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Abstract: Lead zirconia titanate (PZT) is the most often used piezoelectric material in various 

electronic applications like energy harvesters, ultrasonic capacitors and motors. It is true that PZT has 

a lot of significant drawbacks due to its 60% lead content, despite its outstanding ferroelectric, 

dielectric and piezoelectric properties which influenced by PZT’s morphotropic phase boundary. The 

recently found potassium sodium niobate (KNN) is one of the most promising candidates for a new 

lead-free piezoelectric material. For the purpose of providing a resource and shedding light on the 

future, this paper provides a summary of the historical development of different phase boundaries in 

KNN materials and provides some guidance on how to achieve piezoelectric activity on par with PZT 

through a thorough examination and critical analysis of relevant articles by providing insight and 

perspective of KNN, which consists of detailed evaluation of the design, construction of phase 

boundaries and engineering for applications. 
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1. Introduction 

Piezoelectric material lead zirconia titanate (PZT) is widely used in a variety of electronic devices, 

including energy harvesters, ultrasonic capacitors and motors, because of its excellent ferroelectric, 

dielectric and piezoelectric properties. Even if there are a wide variety of applications and their market 

size is growing, the quest for new applications continues in the industries that are related with it. In 

part, this is owing to the rapid advancement of alternative technologies, which puts the existing market 

at risk of being overtaken at any time. It is true that despite its impressive electrical properties, PZT 

has several severe disadvantages. It contains over 60% lead [1]. According to the Comprehensive 

Environmental Response, Compensation, and Liability Act of 1980, lead is one of the most toxic 

substances that might potentially cause damage to the neurological system as well as the development 

of spermatozoid. Lead is on the list of most dangerous compounds because of its cancer-causing 

properties. 

This paper will give a rundown of some of the more recent applications of lead-based and lead-

free piezoceramics, as well as look ahead to possible future uses for these materials. For example, a 

great deal of work has been done to discover new types of piezoelectric materials. Potassium sodium 

niobate (KNN) is one of the most promising prospects for a new lead-free piezoelectric material that 

has been discovered as a result of these efforts. As recently as 2004, when Saito et al. reported on the 

development of KNN-based piezoceramics, the aim seemed to be within reach [2]. KNbO3 (KN) and 

NaNbO3 perovskites were combined to generate KNN, a new perovskite material (NN). In the A site, 

potassium and sodium ions are present, while niobium ions are present in the B site. Curie temperature 

was 420 °C, dielectric constant was 700, remanent polarisation was 14 μC/cm2, low coercive field  

was 140 kV/cm2 and high piezoelectric constant was 1.6 volts/cm [1,3,4]. 

In comparison to PZT, the piezoelectric characteristics of pure KNN are considerably lacking. 

Notably, this current work shows an unwavering commitment to the KNN-based system, whereas 

multiple outstanding evaluations have compared alternative lead-free piezoceramic in comparison [5–9]. 

There have been hundreds of articles in the previous decades about the development of KNN ceramics, 

indicating undeniable interest in this system as the most promising possibility for commercially viable 

lead-free piezoceramics candidates. A great deal of research has been devoted to the creation of KNN-

based piezoelectrics and exceptionally promising piezoelectric qualities have been reported [10–12]. 

Li and co-workers wrote and published a comprehensive study of KNN-based materials focusing on 

their fundamental properties, processing processes, property change and beneficial applications. A 

comprehensive evaluation of the design, construction of phase boundaries and improvement of 

piezoelectric characteristics in KNN-based materials was published by Wu and colleagues [13]. Phase 

barriers in KNN-based materials have been studied extensively by the authors and they gave viable 

ideas for increasing piezoelectric activity in KNN-based materials [14]. KNN utilising doped KNN to 

improve its physical and electrical performance is also being studied by the researchers [15]. There 

has been a recent pattern of progressive growth in the number of papers discussing materials based on 

alkali niobium. Among these articles, the building of phase boundaries has emerged as a key method 

for the enhancement of the electrical properties of these materials. As a consequence of this, phase 

boundaries play a crucial part in the overall development of alkali niobium lead-free piezoelectrics [13]. 

According to the findings in this paper, the current state of KNN-based ceramics has been thoroughly 

assessed by a thorough examination and a critical analysis of relevant articles. As a result, we would  
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be thrilled if this study might serve as a useful resource and shed light on the future development of 

KNN-based materials. 

2. Phase boundaries 

In a macroscopically nonpolar ceramic, the employment of ferroelectric materials enables one to 

generate a unique polar axis by a so-called poling process, as explained by Jaffe et al. (1958). Inducing 

a piezoelectric effect in this ferroelectric material was revealed to be far more powerful than in 

previously studied single crystal piezoelectrics. Consequently, the success of developing the first 

polycrystalline piezoelectrics prompted a thorough search for improved piezoceramics, which 

ultimately resulted in the development of PZT ceramic solid solutions in the 1950s. During the poling 

process, it is generally agreed upon that a high degree of alignments of ferroelectric dipoles can be 

driven by a large amount of thermodynamically equivalent states when the material is subjected to a 

driving electric field, which makes it simple to generate enhanced electrical properties [16–39]. In the 

field of piezoelectric materials, PZT’s morphotropic phase boundary (MPB) construction is regarded 

a typical case where the crystal structure undergoes a sudden transition and the piezoelectricity of the 

mixture is optimised at MPB [17,22,33,40]. 

The discovery of MPB-induced property enhancement has set a new standard for the future 

discovery of piezoceramics. The results of these studies have been published in a number of academic 

references. The change of phase boundaries is a potent instrument for the promotion of electrical 

properties of piezoelectric materials, the involved phase boundaries and their corresponding types are 

substantially responsible for the augmentation in piezoelectric activity, regardless of whether a material 

is lead based or lead free [10,15–17,27,28,32–72] is because the involved phase boundaries and their 

corresponding types. 

There are three different types of phase transitions known to exist in KNN materials, corresponding 

to the temperatures at which the material changes from rhombohedral to orthorhombic (TR-O), 

orthorhombic to tetragonal (TO-T) and rhombohedral to tetragonal (TR-T), respectively [6,73]. The 

temperature dependency of the individual dielectric peaks provides a clear illustration of TR-O, TO-T 

and TC. The R-O or O-T phase boundary in KNN may be created at room temperature if the TR-O or 

TO-T temperature was shifted to room temperature by the use of additives. On the other hand, the phase 

boundary that corresponds to R-O or O-T possesses the polymorphic phase transition (PPT) 

characteristic [74–77] and it is dependent not only on the compositions but also on the temperatures, 

as shown in Figure 1. This is the case when R-O or O-T corresponds to a transition between two 

different types of phases. When the compositions of a piezomaterial are located at the phase boundaries, 

the polarisation of the material can be rotated more easily between different symmetries, which can 

result in an improvement in the material’s dielectric and piezoelectric properties. This is true regardless 

of whether the material possesses MPB or PPT characteristics. 
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Figure 1. (a) Polymorphic phase transition (b) morphotropic phase boundary [13]. 

However, recent developments suggest that there is only a small improvement in the d33 values 

for KNN materials having O-T or R-O phase boundaries [12,37,38,76−78], which is inferior to the 

vast majority of PZT ceramics [3] or even textured KNN [10]. Since polarisation axis rotations are 

easily produced in compositions close to an R-T boundary, such boundaries may be required to further 

boost the piezoelectric activity of KNN [79,80]. This assumption has also been recently confirmed in 

potassium-sodium niobate piezoceramics by experimental methods [81–86] and a greater d33 value has 

been reached by creating R-T phase boundaries. In order to form R-T phase barrier, two or more 

additives such as Ta and Sb and few other additives must be used to simultaneously lower their TR-O 

and raise their TO-T values toward room temperature [71,87–89]. New concepts can thus be applied to 

the development of high-performance KNN-based materials. 

A material’s phase boundaries can be influenced by its chemical composition or other 

parameters [90–94] that define its electrical properties. Materials with compositions around the phase 

boundaries (e.g., R-O, R-T, or O-T) include Bi0.5Na0.5TiO3, and (K,Na)NbO3. Higher d33 values are 

often achievable with BaTiO3-based materials, but their low TC makes them unsuitable for use in high-

temperature environments. However, these materials can be used to make actuators that can function 

at temperatures below 100 °C. The low “depoling temperature” of Bi0.5Na0.5TiO3-based materials, like 

that of BaTiO3-based materials, limits their practical applications [95–99]. However, Jo et al. (2011), 

have created a huge strain that is equivalent or even superior to PZT. Figure 2a,b shows that the phase 

boundary types and the composition itself determine the width of the d33 and TC distributions in KNN-

based materials (e.g., d33 = 171–490 pC/N, TC = 178–475 °C) [96]. In particular, by creating new R-T 

phase barriers, we were able to make significant progress in the piezoelectricity of KNN-based 

ceramics. The gap between lead-free and lead-based materials has been narrowed thanks to the 

development of novel phase boundaries that can be used to improve the piezoelectricity of KNN 

materials with all information taken directly from the sources cited. As can be seen in Figure 2a, 

PNN-based and relaxor PT single crystals with an MPB [93–94] exhibit a massive d33 value, whereas 

PZT-based materials exhibit a broad d33 distribution that is sensitive to the doping components. Recent 

research on PNN-based single crystal relaxors has shown a piezoelectric coefficient of 3500 pC/N [100]. 

Doping a relaxor ferroelectric crystal with rare-earth elements allowed for the measurement of this 
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value. This study is the latest one on the subject, having been completed in 2022. On the other hand, 

it is likely that fresh research has been carried out since then, which might provide information that is 

more up to date about the piezoelectric coefficient for PNN-based single crystal relaxor. 

 

(a)                                   (b)                    

Figure 2. Value of d33 vs Tc of (a) lead-based (b) lead-free ceramics from number of researches [13]. 

2.1. Phase boundary identification 

The phase boundary of KNN is the composition and temperature transition between distinct 

crystal structures. It is essential to have an understanding of the phase boundary in order to modify the 

properties of KNN-based materials to accommodate a variety of applications. Structure analysis 

methods including X-ray diffraction (XRD) and neutron diffraction are commonly used to determine 

where the phase boundary lies in KNN. Diffraction patterns can reveal the crystal structure of a 

material, allowing for the determination of its various phases. For instance, XRD was used in a study 

to determine the crystal structure and phase transitions of KNN perovskites [101]. For instance, the 

crystal structure of A-site substituted perovskite KNN compounds was determined using high-

resolution XRD and neutron diffraction. Finding a phase-coexistence zone at the monoclinic-

tetragonal phase transition provides evidence of a first-order phase barrier, as reported in previous 

research [102]. Researchers showed that XRD measurements may be used to distinguish between the 

various phases of KNN perovskites and to identify the region of transition between them TO-T and TT-C 

were detected at 236 and 440 °C, indicating a trend towards lower temperature side for phase 

transition temperatures [103]. 

However, identifying the temperature and composition regions where the phase transition occurs 

is essential for characterising the phase boundary. This data is essential for figuring out how KNN-based 

materials react in various environments. The phase boundary of KNN has been the subject of several 

studies that have utilised a variety of methods to characterise it. Examining KNN-based ceramic’s 

piezoelectric and strain characteristics at varying compositions and temperatures is one of the methods. 

Zheng et al. (2015) looked at the conflicts between high strain and high piezoelectricity in KNN 

materials and proposed the creation of new phase boundaries to resolve the conflicts [104]. Using 

temperature-dependent XRD patterns, a study describes the structural evolution of the rhombohedral-
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tetragonal (R-T) phase boundary in KNN-based ceramics. Rhombohedral, rhombohedral-orthorhombic 

and rhombohedral-tetragonal phases were all identified in the study [105]. Adding dopants or substitute 

components to KNN is another way to shift the phase boundary. KNN’s orthorhombic-rhombohedral 

phase transition temperature was shown to be controllable via dopant concentration when barium 

zirconate was included into the material. This research showed that the compositional adjustments can 

be used to manipulate the phase boundary of KNN. In order to fully appreciate its characteristics and 

modify its behaviour for specific applications, it is crucial to locate and characterise the phase boundary 

of KNN. Crystal structure and symmetry of KNN at various compositions and temperatures are 

typically determined by structural analysis methods including XRD and neutron diffraction. The phase 

boundary can be characterised by analysing the effects of dopants or substitute elements on the phase 

transition and taking measurements of the piezoelectric and strain properties of KNN-based ceramics. 

These investigations aid in the creation of high-quality KNN-based materials. 

3. Development of phase boundaries 

In KNN-based piezoceramics, the polymorphic phase boundary (PPB) has been the primary focus 

of research, but there have been some attempts to actualize the MPB, or rhombohedral vs. tetragonal 

phase boundary, found in PZT. The primary motivation for doing so is to realise the lowest temperature 

rhombohedral phase in KNN under ambient conditions. KNN is an isotropic solid solution between 

the orthorhombic symmetry ferroelectric KN and the antiferroelectric NN [13,106,107]. KNN is quite 

different from PZT in that its phase diagram is extremely intricate, with three vertical MPBs between 

two distinct ferroelectric orthorhombic phases [108]. The one with a K content below 50% is 

particularly relevant. KNN has a high Curie temperature (420 °C), however its piezoelectric characteristics 

are subpar while it is at ambient temperature. Hot-pressed dense samples have been measured to have 

a maximum d33 of 160 pC/N and a k2 of 0.3 [43]. As a result, the majority of previous research has 

concentrated on improving these functional qualities through chemical modifications. In this regard, 

BaZrO3 was shown to be effective by Wang et al. [109]. There has been further research in this area as 

a result of this, leading to the empirical conclusion that Zr4 appears to play a significant role [12,110]. 

These studies confirmed that KNN-based materials are capable of being fabricated into MPB similar 

to PZT. However, the induced MPB is likely to be skewed in the phase diagram of temperature versus 

composition. This MPB contradicts the group subgroup relationship since it is more akin to the PPB 

between rhombohedral and tetragonal. To improve the formulation of truly PZT-like MPB in KNN, 

that is, a vertical MPB between rhombohedral and tetragonal, further studies have been conducted on 

the idea that increasing the rhombohedral field in the PZT-like MPB compositions would make the 

existing rhombohedral symmetry more thermally-stable [110]. Since MPB existing at room 

temperature endures up to 250 °C with fairly strong functional qualities, it suggests that the notion is 

working despite its apparent simplicity. However, testing of this MPB’s range needs to be done at 

temperatures at least 40 °C below room temperature. Here, we primarily examine how various phase 

boundaries in KNN materials have evolved over time and offer some guidance on how to achieve 

piezoelectric activity on par with PZT. Additionally, this article summarises the extensive discussions 

on how to build phase boundaries by chemical modifications. 
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3.1. Formation orthorhombic-tetragonal phase boundaries 

Since a significant advancement in KNN-based materials, the O-T phase boundary has become 

the most well-known. One of the most contentious aims of research into KNN based materials is the 

establishment of the O-T phase border [111–113]. The original breakthrough in its d33 value occurred 

in 2004 when O-T phase coexistence was brought down to or near room temperature through the use 

of additives. In KNN-based textured ceramics, for instance, the coexistence of O and T phases at room 

temperature and the use of a new preparation technique led to a high d33 value of 416 pC/N, while 

LiNbO3 or LiTaO3-modiffed KNN ceramics achieved enhanced piezoelectric activity by constructing 

the same phase boundary using conventional solid-state methods. These pioneering works have 

stimulated a surge in interest in lead-free piezoelectrics around the world and as a result, scientists 

have focused considerable effort on fostering piezoelectric activity by erecting O-T phase boundaries. 

Several previous attempts to construct O-T phase boundaries in KNN-based ceramics in order to 

induce enhancement of its piezoelectric activity have met with success. These include ion substitutions, 

solid solutions with other ABO3-type perovskites [98,99] or ABO3 multicomponents [114–117]. 

3.1.1. Perovskite ABO3 as a modifier 

Perovskite ABO3 materials, such as Bi0.5A0.5TiO3 (A = Na+ [118,119], K+ [120], Li+ [121]),  

BTiO3 (B = Ba2+, Sr2+ [122], Ca2+ [123], (Ba0.95Sr0.05)2+ [124], [(Bi0.5Na0.5)0.94Ba0.06]2+ [125] or  

BiMO3 (M = Sc3+ [126], Al3+ [127], Fe3+ [114], Co3+ [115]) and others could lowering TO-T values. 

ABO3 doping can efficiently stimulate the establishment of O-T phase barriers resulting in increased 

of piezoelectricity [124]. Even while the addition of ABO3-type additives can improve the d33 values 

of KNN-based materials [115], the resulting values are still lower than those of KNN ceramics 

including Li+, Ta5+ and Sb5+ [68,128,129]. However, ABO3’s low price makes it a possible choice for 

real-world applications. KNN ceramics doped with ABO3 multicomponents commonly possess 

improved piezoelectric activity (d33 = 220−305 pC/N) combined with high TC values of >300 °C, as 

indicated in Table 1. The results reveal that O-T phase barriers can occur when the TO-T transition 

temperature of a material is shifted to room temperature via doping with most ABO3 multicomponents. 

Table 1. Material system of KNN. 

KNN material system d33 (pC/N) kp Tc (°C)  Ref. 

0.97(K0.5Na0.5)NbO3-0.03(Bi0.5Na0.5)TiO3 195 0.43 375 [118] 

(1−x)K0.5Na0.5NbO3-0.06BiFeO3 146 0.51 405 [130] 

K0.5Na0.5NbO3-LiTaO3-0.1MnO2 251 29.5 330–350 [131] 

0.96(K0.5Na0.5)0.95Li0.05Nb0.93Sb0.07O3-0.04CaZrO3 420 - - [132] 

0.993(K,Na)NbO3-0.007BiFeO3 220 0.46 - [132] 

(K0.5Na0.5)NbO3-0.01Bi(Ni2/3Nb1/3)O3  150 - 300–400 [133] 

(0.97−x)K0.40Na0.60Nb0.95Sb0.05O3-0.03Bi0.5K0.5HfO3-

0.01SrZrO3 

280 0.364 - [134] 
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Doping with BiFeO3 or BiScO3 is particularly promising for enhancing d33 in BiMeO3 (Me = Fe, 

Sc, Al, etc.) additives and d33 values of >250 pC/N are frequently produced in such ternary systems 

via the creation of O-T phase barriers [113,135]. Variations in the magnitude of the increase in d33 are 

largely attributable to the rates at which T-O and T are being shifted. For example, Jiang et al. studied 

KNN-LiSbO3-BiFeO3 ternary systems in order to shift the TO-T close to room temperature, finding that 

low quantities of BiFeO3 (0.4 mol%) enhance the d33 values from 202 to 260 pC/N [135]. This means 

that BiFeO3, as an ABO3 component, can effectively increase the piezoelectric activity of KNNLiSbO3 

ceramics by generating O-T phase barriers at or near room temperature. Pure tetragonal structures were 

obtained in the ternary system K0.5Na0.5NbO3LiSbO3BiScO3, demonstrating a d33 value of 305 pC/N 

which the researchers reasoned that the phase boundary could not have played a significant role in the 

enhanced piezoelectric capabilities [136]. In contrast, we discovered that BiScO3 addition increases 

TR-O values and decreases TO-T values of KNN [81,82], allowing for the formation of the new R-T 

phase boundary at ambient temperature. Furthermore, at room temperature or lower, the dielectric 

constant of this material gradually increases, which may indicate the presence of phase barriers. 

Therefore, more research into this material system is required to determine where the increased 

piezoelectricity comes from [136]. 

For Bi0.5K0.5Zr0.9Hf0.103 (BKZH) doped KNN based piezoceramics, Li and co-workers analysed 

the effects of BKZH doping in 2017 [137]. As the BKZH concentration increased, they found that the 

TO-T decreased and the TR-O increased. Therefore, BKZH doping aids in achieving room-temperature 

coexistence of various phases. This aids in increasing the piezoelectric coefficient (d33), to the value 

of 451 pC/N. There are three different phases that can occur, such as rhombohedral, orthorhombic and 

tetragonal. They also discovered that adding 1 mol% BKZH lowered the TC by 20 °C. Another work 

by Li et al. [138] looked at the impacts of ZrO3 (BLKZ) as a dopant on (Bi0.45La0.05K0.5) and observed 

comparable effects on phase transition temperatures. The incorporation of BLKZ resulted in the 

formation of a new phase boundary at room temperature between the rhombohedral, orthorhombic and 

tetragonal phases. However, the KNN-BLKZ phase structure is only tetragonal when BLKZ is equal 

to or more than 5 mol%. At d33 = 385 pC/N and TC = 245 °C, KNN-0.035BLKZ performs best. 

BiNaZrAO3 type dopants are used by scientists to lower TO-T and raise TR-O, but they also lower TC. 

In 2020, Qiao et al. [139] employed BiNaZrHfO3 and found that the orthorhombic phase boundary 

could be reached at TC = 235 °C. Shi et al. [140] looked into BiSmNaZrO3 (BSNZ) with the aim of 

achieving high piezo characteristics with an R-O-T phase structure. The group managed to get      

d33 = 508 pC/N and TC = 268 °C. In addition, CaBiNaZrO3 was utilised as a dopant by Pan et al. [141]. 

They discovered that the dopant does not lower the curie temperature in CxBNZ when the Ca content 

is less than or equivalent to 0.4. Dopants such as Ba0.5Ca0.5Zr0.5Hf0.5O3 (BCZH) [142] and 

Ba(Li0.4W0.6)O3 (BLW) [143] reduce TO-T but also reduce TC. 

3.1.2. O-T phase engineering 

Previous studies using XRD patterns discovered that the KNL-(N0.9−xTSx) ceramic system has 

both orthorhombic symmetry (O) and tetragonal symmetry (T). The tetragonal symmetry-related peaks 

become more prominent in high-Sb content samples. A larger concentration of Sb5+ creates a structural 

alteration that modifies the T/O content in the structure, while on the one hand, the substitutional 

addition of Sb5+ should lower the cell (owing to the smaller ionic radius) shifting the peaks towards 

higher angles. It has been shown by other researchers that small cations in B-sites allow for the 
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coexistence of different phases (from rhombohedral-tetragonal to orthorhombic-tetragonal) at room 

temperature, thereby lowering the TO-T towards room temperature [144,145]. 

Meanwhile, field emission scanning electron microscopy (FESEM) images show that the average 

grain size drops from 1.9 µm at x = 0.00 to 1.3 µm at x = 0.04, as Sb addition increases. Moreover, a 

nonhomogeneous microstructure is observed for the lowest Sb concentration (x = 0.02). As a matter 

of fact, the poor additive distribution over the entire sample causes grains with antimony to exhibit a 

restriction in their normal grain growth, while grains without or with low antimony concentration 

display grain sizes similar to the pure sample. Finally, at the greatest antimony content (x = 0.04), the 

improved additive distribution throughout the entire sample results in a more uniform microstructure 

with a smaller average grain size. Several parameters, including grain size, final microstructure, 

dielectric permittivity and density values, may have contributed to the identical values recorded for 

samples with x = 0.02 and 0.04 [146]. 

Improving piezoelectric characteristics has been viewed as a functional benefit of stabilising an 

O-T coexistence phase boundary around room temperature. In this case, the KNL-(N0.9−xTSx) 

ceramic’s ferroelectric properties will shed light on the implications of the Sb5+ substitution. Previous 

studies established that as the Sb5+ dopant concentration increased, the orthorhombic and tetragonal 

phases stabilised close to R-T (making a threshold of multiphasic coexistence where the tetragonal 

phase is predominant), leading to enhanced ferroelectric properties at x = 0.02. It is well established 

that various phases exhibit polarisation in distinct directions. Since there are six possible polarisation 

directions in the tetragonal phase and twelve in the orthorhombic phase, when their coexistence is 

stabilised, a total of 18 polarisation directions are viable. Ferroelectric behaviour due to spontaneous 

polarisation was consistently observed in all samples when tested in a strong external electric field [147]. 

Therefore, the study showed that the O-T phase coexistence phase boundary could be stabilised 

by substituting Sb ions in the perovskite structure, which also causes an increased degree of 

polarisation directions near room temperature, easing the polarisation process of the system, and where 

the average grain size also increases, encouraging the increased domain size and favouring more 

domain walls. 

3.2. Formation of rhombohedral-orthorhombic phase boundaries 

The Curie temperature of undoped KNN is more than 400 °C (TC). Both the rhombohedral-to-

orthorhombic (TR-O) and the orthorhombic-to-tetragonal (O-T) transition temperatures are present (TO-T). 

On the other hand, there are two major drawbacks of KNN-based lead-free ceramics. The 

piezoelectricity is low, only 80–180 pC/N [2,142,143,148–151]. Low sintered densification is another 

issue that makes manufacturing challenging since the R-O phase boundary of KNN occurs at relatively 

cold temperatures (about −123 °C) [128,129] and yields a subpar d33 which is frequently disregarded. 

The TR-O values of KNN have recently been boosted with the addition of additives such as        

Sb5+ [75,151,152], Ta5+ [153], AZrO3 (A = Ba2+, Sr2+, Ca2+) [138,139], BiScO3 [154], etc. For example, 

the coexistence of R-O ferroelectric mixed phases has been shown to improve d33 (230 pC/N) and the 

TR-O value of (K0.48Na0.52)(Nb,Sb)O3 can be controlled to near room temperature by refining the Sb 

concentration [75]. In addition, it was discovered that doping with Ta5+ may reduce TC and TO-T while 

simultaneously increasing TR-O of KNN [153], in a manner that was comparable to that of Sb5+ [75]. 

When AZrO3 (A = Ba2+, Sr2+, or Ca2+) is added to a pure KNN ceramic, the TR-O temperature is lowered 

to room temperature [109]. The R-O phase boundary and the types of chemical modifications also 
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influence their d33 values, but increasing the d33 typically necessitates reducing the TC [12,75,154]. It 

may be possible to build new phase boundaries (e.g., R-T) by simultaneously shifting TO-T and TR-O 

close to room temperature, despite the fact that R-O KNN materials have poor overall performance of 

d33 and TC. 

3.2.1. R-O phase engineering 

In a particular research paper, CaZrO3 was used as a modifier to develop 

(K0.48Na0.48Li0.04)(Nb0.95Sb0.05)O3 lead free ceramics. The CZ-KNLNS powders have a cubic structure 

and their particles average between 300 and 700 nm in size. It is clear that the addition of CaZrO3 

slows down particle growth because the particle size reduces when the amount of CaZrO3 is increased. 

As the ceramic part becomes denser, the grain size decreases and the grain boundaries become 

undetectable. CaZrO3 may have accumulated at the grain borders, inhibiting growth and causing the 

decrease in grain size. Research demonstrated that by adjusting the CaZrO3 concentration, the phase 

constitution and domain structure of CZ-KNLNS ceramics may be modified. The presence of 

rhombohedral (R) phase characteristics at x = 0.06 indicates a steady decrease in the quantity of 

orthorhombic phase and an increase in the amount of R phase. This region is where the orthorhombic 

and rhombohedral (O-R) phases can coexist. Doping ions of different radii are introduced into the 

KNLNS ceramic lattice, with the smaller ion replacing the A site and the bigger ion replacing the B 

site. This leads to a smaller average ionic radius for the A-site and a larger average ionic radius for the 

B-site, leading the R phase to develop in the KNLNS at temperatures close to room temperature. Multi-

phase coexistence is thought to play a significant role in the high quality of KNLNS based ceramics [155]. 

The findings showed the coexistence zone of orthorhombic-rhombohedral (O-R) phase can be thought 

of as occurring between x = 0.03 and x = 0.06, as the phase structure changed from orthorhombic to 

rhombohedral with increasing CaZrO3 content. The ceramics exhibit a coexisting rhombohedral and 

orthorhombic phase structure at x = 0.04. The piezoelectricity of a material can be enhanced by 

applying a polarised electric field, as the electric domain of a multi-phase coexisting structure can be 

switched more easily than in a single-phase structure [155,156]. The enhanced piezoelectric 

characteristics are a result of the combination of a dense homogenous microstructure and a stable 

domain configuration at x = 0.04. 

3.3. Formation of rhombohedral-tetragonal 

Considering that the R-T phase boundary of PZT exhibits large d33 and a weak temperature 

dependency of piezoelectric capabilities [3], we wondered if a similar R-T phase boundary might be 

produced in KNN materials to further enhance their piezoelectric properties and temperature stability. 

Several studies suggest that it is possible to engineer a R-T phase boundary in KNN by controlling the 

establishment of R-O and O-T phase borders via doping in additives [12,32,75,154,157–162]. It is 

possible to raise TR-O and decrease TO-T of KNN materials by adding ions or ABO3 materials (e.g., 

Sb5+ [75], Ta5+ [153], BaZrO3 [160], CaZrO3 [161], SrZrO3 [161]). As a result, it is probable that the 

R-T phase barrier should be produced in KNN materials by changing the composition ratios of the 

doped additives. Doping with various additives in earlier investigations led to the eventual induction 

of the R-T phase boundary in KNN. Since then, a number of material systems based on KNN have 

been produced that have R-T phase borders [80,81,83,139,140]. By fabricating the R-T phase boundary 
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we found that the high d33 value in 0.96(K0.5Na0.5)0.95Li0.05Nb1−xSbxO3-0.04BaZrO3 ceramics reported 

by researchers in 2013 (425 pC/N) matched the results reported for textured KNN-based        

ceramics (416 pC/N) [10,163–165]. In this work, Sb5+ and BaZrO3 are employed together to improve 

the TR-O and reduce the TO-T of KNN materials [75,165]. Despite the huge d33 (344–425 pC/N), 

ceramics typically have TC values of 200 °C [71,89,104]. This means that for efficient phase boundary 

design, both a larger TC and a larger d33 in KNN are necessary [83,85,166]. 

Doping CZrO3 (C = Ba2+, Sr2+, Ca2+) has previously been reported to create three distinct phase 

transition temperatures (i.e., TC, TR-O, and TO-T) in KNN [145]. Furthermore, Zr4+ plays a significant 

influence in the phase transition temperatures (particularly TR-O). Ramajo et al. (2013) observed that 

adding Zr4+ softened the material’s ferroelectric characteristics and improved its density, even though 

effects of CZrO3 on TC, TR-O and TO-T are mostly independent of A site type [82,104,151,165,167]. It 

has been reported before that KNN materials’ TO-T can be changed by adding Bi3+. Therefore, the R-T 

phase boundary can be formed by changing the TR-O and TO-T of KNN concurrently using additives 

containing two such elements, such as Bi3+ and Zr4+. Furthermore, it is crucial to remember that the R-T 

phase boundary can be produced by employing the aforementioned chemicals, resulting in a significant 

d33 of 400–490 pC/N [92,145,146]. In comparison to other phase boundaries (such as O-T and R-O), 

the R-T phase boundary is a more effective technique to boost the piezoelectric activity of KNN based 

ceramics. Furthermore, d33 and TC outperform BT and BNT-based materials across the board in KNN. 

Our discovery may lead the way for lead-free ceramics to be used in the real world, as the R-T phase 

barrier considerably enhances the piezoelectric activity of KNN-based ceramics [92,145−147]. Our 

research has led us to the idea that material systems exhibiting R-T phase boundaries are excellent 

potential candidates for potassium sodium niobate piezoceramics. 

3.4. KNN system engineering 

It is well-established that KNN’s piezoelectric capabilities can be considerably enhanced by 

establishing phase boundaries using various additives, that is, the development of phase boundaries 

driven by additives plays a significant role in their enhanced piezoelectric properties. KNN-based 

materials may have their electrical characteristics altered by other influences. Here, we will provide a 

high-level overview of the KNN-based piezoceramic engineering. 

Many studies are currently investigating how dopants change the TR-O, TO-T and TC of KNN-based 

piezoceramics. The effects of several dopants have been studied in depth. Research has looked into a 

variety of ion dopants, including Li+, Sb5+, Ta5+, Zr4+, Hf4+ and Ag+. The formation of an MPB requires 

the inclusion of these ions [73,83,84,168]. Increasing the amounts of Sb, Ta, Zr and Hf reduces the TO-T 

and lowers the TR-O. The operating range of a piezo material is reduced, and the TC is lowered by Ta, 

Sb and Hf. With its ability to boost TC while lowering TO-T, Li is a popular dopant for achieving and 

maintaining a high Curie temperature. Similar to Yang et al. (2020), who employed Ag+ to obtain high 

Curie temperature, the TC = 250 °C for a doped KNN based piezo material with high piezoelectric 

characteristics was attained [169]. Wong et al. (2016) created a high-performance KNN-based piezo 

material with TC = 483 °C and d33 > 200 pC/N using Li as a dopant [170]. The increased piezoelectric 

activity of KNN may potentially be attributable to the presence of other variables. For instance, KNN’s 

A and B sites share valence with Li, Ta and Sb. Therefore, using them can prevent the formation of 

certain flaws. Safari et al. [171] claimed that the greater electronegativities of Ta5+ and Sb5+ can raise 

the covalence of the bonds with respect to Nb5+, leading to increased d33 values in (Li, Ta, Sb) co-doped 
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KNN ceramics. The improved piezoelectric characteristics of KNN-based ceramics were also attributed 

to the high electronegativity of Sb5+, according to a theory proposed by Gao et al. [129]. Consequently, 

a number of parameters (electron configuration, ligand field theory, covalence, etc.) are taken into 

account while attempting to enhance the electrical properties by doping chemicals. Therefore, the 

introduction of one or more components into KNN might affect distinct phase boundaries; the 

fundamental benefit of these elements is that they cause a simultaneous change in TR-O, TO-T, and TC. 

In order to solve the densification issue that is present in KNN-based piezoceramics, enhance the 

sintering temperature, and make the material more temperature stable, oxides are utilised in addition 

to dopants that are of the ion or perovskite type. The inclusion of ZnO has the potential to improve the 

thermal stability of KNN [148]. MnO2 is yet another oxide that sees widespread application in KNN-

based piezoceramics. Deng et al. [131] conducted research on the effect of adding MnO2 to KNLNT. 

They discovered that adding MnO2 to the material raised the density, lowered the temperature at which 

it sintered and, most crucially, improved its piezoelectric capabilities. They were able to   

produce d33 = 251 pC/N with doped KNLNT containing 0.1 mol% MnO2, which is a greater value 

than undoped KNLNT. Condurache et al. conducted research in 2019 [172] on the additional step of 

MnO2 and showed that the phase structure can be altered by adding MnO2 either before or after the 

calcination process. If MnO2 is supplied before calcination, the ratio of orthorhombic to tetragonal 

phase is 1.9. Conversely, if MnO2 is added after calcination, the ratio is 0.7. In 2019, Chen et al. [173] 

used FeO and MgO oxide types in addition to BaZrO3 dopant and achieved a piezo material that has a 

large piezoelectric coefficient and coupling factor, where d33 = 324 pC/N and KP = 59% respectively. 

This was accomplished by creating a piezo material that was doped with BaZrO3. It also has a high 

Curie temperature, which comes in at 304 °C. In order to achieve a good piezoelectric response for KNN-

based materials, Zhao et al. [174] utilised Fe2O3 and CuO. The results of their investigation 

demonstrate that CuO-doped KNN has a better electro-strain response than Fe2O3 doped KNN does. 

Meanwhile, recent research has found that rare earth (RE) elements have unusually large outer 

electron shells and permit numerous orbital bonding paths with other ions. As a result, local structural 

heterogeneity is created by rare earth dopants and the interfacial energy barriers between 

phases/polarization states are lowered [175−177]. It has been reported that rare-earth elements can 

stabilise and reduce the dissipation factor in dielectric ceramics, both of which are considered to be 

desirable properties. In a study that showed the existence of a ferroelectric-relaxor transition (Tf-r), it 

was discovered that adding moderate rare earth ions lowered the Tf-r. Changing from a relaxor to a 

ferroelectric due to an applied electric field. Tf-r decreased and approached room temperature with the 

coexistence of nonergodic and ergodic relaxor states, which was responsible for the improved strain 

property [163,164]. The piezoelectric constant, d33, of BNKT ceramics was raised after optimal Sm3+ 

was added increasing x from 0 to 0.015 increases the value from 150 to 190 pC/N and held steady   

at 165–180 pC/N between 0.015 and 0.030. One of the promising dopants is yttrium (Y3+), a kind of 

rare-earth element. This is due to the fact that it improves fatigue endurance, remanent polarisation 

and leakage current. According to Akmal’s findings, the addition of yttrium reduced the electrical 

resistivity to 2.153  106 Ω, but at dopant concentrations greater than 0.5 mol%, the resistivity began 

to increase [178,179]. The addition of Y dopant increases the resistance magnitude in doped KNN 

films. Since the A-site of has an inherent positive charge, charge imbalance in a doped KNN lattice is 

compensated by cation vacancies [21,22,180]. Therefore, an increase in Y concentration results in an 

increase in the number of conduction electrons, leading to a dramatic drop in resistivity. It is often 

attributed to electrical compensation of the integrated cation [181,182]. Few investigations have found 
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as Table 2 that improving the piezoelectric characteristics of rare-earth dopants by adding other   

rare-earth elements is achievable. 

Table 2. Rare earth elements as dopants engineering. 

Rare earth dopants d33 Ref. 

CeO2 132 [182] 

Yb2O3 390 [183] 

Nd2O3 250 [184] 

Y2O3 - [185] 

4. Conclusion 

The applications for piezoceramics are extensive. Generators, sensors, actuators, and transducers 

employ them for a wide variety of tasks, including energy harvesting, strain sensing, active vibration 

reduction, ultrasonic sonar, distance metre, and so on. When it comes to piezoceramics, PZT is a 

popular choice. Lead-free alternatives are needed to PZT based piezoceramics because of its high 

toxicity. This transition from PZT to lead-free piezoceramics is being ensured by the legislation of 

several countries. 

KNN is a potential lead-free material for piezoelectric ceramics, but its poor characteristics and 

temperature dependence have slowed its development for nearly 50 years since its discovery in     

the 1950s [183]. Recent research has shown that phase boundary engineering (PBE) can improve KNN 

systems’ electrical properties, making them more appropriate for industrial applications. To compensate 

for these weaknesses, lead-free piezoceramics like KNN can be doped to improve their characteristics. 

PBE improves material characteristics by changing phase boundaries. PBE enhances KNN’s 

piezoelectric characteristics through synergistic contributions [184]. Phase engineering has been 

widely used to increase piezoelectricity in KNN-based ceramics by comparing the effects of standard 

additives on phase structure [185]. Previous section has discussed the results indicate that PBE has the 

potential to be a useful technique for enhancing the electrical properties of KNN systems, making them 

more applicable to industrial settings. Therefore, KNN-based piezoceramics can be improved to 

replace the role of lead-based ones. In addition to its other desirable properties, piezoceramics based 

on KNN have a high Curie temperature. However, KNN based piezoceramics have a number of 

limitations, including a high sintering temperature and a poor piezoelectric coefficient. Sintering aids 

such as ZnO, MnO2 and CuO have been studied. By this means, piezoceramic densification during 

sintering is enhanced. Reducing TO-T and raising TO-R to establish MPB is the key strategy for 

enhancing the piezoelectric coefficient for KNN based piezoceramics. At the same time, it is important 

to keep TC levels high. Other dopants are either TC decreasing or inactive. However, Li and Ag addition 

can be utilised to boost TC. The piezoelectric coefficient and Curie temperature of KNN-based 

piezoceramics have been reported to be rather high, for example d33 = 451 pC/N and TC = 258 °C [15], 

d33 = 440 pC/N and TC = 250 °C [16] and d33 = 308 pC/N and TC = 328 °C [25]. The piezoelectric 

ceramic substance KNN has recently attracted interest as a possible replacement for lead-based 

piezoceramics in a variety of electrical applications due to their high Curie temperature and 

piezoelectric coefficient. For instance, KNN has found widespread application as a dielectric material 
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in various electronic applications. As a result of its high dielectric constant and low dielectric loss, it 

can be used in capacitors and other energy storage devices. By virtue of its dielectric properties, KNN 

can improve the functionality and efficiency of electrical equipment. However, KNN’s appealing 

ferroelectric characteristics also find use in sensor and actuator applications [186]. Its piezoelectric 

properties enable it to convert mechanical energy into electrical signals and vice versa. This makes 

KNN appropriate for biomedical, automotive and industrial sensors, actuators and transducers. While 

the phase space and associated properties of KNN in ceramic form have been the subject of extensive 

research, a similarly robust body of literature for thin film KNN is still in its infancy. Micro-electro-

mechanical systems (MEMS) have shown to be an excellent method for developing miniaturised 

systems and devices that combine mechanical and electrical functions. This innovation has prompted 

the development of KNN based on thin films. These thin films have high transparency and low 

absorption in the visible and near-infrared spectrums, in addition to exhibiting ferroelectric behaviour. 

Moreover, research has switched towards developing methods for producing high-quality films and, 

more recently, towards applying the material in micro- and nano-electronic devices and biomedical 

settings. KNN films with enhanced characteristics have been deposited and these have potential 

applications in micro- and nano electronic devices, as demonstrated by a number of studies that have 

revealed the film synthesis methodologies, highlighting key results and the challenges connected with 

synthesis approach [187,188]. As interest in developing lead-free piezoceramics grows, so too does 

the need for more study into KNN-based piezoceramics. One area where more work needs to be done 

is in the production of KNN-based piezoceramics. KNN based piezoceramics have been shown to have 

excellent piezoelectric capabilities and a high curie temperature; further investigation into their 

mechanical properties, electrical properties and mechanical and electrical fatigue behaviours is 

recommended. Improvements in these fields of study would aid in making informed choices about the 

range of possible KNN-based piezoceramics and their respective applications. 
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