
doi: 10.5937/MatMor2302025P
Mathematica Moravica
Vol. 27, No. 2 (2023), 25–32

Blow-up phenomena for a p(x)-biharmonic
heat equation with variable exponent

Erhan Pı̇şkı̇n∗, Gülı̇stan Butakın

Abstract. In this paper, we deal with a p(x)-biharmonic heat equa-
tion with variable exponent under Dirichlet boundary and initial con-
dition. We prove the blow up of solutions under suitable conditions.

1. Introduction

Let Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω. We are
concerned with the following p(x)-biharmonic heat equation, with variable
exponent, of the form

(1)

 ut +∆2ut +∆2
p(x)u = |u|q(x)−2 u, Q = Ω× (0, T ) ,

u (x, t) = ∆u (x, t) = 0, ∂Q = ∂Ω× [0, T ) ,
u (x, 0) = u0 (x) , Ω,

where ∆2
p(x) is the so-called the p(x)-biharmonic operator and is defined by

∆2
p(x)u = ∆

(
|∆u|p(x)−2∆u

)
.

The exponents p (.) and q (.) are given measurable functions on Ω such that

(2) 2 ≤ p− ≤ p (x) ≤ p+ < q− ≤ q (x) ≤ q+ < p∗ (x) ,

with

p∗ (x) =

{
np(x)

(n−p(x))+
, if p+ < n,

+∞, if p+ ≥ n.

We also suppose that

(3) |p (x)− p (y)| ≤ A

log
(

1
|x−y|

) , for all x, y ∈ Ω with |x− y| < δ,

with A > 0, 0 < δ < 1 and

(4) ess inf (p∗ (x)− q (x)) > 0.
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The following problem was considered by Alaoui et al. in [2]

(5) ut − div
(
|∇u|m(x)−2∇u

)
= |u|p(x)−2 u.

The authors proved the blow up of solutions. Later, Rahmoune [13] proved
an upper bound for blow up time of solutions eq. (5).

Di et al. [5] considered the following pseudo-parabolic equation with
variable exponent

(6) ut −∆ut − div
(
|∇u|m(x)−2∇u

)
= |u|p(x)−2 u.

They proved an upper bound and lower bound for blow up time. Later,
some authors studied blow up of solutions of the equation (6) (see [8, 15]).

Liu [9] studied the p(x)-biharmonic heat equation

ut +∆2
p(x)u = |u|q(x)−2 u.

The author proved the local existence and blow up of solutions. Ferreira
et al. [7] considered the beam-equation with a strong damping and the
p(x)-biharmonic operator

utt +∆2
p(x)u−∆ut + f (x, t, ut) = g (x, t) .

They proved the local and global existence of solutions. Some other re-
searchers considered the parabolic-type equations with variable exponents
(see [3, 10,11]).

The problems with variable exponents arise in many branches of sciences
such as electrorheological fluids, nonlinear elasticity theory and image pro-
cessing [4, 6, 14].

Motivated by the above studies, in this paper, we consider the blow up of
the solution (1) under some conditions.

The present paper is structured as follows. In Section 2, we state some
results about the variable exponent Lp(x) (Ω) Lebesgue and Wm,p(x) (Ω)
Sobolev spaces. In Section 3, the blow up phenomena will be proved.

2. Preliminaries

We recall some well-known results about the Lebesgue spaces and Sobolev
spaces with variable exponents (see [6, 12]).

Let p : Ω → [1,∞] be a measurable function, where Ω is a bounded
domain of Rn. We define the Lebesgue space with variable exponent p (.) by

Lp(x) (Ω) =
{
u : Ω → R, u is measurable and ρp(.)(λu) < ∞, for some λ > 0

}
,

where

ρp(.) (u) =

∫
Ω

|u|p(x) dx.
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Also endowed with the Luxemburg-type norm

∥u∥p(x) = inf

{
λ > 0 :

∫
Ω

∣∣∣u
λ

∣∣∣p(x) dx ≤ 1

}
,

Lp(x) (Ω) is a Banach space.
The Sobolev space with variable exponent Wm,p(x) (Ω) is defined as

Wm,p(x) (Ω) =
{
u ∈ Lp(x) (Ω) : Dαu ∈ Lp(x) (Ω) , |α| ≤ m

}
.

Sobolev space with variable exponent is a Banach space with respect to the
norm

∥u∥2,p(x) = ∥u∥p(x) + ∥∇u∥p(x) + ∥∆u∥p(x) .

Lemma 1 ([2]). (i) If (4) holds, then ∥u∥p(.) ≤ C ∥∇u∥p(.) for all u ∈
W

1,p(.)
0 (Ω) , where Ω is bounded. In paticular, the space W

1,p(.)
0 (Ω) has a

norm given by ∥u∥1,p(.) = ∥∇u∥p(.), for all u ∈ W
1,p(.)
0 (Ω) .

(ii) If p ∈ C
(
Ω
)
, q : Ω → [1,∞) is a measurable function and

ess inf
(
p∗ (x)− q (x)

)
> 0,

with p∗ (x) = np(x)
(n−p(x))+

then

W
1,p(.)
0 (Ω) ↪→↪→ Lq(.) (Ω) .

3. Blow up

In this part, we study blow-up result of solutions. We first state a local
existence theorem [1].

Theorem 1. For all u0 ∈ W
1,p(.)
0 (Ω) , there exists a number T0 ∈ (0, T ]

such that the problem (1) has a strong solution u on [0, T0] satisfying

u ∈ Cw

(
[0, T0] ;W

1,p(.)
0 (Ω)

)
∩ C

(
[0, T0] , L

q(.) (Ω)
)
∩W 1,2

(
0, T0;L

2 (Ω)
)
.

Lemma 2.

E (t) =

∫
Ω

(
1

p(x)
|∆u|p(x) − 1

q(x)
|u|q(x)

)
dx

is a nonincreasing function for t ≥ 0 and

E′(t) ≤ 0.

Proof. Multiplying ut on two sides of the equation (1), and integrating by
parts, we get∫

Ω

u2tdx+

∫
Ω

∆u2tdx+
d

dt

∫
Ω

1

p (x)
|∆u|p(x) dx =

d

dt

∫
Ω

1

q (x)
|u|q(x) dx.
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We then define the energy by

E (t) =

∫
Ω

(
1

p (x)
|∆u|p(x) − 1

q(x)
|u|q(x)

)
dx.

Clearly, we get

E′(t) = −
∫
Ω

u2tdx−
∫
Ω

|∆ut|2 dx ≤ 0.

Let H (t) = −E (t) . So, H ′(t) ≥ 0. □

Theorem 2. Let u0 ∈ W
1,m(.)
0 (Ω) such that

∫
Ω

u20dx+
∫
Ω

∆2u0dx > 0 and∫
Ω

(
1

p (x)
|∆u0|p(x) −

1

q (x)
|u0|q(x)

)
dx ≥ 0.

Then

F (t) =
1

2

(∫
Ω

u2dx+

∫
Ω

|∆u|2 dx
)

blows up in finite time t∗ < +∞.

Proof. By differentiating F with respect to t, we obtain

F ′(t) =

∫
Ω

(uut +∆u∆ut) dx

=

∫
Ω

[
u
(
−∆2ut + div

(
|∆u|p(x)−2∆u

)
+ |u|q(x)−2 u

)
+∆u∆ut

]
dx

=

∫
Ω

(
|u|q(x) − |∆u|p(x)

)
dx

=

∫
Ω

q (x)

(
|u|q(x)

q (x)
− |∆u|p(x)

p (x)

)
dx

+

∫
Ω

q (x)

(
1

p (x)
− 1

q (x)

)
|∆u|p(x) dx.

Since E′(t) ≤ 0, we get∫
Ω

q(x)

(
|u|q(x)

q(x)
− |∆u|p(x)

p (x)

)
dx ≥

∫
Ω

q(x)

(
|u0|q(x)

q (x)
− |∆u0|p(x)

p (x)

)
dx ≥

q−

∫
Ω

(
|u0|q(x)

q (x)
− |∆u0|p(x)

p (x)

)
dx ≥ 0.



Erhan Pı̇şkı̇n, Gülı̇stan Butakın 29

We see

F ′ (t) ≥
∫
Ω

q−

[
1

p+
− 1

q−

]
|∆u|p(x) dx

= C0

∫
Ω

|∆u|p(x) .

We define the sets Ω+ = {x ∈ Ω : |∆u| ≥ 1} and Ω− = {x ∈ Ω : |∆u| < 1}.
So,

F ′(t) ≥ C0

( ∫
Ω−

|∆u|p+ +

∫
Ω+

|∆u|p−
)

≥ C1

( ∫
Ω−

|∆u|2 dx
)p+/2

+

(∫
Ω+

|∆u|2 dx
)p−/2

 ,

using the fact that ∥∆u∥2 ≤ C ∥∆u∥r , for all r ≥ 2.

This implies that

(F ′(t))2/p+ ≥ C2

∫
Ω−

|∆u|2 dx

and similarly,

(F ′(t))2/p− ≥ C3

∫
Ω+

|∆u|2 dx.

The Poincare inequality gives ∥∆u∥2 ≥ λ1 ∥u∥2 , where λ1 is the first eigen-
value of the problem {

∆2w + λw = 0, in Ω,

w = 0, on ∂Ω.

Thus, we obtain

∥∆u∥2 =
1

1 + λ1
∥∆u∥2 + λ1

1 + λ1
∥∆u∥2

≥ λ1

1 + λ1
∥u∥2H2

0
.

Simple addition leads to

(7)
(F ′(t))2/p− + (F ′(t))2/p+ ≥ (C3 + C2) ∥∆u∥2

≥ λ1(C3 + C2)

1 + λ1
∥u∥2H2

0
= C4F (t),
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or

(8) (F ′(t))2/p−
(
1 + (F ′(t))

2( 1
p+

− 1
p−

)
)

≥ C4F (t).

By (7) and the fact that F (t) ≥ F (0) > 0(F ′(t) ≥ 0), we have, for each
t > 0, either

(F ′(t))2/p− ≥ C4

2
F (t) ≥ C4

2
F (0)

or

(F ′(t))2/p+ ≥ C4

2
F (t) ≥ C4

2
F (0),

which gives in turn

F ′(t) ≥ C5(F (0))p−/2

or

F ′(t) ≥ C6(F (0))p+/2.

Hence F ′(t) ≥ α, where α = min
{
C5(F (0))p−/2, C6(F (0))p+/2

}
.

Since 1
p+

− 1
p−

≤ 0, (8) yields

(
F ′(t)

)2/p−(1 + α)
2( 1

p+
− 1

p−
) ≥ C4F (t), ∀t ≥ 0.

Consequently,

(9) F ′(t) ≥ βF p−/2(t), ∀t ≥ 0.

A simple integration of (9) over (0, t) then yields

F (t)1−
p−
2 ≤ F (0)1−

p−
2 − p− − 2

2
βt,

which implies that

F (t) ≥ 1(
F (0)1−

p−
2 − p−−2

2 βt
) 2

p−−2

.

This shows that F blows up in a time

t∗ ≤ 2F (0)1−
p−
2

(p− − 2)β
. □
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4. Conclusion

In this paper, we have studied a p(x)-biharmonic heat equation with a
variable. The blow up of solutions has been proved. Our result improves
earlier results in the literature.
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