete completion.

Events in system S will be processed by certain

functions. If events occur at computer stations and in the

network, the system may process them if they are visi-

ble to its sensors. System S must control all objects and

processes that can be assessed as anomalies or malicious

influences in the future. To achieve this, it must have

sufficient sensors and functions to process the results. If

there are not enough, the system may not be able to de-

tect, for example, malware in computer networks. In

addition, events can occur within the system itself. They

can be caused by both external and internal influences.

However, we will consider all events to occur in com-

puter stations and networks and should be processed

without division into types. The division into types of

such influences and manifestations will be used in the

development of methods for targeted analysis by type to

identify anomalous manifestations and malicious mani-

festations caused by the types of relevant means. Events

defined by the elements of a set MS
pd

, are systematised

precisely through the characteristics of the elements. An

increase in the number of elements of the set MS
pd

 will

require an increase in the number of functions in the

system components. Events can also be specified by

combinations of elements. In addition, events can simul-

taneously occur in different nodes in the network and be

visible to system components.

The results of event processing by the functions of

the system components will be used to determine further

steps of the system by its decision-making center and, as

a result, will lead to the appearance of new events. In

general, the system will constantly monitor and process

events. However, not all events will lead to a change of

state or transition to the next state.

The set of options for steps, which are given by the

set of states MS
st, determines the ability of system S to

perform the tasks that relate to the organization of its

functioning in accordance with the principles of self-

organization and adaptability. If the system S states are

few, i.e., the elements of the set MS
st, then the pairs of

elements that will be used to set the options for steps

will also be few. This provides an opportunity to ensure

proper stability for system S. However, filling the com-

ponents with function sets for solving specialized tasks,

as well as the environment in computer stations, will be

rapidly changing, so the number of elements of the set

Information security and functional safety

127

MS
st cannot be a small number. In this regard, the num-

ber of states can be a large number; therefore, the num-

ber of variants of steps and their combinations will also

be quite large; as a result, it is impossible to describe

them all unambiguously. To solve this problem, it is

necessary to set the rules by which the system will form

and determine the steps for further transition to the next

state, i.e. the rules for selecting options from several

formed steps. At the same time, a set of states MS
st

should be initially formed, the number of elements of

which should be further increased by forming new states

in the system as combinations of basic states. Such

combinations are formed according to the combination

of different states of all components of the system into a

single state of the entire system. During its operation,

each component changes its state. Thus, some possible

combinations of basic states will add new elements to

the set of states MS
st. This will be done by the decision-

making centre of the system. Let's define the following

basic states of the system S, i.e. elements of the state

set: MS
st: mS,1

st – the state of the system, in which the

active components of the decision-making center have

been updated; mS,2
st – the state of the system, in which

the evaluation of the state of the components and the

system was carried out; mS,3
st – the state of the system, in

which the communication between the system compo-

nents is carried out; mS,4
st – the state of the system, in

which further steps of the system are determined at the

current time; mS,5
st – the state of the system, in which the

migration of the decision-making center of the system

was carried out; mS,6
st – the state of the system, in which

the restructuring of the system architecture was carried

out; mS,7
st – the state of the system, in which the deci-

sion-making center is formed in several components;

mS,8
st – the state of the system, in which the evaluation of

the results of distributed calculations in components is

carried out; mS,9
st – the state of the system, in which the

functioning of components and others has been com-

pleted. For components, the same states will also exist,

but if, for example, the system updates the active com-

ponents of the decision center, then in the components,

the states can be as follows: the functionality for activat-

ing the decision-making center of the system in the

component is disabled; the functionality for activating

the decision-making center of the system in the compo-

nent is activated; and the state of the component has not

changed, i.e., a transition to the same state has occurred.

Transitions from state to state of system S are

shown in Fig. 1. For example, the selected segment in

the figure shows the transition from state mS,7
st to state or

mS,3
st vice versa, depending on the coordinate of the

transition vector in the ordered pair (mS,7
st ; mS,3

st) or

(mS,3
st ; mS,7

st).

Thus, system S will be in a state shown in Fig. 2.

The details of the effects and means of changing the

state are shown in Fig. 3 with an indication of the con-

nections that can be influenced.

Fig. 2. System states and possible transitions

between them

Fig. 3. Relationship between events, functions,

and states

Two types of functions are highlighted in the de-

picted connection of events, functions, and states. The

first type includes multiple functions in the components

that do not belong to the functions of the decision-

making center of the system, and the second type in-

cludes functions that form the decision-making center of

the system. The highlighted segments between the two

types of functions indicate that they refer to components

that may be the center of the system’s decision-making.

Depicted in Fig. 2 and 3 States refer exclusively to

the system as a whole. The details of states in specific

components are similar to the images in Fig. 1 and 2.

System components can be in different states at the

same time, and the state of the system is uniquely de-

termined by the states of its components and the deci-

sion center components. A specific component of the

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

128

system can be in several states at the same time, which

will be considered as a certain state formed by a combi-

nation of basic states. For example, system S adds com-

ponents that became active as a result of turning on the

computer stations, and the system component at this

time evaluates the security level in the computer station.

Then, these two states in the component will be com-

bined into one at the current time, and the system will

record the state of this component.

For the transition from state to state of system S,

we will consider the activity of subset functions (matrix

analysis from formula (6, [1])), the values of character-

istic indicators (formulas (12, [1]), (44, [1]), (53, [1]),

options for forming a system according to a set MS
var,1

(formula (2)), and variations in forming a system ac-

cording to sets MS
var,2

, MS
var,3

, MS
var,4

 (formulas

(3) – (5)), introduction of redundancy in the organiza-

tion of communication according to sets MS
var,5

 and

 MS
var,6

, type of relationship for establishing communi-

cation between components and sending messages ac-

cording to the set

 MS

var,7
, specifying the connection of

individual computer stations among themselves accord-

ing to the set of options MS
var,8

, the set of events

 MS

pd
,

the state of the system as a whole (formula (6)), the

choice of options for calculating trust in the results of

distributed calculations (formula (7) – (9) or according

to clustering (formula (12))) and the set of states

 MS

st.

Let's set the next state of the system S through its cur-

rent state and indicators of components and the system

as follows:

mS,p
st = Fq→p

S

(

mS,q
st

MS
st

MS
pd

MS,k,I
α1,Si
′

α2,Sk+1,n
′

α3,S1,n
′

MS
var,1

MS
var,2

MS
var,3

MS
var,4

MS
var,5

MS
var,6

MS
var,7

MS
var,8

fα1,Si
′

fα2,Sk+1,n
′

fα3,S1,n
′

αS,t
st,1

)

, (13)

where Fq→p
S is a function that determines the next state

of the system and sets the transition between the states.

When determining the next state of the system,

there will be as many options as there are elements in

the set MS
st. The result of the selection can be the same

state in which the system is already. In addition, the

system can detect a state that is not in the set of states.

This can happen when a combination of several states is

established in a certain component or several compo-

nents, which are set in the plural MS
st by the basic con-

stituent elements. Then, the system supplements this set

of states with a new element formed by a combination

of certain elements in certain components. However, the

set of states is not formed in full from all the combina-

tions at the beginning, but only from those that will ap-

pear during the functioning of the system.

Because the arguments of the function Fq→p
S are da-

ta of different types and the function must set rules ac-

cording to which a discrete value will be determined, we

set this function Fq→p
S as a general rule, which will con-

tain a combination of the logical operators "AND" and

"OR" and the negation "NOT" in the logical expression

of local functions, which are assigned to each argument.

Let be the Fq→p,b
S b-th local function, where

b = 1,2,… ,19, whose argument is the b-th argument of

the function Fq→p
S . The values of the local functions are

discrete values {0} and {1}, where the value {0} will

mean the fulfillment of the conditions for transition to

the next state, and the value {0} will mean the fulfill-

ment of such conditions. In a logical expression that

forms a rule for defining a function, the values of local

functions Fq→p
S can be combined with each other in full

or in part, and can also form composite conditions, from

which it is sufficient to move to a new state of fulfill-

ment of one of the conditions.

For example, to change to a state mS,1
st in which the

active decision center components are updated, you

need to change the components that the system decision

center will be in. The reasons for this change will be the

updated data of such indicators and the results of the

current state of the system indicators. If the previous

state mS,2
st of the system , in which the assessment of the

state of the components and the system is carried out,

and it is established that the value αS,t
st,1 = 0.23 is signif-

icantly less than the threshold value, then regardless of

the remaining indicators, the system performs the func-

tions necessary to update the active components of the

decision-making center.

The given transitions from state to state will also

maintain the integrity of the system and ensure its sta-

bility. Formula (13) defines the system S at the level of

the states it can be in and the transitions between them,

Information security and functional safety

129

which actually determines the processes that will func-

tion in it.

The decision-making center of the system accord-

ing to formula (13) receives the result and establishes

the possibility of carrying out the specified transition to

the next state at the current time, since changes may

have occurred in the system during preparatory

measures.

The execution of the transition between the system

states is provided by a subset function that checks its

complete completion according to the communication

specially specified in this case. If part of the system

components did not have time to complete this transi-

tion, then in the future, when they are active, they re-

produce the missed states in their history of states, re-

new the current indicators, and return to the current state

of the system.

Completion of the functioning of the components

and the system can be followed by their return to the

performance of tasks when the computer stations are

turned on, or when a given command is given to block

part of the components or the system, or the removal of

the components or the system as a whole from nodes in

the network.

As a result, we set the main general steps of the

method of organizing the functioning of partially cen-

tralized distributed systems according to the principles

of self-organization and adaptability.

Step 1. Formation of the system S from compo-

nents.

1.1. If system S is formed after the initial installa-

tion of all components (element mS,1
var,1

 of the character-

istic set MS
var,1

, element mS,1
var,3

 of the set MS
var,3

), then

each of its components receives information about the

location of the remaining components in the computer

network, records such information in its internal data-

base and waits for the initial launch of one of the com-

ponents by the administrator for subsequent initial

launches of the remaining components after the indica-

tion from it about its start of operation.

1.2. If the computer stations are switched on con-

stantly (element mS,3
var,1

 of the characteristic set MS
var,1

,

element mS,3
var,3

 of the set MS
var,3

), then the formation of

system S from components will be performed once and

further changes (element mS,2
var,1

 of the characteristic set

MS
var,1

) will be performed by the system itself when

certain events occur.

1.3. If system S is formed after turning on comput-

er stations in the network at the same time (element

mS,3
var,1

 of the characteristic set mS,3
var,1

, element mS,1
var,3

 of

the set MS
var,3

), then for its further functioning, all com-

ponents perform a special procedure for exchanging

messages to start functioning.

1.4. If the computer stations (element mS,3
var,1

 of the

characteristic set MS
var,1

, element mS,1
var,3

 of the set

MS
var,3

), in which the system components are installed,

are turned on at different times, then the components

that were in the first turned on computer stations form

the system, and the rest are added to it after performing

a special addition procedure of components in dynamic

mode.

1.5. If new components are added to system S or

existing components are removed (an element mS,2
var,1

 of

the characteristic set MS
var,1

), then a special procedure

for adding or removing components is used, followed

by the formation of system S from existing active com-

ponents that function in enabled computer stations.

Supplementing system S with new components or re-

moving existing components can be performed after

substeps 1.1-1.4. The special procedure for adding and

removing components involves the participation of the

system administrator, the transition to the detail of sub-

step 1.5 and the subsequent execution of substep 1.1.

1.5.1. Supplementing the system with new compo-

nents (element mS,1
var,2

 of the set MS
var,2

, element mS,1
var,3

of the set MS
var,3

, element mS,2
var,4

 of the characteristic set

MS
var,4

) is performed when all computer stations in

which the system S components are installed. Each

component of system S is supplemented with infor-

mation about new components, and new components are

supplemented with information about all system com-

ponents.

1.5.2. The removal of components from the system

S(element

mS,2
var,2

 of the set MS
var,2

, element mS,2
var,3

 of the

set MS
var,3

) is performed using one computer station, in

which the component containing the decision-making

center of the system is installed. Through the compo-

nent interface with administrator access rights, we pro-

vide an instruction to remove a specific component.

Next, this system component sends a message about the

withdrawal of the specified component to the rest of the

system components that are active, i.e., they function in

enabled computer stations. Components that will not be

on computer stations that are turned on, i.e., will not

receive this message about the removal of a specific

component, but will receive this message when the

computer stations in which they are installed are turned

on, from the active components of the system's deci-

sion-making center.

1.5.3. When removing a single component at the

current time (element

mS,2
var,3

 set MS
var,3

) in which the

decision center of the system is located, it is necessary

to enable the computer station in which the component

with the functionality of the decision center is present,

or to use the passive component with the decision center

at this current time. In this case, the passive component

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

130

or the attached component receives first an instruction

about their sole control of the system, and then about

the withdrawal of the given component.

1.5.4. The completion of sub-steps 1.5.1-1.5.3 is

carried out by determining the last variant of system

formation according to formula (2), according to which

we calculate the predicate PS
var,2(mS,q

var,2) (q =

1,2,… , nMS
var,2)

 on the elements of the set MS

var,2
.

1.5.5. After performing substep 1.5.4, we return to

substep 1.5.

1.6. If the computer stations in which the system S

components are installed (element mS,2
var,1

 of the charac-

teristic set MS
var,1

, element MS,1
var,4

 of the characteristic

set MS
var,4

) are not turned on for a long time, then the

system is formed from the components that are in the

switched on computer stations.

1.7. Step 1 is completed by determining the last

variant of system formation according to formula (2) of

substeps 1.2-1.4 and 1.6, according to which we calcu-

late the predicate PS
var,1(mS,q

var,1) (q = 1,2,… , nMS
var,1) on

the elements of the set MS
var,1

, according to formula (4)

of substeps 1.2-1.4 and 1.6, according to which we cal-

culate the predicate PS
var,3(mS,q

var,3) (q = 1,2,… , nMS
var,3)

on the elements of the set MS
var,3

 and according to for-

mula (5) of substeps 1.5.1 and 1.6, according to which

we calculate the predicate PS
var,4(mS,q

var,4)

(q = 1,2,… , nMS
var,4) on the elements of the set MS

var,4
.

1.8. Depending on the events that will exclusively

affect the formation of the system S architecture, and

the results from substep 1.7, we return to one of sub-

steps 1.2 - 1.4 or 1.6.

The results of substeps 1.5, 1.7, 1.8 are transmitted

to the decision center of system S and processed by one

of the defined substeps of the following steps.

The determination of the last variant of system

formation according to formula (2) for the elements of

the characteristic set MS
var,1

 and sub-steps 1.2-1.4 and

1.6 does not completely complete step 1, but only fixes

the state of the system S after the complete execution of

one of the sub-steps in certain time intervals, when no

changes will occur in the system in its architecture. The

execution of step 1 will be constant and independent of

the rest of the steps because the architecture of the sys-

tem may change constantly and will require the system

S itself to react to such events through the execution of

substeps of step 1.

We present the results of the substeps of step 1 in

the table of their conjugation with the corresponding

elements of the sets and the values of the predicates. As

a result, we will receive information about the result of

a certain substep and use it to make decisions about fur-

ther steps of system S.

Step 2. Establish and maintain communication be-

tween system components.

2.1. If from the computer stations that have system

components, at the current time when system S starts,

there is only one computer station that is turned on (an

element mS,2
var,8

 of the set MS
var,8

), then the system S

component will use the "one to all" relationship after its

loading (an element mS,1
var,7

 of the set MS
var,7

) , accord-

ing to which a message will be sent to all system S

components to establish communication with them.

2.2. If from the computer stations in which the sys-

tem components are present, at the current moment of

time at the current start of system S, all (element mS,1
var,5

of the set MS
var,5

) are turned on and the decision-making

center determines that the given component addresses

all the remaining components, then the given system

component will use the relation "one to all" (element

 mS,1
var,7

 of the set MS
var,7

), according to which a message

will be sent to all components of the system S to main-

tain communication with the rest.

2.3. If one component is missing in system S be-

cause of the non-activation of the corresponding com-

puter station, then all the remaining components period-

ically contact it to check its presence in order to form a

complete system, that is, we perform the "all to one"

relationship (element mS,2
var,7

 of the set MS
var,7

).

2.4. If a decision is made in system S to send a

message to maintain and check the connection with a

given component for certain reasons, then all the re-

maining components refer to it, i.e., we perform the "all-

to-one" relation (element mS,2
var,7

 of the set MS
var,7

).

2.5. If a decision is made in the system S to send a

message from a specific component to maintain and

check communication with a given component for cer-

tain reasons, then we perform a "one-to-one" relation-

ship (element mS,3
var,7

 of the set MS
var,7

).

2.6. If a decision is made in the system S to send a

message from a specific component to maintain and

check communication with a certain number of compo-

nents, but not all, for certain reasons, then we perform

the relation "one to a certain number, but not to all" (an

element mS,4
var,7

of the set MS

var,7
).

2.7. If a decision has been made in the system to

send a message from a certain number of specified, but

not all, components to one to support and verify com-

munication with a given component for certain reasons,

then we perform the relation "a certain number, but not

all, to one" (element mS,5
var,7

of the set MS

var,7
).

2.8. If a decision is made in the system to send a

message from a certain number of specified, but not all,

components to a certain number to support and check

communication with them for certain reasons, then we

perform the relation "a certain number, but not all, to a

Information security and functional safety

131

certain number, but not to all" (element mS,6
var,7

of the

set MS
var,7

).

2.9. If a component is sent a message or an instruc-

tion, and it is currently turned off together with the

computer station, then it sends a message to all compo-

nents that are active, that is, those that are in the com-

puter stations that are turned on, and we perform a one-

to-one relationship to a certain number, but not to all"

(an element mS,4
var,7

of the set MS

var,7
) and commands or

messages sent to her are nullified.

2.10. If a component is sent a message or instruc-

tion and it is currently shutting down along with the

computer station, then it does not send a shutdown mes-

sage to all components that are active, that is, those that

are in the computer stations that are turned on. When

the next time the computer station is turned on, the

component notifies all other active components about

the previous emergency event and communicates with

them, performing a one-to-some, but not all, relation-

ship (an element mS,4
var,7

of the set MS

var,7
), but the

commands or messages that were sent to it from certain

components are canceled.

2.11. If when establishing a connection between

system components, the standard part (according to the

"flowering" scheme only to confirm the establishment

of the connection and the activity of the components)

and the additional part (according to the use of redun-

dancy to additionally confirm the legitimacy of the

components) were successfully completed for all system

components in the computer stations that are turned on

at the same time (an element mS,1
var,5

 of the set MS
var,5

),

then system S will continue to function in regular mode.

2.12. If when establishing a connection between

system components, the standard part (according to the

"flowering" scheme only to confirm the establishment

of the connection and the activity of the components)

and the additional part (according to the use of redun-

dancy to additionally confirm the legitimacy of the

components) were successfully completed for all system

components in the computer stations that are turned on

at different times, and a part may be turned off after a

certain time of operation, and a certain part may be

turned on after this time or not turn on at all for a long

certain time (an element mS,2
var,5

 of the set MS
var,5

), then

the system S will continue to function in regular mode

as part of active component in enabled computer sta-

tions.

2.13. If, for the cases of substeps 2.11, 2.12, when

establishing a connection between system components,

the standard part (according to the "flowering" scheme

only to confirm the establishment of a connection and

the activity of the components) is not completed suc-

cessfully, then the system components that established

such a fact about a certain component report about such

a result to the decision-making center of the system.

2.13.1. If such a message is received from two

components that have attempted to communicate with

each other, then the decision center instructs them to

retry the connection in the standard part of the proce-

dure. In addition, it instructs another component to es-

tablish communication with these two components, and

these three components must inform the decision-

making center about the performance results.

2.13.2. If such a message is received from one of

the two components that were attempting to communi-

cate with each other, then the decision center instructs

that component and the other two active components to

attempt to establish communication according to the

standard part of the procedure and inform these three

components of the results and must inform the decision-

making center.

2.14. If it is confirmed in substeps 2.13.1 and

2.13.2 that there are problems with establishing com-

munication with a certain component according to the

standard part of the communication establishment pro-

cedure, then such a component will be added to the list

of components that need to be investigated by the deci-

sion-making center and will be periodically tested for

connection with a certain number of components (an

element mS,2
var,5

of the set MS

var,5
).

2.15. If, for the cases of substeps 2.11, 2.12, when

establishing communication between the system

components, the standard part (according to the "flower-

ing" scheme only to confirm the establishment of com-

munication and the activity of the components) is com-

pleted successfully, and the additional part is not com-

pleted successfully. Then, the system components that

have established such a fact about a certain component,

such a result is reported to the decision-making center

of the system (an element mS,2
var,5

of the set MS

var,5
).

2.15.1. If such a message is received from two

components that were trying to establish a connection

with each other, then the decision center instructs them

to retry the establishment of the connection in an addi-

tional part of the procedure, additionally instructing

another component to establish a connection with these

two components and these three components must in-

form the decision-making center about the performance

results.

2.15.2. If such a message was received from one of

the two components that attempted to establish commu-

nication with each other, then the decision center in-

structs this component and two other active components

to attempt to establish communication according to an

additional part of the procedure and the results of the

execution of these three components must be provided

to the decision-making center.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

132

2.16. If it is confirmed in substeps 2.13.1 and

2.13.2 that there are problems with establishing com-

munication with a certain component by an additional

part of the communication establishment procedure,

then such a component is investigated by the decision-

making center (an element mS,2
var,5

of the set MS

var,5
)

through immediate testing of communication with it by

a certain number of components. When problems are

detected, it is removed from the system and a corre-

sponding message about such an event is sent to the

system administrator.

2.17. If the computer stations in which the system

components are present are turned off correctly at the

same time (an element mS,1
var,6

of the set MS

var,6
), then the

system components in them store information about the

correct completion of their operation and start work

with standard specified actions the next time.

2.18. If the computer stations, in which the system

components are present, are disabled at the same time

(an element mS,2
var,6

 of the set MS
var,6

), then the compo-

nents did not complete the correct exit and when the

computer systems are turned on, the components in-

stalled in them will perform the correct restart procedure

execution of unfinished previous tasks along with the

initial boot procedure.

2.19. If the computer stations, in which the system

components are present, are turned off correctly at dif-

ferent times (an element mS,3
var,6

of the set MS

var,6
), then

the system components in them store information about

the correct completion of their operation and the next

time start work with standard specified actions, consid-

ering the time of turning off the rest of the components

in relation to a certain component.
2.20. If the computer stations, which have system

components, are turned off at different times partially

correctly (element mS,2
var,8

 of the set MS
var,8

) and partially

accidentally (element mS,4
var,6

of the set MS

var,6
, element

 mS,3
var,8

 of the set MS
var,8

), then for the components that

were in the computer stations that were turned off cor-

rectly, we perform substep 2.19 and substep 2.18.

Step 3. Ensuring system integrity.

3.1. If system S is divided into two or more unre-

lated subsystems within the corporate network because

of equipment failure for a certain time, then each of the

parts will reform itself into a reduced system S and will

continue to work, provided that in each of the parts

there are no less than two active components with a de-

cision center.

3.1.1. If one of the parts does not have active com-

ponents with a decision center and is inactive, then the

components of this part block the operation of the com-

puter stations and issue a corresponding message to the

administrator.

3.1.2. If components with a decision center are in-

active at the moment of a certain emergency or inten-

tional separation of the second part, which will contain

all active components with a decision center of the sys-

tem, then their transfer to the active state will occur af-

ter another communication session and establish the

absence of active components with the center decision-

making.

3.2. If part of the active components, which con-

tain the decision-making center of the system, is re-

moved from the system for certain reasons, then the

remaining part will start the procedure of forming the

system from the existing components.

3.3. If there are no available active components

with a decision center, the available components block

the computer stations and issue a corresponding mes-

sage to the administrator.

Step 4. Organization of partial centralization.

4.1. The formation of a decision regarding the

number of components (element mS,1
st of the set MS

st),) in

which the decision-making center of the system will

function is determined by all components of the system,

in which the functionality of the decision-making center

is available, at the first start of the system. The number

of active components of the decision-making center will

be less than two-thirds and more than one. Each compo-

nent at the beginning of the start of the system randomly

generates a number from the interval from two to two-

thirds of the number of components of the center, and

all these components exchange such numbers among

themselves and find the average arithmetic number

among these numbers and discard the fractional part

in it.

4.2. If at the next start of the system not all com-

ponents with the decision-making center of the system

will be active in the enabled computer stations, then the

available components will decide on the number of ac-

tive components (element mS,1
st of the set MS

st) in which

the decision-making center will be located. When turn-

ing on computer stations with components in which the

decision-making center was active at the previous stage

of operation, such components receive a message from

the decision-making center about the transition to the

passive state of their decision-making center function-

ality.

4.3. To select certain components of the decision

center to be active, after performing substep 4.1, each

component randomly generates numbers from a range

of one to a number equal to the number of components

with the decision center. After the formation of such

sequences of numbers, results are exchanged between

all components with a decision-making center. In all

sequences, the numbers are sorted in non-descending

order, and after sorting, the whole part is calculated

Information security and functional safety

133

from the arithmetic mean value of the numbers with the

same index.

4.4. To select certain components of the decision

center to be active, after performing substep 4.2, each

component randomly generates a number from one to a

number equal to the number of active components with

the decision center at the current time. After the for-

mation of such sequences of numbers, the results are

exchanged between all active components with the deci-

sion-making center. In all sequences, the numbers are

sorted by non-decreasing order, and after sorting, a

whole part of the arithmetic mean value of the numbers

with the same index is calculated.

4.5. If there are two such active components at

substep 4.4, then they will perform the functionality of

the decision-making center, and when components with

the functionality of the decision-making center appear

in the system, they will perform substep 4.4.

4.6. If there are less than two such active compo-

nents at substep 4.4, then the functionality of the deci-

sion-making center will be in one component. Substep

4.5 will be performed when components with the func-

tionality of the decision-making center appear in the

system.

4.7. If the enabled computer stations have compo-

nents that do not have decision center components, then

each of the components records events, and the system

does not function normally.

4.8. Tasks for the system regarding its further steps

or for certain components are formed separately in each

of the active components of the decision-making center,

and after a decision has been agreed between them, such

a task is notified for execution.

For the substeps of step 4, there may be other algo-

rithms for determining the number of components with

a decision-making center and directly components of a

decision-making center. For example, there may be

weighted averages, harmonic averages, etc. In addition,

the functionality can contain several algorithms, and at

the current time, all components can use one of them.

Step 5. Migration of the decision-making center of

the system.

5.1. If all the components of the decision-making

center are active at the current moment of time, some of

them form the decision-making center, and the rest are

in a passive state, then periodically some of the active

components will become passive and vice versa passive

components will become active. The decision on the

next review of the components involved in the for-

mation of the decision-making center will be made by

the currently active components.

5.2. If the security status in the computer station

has decreased according to the system assessment and

the component in it is an active component of the deci-

sion-making center, then the rest of the system compo-

nents decide to transfer this component to a passive

state and make the other component active.

5.3. If not all components of the decision-making

center are active at the current moment due to their

computer stations not being turned on, some of the ac-

tive ones form the decision-making center, and the re-

maining components with the decision-making center

are in a passive state, then the decision-making center

will supplement the number of active components at the

expense of passives.

Step 6. Evaluation of the state of the components

and the system.

6.1. We calculate the general states of the compo-

nents and computer stations α3,S1,n
′ according to equa-

tion (53, [1]).

6.2. We calculate the state of the system as a

whole according to equation (6).

Step 7. Evaluation of the results of the distributed

calculations in components.

7.1. The values of the characteristic indicators of

the system components, depending on the types of per-

formed tasks, are determined by formulas (12, [1]), (44,

[1]) and (53, [1]) and sent to all active components of

the decision-making center.

7.2. If the results of calculations carried out in dif-

ferent components of the system are the same and each

of the components participating in their processing re-

ceived the same values during the specified time inter-

val, then one of the obtained results is accepted as the

final value of the distributed calculations.

7.3. If the results of the calculations performed in

different components of the system are not the same and

each of the components participating in their processing

received the same set of values during the specified time

interval, then the percentage of the largest number of

identical values of the calculation results to all the re-

ceived values is determined.

7.3.1. If the percentage of values of calculation re-

sults is equal to
N−1

N
∙ 100% (N – number of values),

then the component in which the result is different from

the rest will be sent additional verification values for

calculations to check its legitimacy, and one of the N −

1 obtained results is accepted as the final value of dis-

tributed calculations. If the component that will be

checked because of a different value of the result from

the rest belongs to the active components of the decision

center, then it will be sent for processing the received

set of values, and the rest of the active components of

the decision center will examine its response and make

decisions about its further functioning in the system.

7.3.2. If the percentage of the values of the calcu-

lation results is less than
N−1

N
∙ 100% (N – the number of

values) and more than 50%, then the components in

which the result is different from the rest will be sent

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

134

additional verification values for calculations to check

its legitimacy, and one of the results obtained, which

was more than 50, is accepted as the final value of dis-

tributed computing. If the component that will be

checked because of a different value of the result from

the rest belongs to the active components of the decision

center, then it will be sent for processing the received

set of values, and the rest of the active components of

the decision center will examine its response and make

decisions about its further functioning in the system.

7.3.3. If the percentage of values of the calculation

results is less than 50% from the number of all among

the largest number of one value, then the calculation

results are not accepted and the system begins to per-

form self-testing. After completion, if successful, it will

retry this task or reject its execution.

The value of the characteristic indicators of the

system components, depending on the types of tasks

performed can be determined by formulas (7) – (12)

depending on the features of processing. Clusters of

such values can be formed by taking into account time

delays when transmitting the results of distributed cal-

culations. Niche formulas for determining the values of

the characteristic indicators of the system components

may also be applicable.

Step 8. Determination of components in which the

task set by the system will be performed.

8.1. To determine the components in which the

task set by the system will be performed, we determine

the security level of all components according to formu-

la (5), according to the first variant of division into clas-

ses (formulas (7) – (10)) and, thus, determine half of the

components, putting in the formula (10) factor 0.5 in-

stead of 0.2.

8.2. If the assigned task requires immediate execu-

tion or has a status related to security research in com-

ponents, it is performed by all components.

8.3. We involve a smaller number of components,

if there are many of them, to perform the assigned task

as required (by a decision made or by an instruction to

perform), but this number cannot be less than ten com-

ponents.

8.4. If the number of components in the system is

small, e.g., less than ten, all components are involved in

the performance of the assigned task.

8.5. Processing of accumulated information in the

components of the decision-making center of the sys-

tem, formation of the base of decisions made in these

components and provision of such a base to all compo-

nents of the decision-making center.

8.6. Decision to perform a specific function in

components depending on the current data in the sys-

tem.

Step 9. Reconstruction of the system architecture

in the presence of critical events.

9.1. If anomalous events or malicious manifesta-

tions are detected in the computer network or stations

and the components report them, the system architecture

rebuilding procedure is launched.

9.2. If in certain components of the system, long-

term functioning of subsystems for detecting anomalous

events or malicious manifestations is detected, and at

the same time, such components inform the decision-

making center about the need to continue the execution

of the task, and the time limits for the execution of such

tasks have already been passed, then the system is de-

termined with the need to rebuild its architecture with-

out considering these components, and in their presence,

the functionality of the decision-making center is trans-

ferred from an active state to a passive one.

9.3. If the system is in a critical state according to

the calculated value of the security level, then it re-

moves a part of the components with the largest values

of the critical state from its architecture and recalculates

the current state.

9.3.1. If after such a reconstruction, the security

status is not critical, it continues to function.

9.3.2. If the security status remains critical after

such a rebuild, it stops functioning and issues a message

to the administrator.

Step 10. Determination of further steps of the sys-

tem at the current time.

10.1. We determine the next state of system S

through its current state and indicators of components

and the system according to equation (53, [1]).

10.2 If an event from a set MS
pd

 has occurred in the

system, it is processed by the functions of the system

components, and the decision-making center selects a

state variant from a set of states MS
st, evaluates the pos-

sibility of performing a specified transition to the next

state at the current moment of time, and directly per-

forms the transition with verification of its complete

completion.

10.3. If an event occurred in the system that is not

from the set MS
st

,
 it is processed by the functions of the

decision-making center.

10.3.1. If a state variant is selected from a set of

states, an evaluation of the possibility of performing a

specified transition to the next state at the current mo-

ment of time is performed. The transition is then per-

formed directly with a check of its complete comple-

tion, and the set of events is supplemented by this event.

10.3.2. If a state option is selected from a set of

states MS
st, an evaluation of the possibility of performing

a specified transition to the next state at the current

moment of time is carried out, then the transition is then

carried out directly with a check of its complete comple-

tion. If the event remains active after the system state

Information security and functional safety

135

changes, the system blocks the components and reports

a problem administrator.

10.4. If among the elements of the set of events

MS
pd

there is no event that occurred specifically in the

system and needs to be processed, then the decision-

making center of the system returns the system to its

previous state and analyzes the presence of this event.

10.4.1. If the event is present after a change in the

system state, then the system components block the pro-

cesses in the computer stations, and the entire system

transitions to a critical security state and add the event

to the set of events.

10.4.2. If the event is absent after changing the

state of the system to the previous one, then the system

adds this event to the set of events and fixes the state of

the system in which it disappears.

10.5. If the event, which is among the elements of

the set of events

MS
pd

, does not require transition to the

next state, then it is processed and the system remains in

the current state.

10.5.1 If part of the system components did not

have time to complete the transition to the specified

state for certain reasons, then in the future, when they

are active, they reproduce the missed states in their his-

tory of states, renew the current indicators, and return to

the current state of the system.

Step 11. Completing the functioning of the com-

ponents and the system.

11.1. Completion of the functioning of the compo-

nents and the system at the current moment in time with

their subsequent return to the performance of tasks

when the computer stations are turned on.

11.2. Blocking of part of the components or sys-

tem by the decision-making center of the system.

11.3. Completion of the functioning of a part of the

components at the current moment of time with their

subsequent return to the performance of tasks when the

computer stations are turned on.

11.4. Removal of components or the entire system

from nodes in the network.

Thus, the developed method for organizing the

functioning of partially centralized distributed systems

makes it possible to create them according to the princi-

ples of self-organization and adaptability. Partial cen-

tralization of such distributed systems is achieved by

separating the components of the decision-making cen-

ter of the system, in each of which a decision is made

separately, which is later coordinated with the rest of the

decisions.

At the same time, the components of the decision-

making center function according to the principle of

decentralization, and the entire system functions accord-

ing to the principle of centralization. In the developed

method of functioning of this type of system, the distri-

bution of components was carried out in relation to the

decision-making center, which made it possible to im-

plement partial centralization compatible with the prin-

ciples of self-organization and adaptability.

5. Experiments

5.1. Experimental settings

The degree of degradation of system S in the process

of its functioning and the degradation of its components

will be considered in the context of the loss of some com-

ponents by the system and, as a result, either the removal

of some components irrevocably from the system or a de-

crease in the system's performance due to the loss of some

components or their incorrect functioning.

The degree of system degradation correlates with

the degree of sustainability [1, 40, 41]. However, the

system’s stability reflects the ability to continue func-

tionality and fulfill its tasks despite changes in the oper-

ating environment with minimal change or loss of func-

tionality, and degradation reflects the ability to fulfill its

tasks after a complete or partial loss of component func-

tionality and approaching or transitioning to both a state

of failure and a state of complete shutdown. Thus, the

common feature of both system characteristics is the

ability to continue performing the assigned tasks. The

difference is that stability is the probability of continu-

ing operation, and degradation is the probability of ap-

proaching a state of failure.

The degree of degradation of the system as a

whole will depend on the number of components in the

system, the time of operation of the system and its com-

ponents, the events that the system will process, and the

impact on the environment in which the system and its

components will operate. When determining the system

degradation factor, we will consider the number of

components in the system, the operating time of the

system and components, and the values of the security

levels of the components and the system at the current

time. Then, we define the system degradation factor as

follows:

kS,t
d = 1 − (

n

k
)
−

∑ α1,Si
′i

r=1

k1
+

∑ α2,Sk+1,n
′n

r=i+1

k2

αS,t
st,1 ∙t

, (14)

where αS,t
st,1

 is the value of the system security level calcu-

lated by formula (12, [1]); k is the number of active com-

ponents in the system; k1 is the number of active compo-

nents with a decision-making center in the system; k2 is

the number of active components without a decision-

making center in the system; α1,Si
′ , α2,Sk+1,n

′ – are the val-

ues of the security levels of the system components calcu-

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

136

lated by formulas [1]); k = k1 + k2; n is the number of

components in the system; t is the system operation time.

If there are many components in the system, the loss

of some of them will not significantly affect the degree of

system degradation because the system architecture at the

component level is centralized and, therefore, the tasks

can be assigned to the remaining active components.

If the degradation indicator relates directly to a par-

ticular component, if it is at the stage of removal by the

system itself, this does not significantly affect the degree

of degradation of the entire system.

If all components of the system function normally,

then k = n and the degradation factor kS,t
d = 0. If k <

𝑛, then the value of the degradation coefficient will be

different from zero and will indicate the degree of sys-

tem degradation.

Let's set up an experiment to determine the degree

of system degradation.

The values of the significance levels of the charac-

teristic indicators are the same as those in the previous

experiment.

Consider system S at the level of its components.

Two indicators can be received from each component to

the system’s decision-making center:

1) the value of the component's safety level;

2) the fulfillment of the task.

Then, four cases are possible:

1) the value of the component’s safety level corre-

sponds to the permissible value and the task is obtained

correctly;

2) the safety level of the component corresponds to

the permissible value, but the task is performed incor-

rectly;

3) the safety level of the component does not cor-

respond to the permissible value and the task is per-

formed incorrectly or not completed within the specified

time;

4) the security level of the component does not

correspond to the permissible value, but the task is per-

formed correctly.

We will create a file of the results of work over a

long period of time in the system, recording the results

of the values of the components’ security levels and the

results of the tasks performed. After a certain period of

system operation, we will process the results stored in

the specified file.

5.2. Case study

The experiment was conducted in five series over

five days.

In the first series of the experiment, out of 100

components of the system, 9 components produced a

negative result, and the rest produced a positive result.

Thus, the task set during the experiment was cor-

rectly performed using 91 components.

In the second series of the experiment, out of 100

system components, 10 components produced a nega-

tive result and the rest produced a positive result.

In the third series of the experiment, out of 100

components of the system, 10 components gave a nega-

tive result and the rest gave a positive result.

In the fourth series of the experiment, out of 100

components of the system, 10 components gave a nega-

tive result and the rest gave a positive result.

In the fifth series of the experiment, out of 100

components of the system, 9 components produced a

negative result, and the rest produced a positive result.

In addition, the security status of each of the 10

components was obtained from the given file for each

series of experiments.

As a result, it was found that the negative result in

the series of the experiment was obtained from compo-

nents with a high and low level of security. This affect-

ed the system degradation rate. The fewer components

with a high level of security and a negative result of the

task, the lower the level of system degradation at the

current time.

To assess the approach performance, ROC analysis

was used [42, 43]. It provides a more comprehensive

view of a method’s performance than a single accuracy

score, helping us to make informed decisions about

method selection and parameter tuning [44, 45].

The results of the experiment are presented in the

form of ROC curve graphs and tables of the values of

security levels and task performance. The values of the

degree of system degradation for the series of experi-

ments are given in Tables 1–21 and Figs. 4–13.

Table 1

The value of the degree of system degradation

Series of the experiment

Average value
1 2 3 4 5

Degradation

factor
0.15 0.25 0.21 0.21 0.27 0.21

Information security and functional safety

137

Fig.4. Experiment 1.1 (9 zeros)

Table 2

Results of experiment 1.1: 1– detected, 0 – not detected

Network host Detection result

1-10 1 1 1 1 1 1 0 1 1 1

11-20 1 1 1 1 1 1 1 1 1 1

21-30 1 1 1 1 1 0 1 0 1 1

31-40 0 1 1 1 1 1 1 1 0 1

41-50 0 1 1 1 1 1 1 1 1 1

51-60 1 1 1 0 1 1 1 1 1 0

61-70 1 1 1 1 1 1 1 1 1 1

71-80 1 1 1 1 1 1 1 1 1 1

81-90 1 1 1 1 1 1 1 1 1 1

91-100 1 1 1 1 1 0 1 1 1 1

Table 3

Results of experiment 1.1

Network host Statistical probability of malware detection

1-10 0.9860 0.9860 0.9930 0.9740 0.9888 0.9804 0.9800 0.8748 0.9959 0.9760

11-20 0.9900 0.9970 0.976 0.9790 0.9849 0.9967 0.9850 0.9783 0.9860 0.9872

21-30 0.9820 0.9700 0.919 0.9850 0.9814 0.5994 0.9808 0.9770 0.9761 0.9944

31-40 0.6730 0.9720 0.9810 0.2700 0.9051 0.9974 0.9796 0.9799 0.9084 0.9930

41-50 0.1340 0.9990 0.9750 0.9790 0.9906 0.9742 0.9854 0.9916 0.9979 0.9920

51-60 0.7880 0.9820 0.9770 0.9860 0.8780 0.9953 0.9899 0.9945 0.9938 0.1889

61-70 0.9793 0.4386 0.9996 0.9931 0.9029 0.9912 0.9879 0.9926 0.9849 0.8906

71-80 0.9720 0.9991 0.9730 0.9864 0.9821 0.9732 0.9917 0.9884 0.7225 0.9870

81-90 0.9943 0.9873 0.9983 0.0671 0.9533 0.9937 0.9842 0.9949 0.9797 0.9993

91-100 0.9783 0.9722 0.9554 0.9949 0.9977 0.2542 0.9941 0.9861 0.9839 0.9293

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

138

Fig.5. Experiment 1.2 (10 zeros)

Table 4

Results of experiment 1.2: 1– detected, 0 – not detected

Network host Detection result

1-10 1 1 1 1 1 1 1 1 1 1

11-20 1 1 1 1 1 1 1 1 0 1

21-30 0 1 0 1 1 0 1 1 1 1

31-40 1 1 1 1 1 1 1 1 1 1

41-50 1 1 1 1 1 1 1 0 1 1

51-60 1 1 1 0 1 1 1 1 1 1

61-70 1 1 1 1 1 1 1 1 1 1

71-80 1 1 0 1 0 1 1 1 1 1

81-90 1 1 1 1 1 1 1 1 1 1

91-100 1 1 1 1 0 1 0 1 1 1

Table 5

Results of experiment 1.2

Network host Statistical probability of malware detection

1-10 0.9844 0.9905 0.9762 0.9882 0.9641 0.9964 0.9740 0.9233 0.9988 0.9746

11-20 0.9746 0.9747 0.9727 0.9836 0.9901 0.9949 0.7714 0.2393 0.9228 0.9913

21-30 0.9987 0.9852 0.9108 0.9937 0.7070 0.7605 0.8793 0.9886 0.9885 0.9737

31-40 0.9737 0.9785 0.9921 0.9823 0.9949 0.9981 0.9820 0.9716 0.9871 0.9924

41-50 0.9796 0.9848 0.9766 0.9982 0.9845 0.9862 0.9766 0.0012 0.9718 0.9946

51-60 0.9931 0.9759 0.9969 0.9345 0.9897 0.9358 0.9710 0.9827 0.9847 0.9875

61-70 0.9725 0.9898 0.9401 0.9867 0.9914 0.9846 0.9885 0.9456 0.9894 0.9814

71-80 0.9731 0.2410 0.5323 0.9772 0.4249 0.9857 0.9824 0.9765 0.9958 0.9958

81-90 0.9785 0.9885 0.9934 0.9105 0.5369 0.9815 0.9749 0.9939 0.9734 0.9748

91-100 0.3235 0.9954 0.9875 0.9876 0.9978 0.9873 0.9703 0.9943 0.9883 0.9844

Information security and functional safety

139

Fig.6. Experiment 1.3 (10 zeros)

Table 6

Results of experiment 1.3: 1– detected, 0 – not detected

Network host Detection result

1-10 1 1 1 1 1 1 1 1 1 1

11-20 1 1 1 1 1 1 1 1 1 1

21-30 1 1 1 0 1 1 1 1 1 1

31-40 1 1 1 1 1 0 1 1 1 1

41-50 1 0 1 1 1 1 1 1 0 1

51-60 1 1 1 1 1 1 1 1 0 1

61-70 0 1 1 1 1 1 1 1 1 1

71-80 1 1 1 1 1 1 1 1 1 1

81-90 1 1 1 0 1 1 0 1 1 1

91-100 1 1 0 1 1 1 1 1 0 1

Table 7

Results of experiment 1.3

Network host Statistical probability of malware detection

1-10 0.9885 0.9976 0.9881 0.9911 0.9923 0.9816 0.9775 0.9711 0.9842 0.9894

11-20 0.9784 0.9855 0.9774 0.9789 0.9248 0.9967 0.9958 0.9763 0.9820 0.7904

21-30 0.9777 0.9990 0.9886 0.3202 0.9948 0.9897 0.9864 0.9775 0.9712 0.9770

31-40 0.9808 0.9890 0.9996 0.9762 0.9927 0.9530 0.3404 0.9748 0.9943 0.9843

41-50 0.9735 0.9963 0.9891 0.1759 0.9973 0.9711 0.9712 0.9997 0.0510 0.3235

51-60 0.9851 0.9929 0.9175 0.9918 0.9910 0.9838 0.3394 0.9802 0.9751 0.9820

61-70 0.2833 0.9768 0.9808 0.0895 0.9725 0.9854 0.9950 0.9971 0.9917 0.9815

71-80 0.9789 0.9908 0.9964 0.8739 0.9724 0.9845 0.9738 0.9776 0.9965 0.9142

81-90 0.9352 0.9863 0.8711 0.4908 0.9937 0.9952 0.9116 0.9825 0.9893 0.9764

91-100 0.9885 0.9903 0.9880 0.9804 0.9809 0.9751 0.9939 0.9654 0.8532 0.9933

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

140

Fig.7. Experiment 1.4 (10 zeros)

Table 8

Results of experiment 1.4: 1– detected, 0 – not detected

Network host Detection result

1-10 1 1 1 1 1 1 1 1 1 1

11-20 1 1 0 1 0 1 1 1 0 1

21-30 1 1 1 1 1 0 1 1 1 1

31-40 1 1 0 1 1 1 1 1 1 1

41-50 1 1 1 1 1 1 1 1 1 1

51-60 1 1 1 1 1 1 1 0 1 1

61-70 0 1 1 1 1 1 1 1 1 1

71-80 1 1 1 1 1 1 1 1 1 1

81-90 1 0 1 1 1 1 1 0 1 0

91-100 1 1 1 1 1 1 1 1 1 1

Table 9

Results of experiment 1.4

Network host Statistical probability of malware detection

1-10 0.9716 0.9850 0.9830 0.9971 0.9889 0.9995 0.9876 0.9952 0.9841 0.9864

11-20 0.9754 0.9890 0.8815 0.9860 0.9844 0.9494 0.9728 0.9964 0.9701 0.4440

21-30 0.9904 0.9870 0.9844 0.9796 0.9880 0.0566 0.9905 0.9984 0.9730 0.9853

31-40 0.9733 0.9864 0.5237 0.3030 0.9933 0.9820 0.9969 0.9569 0.9718 0.2197

41-50 0.9725 0.9985 0.9705 0.9734 0.9704 0.9765 0.8759 0.9893 0.9855 0.9774

51-60 0.9758 0.9727 0.9811 0.6721 0.9881 0.9844 0.3351 0.9024 0.9952 0.9779

61-70 0.1017 0.9834 0.9802 0.9952 0.9995 0.9089 0.9754 0.9737 0.9874 0.9799

71-80 0.9780 0.9865 0.9754 0.9904 0.9717 0.9710 0.6912 0.9624 0.9970 0.9954

81-90 0.9819 0.9421 0.9829 0.9825 0.9919 0.9822 0.9986 0.9974 0.9985 0.9576

91-100 0.9787 0.9966 0.9763 0.9739 0.6408 0.9972 0.9821 0.9160 0.9724 0.9980

Information security and functional safety

141

Fig.8. Experiment 1.5 (9 zeros)

Table 10

Results of experiment 1.5: 1– detected, 0 – not detected

Network host Detection result

1-10 1 1 0 1 1 1 1 1 1 1

11-20 1 1 0 1 1 1 0 1 1 0

21-30 1 1 1 1 1 1 1 1 1 1

31-40 1 1 1 1 1 1 1 1 1 0

41-50 1 1 1 0 1 1 1 1 1 0

51-60 1 1 1 1 1 1 1 1 1 1

61-70 1 1 1 1 1 1 0 1 1 1

71-80 1 1 1 1 1 1 1 1 1 1

81-90 1 1 1 1 1 1 1 1 0 1

91-100 1 1 1 1 1 1 1 1 1 1

Table 11

Results of experiment 1.5

Network host Statistical probability of malware detection

1-10 0.0061 0.9888 0.8821 0.9968 0.9764 0.9701 0.9964 0.9771 0.9773 0.9892

11-20 0.9791 0.8605 0.9965 0.4362 0.9817 0.9940 0.9494 0.9888 0.9910 0.4073

21-30 0.9859 0.9967 0.9779 0.9770 0.9952 0.9849 0.9746 0.9769 0.9095 0.9869

31-40 0.9788 0.9887 0.9915 0.9784 0.9824 0.9809 0.9934 0.9741 0.9971 0.9787

41-50 0.9850 0.9935 0.9903 0.9745 0.5002 0.9739 0.9984 0.9966 0.9855 0.0363

51-60 0.9993 0.2872 0.9395 0.9948 0.9934 0.9757 0.9829 0.9704 0.9798 0.9740

61-70 0.9835 0.9872 0.9938 0.9826 0.9860 0.8861 0.9379 0.9863 0.8905 0.9716

71-80 0.9943 0.9800 0.9769 0.9947 0.9063 0.9750 0.9708 0.9987 0.9904 0.9958

81-90 0.9201 0.1974 0.8860 0.9777 0.9966 0.9976 0.9790 0.9722 0.8993 0.9725

91-100 0.9919 0.9834 0.3147 0.9751 0.9859 0.9890 0.9704 0.9841 0.9966 0.9734

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

142

Fig.9. Experiment 2.1 (19 zeros)

Table 12

Results of experiment 2.1: 1– detected, 0 – not detected

Network host Detection result

1-10 1 1 1 1 1 1 0 1 1 1

11-20 1 1 1 1 1 1 1 1 1 1

21-30 1 0 1 1 1 0 0 0 0 0

31-40 1 0 1 1 1 1 1 1 1 1

41-50 1 0 1 1 1 1 1 1 1 1

51-60 1 1 1 1 1 1 1 1 1 1

61-70 1 1 0 1 0 1 1 1 0 1

71-80 1 1 1 1 1 1 1 1 1 0

81-90 1 1 0 1 0 1 1 0 1 1

91-100 1 1 1 1 1 1 1 0 0 0

Table 13

Results of experiment 2.1

Network host Statistical probability of malware detection

1-10 0.9832 0.9864 0.5353 0.9819 0.9925 0.9857 0.6537 0.9727 0.9775 0.9834

11-20 0.9891 0.9913 0.9998 0.9980 0.9728 0.8728 0.9749 0.9991 0.9879 0.9772

21-30 0.9721 0.9790 0.9944 0.9723 0.9806 0.4872 0.9202 0.1254 0.9911 0.8648

31-40 0.6905 0.9752 0.9895 0.9850 0.9785 0.9949 0.9946 0.9981 0.9700 0.9892

41-50 0.9702 0.8504 0.9732 0.9810 0.9772 0.9804 0.9775 0.9816 0.9826 0.9892

51-60 0.9936 0.9781 0.9953 0.9922 0.9948 0.9755 0.8839 0.9883 0.9910 0.9733

61-70 0.9729 0.9879 0.9281 0.9944 0.3046 0.9276 0.9971 0.9836 0.9721 0.9772

71-80 0.9920 0.9712 0.9827 0.9862 0.9986 0.0465 0.9735 0.9894 0.9733 0.9995

81-90 0.9775 0.9882 0.9266 0.9949 0.9492 0.9928 0.9975 0.9970 0.9764 0.9864

91-100 0.9935 0.9758 0.9924 0.9843 0.9875 0.4382 0.9725 0.5992 0.2718 0.9210

Information security and functional safety

143

Fig.10. Experiment 2.2. (19 zeros)

Table 14

Results of experiment 2.2: 1– detected, 0 – not detected

Network host Detection result

1-10 1 0 1 1 1 1 1 1 1 1

11-20 1 0 1 0 1 1 1 1 1 1

21-30 1 1 1 1 1 1 1 1 1 1

31-40 0 1 1 1 0 1 0 1 0 1

41-50 1 1 1 1 1 0 1 1 1 1

51-60 0 1 1 0 0 1 1 1 1 1

61-70 1 0 1 1 1 1 1 1 1 1

71-80 0 0 1 1 1 1 1 1 1 1

81-90 0 1 1 0 1 1 1 1 1 1

91-100 1 1 1 0 1 1 1 0 0 1

Table 15

Results of experiment 2.2

Network host Statistical probability of malware detection

1-10 0.9751 0.9899 0.9861 0.9949 0.9780 0.9753 0.8889 0.9843 0.9936 0.9739

11-20 0.9715 0.0874 0.9709 0.9741 0.9908 0.9855 0.9863 0.9943 0.8618 0.9851

21-30 0.9783 0.9736 0.9966 0.9991 0.9983 0.9891 0.9727 0.9722 0.9032 0.9710

31-40 0.4778 0.9743 0.9891 0.9937 0.9166 0.9813 0.9946 0.9791 0.9796 0.4640

41-50 0.9851 0.9778 0.9920 0.9749 0.9976 0.2077 0.9725 0.9722 0.9931 0.9945

51-60 0.5608 0.9927 0.9988 0.9840 0.9936 0.9827 0.9983 0.9700 0.9994 0.9871

61-70 0.9804 0.8812 0.9790 0.9748 0.9900 0.9905 0.9938 0.9805 0.9775 0.9804

71-80 0.4204 0.9978 0.9927 0.9786 0.9882 0.9930 0.9954 0.9971 0.9879 0.0053

81-90 0.7280 0.9961 0.9824 0.9102 0.9935 0.9774 0.9866 0.9769 0.9452 0.9003

91-100 0.8660 0.9818 0.9776 0.9108 0.9899 0.9974 0.9702 0.5273 0.5088 0.9972

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

144

Fig.11. Experiment 2.3 (15 zeros)

Table 16

Results of experiment 2.3: 1– detected, 0 – not detected

Network host Detection result

1-10 1 1 1 1 1 1 0 1 1 1

11-20 0 1 1 0 1 1 0 1 1 1

21-30 1 1 1 1 0 1 1 1 0 0

31-40 0 1 0 1 1 1 1 1 1 1

41-50 1 1 1 1 1 1 1 1 1 1

51-60 1 1 0 1 1 1 1 1 1 1

61-70 1 1 1 1 1 1 1 1 1 1

71-80 1 1 1 1 1 1 0 1 0 1

81-90 1 1 1 1 1 0 0 1 1 1

91-100 0 1 1 1 1 1 1 1 1 1

Table 17

Results of experiment 2.3

Network host Statistical probability of malware detection

1-10 0.9970 0.9741 0.9938 0.9757 0.9709 0.9738 0.3687 0.9738 0.9981 0.9782

11-20 0.9983 0.9891 0.9962 0.9810 0.5633 0.9756 0.8612 0.9777 0.9792 0.9705

21-30 0.9876 0.9989 0.9955 0.9702 0.5038 0.9808 0.9734 0.9862 0.9825 0.9419

31-40 0.9966 0.9745 0.8740 0.9718 0.9814 0.9917 0.9729 0.9900 0.9789 0.9880

41-50 0.9746 0.9831 0.9704 0.8985 0.9779 0.9853 0.9765 0.9804 0.9924 0.9824

51-60 0.9717 0.9817 0.9400 0.9948 0.9791 0.9947 0.1103 0.9716 0.8662 0.9877

61-70 0.9844 0.9760 0.9772 0.9934 0.9885 0.5457 0.9915 0.9820 0.9839 0.9912

71-80 0.9820 0.9704 0.3890 0.9877 0.9834 0.9978 0.2787 0.5436 0.9864 0.9734

81-90 0.9971 0.9253 0.9972 0.9889 0.9704 0.6856 0.9599 0.9889 0.9718 0.9902

91-100 0.9085 0.8730 0.9855 0.9912 0.9944 0.7198 0.9793 0.9803 0.9900 0.9958

Information security and functional safety

145

Fig.12. Experiment 2.4 (18 zeros)

Table 18

Results of experiment 2.4: 1– detected, 0 – not detected

Network host Detection result

1-10 1 1 1 1 1 1 1 1 1 0

11-20 1 1 1 1 0 1 1 1 1 0

21-30 1 1 0 0 1 0 1 1 1 1

31-40 1 1 1 1 1 1 1 0 1 1

41-50 1 1 1 1 1 1 1 0 1 1

51-60 1 1 1 1 1 1 1 0 1 0

61-70 1 1 1 1 1 1 1 0 0 1

71-80 1 1 1 1 1 0 1 1 1 1

81-90 1 0 1 1 1 0 1 1 1 1

91-100 1 1 1 0 0 1 1 0 1 1

Table 19

Results of experiment 2.4

Network host Statistical probability of malware detection

1-10 0.9765 0.9912 0.9712 0.9885 0.9901 0.9711 0.9701 0.8980 0.9959 0.9783

11-20 0.9860 0.9857 0.9870 0.9800 0.7357 0.9368 0.9995 0.9717 0.9819 0.9937

21-30 0.9878 0.9793 0.7196 0.9211 0.9796 0.9966 0.9897 0.2062 0.9842 0.3416

31-40 0.9985 0.9965 0.9831 0.7355 0.9798 0.9810 0.9938 0.9022 0.9986 0.9700

41-50 0.9789 0.9715 0.9833 0.9937 0.9974 0.9860 0.9941 0.8740 0.9925 0.9703

51-60 0.9843 0.9775 0.9792 0.9990 0.9763 0.9512 0.9768 0.4622 0.9999 0.9740

61-70 0.9986 0.9737 0.9756 0.9894 0.9738 0.9724 0.9898 0.9708 0.4407 0.9862

71-80 0.9812 0.9912 0.9984 0.9815 0.9908 0.1746 0.9933 0.9878 0.9813 0.9955

81-90 0.9768 0.8746 0.9999 0.9784 0.9913 0.9169 0.9824 0.9849 0.2310 0.9986

91-100 0.9920 0.9815 0.9712 0.0720 0.8537 0.9807 0.9964 0.8598 0.9887 0.9789

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

146

Fig.13. Experiment 2.5 (18 zeros)

Table 20

Results of experiment 2.5: 1– detected, 0 – not detected

Network host Detection result

1-10 1 1 1 1 1 1 1 1 1 1

11-20 1 1 1 1 1 1 1 1 0 1

21-30 0 1 1 1 1 1 1 1 1 1

31-40 0 1 1 1 1 1 0 1 0 1

41-50 1 1 1 0 0 1 1 1 1 1

51-60 1 0 1 1 0 1 1 0 1 1

61-70 1 1 1 1 1 1 1 1 1 1

71-80 1 0 1 1 0 0 1 1 1 0

81-90 0 1 1 1 1 1 1 1 1 1

91-100 1 1 0 0 0 1 1 1 1 1

Table 21

Results of experiment 2.5

Network host Statistical probability of malware detection

1-10 0.9939 0.8900 0.9704 0.9728 0.9126 0.9792 0.2426 0.9749 0.9833 0.9930

11-20 0.9501 0.9914 0.9838 0.9976 0.8607 0.9980 0.9838 0.9971 0.9816 0.9881

21-30 0.3499 0.9954 0.9785 0.6896 0.9881 0.9897 0.4901 0.9799 0.1005 0.9730

31-40 0.9786 0.9806 0.9861 0.9997 0.9708 0.9913 0.1580 0.9960 0.9736 0.9987

41-50 0.9832 0.9963 0.9959 0.9807 0.9160 0.9959 0.9706 0.9723 0.9813 0.9745

51-60 0.9710 0.5165 0.8680 0.9945 0.8908 0.9903 0.9963 0.9927 0.9769 0.9808

61-70 0.9809 0.1474 0.9801 0.9726 0.9835 0.9836 0.9709 0.9891 0.9718 0.9751

71-80 0.5900 0.9637 0.9702 0.9786 0.9813 0.9744 0.9722 0.8968 0.9811 0.9947

81-90 0.9861 0.9945 0.9838 0.9704 0.9701 0.9750 0.9810 0.9915 0.9748 0.9784

91-100 0.9893 0.9786 0.9797 0.9747 0.4821 0.9969 0.9966 0.9818 0.9490 0.9776

Information security and functional safety

147

5.3. Discussion

For the second task, a similar series of experiments

were conducted. The number of negative results was 19,

19, 15, 18, 18, respectively, for five series of the exper-

iments. The degree of system degradation did not in-

crease. This indicates that the system architecture pro-

vides a low level of degradation.

The results of the experiment confirm that the sys-

tem can perform the task regardless of the components

with a high degree of security, which gave a negative

result, and the components with a low level of security,

which also gave a negative result.

Most of the system components performed the task

correctly and evaluated the results of all components to

provide a consistent solution.

Conclusion and Future Work

The developed principle of the synthesis of multi-

computer systems with combined baits and traps and a

decision-making controller for detecting and counteract-

ing malware and computer attacks is the basis of the

concept of creating such systems. To detail the architec-

ture of multicomputer systems with combined baits and

traps and a decision-making controller for detecting and

counteracting malware and computer attacks, which

corresponds to the proposed principle of synthesis of

such systems, it is necessary to develop a conceptual

model of its architecture. The implementation of a deci-

sion-making controller through the development of a

method for synthesizing systems with a controller will

be the direction of further research.

Ensuring the organization of the functioning of

partially centralized distributed systems, as one of the

types of systems defined according to the developed

principle, in computer networks is implemented by two

developed methods.

The developed method of synthesis of mathemati-

cal models of security levels of system components

makes it possible to obtain new mathematical mod-

els [1] of security levels of system components for a

comprehensive description of processes that will take

place in partially distributed systems and will be related

to the evaluation of security of system components. It

can be applied to discrete and continuous characteristic

indicators. According to them, the values of the charac-

teristic indicators of the security levels in the system

components will be used to evaluate the results of dis-

tributed calculations obtained from various system

components to determine the degree of trust in them.

The method for organizing the functioning of par-

tially centralized distributed systems makes it possible

to create such systems. For the operation of this type of

system, the distribution of components was carried out

according to the relationship to the decision-making

center, which made it possible to implement partial cen-

tralization compatible with the principles of self-

organization and adaptability, which set mechanisms for

independent decision-making regarding further steps in

the system and restructuring of its architecture as need-

ed.

Thus, partially centralized distributed systems can

be created using the two developed methods and filled

with specialized functionality.

The direction of further research will be the devel-

opment of specialized methods and their implementa-

tion in partially centralized systems, which can be de-

ception systems, network baits, and narrowly special-

ized systems for detecting malicious software.

Contribution of the authors

Antonina Kashtalian is the developer of the prin-

ciple of synthesis of multicomputer systems with com-

bined baits and traps and a decision-making controller

for detecting and counteracting malware and computer

attacks. She also analyzed known methods of develop-

ing systems with deception technologies and their ele-

ments. and performed experimental studies with the

system. The concept of deception systems and the prin-

ciples of their operation, particularly distributed systems

with varying degrees of centralization and conducted

experimental studies with the system. Systems that are

developed according to the method for organizing the

functioning of partially centralized distributed systems

are partial implementations of full-featured deception

systems.

Sergii Lysenko described the research problem,

determined the limitations of the subject area, and con-

ducted an analysis of the relevance of the development

of the scientific problem of the synthesis of such sys-

tems.

Bohdan Savenko is the developer of the method

of organizing the functioning of partially centralized

distributed systems for detecting malware. He has writ-

ten the introduction section and conclusions of the pa-

per, developed analytical expressions, and processed the

results of experiments.

Tomas Sochor and Tetiana Kysil checked the an-

alytical dependencies and set up the experiment.

All the authors have read and agreed to the pub-

lished version of this manuscript.

References

1. Lysenko, S., & Savenko, B. Distributed Dis-

crete Malware Detection Systems Based on Partial Cen-

tralization and Self-Organization. International Journal

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

148

of Computing, 2023, vol. 22, no, 2. pp. 117-39. DOI:

10.47839/ijc.22.2.3082.

2. Breeden, J. 5 top deception tools and how they

ensnare attackers. Available at: https://www.csoonline.

com/article/570063/5-top-deception-tools-and-how-

they-ensnare-attackers.html (accessed 06.08.2023).

3. Acalvio ShadowPlex. Autonomous Deception.

Available at: https://www.acalvio.com/product/

04.09.2023 (аccessed 06.08.2023).

4. SentinelOne. Available at:

https://www.sentinelone.com/surfaces/identity/ (аc-

cessed 06.08.2023).

5. Proofpoint Identity Threat Defense. Available

at: https://www.proofpoint.com/us/illusive-is-now-

proofpoint (аccessed 06.08.2023).

6. Counter Craft Security. Available at:

https://www.countercraftsec.com/ (аccessed

06.08.2023).

7. Fidelis Security. Available at:

https://fidelissecurity.com/fidelis-elevate/ (аccessed

06.08.2023).

8. The Commvault Data Protection Platform.

Available at: https://www.commvault.com/ (аccessed

06.08.2023).

9. Labyrinth Deception Platform. Available at:

https://labyrinth.tech/platform (аccessed 06.08.2023).

10. Labyrinth Deception Platform. Datasheet.

Available at: https://labyrinth.tech/assets/media/

pdf/labyrinth-data-sheet.pdf (аccessed 06.08.2023).

11. Feng, M., Xiao, B., Yu, B., Qian, J., Zhang, X.,

Chen, P., & Li, B. A Novel Deception Defense-Based

Honeypot System for Power Grid Network. Interna-

tional Conference on Smart Computing and Communi-

cation, 2021, Vol. 13202, pp. 297-307. Cham: Springer

International Publishing. DOI: 10.1007/978-3-030-

97774-0_27.

12. Walter, E., Ferguson-Walter, K., & Ridley, A.

Incorporating deception into cyberbattlesim for auton-

omous defense. 2021. arXiv preprint arXiv:2108.13980.

DOI: 10.48550/arXiv.2108.13980.

13. Anwar, A. H., Kamhoua, C. A., Leslie, N. O.,

& Kiekintveld, C. Honeypot Allocation for Cyber De-

ception Under Uncertainty. IEEE Transactions on Net-

work and Service Management, 2022, vol. 19. no. 3, pp.

3438-3452. DOI: 10.1109/TNSM.2022.3179965.

14. Sayed, M. A., Anwar, A. H., Kiekintveld, C.,

& Kamhoua, C. Honeypot Allocation for Cyber Decep-

tion in Dynamic Tactical Networks: A Game Theoretic

Approach. 14th International Conference on Decision

and Game Theory for Security. GameSec 2023. 2023.

arXiv preprint. arXiv:2308.11817. DOI:

10.48550/arXiv.2308.11817.

15. Anwar, A. H., & Kamhoua, C. A. Cyber De-

ception using Honeypot Allocation and Diversity: A

Game Theoretic Approach. 2022 IEEE 19th Annual

Consumer Communications & Networking Conference

(CCNC), Las Vegas, NV, USA, 2022, pp. 543-549.

DOI: 10.1109/CCNC49033.2022.9700616.

16. Anwar, A. H., Kamhoua, C., & Leslie, N.

Honeypot allocation over attack graphs in cyber decep-

tion games. International Conference on Computing,

Networking and Communications (ICNC), 2020, pp.

502-506, IEEE. DOI: 10.1109/ICNC47757.2020.

9049764.

17. Acosta, J. C., Basak, A., Kiekintveld, C., &

Kamhoua, C. Lightweight On-Demand Honeypot De-

ployment for Cyber Deception. In Gladyshev, P., Goel,

S., James, J., Markowsky, G., Johnson, D. (eds) Digital

Forensics and Cyber Crime. ICDF2C 2021. Lecture

Notes of the Institute for Computer Sciences, Social

Informatics and Telecommunications Engineering,

2022, vol. 441, pp. 294-312. Springer, Cham. DOI:

10.1007/978-3-031-06365-7_18.

18. Priya, D., & Chakkaravarthy, S. Containerized

cloud-based honeypot deception for tracking attackers.

Scientific Reports, 2023, vol. 13. DOI: 10.1038/s41598-

023-28613-0.

19. Al-Shaer, E., Wei, J., Hamlen, K. W., & Wang,

C. Autonomous Cyber Deception. Reasoning. Adaptive

Planning. and Evaluation of HoneyThings. Springer

Nature Switzerland AG, 2019. DOI: 10.1007/978-3-

030-02110-8.

20. Wegerer, M., & Tjoa, S. Defeating the Data-

base Adversary Using Deception – A MySQL Database

Honeypot. International Conference on Software Secu-

rity and Assurance (ICSSA), Saint Pölten. Austria, 2016.

pp. 6-10. DOI: 10.1109/ICSSA.2016.8.

21. Kedrowitsch, A., Danfeng, Y., Gang. W., &

Cameron, K. A First Look: Using Linux Containers for

Deceptive Honeypots. Proceedings of the 2017 Work-

shop on Automated Decision Making for Active Cyber

Defense (SafeConfig ‘17). Association for Computing

Machinery, New York, NY, USA, 2017, pp. 15–22.

DOI: 10.1145/3140368.3140371.

22. Almeshekah, M. H., & Spafford, E. H. Cyber

Security Deception. In: Jajodia. S., Subrahmanian. V.,

Swarup. V., Wang. C. (eds). Cyber Deception, 2016, p.

318, Cham. Springer. DOI: 10.1007/978-3-319-32699-

3_2.

23. Zobal, L., Kolář, D., & Fujdiak, R. Current

State of Honeypots and Deception Strategies in Cyber-

security. 11th International Congress on Ultra-Modern

Telecommunications and Control Systems and Work-

shops (ICUMT). Dublin. Ireland. 2019. pp. 1-9. DOI:

10.1109/ICUMT48472.2019.8970921.

24. Dahbul, R. N., Lim C., & Purnama. J. Enhanc-

ing honeypot deception capability through network ser-

vice fingerprint. Journal of Physics: Conference Series,

2017, vol. 801, article no. 012057. DOI: 10.1088/1742-

6596/801/1/012057.

https://doi.org/10.47839/ijc.22.2.3082
https://doi.org/10.47839/ijc.22.2.3082
https://www.csoonline.com/profile/john-breeden/
https://www.csoonline.com/article/570063/5-top-deception-tools-and-how-they-ensnare-attackers.html
https://www.csoonline.com/article/570063/5-top-deception-tools-and-how-they-ensnare-attackers.html
https://www.csoonline.com/article/570063/5-top-deception-tools-and-how-they-ensnare-attackers.html
https://www.acalvio.com/product/
https://www.proofpoint.com/us/illusive-is-now-proofpoint
https://www.proofpoint.com/us/illusive-is-now-proofpoint
https://www.countercraftsec.com/
https://www.commvault.com/
https://labyrinth.tech/platform
https://doi.org/10.1007/978-3-030-97774-0_27
https://doi.org/10.1007/978-3-030-97774-0_27
file:///D:/ZHURNAL%20Nauchportal/0REKS/2023/REKS%202023%204(108)/ЛисенкоС/%20DOI:
file:///D:/ZHURNAL%20Nauchportal/0REKS/2023/REKS%202023%204(108)/ЛисенкоС/%20DOI:
https://doi.org/10.48550/arXiv.2108.13980
https://doi.org/10.1109/TNSM.2022.3179965
https://doi.org/10.48550/arXiv.2308.11817
https://doi.org/10.48550/arXiv.2308.11817
https://doi.org/10.1109/CCNC49033.2022.9700616
https://doi.org/10.1109/ICNC47757.2020.9049764
https://doi.org/10.1109/ICNC47757.2020.9049764
https://doi.org/10.1007/978-3-031-06365-7_18
https://doi.org/10.1007/978-3-031-06365-7_18
https://doi.org/10.1038/s41598-023-28613-0
https://doi.org/10.1038/s41598-023-28613-0
https://doi.org/10.1007/978-3-030-02110-8
https://doi.org/10.1007/978-3-030-02110-8
https://doi.org/10.1109/ICSSA.2016.8
https://doi.org/10.1145/3140368.3140371
https://doi.org/10.1145/3140368.3140371
https://doi.org/10.1007/978-3-319-32699-3_2
https://doi.org/10.1007/978-3-319-32699-3_2
https://doi.org/10.1109/ICUMT48472.2019.8970921
https://doi.org/10.1088/1742-6596/801/1/012057
https://doi.org/10.1088/1742-6596/801/1/012057

Information security and functional safety

149

25. Razali, M. F., Razali, M. N., Mansor, F. Z.,

Muruti, G., & Jamil, N. IoT Honeypot: A Review from

Researcher's Perspective. IEEE Conference on Applica-

tion. Information and Network Security (AINS).

Langkawi. Malaysia, 2018. pp. 93-98. DOI:

10.1109/AINS.2018.8631494.

26. La, Q. D., Quek, T. Q. S., Lee, J., & Zhu, H.

Deceptive Attack and Defense Game. Honeypot-

Enabled Networks for the Internet of Things. IEEE In-

ternet of Things Journal, 2016, vol. 3, no. 6. pp. 1025-

1035. DOI: 10.1109/JIOT.2016.2547994.

27. Rowe, N. C. Honeypot Deception Tactics. In:

Al-Shaer, E., Wei, J., Hamlen, K., Wang, C. (eds) Au-

tonomous Cyber Deception. Springer. Cham, 2019.

DOI: 10.1007/978-3-030-02110-8_3.

28. Lysenko, S., Savenko, O., Bobrovnikova, K.,

& Kryshchuk, A. Self-adaptive system for the corporate

area network resilience in the presence of botnet

cyberattacks. Communications in Computer and Infor-

mation Science, 2018, vol. 860, pp. 385-401. DOI:

10.1007/978-3-319-92459-5_31.

29. Pomorova, O., Savenko, O., Lysenko, S.,

Kryshchuk, A., & Bobrovnikova, K. A Technique for

the Botnet Detection Based on DNS-Traffic Analysis.

Computer Networks. CN 2015. Communications in

Computer and Information Science, 2015, vol. 522, pp.

127-138. DOI: 10.1007/978-3-319-19419-6_12.

30. Bobrovnikova, K., Lysenko, S., Savenko, B.,

Gaj, P., & Savenko, O. Technique for IoT malware de-

tection based on control flow graph analysis. Radioelec-

tronic and Computer Systems, 2022, vol. 1, pp. 141–

153. DOI: 10.32620/reks.2022.1.11.

31. Lysenko, S., Savenko, O., Bobrovnikova, K.,

Kryshchuk, A., & Savenko, B. Information technology

for botnets detection based on their behaviour in the

corporate area network. Communications in Computer

and Information Science, 2017, vol. 718, pp. 166–181.

DOI: 10.1007/978-3-319-59767-6_14.

32. Moskalenko, V., Zarets'kyy, M., Moskalenko,

A., Kudryavtsev, A., & Semashko, V. Multi-layer mod-

el and training method for malware traffic detection

based on decision tree ensemble. Radioelectronic and

Computer Systems, 2020, vol. 2, pp. 92-101. DOI:

10.32620/reks.2020.2.08.

33. Morozova, O., Nicheporuk, A, Tetskyi, A., &

Tkachov, V. Methods and technologies for ensuring

cybersecurity of industrial and web-oriented systems

and networks. Radioelectronic and Computer Systems,

2021, vol. 4, pp. 145-156. DOI: 10.32620/reks.

2021.4.12.

34. Dovbysh A., Liubchak, V., Shelehov, I., Si-

monovskiy, J., & Tenytska, A. Information-extreme

machine learning of a cyber attack detection system.

Radioelectronic and Computer Systems. 2022, vol. 3,

pp. 121-131. DOI: 10.32620/reks.2022.3.09.

35. Fursov, I., Yamkovyi, K., & Shmatko, O.

Smart Grid and wind generators: an overview of cyber

threats and vulnerabilities of power supply networks.

Radioelectronic and Computer Systems, 2022, vol. 4.

pp. 50-63. DOI: 10.32620/reks.2022.4.04.

36. Ahmed, J., Karpenko, A., Tarasyuk, O., Gor-

benko, A., & Sheikh-Akbari, A. Consistency issue and

related trade-offs in distributed replicated systems and

databases: a review. Radioelectronic and Computer

Systems, 2023, vol. 2. pp. 171-179. DOI: 10.32620/

reks.2023.2.14.

37. Alnajim, A. M., Habib, S., Islam, M., Al-

belaihi, R, & Alabdulatif, A. Mitigating the Risks of

Malware Attacks with Deep Learning Techniques. Elec-

tronics, 2023, vol. 12, iss. 14. pp. 3166. DOI: 10.3390/

electronics12143166.

38. da Silva, A. A., & Pamplona Segundo, M. On

Deceiving Malware Classification with Section Injec-

tion. Machine Learning and Knowledge Extraction,

2023, vol. 5, iss. 1. pp. 144-168. DOI:

10.3390/make5010009.

39. Saminathan, K., Mulka, S. T. R., Damodharan,

S., Maheswar, R., & Lorincz, J. An Artificial Neural

Network Autoencoder for Insider Cyber Security Threat

Detection. Future Internet. 2023, vol. 15, iss. 12, article

no. 373. DOI: 10.3390/fi15120373.

40. Markoulidakis, I., Rallis, I., Georgoulas, I.,

Kopsiaftis, G., Doulamis, A., & Doulamis, N. Mul-

ticlass Confusion Matrix Reduction Method and Its Ap-

plication on Net Promoter Score Classification Problem.

Technologies, 2021, vol. 9. DOI: 10.3390/

technologies9040081.

41. Tharwat, A. Classification assessment meth-

ods. Applied Computing and Informatics, 2021, vol. 17,

no. 1, pp. 168-192. DOI: 10.1016/j.aci.2018.08.003.

42. Powers, D. Evaluation: From Precision. Recall

and F-Measure to ROC. Informedness. Markedness &

Correlation. arXiv 2020. DOI: 10.48550/arXiv.

2010.16061.

43. Markoulidakis, I., Rallis, I., Georgoulas, I.,

Kopsiaftis, G., Doulamis, A., & Doulamis, N. A Ma-

chine Learning Based Classification Method for Cus-

tomer Experience Survey Analysis. Technologies, 2020,

vol. 8, article no. 76. DOI: 10.3390/

technologies8040076.

44. Lysenko, S., Savenko, O., & Bobrovnikova, K.

DDoS Botnet Detection Technique Based on the Use of

the Semi-Supervised Fuzzy c-Means Clustering. CEUR-

WS, 2018, vol. 2104, pp. 688-695.

45. Lysenko, S., Bobrovnikova, K., Shchuka, R., &

Savenko, O. A Cyberattacks Detection Technique Based

on Evolutionary Algorithms. 11th International Confer-

ence on Dependable Systems. Services and Technolo-

gies (DESSERT), 2020, vol. 1, pp. 127-132. DOI:

10.1109/DESSERT50317.2020.9125016.

https://doi.org/10.1109/AINS.2018.8631494
https://doi.org/10.1109/JIOT.2016.2547994
https://doi.org/10.1007/978-3-030-02110-8_3
https://doi.org/10.1007/978-3-319-92459-5_31
https://doi.org/10.1007/978-3-319-92459-5_31
https://doi.org/10.1007/978-3-319-19419-6_12
https://doi.org/10.32620/reks.2022.1.11
https://doi.org/10.1007/978-3-319-59767-6_14
https://doi.org/10.32620/reks.2020.2.08
https://doi.org/10.32620/reks.2021.4.12
https://doi.org/10.32620/reks.2021.4.12
https://doi.org/10.32620/reks.2022.3.09
https://doi.org/10.32620/reks.2022.4.04
https://doi.org/10.32620/reks.2023.2.14
https://doi.org/10.32620/reks.2023.2.14
https://doi.org/10.3390/electronics12143166
https://doi.org/10.3390/electronics12143166
https://doi.org/10.3390/fi15120373
https://doi.org/10.3390/technologies9040081
https://doi.org/10.3390/technologies9040081
https://doi.org/10.1016/j.aci.2018.08.003
https://doi.org/10.48550/arXiv.2010.16061
https://doi.org/10.48550/arXiv.2010.16061
https://doi.org/10.3390/technologies8040076
https://doi.org/10.3390/technologies8040076
https://doi.org/10.1109/DESSERT50317.2020.9125016

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

150

Received 17.07.2023. Accepted 20.11.2023

ПРИНЦИП І МЕТОД СИНТЕЗУ СИСТЕМ ОБМАНУ ДЛЯ ВИЯВЛЕННЯ ЗЛОВМИСНОГО

ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ І КОМП'ЮТЕРНИХ АТАК

Антоніна Каштальян, Сергій Лисенко, Богдан Савенко,

Томаш Сочор, Тетяна Кисіль

Кількість різних типів та безпосередньо сама кількість зловмисного програмного забезпечення і

комп’ютерних атак постійно збільшуються. Тому, виявлення та протидія зловмисному програмному забез-

печенню та комп’ютерним атакам залишаються актуальною проблемою сьогодення. Особливо найбільшої

шкоди зазнають користувачі корпоративних мереж. Для виявлення та протидії їм розроблено багато ефекти-

вних засобів різноманітного спрямування. Але динамічність в розробці нового зловмисного програмного

забезпечення та урізноманітнення проведення комп’ютерних атак спонукають розробників засобів виявлен-

ня та протидії постійно вдосконалювати свої засоби та створювати нові. Об’єктом дослідження в роботі є

системи обману. Результати цієї роботи розвивають елементи теорії та практики створення таких систем.

Особливе місце серед засобів виявлення та протидія зловмисному програмному забезпеченню та

комп’ютерним атакам займають системи обману. Ці системи заплутують зловмисників, але теж потребують

постійних змін та оновлень. оскільки з часом особливості їх функціонування стають відомими. Тому, актуа-

льною є проблема створення систем обману, функціонування яких залишалось би незрозумілим для зловми-

сників. Для вирішення цієї проблеми в роботі пропонується но-вий принцип синтезу таких систем. Оскільки

формування таких систем буде на базі комп’ютерних станцій корпоративної мережі, тоді систему позиціо-

новано як мультикомп’ютерну. В системі запропоновано використовувати комбіновані приманки та пастки

для створення хибних об’єктів атак. Всі компоненти такої системи формують тіньову комп’ютерну мережу.

В роботі розроблено принцип синтезу мультикомп’ютерних систем з комбінованими приманками і пастками

та контролером прийняття рішень для виявлення та протидії зловмисному програмному забезпеченню та

комп’ютерних атакам. В основу принципу закладено наявність контролера за прийнятими в системі рішен-

нями та використання спеціалізованого функціоналу з виявлення та протидії. Згідно розробленого принципу

синтезу таких систем в роботі виділено підмножину систем з технологіями обману, в яких обов’язково по-

винен бути контролер та спеціалізований функціонал. Контролер за прийнятими рішеннями в системі є ві-

докремленим від центру прийняття рішень. Його завданням є вибір варіантів наступних кроків системи, які

сформовані в центрі системи, в залежності від повторюваності подій. Причому тривале повторення зовніш-

ніх подій вимагає від центру системи формування послідовності наступних кроків. За умови їх повторення

зловмисник отримує можливість вивчати функціонування системи. Контролер в системі вибирає з різних

можливих варіантів відповідей при однакових повторюваних підозрілих подіях різні відповіді. Таким чи-

ном, зловмисник при дослідженні корпоративної мережі на одні й ті ж запити отримує різні варіанти відпо-

відей. Спеціалізований функціонал згідно принципу синтезу таких систем імплементовано в архітектуру

систем. Він впливає на її зміну архітектури системи в процесі її функціонування в результаті внутрішніх та

зовнішніх впливів. В роботі також розглянуто можливий варіант архітектури таких систем обману, зокрема,

архітектура системи з частковою централізацією. Для синтезу таких систем розроблено новий метод синтезу

частково централізованих систем для виявлення зловмисного програмного забезпечення в комп’ютерних

мережах, який базується на розроблених аналітичних виразах, що визначають стан безпеки таких систем та

їх компонентів. Проведено експериментальні дослідження розробленої системи на предмет можливості її

функціонування тривалий час та виконання поставлених завдань в умовах втрати нею частини компонентів.

Результати двох експериментів з п’ятьма серіями підтвердили ефективність запропонованого рішення. Крім

того, за результатами експериментів було встановлено, що втрата 10-20% компонентів не впливає на вико-

нання поставленого завдання. Результати експериментів були опрацьовані з використанням ROC-аналізу та

алгоритму побудови ROC-кривої. Результати експериментів дали змогу визначити ступінь деградації так

побудованих систем.

Ключові слова: системи обману; синтез систем обману; принцип синтезу систем. контролер. розподі-

лені системи; павутина; пастка; приманки; виявлення шкідливого програмного забезпечення; часткова

централізація.

Information security and functional safety

151

Каштальян Антоніна Сергіївна – канд. техн. наук, доц. каф. фізики та електротехніки, докторантка,

Хмельницький національний університет, Хмельницький, Україна.

Лисенко Сергій Миколайович – д-р техн. наук, проф., проф. каф. комп’ютерної інженерії та інформа-

ційний систем, Хмельницький національний університет, Хмельницький, Україна.

Савенко Богдан Олегович– асп. каф. комп’ютерної інженерії та інформаційний систем, Хмельниць-

кий національний університет, Хмельницький, Україна.

Сочор Томаш – доц. каф. економіки та економічної політики, Університет Пріго, Чеська Республіка.

Кисіль Тетяна Миколаївна – канд. фіз.-мат. наук, доц., доц. каф. комп’ютерної інженерії та інформа-

ційний систем, Хмельницький національний університет, Хмельницький, Україна.

Antonina Kashtalian – PhD, Associate Professor at the Department of Physics and Electrical Engineering,

Doctoral Staff, Khmelnytskyi National University, Khmelnytskyi, Ukraine,

e-mail: yantonina@ukr.net, ORCID: 0000-0002-4925-9713.

Sergii Lysenko – Dr. S, Full Professor, Professor at Computer Engineering & Information Systems

Department, Khmelnytskyi National University, Khmelnytskyi, Ukraine,

e-mail: sirogyk@ukr.net, ORCID: 0000-0001-7243-8747.

Bohdan Savenko – PhD Student at Computer Engineering & Information Systems Department, Khmelnytskyi

National University, Khmelnytskyi, Ukraine,

e-mail: savenko_bohdan@ukr.net, ORCID: 0000-0001-5647-9979.

Tomáš Sochor – Associated Professor for Cybersecurity and Quantitative Methods, Department of Economics

and Economic Policies, Prigo University, Czech Republic,

e-mail: tomas.sochor@prigo.cz, ORCID: 0000-0002-1704-1883.

Tetiana Kysil – PhD, Associate Professor at the Department of Computer Engineering & Information Systems

Department, Khmelnytskyi National University, Khmelnytskyi, Ukraine,

e-mail: kysil_tanya@ukr.net, ORCID: 0000-0002-4094-3500.

