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Graph polynomials associated with
Dyson–Schwinger equations

Ali Shojaei-Fard

Abstract. Quantum motions are encoded by a particular family of re-
cursive Hochschild equations in the renormalization Hopf algebra which
represent Dyson–Schwinger equations, combinatorially. Feynman graph-
ons, which topologically complete the space of Feynman diagrams of a
gauge field theory, are considered to formulate some random graph rep-
resentations for solutions of quantum motions. This framework leads us
to explain the structures of Tutte and Kirchhoff–Symanzik polynomi-
als associated with solutions of Dyson–Schwinger equations. These new
graph polynomials are applied to formulate a new parametric represen-
tation for large Feynman diagrams and their corresponding Feynman
rules.

1. Introduction

On the one hand, Dyson–Schwinger equations are original tools for the
study of quantum motions in gauge field theories. The solutions of these
equations in strongly coupled theories have non-perturbative aspects. Nu-
merical, computational and combinatorial methods together with the an-
alytic, algebraic and geometric approaches are formulated in dealing with
this important challenge in mathematical and theoretical physics [1, 4, 17–
20, 26, 27, 31–38]. On the other hand, graph polynomials, such as Tutte
and Kirchhoff–Symanzik polynomials, are considered to study graph in-
variants and characterize graphs in terms of their fundamental properties.
These polynomials are at least invariant under graph isomorphisms. Tutte
polynomial, as a two variables graph polynomial, has a universal property
which is useful to evaluate any multiplicative graph invariant under a dele-
tion/contraction reduction machinery. This recursive setting is useful to
understand how graph polynomials can be specialized or generalized. These
homogeneous polynomials, which relate graphs to objects in a polynomial
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ring, are formulated in terms of a chosen coordinate system with variables
corresponding to the edges of the graph. The corresponding affine hypersur-
faces, embedded in some projective spaces, are called graph hypersurfaces
[2, 3, 13, 14, 21, 22, 25]. In this paper, we consider recent applications of infi-
nite combinatorics to Quantum Field Theory [30,33–35] to construct a new
family of graph polynomials which encode the combinatorics of quantum
motions.

1.1. The physics behind the main idea. Non-perturbative aspects of
gauge field theories under strong coupling constants are the most difficult
problems in modern theoretical and mathematical physics. These physical
theories are the main tools for the study of elementary particles in High
Energy Physics. For example, Quantum Chromodynamics (QCD), as the
gauge field theory of the strong interaction of quarks and gluons, considers
the physics of elementary particles at the length scales around 10−15 meter or
smaller with the energy scales around ΛQCD ∼ 0.2GeV or greater. The com-
binatorial 1PI Green’s functions in QCD, which encode formal expansions
of Feynman diagrams corresponding to specific propagations or interactions,
are given by

(1)

Gei(cg) = I−
∑

res(Γ)=ei

c|Γ|g
Γ

Sym(Γ)
,

Gvj (cg) = I+
∑

res(Γ)=vj

c|Γ|g
Γ

Sym(Γ)
.

The amount cg is the running coupling constant with respect to the bare
coupling constant g ≥ 1 and |Γ| is the loop order of Γ. The amplitudes
ei correspond to quark, gluon and ghost fields and the amplitudes vj cor-
respond to five types of interactions between them. Fixed point equations
for these Green’s functions, called Dyson–Schwinger equations, determine
quantum motions in QCD. Solutions of these quantum motions are given
by polynomials with respect to cg such that the appropriate higher loop
order Feynman diagrams are coefficients in these expansions. The analysis
of these solutions at energies < ΛQCD encapsulates low energy QCD, where
running coupling constants increase and non-perturbative aspects such as
confinement do happen [1, 4, 19, 32,33,35,38,39].

Firstly, graph polynomials are useful tools for the study of Feynman in-
tegrals which contribute to the structure of 1PI Green’s functions [2,3,9,21,
22]. Secondly, the Connes–Kreimer renromalization Hopf algebra provided
a combinatorial reformulation of Dyson–Schwinger equations [8, 17, 18, 20].
Thirdly, solutions of combinatorial Dyson–Schwinger equations are inter-
preted by a new class of graph functions which topologically enrich the
renormalization Hopf algebra [30, 34–36]. Thanks to these background, the
main idea of this research is to formulate a new family of graph polynomials
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for the study of non-perturbative solutions of quantum motions which have
infinite number of Feynman integrals in their structure. Our study provides
some new computational tools in dealing with quantum motions and their
renormalization process in strongly coupled physical theories such as low
energy QCD.

1.2. Parametric representations of Feynman integrals via graph
polynomials. The action functional of a gauge field theory Φ with La-
grangian density LΦ = LΦ,0 + LΦ,int is given by

(2) S[ϕ] =

∫
LΦ[ϕ]d

Dxdt,

such that the interaction part LΦ,int is a polynomial with respect to the
(running) coupling constants. Feynman diagrams are building blocks of La-
grangian framework. These combinatorial graphs, which encode interactions
between elementary particles, are decorated by momenta information.

Definition 1. A Feynman diagram Γ is a finite weighted decorated oriented
graph with the following properties.

− Γ contains a set Γ0 of vertices which present interactions and a set
Γ1 of edges which present elementary and virtual particles.

− Γ1 = Γ1
int ⊔ Γ1

ext. The objects in Γ1
int, which are edges with the

beginning and ending vertices, present virtual particles, while the
objects in Γ1

ext, which are edges with the beginning or ending vertices,
present elementary particles in Φ.

− The valence of each vertex in Γ0 is the degree of one of the monomials
in LΦ.

− External edges in Γ1
ext obey the conservation law

∑
e∈Γ1

ext
pe = 0 with

respect to the momentum parameter. It means that the amount of
momenta for input particles is the same as the amount of momenta
for output particles in Γ.

Feynman rules, which encode fundamental information of the physical
theory, together with Fourier transforms are applied to replace Feynman di-
agrams underlying the momentum space with their corresponding Feynman
integrals. In this transition, each loop associates to an integrate over the cor-
responding momentum. The divergence or convergence of each integrate is
determined by superficial degree of divergence of its corresponding Feynman
diagram. Thanks to Feynman rules, Feynman diagrams restore the summa-
tion over the probability amplitudes corresponding to all possible exchanges
of virtual particles which contribute to a process in the physical theory. In
other words, for a quantum expectation value O(ϕ), the interaction part of
the functional integral

(3)
∫

O(ϕ)exp(i
S[ϕ]

ℏ
)D[ϕ],
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derived from the equation (2), generates a formal expansion of terms indexed
by Feynman diagrams with respect to their loop numbers. Green’s functions,
which have a general form

(4) GN (x1, . . . , xN ) =

∫
exp(iS[ϕ]ℏ )ϕ(x1) · · ·ϕ(xN )D[ϕ]∫

exp(iS[ϕ]ℏ )D[ϕ]
,

are represented in terms of formal expansions of powers of (running) coupling
constants together with Feynman diagrams as coefficients [28].

Feynman rules assign a functional of external momenta to each Feynman
diagram. It is given by integrating over internal momenta as variables in
terms of propagators of internal edges and momentum conservation at each
vertex.

Definition 2. Up to multiplicative constants, Feynman integral correspond-
ing to any Feynman diagram Γ with NΓ external edges with momentum
information pΓ := (p1, . . . , pNΓ

) is parametrically represented by

(5) U(Γ; pΓ) :=
Γ(nΓ − DlΓ

2 )

(4π)DlΓ/2

∫
σnΓ

vnΓ

PΓ(w, pΓ)
−nΓ+DlΓ/2

ΨΓ(w)−nΓ+D(lΓ+1)/2
.

In this formula:
− nΓ is the number of internal edges in Γ.
− σnΓ := {w = (w1, . . . , wnΓ) ∈ RnΓ

+ : w1 + · · ·+wnΓ = 1} is a simplex
together with the volume form vnΓ .

− lΓ, as the first Betti number of Γ, is the loop number.
− PΓ(w, pΓ) is the second Symanzik polynomial with respect to the

external momenta variables. It is a homogeneous polynomial which
is defined by cut sets of Γ.

− ΨΓ(w) is the first Kirchhoff–Symanzik polynomial. It is a homoge-
neous polynomial of degree lΓ.

− The integral is defined in the affine hypersurface complement AnΓ \
X̂Γ such that

(6) X̂Γ := {w ∈ AnΓ : ΨΓ(w) = 0}.

For more details see [25].

Definition 2, as the standard parametric representation, shows the im-
portance of graph polynomials and motivic tools for the computation of
Feynman integrals [21,22,24,25]. In this direction, some new applications of
Hodge structures in the calculation of Feynman integrals underlying graph
polynomials are investigated [9, 11]. A motivic version of Feynman rules is
addressed on the basis of Kirchhoff–Symanzik polynomials to formulate the
algebro-geometric Feynman rules characters [2, 3]. These abstract charac-
ters send each class in the Grothendieck ring of conical immersed affine va-
rieties to an object in the Grothendieck ring of varieties spanned by classes
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[XΓ] with respect to Feynman diagrams in the physical theory Φ. This
program, which is on the basis of the deletion/contraction operators and
Tutte–Grothendieck polynomial, finds some interesting interconnections be-
tween Feynman integrals and periods of algebraic varieties [24, 25]. In ad-
dition, it addresses a motivic treatment in dealing with perturbative and
non-perturbative renormalization program at the level of the universal mo-
tivic Feynman rules character [24,29].

1.3. Random graph representations of Feynman diagrams. Graphons
or graph functions are tools in infinite combinatorics to study graph limits
of sequences of weighted finite graphs where the space of finite graphs can be
topologically completed with respect to cut norm [15,23]. Measure theoretic
tools are applied to build suitable ground measure spaces for the construc-
tion of non-trivial graphons as the graph limits of sequences of sparse finite
graphs [5–7,10].

Definition 3. For a given probability measure space (Ω, µΩ),
− A graphon is a real valued symmetric bounded µΩ-measurable func-

tion W : Ω× Ω → R.
− For any invertible µΩ-measure preserving transformation ρ on Ω, W ρ

is called a labeled graphon which is given by

(7) W ρ(x, y) :=W (ρ(x), ρ(y)).

− Labeled graphons V1, V2 are called weakly isomorphic, if and only
if there exists a graphon W together with µΩ-measure preserving
transformations ρ1, ρ2 such that

(8) V1 =W ρ1 , V2 =W ρ2 .

− Set [W ]≈ as the equivalence class of all labeled graphons which are
weakly isomorphic with W . It is called an unlabeled graphon. Define
the cut norm on the space of unlabeled graphons given by

(9) dcut([W1]≈, [W2]≈) := infρ1,ρ2∥W
ρ1
1 −W ρ2

2 ∥cut
such that

(10) ∥W ρ∥cut := supS,T

∣∣∣∣∣
∫
S×T

W ρ(x, y)dµΩ(x)dµΩ(y)

∣∣∣∣∣
where the supremum is on all non-trivial µΩ-measurable subsets of
Ω.

For more details see [15,23].

The Connes–Kreimer Hopf algebraic renormalization encodes the BPHZ
perturbative renormalization in the context of a graded connected commu-
tative non-cocommutative Hopf algebra HFG(Φ) of Feynman diagrams over
the field Q. The objects of this Hopf algebra, which is freely generated
by 1PI Feynman diagrams in Φ, have representations in terms of decorated
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rooted trees. This combinatorial version applies primitive (1PI) Feynman
diagrams as a collection of decorations to represent higher loop order Feyn-
man diagrams with nested overlapping loops in terms of (linear combinations
of) non-planar decorated rooted trees. Thanks to the existence of an injec-
tive Hopf algebra homomorphism from HFG(Φ) to HCK(Φ), we send each
Feynman diagram Γ to its combinatorial representation tΓ [8, 12,16,39].

Lemma 1. For a given probability measure space (Ω, µΩ), there exists a
unique unlabeled graphon class associated with Γ.

Proof. The vertex number n of tΓ defines a partition pn : I1, . . . , In of Ω.
The adjacency matrix AtΓ = (aij)n×n of tΓ defines a bounded µΩ-measurable
function W pn

tΓ
: Ω× Ω → R given by

(11) (x, y) ∈ Ii × Ij 7→ aij .

It is a labeled graphon such that thanks to Definition 3, the weakly isomor-
phic equivalence class [W pn

tΓ
]≈ is the unique unlabeled graphon with respect

to the combinatorics of Γ. We call it an unlabeled Feynman graphon and
present it with [WΓ]≈. □

The space of Feynman diagrams in Φ is topologically completed with
respect to the cut-distance topology (given by Definition 3), where Feynman
graphons are graph limits which present the convergence of sequences of
finite Feynman diagrams [30]. Choosing suitable ground measure spaces such
as [a, b] ⊆ R+ equipped with Lebesgue or Gaussian measures and rescaling
techniques are applied to generate non-trivial graph limits [35]. Feynman
graphons are useful tools for the construction of a new family of random
graphs and random graph processes which contribute to the structure of
formal expansions of higher loop order Feynman diagrams [35, 37]. In this
direction, a new theory of non-perturbative renormalization [31, 34] and a
new theory of computation for the space of quantum motions [33,36,37] are
developed.

Definition 4. Consider a probability measure space (Ω, µΩ) and any Feyn-
man diagram Γ in Φ with the corresponding unlabeled Feynman graphon
[WΓ]≈.

− A random graph representation of Γ is a random graph RρΓ which is
built in terms of choosing independently n = |tΓ| nodes x1, . . . , xn
from Ω such that with the probability W ρ

Γ(xi, xj) there exists an
edge between xi and xj in RρΓ where ρ is a µΩ-measure preserving
transformation on Ω.

− A sequence {Γn}n≥1 of Feynman diagrams in Φ is convergent if
and only if the sequence { [WΓn ]≈

||[WΓn ]≈||cut }n≥1 of the unlabeled Feyn-
man graphons converges to a non-zero Feynman graphon [W ]≈ with
respect to the cut-distance topology given by Definition 3.
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Thanks to Definitions 3 and 4 and Lemma 1, we build a new infinite graph
XW from the unlabeled Feynman graphon [W ]≈. XW is built in terms of
the adjacency matrix of the infinite tree or forest t∞ which is the graph
limit of the sequence {tΓn}n≥1 of rooted trees. We call XW a large Feynman
diagram associated with the sequence {Γn}n≥1.

Lemma 2. Following the notations of Definition 4, there exists a random
graph representation for the graph limit [W ]≈.

Proof. For a given µΩ-measure preserving transformation τ on Ω, we build
an infinite random graph RτW in terms of choosing an infinite countable
nodes x1, x2, . . . from Ω such that with the probability W ρ(xi, xj) there
exists an edge between xi and xj in RτW .

For each Feynman diagram Γn, random graph representations RρnΓn
and

Rψn

Γn
are isomorphic since W ρn

Γn
and Wψn

Γn
are weakly isomorphic for any µΩ-

measure preserving transformations ρn, ψn on Ω. Therefore up to the weakly
isomorphic relation, we consider random graph representations RΓ1 , . . . ,
RΓn , . . . and RW corresponding to the unlabeled Feynman graphons [WΓ1 ]≈,
. . . , [WΓn ]≈, . . . and [W ]≈. It is observed that the sequence {RΓn}n≥1 con-
verges to RW when the number of chosen nodes goes to infinity. □

Thanks to Definition 4 and Lemma 2, RW is a random graph representa-
tion of the large Feynman diagram XW .

1.4. Achievements. Graph polynomials [13,14] provide fundamental com-
putational tools for the study of Feynman integrals in Quantum Field The-
ory. Tutte and Kirchhoff–Symanzik polynomials on the space of Feynman
diagrams are studied to clarify the motivic nature of Feynman integrals and
renormalization process in gauge field theories [2, 3, 9, 11, 21, 22, 24, 25, 29].
Thanks to the parametric and random graph representations of Feynman
diagrams (explained in Subsections 1.2 and 1.3) and combinatorial reformu-
lation of quantum motions in terms of the Connes–Kreimer Hopf algebraic
framework, the following results are obtained.

− Random graph representations of solutions of quantum motions are
formulated.

− Generalizations of Tutte and Kirchhoff–Symanzik polynomials are
constructed as graph polynomials which encode invariants of solu-
tions of quantum motions.

− A new parametric representation for solutions of quantum motions
is obtained.

− Feynman rules of the topological Hopf algebra of renormalization are
parametrically characterized.

− An algebro-geometric representation of those Feynman rules which
contribute to the structure of quantum motions are formulated.
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2. Random graph representations of quantum motions

Fixed point equations of Green’s functions determine quantum equations
of motion in gauge field theories. These recursive integral equations, which
are called Dyson–Schwinger equations, have been studied in terms of vari-
ous mathematical tools. Dyson–Schwinger equations can be interpreted as
a quantized version of the Euler–Lagrange equations of motion originated
from the principal of the least action. Solutions of Dyson–Schwinger equa-
tions are actually polynomials of coupling constants of the physical theory.
Therefore their solutions in strongly interacting physical theories address
non-perturbative aspects where we need to deal with infinite formal expan-
sions of higher loop order Feynman diagrams. However these formal expan-
sions can be governed by perturbation methods in weakly coupled physical
theories with vanishing beta function. In other words, Dyson–Schwinger
equations behave linearly in the conformal part of the physical theory while
in non-conformal part, these equations behave non-linearly [1,4,20,26,27,38].

The Connes–Kreimer approach encapsulates the BPHZ perturbative renor-
malization in terms of the co-product

(12) ∆FG(Γ) = Γ⊗ I+ I⊗ Γ +
∑
γ

γ ⊗ Γ/γ

such that the sum is over all disjoint unions of superficially divergent 1PI
non-trivial subgraphs of Γ such that the quotient graph Γ/γ is the result of
shrinking all internal edges of each connected component of γ into a vertex
or an edge. The combinatorial version of the renormalization coproduct is
given by

(13) ∆CK(t) = t⊗ 1 + 1⊗ t+
∑
c

Pc(t)⊗Rc(t).

In this formula,
− The sum is over all non-trivial admissible cuts of t. An admissible

cut c is a subset of edges of t such that any path from the root rt to
any leaf of t has at most one edge of c.

− Rc(t) is the subtree of t which contains rt after applying c .
− Pc(t) is the remaining forest of subtrees of t.

For more details see [8, 12]. This Hopf algebraic framework is applied to
reformulate Dyson–Schwinger equations under a combinatorial setting.

Definition 5. Consider the complex {Cn}n≥0 such that for each n ≥ 1,
Cn is the Q-vector space of cochains of degree n generated by all linear
maps L : HFG(Φ) → HFG(Φ)

⊗n such that C0 = Q. The renormalization
coproduct (12) defines an operator

(14) bL := (id⊗ L)∆FG +

n∑
k=1

(−1)k∆kL+ (−1)n+1L⊗ I,
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such that
− ∆k is the renormalization coproduct which acts on the k-th compo-

nent in HFG(Φ)
⊗n.

− id : HFG(Φ) → HFG(Φ) is the identity operator.
− I is the unit constant operator such that L⊗ I(Γ) 7→ L(Γ)⊗ I.

It is a coboundary operator (i.e. b2 = 0) such that its corresponding
Hochschild cohomology is presented by HH•

ε (HFG(Φ)).

Remark 1.
− The operator I is in the kernel of any 0-coboundary.
− The one-cocycle condition is given by

(15) bL = 0 ⇔ ∆FGL = (id⊗ L)∆FG + L⊗ I.
− For any primitive Feynman diagram γ, define B+

γ : HFG(Φ) →
HFG(Φ) as a linear homogeneous operator which sends each Γ to
a linear expansion of Feynman diagrams generated by the insertion
of Γ into γ in terms of types of external edges of Γ and types of
vertices of γ. B+

γ is called a grafting operator.
− For any primitive Feynman diagram γ, bB+

γ = 0 which means that
grafting operators are Hochschild one-cocycle.

− Primitive Feynman diagrams in HFG(Φ) determine some generators
of HH1

ε (HFG(Φ)) in terms of the grafting operators B+
γ .

− For n ≥ 2, HHn
ε (HFG(Φ)) = 0.

− The pair (HCK, B
+) has the universal property in a category of pairs

(H,L) of commutative Hopf algebras H and Hochschild one-cocycles
L : H → H. The grafting operator B+ sends a forest t1 · · · tn of
rooted trees to a new rooted tree t by adding a new root r together
with n new edges from r to the roots rt1 , . . . , rtn .

For more details see [16,18].

Definition 6. Consider a family {γn}n≥1 of primitive Feynman diagrams
in a gauge field theory Φ with the bare coupling constant g. The recursive
Hochschild equation

(16) X = I+
∑
n≥1

(λg)nωnB
+
γn(X

n+1)

in HFG(Φ)[[λg]] is called a combinatorial Dyson–Schwinger equation under
the running coupling constant λg for 0 < λ ≤ 1 such that ωn are some
constants.

− This equation has a unique solution X =
∑

n≥0(λg)
nXn such that

X0 is the empty graph and for n ≥ 1,

(17) Xn =

n∑
j=1

ωjB
+
γj

( ∑
k1+···+kj+1=n−j, ki≥0

Xk1 · · ·Xkj+1

)
∈ HFG(Φ).
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For more details see [17,18].

Lemma 3. Following the notations of Definition 6, for any probability mea-
sure space (Ω, µΩ), there exists a unique unlabeled graphon class associated
with the partial sums

(18) Ym := X0 + (λg)X1 + · · ·+ (λg)mXm, m ≥ 1.

Proof. For each m ≥ 1, consider its rooted tree representation tYm of Ym
which is a forest of decorated non-planar rooted trees. Thanks to Lemma
1, each component Xk has a unique unlabeled Feynman graphon. Therefore
Feynman graphon WYm is a normalization of the direct sum of stretched
versions of Feynman graphons associated with X1, . . . , Xm. We have

(19) WYm =
WX1 + · · ·+WXm

||WX1 + · · ·+WXm ||cut
,

such that
− WXk

is a stretched Feynman graphon of weight (λg)k for k = 1, . . . ,m
which is defined on a measurable subset Ik ⊂ Ω with µΩ(Ik) = (λg)k.

− For any i ̸= j, Ii ∩ Ij = ∅ such that {I1, . . . , Im} is a partition of Ω.
Further details about the structure of WYm is given in [34,35]. □

Feynman graphons give us a topological enrichment of the renormalization
Hopf algebra. The resulting topological Hopf algebra, presented by Hcut

FG(Φ),
encodes graph limits of sequences of finite Feynman diagrams. Therefore this
new space is rich enough to interpret solutions of quantum motions as graph
limits of partial sums. This approach has been discussed in [30,34,35].

Theorem 1. Solutions of quantum motions have random graph representa-
tions.

Proof. We associate a random graph representation RXDSE
to the solution

XDSE of a combinatorial Dyson–Schwinger equation DSE with the general
form (16).

Choose the Lebesgue measure space (R+,m) as the ground space of our
Feynman graphon models. Thanks to Definition 4 and Lemma 3, we can
show that the sequence {Ym}m≥1 of partial sums is convergent to XDSE with
respect to the cut-distance topology when m tends to infinity. Feynman
graphon WXDSE

is an infinite direct sum of stretched versions of Feynman
graphons associated with X1, . . . , Xm, . . . . We have

(20) WXDSE
=

WX1 + · · ·+WXm + · · ·
||WX1 + · · ·+WXm + · · · ||cut

,

such that
− WXk

is a stretched Feynman graphon of weight (λg)k for k = 1, . . . ,
m, . . . , which is defined on a measurable subset Ik ⊂ R+ with
m(Ik) = (λg)k.
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− For any i ̸= j, Ii ∩ Ij = ∅ such that {I1, . . . , Im, . . . } is a partition of
R+.

Since the space of Feynman graphons is topologically complete, WXDSE
is a

well-defined Feynman graphon on R+. Applying rescaling methods enable
us to project WXDSE

to a graphon on the ground Lebesgue measure space
([0, 1),m). Further details about the structure of WXDSE

is given in [34].
Thanks to Definition 4, Lemmas 2 and 3, up to the weakly isomorphic

relation on labeled graphons with respect to Lebesgue measure preserving
transformations on R+, a random graph representation RYm of Ym is defined
in terms of choosing independently nYm = |tYm | nodes x1, . . . , xnYm

from R+

such that with the probability WYm(xi, xj), there exists an edge between xi
and xj in RYm .

Up to the weakly isomorphic relation with respect to Lebesgue measure
preserving transformations on R+, define RXDSE

as the convergent limit of
the sequence {RYm}m≥1. RXDSE

is an infinite random graph built in terms
of choosing independently infinite countable nodes x1, x2, . . . from R+ such
that with the probability WXDSE

(xi, xj), there exists an edge between xi and
xj in RXDSE

. We consider RXDSE
as the random graph representation for

XDSE. □

3. Quantum motions via graph polynomials

In general, a graph invariant is a function on the space of graphs which
has the same output on isomorphic graphs. Graph invariants characterize
graphs in terms of some particular properties. Graph polynomials, such
as Tutte polynomial, image the space of graphs to some polynomial rings.
Applications of graph polynomials to Quantum Field Theory have been in-
vestigated in several research works [2, 3, 9, 11, 21, 22, 24, 25]. In this part,
we show the importance of random graph representations of solutions of
combinatorial Dyson–Schwinger equations in the structure of Tutte and
Kirchhoff–Symanzik polynomials which encode invariants of these equations
under strongly coupled coupling constants.

Definition 7. For a given finite connected graph G and any edge e ∈ E(G),
− G \ e is a new graph as the result of deleting an edge e ∈ E(G). It

has the same set of vertices V (G) and the set of edges E(G)− {e}.
− G/e is a new graph as the result of contracting an edge e in terms

of identifying the endpoints of the edge e by shrinking this edge.
− Tutte polynomial T (G;x, y) is a two variables recursive polynomial

with respect to the independent variables x, y such that
• T (G;x, y) = T (G \ e;x, y) + T (G/e;x, y),
• T (G;x, y) = xT (G/e;x, y), if e is a co-loop,
• T (G;x, y) = yT (G \ e;x, y), if e is a loop.
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Lemma 4. Tutte polynomial of a finite connected graph G is defined in
terms of spanning trees in G.

Proof. Define a total order on the set E(G) = {e1, . . . , en} given by

(21) ei ≺ ej ⇔ i > j.

For a spanning tree t in G, an edge e is called internally active in t if e ∈ E(t),
and it is the smallest edge in the cut defined by e. In dual version, an edge
u is called externally active if u /∈ E(t), and it is the smallest edge in the
cycle defined by u. Following Definition 7, Tutte polynomial of the totally
ordered graph G can be defined in terms of the formal expansion

(22) T (G;x, y) =
∑
i,j

tijx
iyj

such that tij counts spanning trees with internal activity i and external
activity j. This definition is independent of the chosen total order. □

Remark 2.
− Tutte polynomial has the universal property with respect to the in-

variants of graphs. This means that any multiplicative graph in-
variant on disjoint unions and one-point joins of graphs which is
formulated via a deletion/contraction reduction process is given in
terms of an evaluation of Tutte polynomial.

− There exist some well-defined generalizations of Tutte polynomial,
such as Tutte–Grothendieck polynomial, which is independent of the
choice of any order structure on the edge sets of graphs.

For more details see [13,14].

Theorem 2. There exists a generalization of Tutte polynomial which
encodes invariants of non-perturbative solutions of combinatorial Dyson–
Schwinger equations.

Proof. Tutte polynomial given by Definition 7 is multiplicative over disjoint
unions of finite Feynman diagrams. For a finite connected Feynman diagram
Γ without any overlapping subdivergence with the corresponding rooted tree
representation tΓ, Γ =

⊔
v∈V (tΓ)

Γv such that each Γv is 1PI Feynman sub-
diagram inserted at a vertex of tΓ while edges of tΓ are bridges. Then we
have

(23) T (Γ;x, y) =
n∏
j=1

T (Γvj ;x, y), n = |tΓ|.

Consider an equation DSE with the general form (16) underlying the
(running) coupling constant λg = 1, the corresponding sequence {Ym}m≥1

of partial sums and the solution XDSE. For each m ≥ 1, Ym is a finite linear
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combination of weighted graphs which can be interpreted as a disjoint union
of graphs,

(24) Ym = X1 + · · ·+Xm 7→ X1 ⊔ · · · ⊔Xm.

Thanks to Lemma 4 and Remark 2, we have

(25) T (Ym;x, y) =

m∏
s=1

T (Xs;x, y) =

m∏
s=1

∑
is,js

tisjsx
isyjs

such that tisjs is the number of spanning trees (or forests) inXs with internal
activity is and external activity js.

Metric structure on the space of Feynman graphons can be lifted on to
the space of Feynman diagrams and combinatorial Dyson–Schwinger equa-
tions [34, 35]. Thanks to Definition 3, Lemma 3 and [30, 34], {Ym}m≥1 is
convergent to XDSE with respect to the cut-distance topology. Therefore for
each ϵ > 0, there exists Nϵ such that for each m1,m2 ≥ Nϵ,

(26) d(Ym1 , Ym2) := dcut([WYm1
]≈, [WYm2

]≈) < ϵ.

Following the proof of Lemma 3, for eachm ≥ 1, Feynman graphonWYm is
defined in terms of the rooted tree representations tX1 , . . . , tXm of Feynman
diagrams X1, . . . , Xm. tX1 , . . . , tXm are the only spanning trees (or forests)
in themselves. The relation (26) shows that spanning forests of partial sums
tend to the spanning forest tXDSE

of XDSE.

For the collection

{∏m
s=1 T (tXs ;x, y)

}
m≥1

of Tutte polynomials corre-

sponding to the rooted tree representations of graphs Xs, define the collec-
tion

(27)

{
pm :

∞∏
s=1

T (tXs ;x, y) −→
m∏
s=1

T (tXs ;x, y)

}
m≥1

of projection operators.
Thanks to the universal property of Tutte polynomial, for any graph in-

variant polynomial R satisfied in Definition 7 together with the collection

(28)

{
fm : R −→

m∏
s=1

T (tXs ;x, y)

}
m≥1

,

we can define the unique map

(29) 𭟋 : R −→
∞∏
s=1

T (tXs ;x, y)

such that fm = pm ◦ 𭟋. Therefore we consider
∏∞
s=1 T (tXs ;x, y) as Tutte

polynomial associated with the infinite forest tXDSE
.
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It leads us to define Tutte polynomial associated with XDSE as the infinite
direct product of Tutte polynomials associated with the components Xs. We
have

□(30) T (XDSE;x, y) =
∞∏
s=1

T (Xs;x, y).

Definition 8. For a finite connected Feynman diagram Γ with the loop
number lΓ, define the circuit matrix η̂ = (ηik)ik such that i 7→ ei ∈ E(Γ)
and k ranges over loops γ1, . . . , γlΓ .

− If an edge ei belongs to a loop γk with the same/reverse orientations,
then ηik = 1, ηik = −1, respectively.

− If the edge ei does not belong to a loop γk, then ηik = 0.
− The arrays of the associated Kirchhoff–Symanzik lΓ×lΓ-matrixMΓ(w)

are given by

(31) (MΓ(w))kr =

nΓ∑
i=1

wiηikηir

such that nΓ is the number of internal edges in Γ. This matrix defines
a function

(32) MΓ : AnΓ −→ Al
2
Γ , w = (w1, . . . , wnΓ) 7→MΓ(w)

on higher dimensional affine spaces.
For more details see [13,14,25].

Definition 9. For a finite Feynman diagram Γ with the loop number lΓ,
− First Kirchhoff–Symanzik polynomial associated with Γ is given by

(33) ΨΓ(w) = det(MΓ(w))

which is independent of the choice of an orientation on Γ and the
basis of loops.

− ΨΓ, as a function on AnΓ , is a homogeneous polynomial of degree lΓ
which can be formulated in terms of spanning trees. We have

(34) ΨΓ(w) =
∑
t⊂Γ

∏
e̸∈E(t)

we

such that the sum is over all spanning trees t in Γ. For each spanning
tree, the product is over all edges of Γ that are not in the selected
spanning tree.

− ΨΓ is multiplicative over connected components.
For more details see [11,13,14,24,25].

Theorem 3. First Kirchhoff–Symanzik polynomial of the non-perturbative
solution of any combinatorial Dyson–Schwinger equation is well-defined.
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Proof. Consider an equation DSE with the general form (16) underlying the
(running) coupling constant λg = 1, the corresponding sequence {Ym}m≥1

of partial sums and the solution XDSE. Thanks to Definition 9, for each
m ≥ 1, apply the correspondence

(35) Ym = X1 + · · ·+Xm 7→ X1 ⊔ · · · ⊔Xm

to obtain the first Kirchhoff–Symanzik polynomial of Ym as the direct prod-
uct of the polynomials associated with each of its components. We have

(36) ΨYm(w(⊕m)) =
m∏
j=1

ΨXj (w(j)), ΨXj (w(j)) =
∑
Tj⊂Xj

∏
e̸∈E(Tj)

we.

− The sum
∑

Tj⊂Xj
is taken over all spanning trees (or forests) Tj in

Xj .
− The product

∏
e̸∈E(Tj)

is taken over all edges in Xj which are not in
the spanning tree (or forest) Tj .

− For each j ≥ 1, w(j) := (w
(j)
1 , . . . , w

(j)
nXj

) ∈ AnXj such that nXj is the
number of internal edges in Xj .

− For each m ≥ 1, w(⊕m) := (w(1), . . . , w(m)) ∈ AnYm such that nYm =∑m
j=1 nXj is the number of internal edges in Ym.

For each m ≥ 1, set SFm as the collection of all spanning forests in Ym.
Equip the collection

(37) SFDSE :=

∞⊔
m=1

SFm

of spanning forests in XDSE with a distance function given by

(38) d(sfi, sfj) := d(Ymi , Ymj ), ∀ sfi ∈ SFmi , sfj ∈ SFmj ,

such that

(39) d(Ymi , Ymj ) = dcut([WYmi
]≈, [WYmj

]≈).

Thanks to the cut-distance convergence of the sequence {Ym}m≥1 to XDSE,
for each ϵ > 0, there exists Nϵ such that for each u, v ≥ Nϵ,

(40) d(sfu, sfv) = dcut([WYmu
]≈, [WYmv

]≈) < ϵ.

Therefore
− Spanning forests in Ym tend to the spanning forests in XDSE when
m tends to infinity.

− First Kirchhoff–Symanzik polynomial ΨXDSE
(z) associated with the

equation DSE is defined as the limit of the sequence {ΨYm(w(⊕m))}m≥1

of the first Kirchhoff–Symanzik polynomials of the partial sums {Ym}m≥1

with respect to the metric (38) when m tends to infinity.
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Formula (36) and the metric (38) show that the infinite direct product

(41) ΨXDSE
(z) =

∞∏
j=1

ΨXj (w(j)) =
∑

T⊂XDSE

∏
e ̸∈E(T )

ze,

as a function on an infinite dimensional affine space ADSE given by

(42) z = (z1, z2, . . . ) ∈ ADSE :=
∞∏
j=1

AnXj ,

is well-defined such that

(43) z = (z1, z2, . . . ) = (w(1), w(2), . . . ).

The sum
∑

T⊂XDSE
in the formula (41) is taken over all spanning forests

T ∈ SFDSE such that the product
∏
e̸∈E(T ) is taken over all edges of XDSE

which are not in T . □

Remark 3. Any combinatorial Dyson–Schwinger equation DSE(λg) under
a (running) coupling constant λg < 1 has a perturbative solution given by
the convergent limit of a geometric type series. In other words, its solution
XDSE(λg) contributes to formal geometric or binomial series such as

(44)
I

I−XDSE(λg)
= I+XDSE(λg) +X2

DSE(λg) + · · ·

or

(45) (XDSE(λg))
r =

∞∑
n=0

(
r

n

)
(XDSE(λg) − I)n

such that I, as the unit of the algebra structure on Feynman diagrams, is
the empty graph and r ∈ R. Thanks to Theorems 2, 3, graph polynomi-
als associated with XDSE(λg) are compatible with these series where formal
expansions are replaced with infinite direct products. It means that

(46) T (
I

I−XDSE(λg)
;x, y) =

∞∏
n=1

T (Xn
DSE(λg);x, y)

with

(47) Ψ I
I−XDSE(λg)

(z) =

∞∏
n=1

ΨXn
DSE(λg)

(z),

or

(48) T ((XDSE(λg))
r;x, y) =

∞∏
n=0

(
r

n

)
T ((XDSE(λg) − I)n;x, y),

with

(49) Ψ(XDSE(λg))
r(z) =

∞∏
n=0

(
r

n

)
Ψ(XDSE(λg)−I)n(z).
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Theorem 4. The first Kirchhoff–Symanzik polynomial of the solution of
any combinatorial Dyson–Schwinger equation can be computed recursively
in terms of the deletion and the contraction operators.

Proof. Consider a combinatorial Dyson–Schwinger equation DSE(λg) under
a (running) coupling constant λg with the corresponding solution XDSE(λg)

and the sequence {Ym}m≥1 of its partial sums. Deletion and contraction
operators on finite Feynman diagrams are defined in [3, 25]. Thanks to the
cut-distance convergence of the sequence {Ym}m≥1 to XDSE(λg) with respect
to the cut-distance topology ([30, 34]), we extend deletion and contraction
operators to large Feynman diagrams.

Consider the hypersurface

(50) V̂XDSE(λg)
:= {z = (z1, z2, . . . ) ∈ ADSE(λg) : ΨXDSE(λg)

(z) = 0}
with the corresponding projective hypersurface

(51) VXDSE(λg)
:= {z = (z1, z2, . . . ) ∈ PDSE(λg) : ΨXDSE(λg)

(z) = 0}

in the infinite dimensional projective space PDSE(λg) :=
∏∞
i=1 P

nXi
−1. For

edges e1, e2, . . . , er, . . . of XDSE(λg) with the corresponding variables
z1, z2, . . . , zr, . . . in PDSE(λg) define the following generalized versions of the
deletion and contraction operators.

− Deletion operator
∂ΨXDSE(λg)

(z)

∂zr
:= ΨXDSE(λg)\er(z) is the result of

deleting the edge er from XDSE(λg).
− Contraction operator ΨXDSE(λg)

(z)|zr=0 := ΨXDSE(λg)/er(z) is the re-
sult of contracting the edge er to a point in XDSE(λg).

Thanks to [3, 25], for each m ≥ 1, we have the recursive equation

(52) ΨYm(w(⊕m)) = weΨYm\e(w(⊕m)−) + ΨYm/e(w(⊕m)−),

with respect to the variable w(⊕m)− ∈ PnYm−2 associated with edges f ̸= e of
Ym. Thanks to Theorem 3, when m tends to infinity, we have the recursive
equation

(53) ΨXDSE(λg)
(z) = weΨXDSE(λg)\e(z) + ΨXDSE(λg)/e(z),

with respect to the infinite parameter z ∈ PDSE(λg), for each edge e, which is
not a bridge in XDSE(λg). The term weΨXDSE(λg)\e(z) collects those
monomials corresponding to spanning forests of XDSE(λg) which do not
include e. □

4. Application

In this section, we apply generalized Tutte and Kirchhoff–Symanzik poly-
nomials constructed in Section 3 to extend the parametric representation
given by Definition 2 to large Feynman diagrams. Then we parametrically
formulate Feynman rules which contribute to solutions of quantum motions
in terms of these new graph polynomials.
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Corollary 1. There exists a parametric representation for the solution of a
combinatorial Dyson–Schwinger equation.

Proof. Consider an equation DSE with the general form (16) underlying the
(running) coupling constant λg = 1, the corresponding sequence {Ym}m≥1

of the partial sums and the solution XDSE. For each m ≥ 1, thanks to
Definition 2 and proof of Theorem 3, the parametric representation of the
partial sum Ym is given by
(54)

U(Ym, pYm) :=
Γ(nYm − DlYm

2 )

(4π)DlYm/2

∫
σnYm

vnYm

PYm(w(⊕m), pYm)
−nYm+DlYm/2

ΨYm(w(⊕m))
−nYm+D(lYm+1)/2

,

such that pYm = (p1, . . . , pNYm
) is the momentum information of external

edges in Ym, nYm =
∑m

j=1 nXj is the number of internal edges in Ym, lYm =∑m
j=1 lXj is the loop number of Ym and

(55) σnYm
:= {w(⊕m) = (w(1), . . . , w(m)) ∈ RnYm

+ : w(1) + · · ·+ w(m) = 1}

is a simplex together with the volume form vnYm
. U(Ym, pYm) is defined in

the affine hypersurface complement AnYm \ V̂Ym such that

(56) V̂Ym := {w(⊕m) ∈ AnYm : ΨYm(w(⊕m)) = 0}.

Consider the normalized version of the above parametric representation
and for each m ≥ 1, set

(57) Ũ(Ym, pYm) :=
(4π)DlYm/2U(Ym, pYm)

Γ(nYm − DlYm
2 )

.

Define a distance function on the space of normalized parametric represen-
tations of the partial sums of XDSE in terms of Feynman graphon represen-
tations of the partial sums (i.e., Lemma 3) together with the cut norm (9).
For m1,m2 ≥ 1, it is given by

(58) d(Ũ(Ym1 , pYm1
), Ũ(Ym2 , pYm2

)) := dcut([WYm1
]≈, [WYm2

]≈).

Thanks to Theorems 1, 3 and 4, the sequence {Ũ(Ym, pYm)}m≥1 of nor-
malized parametric representations of the partial sums is convergent with
respect to the cut distance topology when m tends to infinity. This conver-
gent integral function, which is an integral over the simplex

(59) σDSE := {z = (z1, z2, . . . ) ∈ R∞
+ :

∞∑
j=1

zj = 1},

depends on the first Kirchhoff–Symanzik polynomial ΨXDSE
(z). Thanks

to equations (41), (42), (50) and (51), this convergent integral function is
defined in the affine hypersurface complement ADSE \ V̂XDSE

. □
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Some particular objects in the complex Lie group Hom(HFG(Φ), Adr) of
characters of the renormalization Hopf algebra restore Feynman rules in
gauge field theories. These characters enable us to associate dimensionally
regularized Feynman integrals to Feynman diagrams where we relate the
combinatorial versions of Green’s functions and Slavnov–Taylor / Ward–
Takahashi identities to their corresponding integral version. Feynman rules
characters deform the renormalization antipode to extract finite values from
Feynman integrals underlying the minimal subtraction scheme [12, 16, 39].
Now it is possible to characterize Feynman rules of large Feynman diagrams
which contribute to the cut-distance topological completion of the renor-
malization Hopf algebra in terms of our generalized graph polynomials. The
next result provides a parametric representation for Feynman rules charac-
ters of the enriched Hopf algebra Hcut

FG(Φ).

Corollary 2. Let Φ be a strongly coupled gauge field theory with the bare
coupling constant g = 1. Generalized Tutte polynomials associated with
large Feynman diagrams which contribute to the non-perturbative solutions
of quantum motions characterize Feynman rules characters of Hcut

FG(Φ).

Proof. An abstract Feynman rules character on the space of finite Feynman
diagrams is given by [2, 3]

(60) U(Γ) = T (Γ;x, y).

Following Definition 6, consider a combinatorial Dyson–Schwinger equation
DSE with the solution XDSE =

∑
n≥0Xn and the sequence {Ym}m≥1 of

the partial sums. Thanks to Theorem 2, Tutte polynomial ΨXDSE
(z) is

constructed as the infinite direct product of Tutte polynomials associated
with components Xn. Thanks to the cut-distance convergence {Ym}m≥1 to
XDSE, extend U to the level of large Feynman diagrams. We have Ũ ∈
Hom(Hcut

FG(Φ), Adr) such that

(61)

Ũ(XDSE) = lim
m→∞

U(Ym) = lim
m→∞

m∑
s=1

U(Xs)

= lim
m→∞

m∑
s=1

T (Xs;x, y) =
∞∑
s=1

T (Xs;x, y).

Consider the Grothendieck ring F̃ of immersed conical varieties generated
by the equivalence classes [V̂Γ] and [V̂XDSE

] up to linear changes of coordi-
nates of varieties V̂Γ ⊂ A|Γ1

int| and V̂XDSE
⊂ ADSE. These changes are defined

by homogeneous ideals with the inclusion-exclusion relation

(62) [V̂XDSE
] = [R̂] + [V̂XDSE

\ R̂]

for a closed embedding. The algebro-geometric version of Ũ is the abstract
character Ū such that
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− Ū sends XDSE to Ĩ([ADSE \ V̂XDSE
]) such that [ADSE \ V̂XDSE

] ∈ F̃ .
− Ū sends Γ to Ĩ([A|Γ1

int| \ V̂Γ]) such that [A|Γ1
int| \ V̂Γ] ∈ F̃ .

− Ĩ : F̃ −→ Adr is a ring homomorphism such that Adr is the commu-
tative unital regularization algebra of Laurent series with finite pole
parts. □

The algebro-geometric Feynman rules characters are constructed in terms
of a polynomial invariant originated from the Chern–Schwartz–MacPherson
characteristic classes of singular varieties [2,3,24,25]. Thanks to the formu-
lation of the first Kirchhoff–Symanzik polynomial associated with solutions
of combinatorial Dyson–Schwinger equations, now it is possible to define
another graph invariant for these solutions.

Corollary 3. There exists an extension of the Chern–Schwartz–MacPherson
homomorphism for solutions of quantum motions.

Proof. This is a direct result of [2, 3] together with Theorems 3, 4, Remark
3 and Corollary 2.

We consider a combinatorial Dyson–Schwinger equation DSE under the
(running) coupling constant λg = 1. The existence of the CSM-homomorphism
IDSE
CSM is supported by the completed topological space of Feynman graphons.

The first Kirchhoff–Symanzik polynomial ΨXDSE
(z) of the unique solution

XDSE determines the hypersurface V̂XDSE
⊂ ADSE. For each m ≥ 1, there

exists a transformation

(63)
ν⊕m : 1V̂Ym

7→ a
(⊕m)
0 [P0] + a

(⊕m)
1 [P1]

+ a
(⊕m)
2 [P2] + · · ·+ a(⊕m)

nYm
[PnYm ],

such that V̂Ym ⊂ AnYm and nYm =
∑m

i=1 nXi is the number of internal edges
in Ym. Define

(64)
IYmCSM : F̃ −→ Z[y],

[V̂Ym ] 7→ a
(⊕m)
0 + a

(⊕m)
1 y + a

(⊕m)
2 y2 + · · ·+ a(⊕m)

m ym.

Thanks to the convergence of the sequence {Ym}m≥1 to XDSE with respect
to the cut-distance topology, the sequence {ν⊕m}m≥1 of transformations
converges to a new transformation

(65)
νDSE : 1V̂XDSE

7→ a
(DSE)
0 [P0] + a

(DSE)
1 [P1] + a

(DSE)
2 [P2]

+ · · ·+ a(DSE)
n [Pn] + · · · .

Now define a new map

(66)
IDSE
CSM : F̃ −→ Z[y],

[V̂XDSE
] 7→ a

(DSE)
0 + a

(DSE)
1 y + a

(DSE)
2 y2 + · · ·+ a(DSE)

n yn + · · · ,
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and then extend it linearly to obtain our promising group homomorphism.
□

5. Conclusion

This research addressed some new applications of infinite combinatorics
to Quantum Field Theory where we developed a new theory of random and
parametric representations for the study of non-perturbative solutions of
combinatorial Dyson–Schwinger equations in strongly coupled gauge field
theories.

5.1. Summary of the results. We associated some random graph rep-
resentations to solutions of Dyson–Schwinger equations in terms of Feyn-
man graphon models of these equations (i.e. Theorem 1). This Feynman
graphon setting led us to explain the structure of graph polynomials ex-
tracted from the combinatorial information of solutions of quantum motions
(i.e. Theorems 2, 3 and 4). These new generalized graph polynomials deter-
mined a new parametric representation of large Feynman diagrams which
contribute to solutions of quantum motions (i.e. Corollary 1). In addition,
we characterized Feynman rules characters on the topological Hopf algebra
of renormalization. Formulating these particular characters, which act on
large Feynman diagrams, in terms of a substructure of generalized Tutte
polynomials clarified a new algebro-geometric setting (i.e., Corollaries 2 and
3).

5.2. A physical application. Renormalization of solutions of quantum
motions generates some non-perturbative data of strongly coupled physical
systems [4,19,20]. Theory of Feynman graphons provided a non-perturbative
generalization of the BPHZ renormalization program for quantum motions
underlying the Connes–Kreimer theory and the Riemann–Hilbert correspon-
dence [31, 34]. In this direction, Corollaries 1 and 2 are new computational
tools for non-perturbative data extracted from the topological Hopf algebra
of renormalization. In other words, for an equation DSE with the solution
XDSE and Feynman graphon representation WXDSE

in a gauge field theory
Φ, the functional

(67) XDSE 7→
(
SŨ
Rms

∗ Ũ
)
(XDSE)

determines the renormalized value corresponding to the renormalization of
XDSE. We have

(68) XDSE = lim
m→∞

Ym ⇔WXDSE
= lim

m→∞
WYm ,

with respect to the metric (9). The renormalization coproduct (12) and
Definition 4 show that ∆FG(XDSE) is well-defined such that

(69) ∆FG(XDSE) = lim
m→∞

∆FG(Ym) ⇔ ∆(WXDSE
) = lim

m→∞
∆(WYm),



112 Graph polynomials associated with Dyson–Schwinger equations

where for each m ≥ 1,

(70) ∆(WYm) =WYm ⊗WI +WI ⊗WYm +
∑
γm

Wγm ⊗WYm/γm .

Therefore

(71)
(
SŨ
Rms

∗ Ũ
)
(XDSE) = lim

m→∞

(
SU
Rms

∗ U
)
(Ym)

is well-defined such that SŨ
Rms

is a deformed or twisted version of the antipode
of the Hopf algebra of renormalization Hcut

FG(Φ) topologically completed by
the metric (9).

5.3. Some perspectives for future works. Graph polynomials provided
a fundamental bridge between Quantum Field Theory and the theory of
motives in Algebraic Geometry, where (multiple) zeta values are extracted
from the computational processes of Feynman integrals [2, 3, 9, 11,29].

− Our new parametric representation of solutions of quantum motions
addresses a new approach to search for motives associated with com-
binatorial Dyson–Schwinger equations.

− According to the basic observation of Kontsevich, if any hypersurface
XΓ ⊂ Pn0−1, n0 = #E(Γ) is mixed Tate, then there exists a polyno-
mial PΓ with Z-coefficients such that for any finite field Fq, we have
#X(Fq) = PΓ(q) [9]. Theorems 2, 3 and 4 are new tools to search for
some combinatorial Dyson–Schwinger equations DSE such that their
solutions could satisfy a generalized version of Kontsevich’s condition
in the infinite dimensional projective space PDSE =

∏∞
i=1 P

nXi
−1.

Acknowledgments

The author is grateful to Max Planck Institute for Mathematics, Bonn,
Germany for the support and hospitality during the work on the initial steps
of this research.

References

[1] D. Antonov, Modern approaches to non-perturbative QCD and other confining gauge
theories, Universe, 2022.

[2] P. Aluffi, M. Marcolli, Algebro-geometric Feynman rules, International Journal of
Geometric Methods in Modern Physics, 8 (1) (2011), n203–237.

[3] P. Aluffi, M. Marcolli, Feynman motives and deletion-contraction relations, pp. 21–
64, In: J.I. Cogolludo-Agustín, E. Hironaka, Editors (Eds), Topology of algebraic
varieties and singularities, Contemporary Mathematics, 538, 2011.

[4] A. Bashir, Non-perturbative aspects of Schwinger–Dyson equations, AIP Conference
Proceedings, 670 (1) (2003), 145–152.

[5] C. Borgs, J.T. Chayes, H. Cohn, N. Holden, Sparse exchangeable graphs and their
limits via graphon processes, Journal of Machine Learning Research, 18 (210) (2018),
1–71.



Ali Shojaei-Fard 113

[6] C. Borgs, J.T. Chayes, H. Cohn, Y. Zhao, An Lp theory of sparse graph convergence
II: LD convergence, quotients and right convergence, Annals of Probability, 46 (1)
(2018), 337–396.

[7] C. Borgs, J.T. Chayes, H. Cohn, Y. Zhao, An Lp theory of sparse graph convergence
I: Limits, sparse random graph models, and power law distributions, Transactions of
the American Mathematical Society, 372 (5) (2019), 3019–3062.

[8] D.J. Broadhurst, D. Kreimer, Towards cohomology of renormalization: bigrading the
combinatorial Hopf algebra of rooted trees, Communications in Mathematical Physics,
215 (2000), 217–236.

[9] S. Bloch, H. Esnault, D. Kreimer, On motives associated to graph polynomials, Com-
munications in Mathematical Physics, 267 (1) (2006), 181–225.

[10] B. Bollobas, O. Riordan, Metrics for sparse graphs, Surveys in Combinatorics 2009,
LMS Lecture Notes Series, 365 (2009), 211–287.

[11] C. Bogner, S. Weinzierl, Periods and Feynman integrals, Journal of Mathematical
Physics, 50 (4) (2009), Article ID: 042302, 16 pages.

[12] A. Connes, D. Kreimer, From local perturbation theory to Hopf and Lie algebras of
Feynman graphs, Letters in Mathematical Physics, 56 (1) (2001), 3–15.

[13] J.A. Ellis-Monaghan, C. Merino, Graph polynomials and their applications I: the
Tutte polynomial, pp. 219–255, In: M. Dehmer (Eds), Structural Analysis of Complex
Networks, Birkhäuser, Boston, 2011.

[14] J.A. Ellis-Monaghan, C. Merino, Graph polynomials and their applications II: inter-
relations and interpretations, pp. 257–292. In: M. Dehmer (Eds), Structural Analysis
of Complex Networks, Birkhäuser, Boston, 2011.

[15] S. Janson, Graphons, cut norm and distance, couplings and rearrangements, NYJM
Monographs, 4 (2013), 76 pages.

[16] D. Kreimer, Structures in Feynman graphs: Hopf algebras and symmetries, In:
Mikhail Lyubich, Leon Takhtajan (Eds), Graphs and patterns in mathematics and
theoretical physics, Proceedings of Symposia in Pure Mathematics, 73 (2005), 43–78.

[17] D. Kreimer, Anatomy of a gauge theory, Annals of Physics, 321 (12) (2006), 2757–
2781.

[18] D. Kreimer, Dyson–Schwinger equations: from Hopf algebras to number theory, In:
Ilia Binder, Dirk Kreimer (Eds), Universality and renormalization: Universality and
Renormalization: From Stochastic Evolution to Renormalization of Quantum Fields,
Fields Institute Communications, 50 (2007), 225–248.

[19] J. Kuti, Nonperturbative quantum chromodynamics, Nuclear Physics A, 416 (1984),
25–54.

[20] O. Kruger, D. Kreimer, Filtrations in Dyson–Schwinger equations: next-to{j}-leading
log expansions systematically, Annals of Physics, 360 (2015), 293–340.

[21] T. Krajewski, V. Rivasseau, A. Tanasa, Zhituo Wang, Topological graph polynomials
and Quantum Field Theory, Part I: Heat Kernel Theories, Journal of Noncommuta-
tive Geometry, 4 (1) (2010), 29–82.

[22] T. Krajewski, V. Rivasseau, F. Vignes-Tourneret, Topological graph polynomials and
Quantum Field Theory, Part II: Mehler kernel theories, Annales Henri Poincaré, 12
(3) (2011), 483–545.



114 Graph polynomials associated with Dyson–Schwinger equations

[23] L. Lovasz, Large networks and graph limits, Series: Colloquium Publications, 60
(2012), American Mathematical Society, Providence, RI.

[24] M. Marcolli, Motivic renormalization and singularities, Quanta of maths, Clay Math-
ematics Proceedings, 11 (2010), 409–458.

[25] M. Marcolli, Feynman motives, World Scientific, 2010.

[26] M. Marino, Lectures on non-perturbative effects in large N gauge theories, matrix
models and strings, Fortschritte der Physik, 62 (5-6) (2014), 455–540.

[27] M. Marino, Instantons and large N: an introduction to non-perturbative methods in
Quantum Field Theory, Cambridge University Press, 2015.

[28] V. P. Nair, Quantum Field Theory: a modern perspective, Graduate Texts in Con-
temporary Physics, Springer, 2005.

[29] A. Shojaei-Fard, Motivic Dyson–Schwinger equations, International Journal of Mod-
ern Physics A, 28 (2) (2013), Article ID: 1350102, 19 pages.

[30] A. Shojaei-Fard, Graphons and renormalization of large Feynman diagrams, Opus-
cula Mathematica, 38 (3) (2018), 427–455.

[31] A. Shojaei-Fard, Non-perturbative β-functions via Feynman graphons, Modern
Physics Letters A, 34 (14) (2019), Article ID: 1950109, 10 pages.

[32] A. Shojaei-Fard, Formal aspects of non-perturbative Quantum Field Theory via an
operator theoretic setting, International Journal of Geometric Methods in Modern
Physics, 16 (12) (2019), Article ID: 1950192, 23 pages.

[33] A. Shojaei-Fard, The complexities of nonperturbative computations, Russian Journal
of Mathematical Physics, 28 (3) (2021), 358–376.

[34] A. Shojaei-Fard, The dynamics of non-perturbative phases via Banach bundles, Nu-
clear Physics B, 969 (2021), Article ID: 115478, 39 pages.

[35] A. Shojaei-Fard, The analytic evolution of Dyson–Schwinger equations via homo-
morphism densities, Mathematical Physics, Analysis and Geometry, 24 (2) (2021),
Article ID: 18, 28 pages.

[36] A. Shojaei-Fard, Non-perturbative graph languages, halting problem and complexity,
Forum Mathematicum, 34 (5) (2022), 1159–1185.

[37] A. Shojaei-Fard, Halting problem in Feynman graphon processes derived from the
renormalization Hopf algebra, Bulletin of the Transilvania University of Brasov. Series
III: Mathematics and Computer Science, 2(64) (1) (2022), no. 1, 139–157.

[38] E. Shuryak, Nonperturbative topological phenomena in QCD and related theories,
Series: Lecture Notes in Physics, Volume 977, Springer Cham, 2021.

[39] W.D. van Suijlekom, Renormalization of gauge fields: a Hopf algebra approach, Com-
munications in Mathematical Physics, 276 (3) (2007), 773–798.

Ali Shojaei-Fard
Ph.D. Independent Scholar,
1461863596 Marzdaran Blvd.
Tehran
Iran
E-mail address: shojaeifa@yahoo.com


	06-ShojaeiFard

