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ON IMPLICATIVE AND POSITIVE IMPLICATIVE
GE ALGEBRAS

Abstract

GE algebras (generalized exchange algebras), transitive GE algebras (tGE al-
gebras, for short) and aGE algebras (that is, GE algebras verifying the anti-
symmetry) are a generalization of Hilbert algebras. Here some properties and
characterizations of these algebras are investigated. Connections between GE
algebras and other classes of algebras of logic are studied. The implicative and
positive implicative properties are discussed. It is shown that the class of positive
implicative GE algebras (resp. the class of implicative aGE algebras) coincides
with the class of generalized Tarski algebras (resp. the class of Tarski algebras).
It is proved that for any aGE algebra the property of implicativity is equivalent
to the commutative property. Moreover, several examples to illustrate the results
are given. Finally, the interrelationships between some classes of implicative and
positive implicative algebras are presented.

Keywords: GE algebra, tGE algebra, BCK algebra, Hilbert algebra, (positive)
implicativity.

2020 Mathematical Subject Classification: 03G25, 06A06, 06F35.

1. Introduction

L. Henkin [6] introduced the notion of “implicative model”, as a model of
positive implicative propositional calculus. In 1960, A. Monteiro [16] has
given the name “Hilbert algebras” to the dual algebras of Henkin’s implica-
tive models. In 1966, K. Iséki [9] introduced a new notion called a BCK
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algebra. It is an algebraic formulation of the BCK-propositional calculus
system of C. A. Meredith [15], and generalize the concept of implicative
algebras (see [1]). In 2021, P. Cintula and C. Noguera [4] presented of
the most important logics that one can find in the literature. In partic-
ular, they considered the BCK logic and its many extensions. To solve
some problems on BCK algebras, Y. Komori [14] introduced BCC alge-
bras. These algebras (also called BIK+-algebras) are an algebraic model
of BIK+ logic. In [12], as a generalization of BCK algebras, H. S. Kim
and Y. H. Kim defined BE algebras. In 2008, A. Walendziak [18] defined
commutative BE algebras and proved that they are BCK algebras. Later
on, in 2010, D. Buşneag and S. Rudeanu [3] introduced the notion of pre-
BCK algebra. A BCK algebra is just a pre-BCK algebra satisfying also the
antisymmetry. In 2016, A. Iorgulescu [7] introduced new generalizations of
BCK and Hilbert algebras (RML, aBE, pi-BE, pimpl-RML algebras and
many others). Recently, R. Bandaru et al. [2] introduced the concepts of
GE algebra (generalized exchange algebra) and transitive GE algebra (tGE
algebra for short). These algebras are a generalization of Hilbert algebras.

In 1978, K. Iséki and S. Tanaka [10] introduced the concepts of implica-
tivity and positive implicativity in the theory of BCK algebras. The present
paper is a continuation of the author’s paper [19], where the property of
implicativity for various generalizations of BCK algebras was studied. Im-
plicative BE algebras were presented in [21] (see also [23]).

Here we consider RML, BE, GE, tGE, pre-BCC and pre-BCK algebras
and investigate the implicative and positive implicative properties for these
algebras. We obtain some characterizations of GE and transitive GE al-
gebras. We study connections between GE algebras and other classes of
algebras of logic. We show that the class of positive implicative GE alge-
bras (resp. the class of implicative GE algebras satisfying the property of
antisymmetry) coincides with the class of generalized Tarski algebras (resp.
the class of Tarski algebras). We prove that for any GE algebra with the
antisymmetry the property of implicativity is equivalent to the commuta-
tive property. Moreover, we give several examples to illustrate the results.
Finally, we present the interrelationships between the classes of implicative
and positive implicative algebras considered here.
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2. Preliminaries

Let A = (A,→, 1) be an algebra of type (2, 0). We consider the following
list of properties ([7]) that can be satisfied by A (the properties in the list
are the most important properties satisfied by a BCK algebra):

(An) (Antisymmetry) x → y = 1 = y → x =⇒ x = y,

(B) (y → z) → [(x → y) → (x → z)] = 1,

(BB) (y → z) → [(z → x) → (y → x)] = 1,

(C) [x → (y → z)] → [y → (x → z)] = 1,

(D) y → [(y → x) → x] = 1,

(Ex) (Exchange) x → (y → z) = y → (x → z),

(K) x → (y → x) = 1,

(L) (Last element) x → 1 = 1,

(M) 1 → x = x,

(Re) (Reflexivity) x → x = 1,

(Tr) (Transitivity) x → y = 1 = y → z =⇒ x → z = 1,

(*) y → z = 1 =⇒ (x → y) → (x → z) = 1,

(**) y → z = 1 =⇒ (z → x) → (y → x) = 1.

The following lemma will be used many times throughout the rest of
this paper.

Lemma 2.1 ([7], Proposition 2.1 and Theorem 2.7). Let A = (A,→, 1) be
an algebra of type (2, 0). Then the following hold:

(i) (M) + (B) imply (Re), (*) and (**),

(ii) (M) + (*) imply (Tr),

(iii) (M) + (**) imply (Tr),

(iv) (An) + (C) imply (Ex),

(v) (M) + (BB) imply (B).
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Definition 2.2 ([7]).

1. A RML algebra is an algebra A = (A,→, 1) of type (2, 0) verifying
(Re), (M), (L).

2. A BE algebra is a RML algebra verifying (Ex).

3. An aBE algebra is a BE algebra verifying (An).

4. A pre-BCC algebra is a RML algebra verifying (B).

5. A pre-BCK algebra is a pre-BCC algebra verifying (Ex).

6. A BCC algebra is a pre-BCC algebra verifying (An).

7. A BCK algebra is a pre-BCK algebra verifying (An).

Denote by RML, BE, aBE, pre-BCC, pre-BCK, BCC and BCK
the classes of RML, BE, aBE, pre-BCC, pre-BCK, BCC and BCK algebras,
respectively.

Let A = (A,→, 1) be an algebra of type (2, 0). We define the binary
relation ≤ by: for all x, y ∈ A,

x ≤ y ⇐⇒ x → y = 1.

It is known that ≤ is an order relation in BCC and BCK algebras. By defi-
nition, in RML and BE algebras, ≤ is a reflexive relation; in aBE algebras,
≤ is reflexive and antisymmetric. By Lemma 2.1 (i) and (ii), in pre-BCC
and pre-BCK algebras, ≤ is reflexive and transitive (i.e., it is a pre-order
relation).

Definition 2.3 ([2]). A GE algebra (generalized exchange algebra) is an
algebra A = (A,→, 1) of type (2, 0) verifying (Re), (M) and

(GE) x → (y → z) = x → [y → (x → z)].

Following [2],

• a transitive GE algebra (tGE algebra, for short) is a GE algebra ver-
ifying (B),

• an aGE algebra is a GE algebra verifying (An).

Denote by GE, tGE and aGE the classes of all GE algebras, transitive
GE algebras and aGE algebras, respectively.
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Proposition 2.4. Any GE algebra satisfies the folowing property

(pi) x → y = x → (x → y).

Proof: Let A be a GE algebra and x, y ∈ A. We have x → y
(M)
= x →

(1 → y)
(GE)
= x → [1 → (x → y)]

(M)
= x → (x → y), that is, (pi) holds

in A.

Example 2.5. Consider the set A = {a, b, c, d, e, 1} and the operation →
given by the following table:

→ a b c d e 1
a 1 1 c c 1 1
b a 1 d d 1 1
c a 1 1 1 1 1
d a 1 1 1 1 1
e a 1 1 1 1 1
1 a b c d e 1

.

We can observe that the properties (Re), (M), (L), (GE) (hence (pi)) are
satisfied. Therefore, (A,→, 1) is a GE algebra. It does not satisfy (An)
for (x, y) = (c, d); (Ex) for (x, y, z) = (a, b, c); (Tr) and (B) for (x, y, z) =
(a, e, c). Then, A is not transitive.

Example 2.6. Let A = {a, b, c, d, 1} and → be defined as follows:

→ a b c d 1
a 1 1 c c 1
b 1 1 d d 1
c a a 1 1 1
d b b 1 1 1
1 a b c d 1

.

The algebra A = (A,→, 1) verifies (Re), (M), (L), (GE), (B). It does not
verify (An) for x = a, y = b; (Ex) for x = a, y = b, z = c. Thus A is a tGE
algebra which is not a pre-BCK algebra.

Following [7], a pi-RML algebra (respectively: pi-BE, pi-aBE, pi-pre-
BCC, pi-pre-BCK, pi-BCC, pi-BCK algebra) is a RML algebra (respec-
tively: BE, aBE, pre-BCC, pre-BCK, BCC, BCK algebra) verifying (pi).
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Denote by pi-RML, pi-BE, pi-aBE, pi-pre-BCC, pi-pre-BCK, pi-
BCC, pi-BCK the classes of pi-RML, pi-BE, pi-aBE, pi-pre-BCC, pi-pre-
BCK, pi-BCC, pi-BCK algebras, respectively.

Proposition 2.7. Let A = (A,→, 1) be an algebra of type (2, 0). Then
the following hold:

(i) (Re) + (pi) imply (L),

(ii) (Ex) + (pi) imply (GE).

Proof: (i) It follows immediately from Proposition 6.4 (ii) of [7].
(ii) Let x, y, z ∈ A. We obtain

x → (y → z)
(pi)
= x → [x → (y → z)]

(Ex)
= x → [y → (x → z)].

Thus (GE) holds.

By Propositions 2.4 and 2.7 (i), we have

Corollary 2.8. Any GE algebra is a pi-RML algebra.

By Proposition 2.7 (ii), we get

Corollary 2.9. Any pi-BE algebra is a GE algebra.

Remark 2.10. By Corollaries 2.8 and 2.9, pi-BE ⊂ GE ⊂ pi-RML. Ob-
serve that these inclusions are proper. Indeed, the algebra given in Example
2.5 is a GE algebra not satisfying (Ex). The algebra from Example 10.1 of
[8] is a pi-RML algebra that is not a GE algebra.

The interrelationships between the classes of algebras mentioned before
are visualized in Figure 1. (An arrow indicates proper inclusion, that is, if
X and Y are classes of algebras, then X −→Y means X⊂Y.)

In [17], S. Tanaka introduced the notion of commutativity in the theory of
BCK algebras. A BCK algebra A = (A,→, 1) is called commutative if, for
all x, y ∈ A,

(Com) (x → y) → y = (y → x) → x.

H. Yutani [22] proved that the class of commutative BCK algebras is
equationally definable. A. Walendziak [18] showed that any commutative
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Figure 1.

BE algebra is a BCK algebra. The property of commutativity for other
generalizations of BCK algebras was investigated in [20].

As in the case of BCK algebras, we define:

Definition 2.11. A RML algebra A = (A,→, 1) is called commutative if
it satisfies (Com).

Denote by com-RML the class of commutative RML algebras. Simi-
larly, if X is a subclass of the class RML, then com–X denotes the class
of all commutative algebras belonging to X.

Remark 2.12. Since every commutative BE algebra is a BCK algebra, we
have com-BE = com-BCK. Moreover, following [20], we obtain
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com-BE = com-pre-BCC = com-pre-BCK = com-BCC = com-
BCK.

As a preparation for the next results we need the following

Lemma 2.13. ([20], Proposition 3.3) Let A = (A,→, 1) be an algebra of
type (2, 0) verifying (M) and (Com). Then A verifies (An).

Remark 2.14. Note that commutative GE algebras were introduced and
studied in [2].

3. On GE and transitive GE algebras

First we present the following

Proposition 3.1. Let A = (A,→, 1) be an algebra of type (2, 0). Then
the following hold:

(i) (K) + (GE) imply (C),

(ii) (Re) + (GE) + (L) imply (D) and (K),

(iii) (GE) + (K) + (An) imply (Ex),

(iv) (C) + (D) + (M) + (Tr) imply (**).

Proof: (i) Let x, y, z ∈ A. We have [x → (y → z)] → [y → (x → z)]
(GE)
=

[x → (y → z)] → [y → (x → (y → z))]
(K)
= 1, that is, (C) holds in A.

(ii) Let x, y ∈ A. We obtain

y → [(y → x) → x]
(GE)
= y → [(y → x) → (y → x)]

(Re)
= y → 1

(L)
= 1,

that is, (D) holds in A.
Now, applying (GE), (Re) and (L), we get x → (y → x) = x → [y →

(x → x)] = 1, that is, (K) holds in A.
(iii) It follows from above (i) and Lemma 2.1 (iv).
(iv) Let x, y, z ∈ A and y ≤ z. By (D), z ≤ (z → x) → x. Applying

(Tr), we get y ≤ (z → x) → x. From (C) it follows that

1 = y → [(z → x) → x] ≤ (z → x) → (y → x).

Hence, by (M), (z → x) → (y → x) = 1. Therefore z → x ≤ y → x, thus
(**) holds in A.
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From Propositions 2.4, 2.7 (i) and 3.1 (i), (ii) we have

Corollary 3.2. Any GE algebra satisfies (pi), (L), (C), (D) and (K).

Corollary 3.3. In GE algebras, we have

(Tr) ⇐⇒ (**).

Proof: Let A be a GE algebra verifying (Tr). By Proposition 3.1 (iv), A
verifies (**). The converse follows from Lemma 2.1 (iii).

Remark 3.4. Applying Proposition 3.1 (iii), we have aGE ⊆ pi-aBE. Since
pi-BE ⊂ GE, see Remark 2.9, we get pi-aBE ⊆ aGE. Consequently, pi-
aBE = aGE.

Since (M) + (B) imply (Re), see Lemma 2.1 (i), we obtain

Proposition 3.5. An algebra A = (A,→, 1) of type (2, 0) is a transitive
GE algebra if and only if it satisfies (M), (GE), (B).

Now we consider the following properties; they are the most important
properties satisfied by a Hilbert algebra:

(p-1) x → (y → z) ≤ (x → y) → (x → z),

(p-2) (x → y) → (x → z) ≤ x → (y → z),

(pimpl) x → (y → z) = (x → y) → (x → z).

Remark 3.6. It is easy to see that (p-1) + (p-2) + (An) imply (pimpl).

Proposition 3.7. Let A = (A,→, 1) be an algebra of type (2, 0). Then
the following hold:

(i) (pi) + (pimpl) imply (GE),

(ii) (Re) + (M) + (pimpl) imply (pi),

(iii) (Re) + (M) + (pimpl) imply (GE),

(iv) (M) + (C) + (B) +(pi) imply (p-1),

(v) (M) + (K) + (C) + (**) imply (p-2),
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(vi) (K) + (Tr) + (p-1) imply (B),

(vii) (M) + (L) + (p-1) imply (*).

Proof: (i) Let x, y, z ∈ A. We obtain

x → (y → z)
(pimpl)
= (x → y) → (x → z)
(pi)
= (x → y) → [x → (x → z)]

(pimpl)
= x → [y → (x → z)].

Thus (GE) holds.
(ii) Follows from Proposition 6.4 (iii) of [7].
(iii) Follows from above (i) and (ii).
(iv) By Lemma 2.1 (i) and (ii), A satisfies (Tr). Let x, y, z ∈ A. From

(C) it follows x → (y → z) ≤ y → (x → z). Applying (B) and (pi), we get
y → (x → z) ≤ (x → y) → [x → (x → z)] = (x → y) → (x → z). By (Tr),
x → (y → z) ≤ (x → y) → (x → z), that is, (p-1) holds.

(v) Let x, y, z ∈ A. By (K), y ≤ x → y, and hence, using (**), we
obtain

(x → y) → (x → z) ≤ y → (x → z). (3.1)

By (C),
y → (x → z) ≤ x → (y → z). (3.2)

Since A satisfies (M) and (**), from Lemma 2.1 (iii) we see that (Tr) holds
in A. Therefore, applying (3.1) and (3.2), we get (x → y) → (x → z) ≤
x → (y → z), that is, (p-2) holds.

(vi) Let x, y, z ∈ A. By (K) and (p-1), y → z ≤ x → (y → z) and
x → (y → z) ≤ (x → y) → (x → z). Then, from (Tr) we have y → z ≤
(x → y) → (x → z). Thus (B) holds.

(vii) Let x, y, z ∈ A and y → z = 1. Using (L) and (p-1), we get
1 = x → (y → z) ≤ (x → y) → (x → z). By (M), (x → y) → (x → z) = 1.
Therefore (*) holds.

Since (M) + (B) imply (**), see Lemma 2.1 (i), from Prposition 3.7
(iv), (v) we obtain

Corollary 3.8. Any transitive GE algebra verifies properties (p-1) and
(p-2).
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Proposition 3.9. In GE algebras, (p-1) =⇒ (p-2).

Proof: Let A be a GE algebra verifying (p-1). By Proposition 3.7 (vii),
A verifies (*). Therefore, (Tr) also holds, and hence A verifies (**), by
Proposition 3.1 (iv). Applying Proposition 3.7 (v), we get (p-2).

Theorem 3.10. In GE algebras, we have

(BB) ⇐⇒ (B) ⇐⇒ (p-1) ⇐⇒ (*).

Proof: By Lemma 2.1 (v), (BB) =⇒ (B), and, by Proposition 3.7 (iv),
(vii), we conclude that (B) =⇒ (p-1) and (p-1) =⇒ (*). Let A be a GE
algebra with (*). Let x, y, z ∈ A. From (C) we see that x → [(y → z) →
z] ≤ (y → z) → (x → z), and hence

(x → y) → [x → ((y → z) → z)] ≤ (x → y) → [(y → z) → (x → z)]

by (*). Observe that

(x → y) → [x → ((y → z) → z)] = 1. (3.3)

Indeed, from (D) we conclude that y ≤ (y → z) → z. Applying (*), we
obtain (3.3). Therefore, x → y ≤ (y → z) → (x → z), that is, (BB)
holds.

Corollary 3.11. An algebra A = (A,→, 1) of type (2, 0) is a transitive
GE algebra if and only if A verifies (Re), (M), (GE) and (p-1).

Corollary 3.12. Any transitive GE algebra verifies (B), (BB), (*), (**),
(Tr), (p-1), (p-2).

4. Implicative and positive implicative GE algebras

The well-known implicative and positive implicative BCK algebras were
introduced by K. Iséki and S. Tanaka [10].

Let A = (A,→, 1) be an algebra of type (2, 0). We first consider the
following property:

(im) (x → y) → x = x.
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Proposition 4.1. Let A = (A,→, 1) be an algebra of type (2, 0). Then:

(i) (Re) + (im) imply (M),

(ii) (M) + (im) imply (L),

(iii) (im) implies (pi),

(iv) (Re) + (pimpl) imply (L) and (B),

(v) (Re) + (M) + (pimpl) + (An) imply (Ex).

Proof: (i)–(iii) follow from Proposition 3.5 of [19].
(iv) and (v) follow from Propositions 6.4, 6.9 and Theorem 6.16 of [7].

Similarly as in the case of BCK algebras, we say that a RML algebra (in
particular, a GE algebra) A = (A,→, 1) is implicative if it satisfies (im).

A positive implicative RML algebra ([7]), or a pimpl-RML algebra for
short, is a RML algebra verifying (pimpl).

Remark 4.2. Note that from Theorem 8 of [10] it follows that for BCK alge-
bras, (pimpl) and (pi) are equivalent. By Theorem 9 of [10], a commutative
BCK algebra is implicative if and only if it is positive implicative.

Denote by im-RML and pimpl-RML the classes of implicative and
positive implicative RML algebras, respectively; similarly for subclasses of
the class of all RML algebras.

It is easy to check that the algebra from Example 2.6 is an implicative
tGE algebra. However, the algebra given in Example 2.5 is not implicative,
since (b → a) → b = 1 ̸= b.

Example 4.3. Consider the set A = {a, b, c, d, 1} with the following table
of →:

→ a b c d 1
a 1 b b 1 1
b a 1 1 a 1
c a 1 1 a 1
d 1 c c 1 1
1 a b c d 1

.

The algebra A = (A,→, 1) verifies (Re), (M), (L), (GE) (hence (C), (D),
(K), (pi)), (B) (hence (*), (**), (Tr)) and (pimpl). It does not verify (An)
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for b, c; (Ex) for a, d, b; (im) for c, a. Thus A is a pimpl-tGE algebra which
is not implicative.

Remark 4.4. Any implicative RML and pimpl-RML algebra is a pi-RML
algebra by Propositions 4.1 (iii) and 3.7 (ii).

We recall the following definitions:

Definition 4.5. Let A = (A,→, 1) be an algebra of type (2, 0).

8. A is a Hilbert algebra ([5]) if it verifies (An), (K) and (p-1).

9. A is a generalized Hilbert algebra (GH-algebra for short) if it verifies
(Re), (M), (Ex) and (pimpl).

10. A is a Tarski algebra ([11])if it verifies (Re), (M), (pimpl) and (Com).

11. A is a generalized Tarski algebra (GT-algebra for short) if it verifies
(Re), (M) and (pimpl).

Denote by H, GH, T and GT the classes of Hilbert algebras, GH-
algebras, Tarski algebras and GT-algebras, respectively.

Remark 4.6. Hilbert algebras were introduced in 1950, in a dual form, by
L. Henkin [6], under the name “implicative model”. A. Monteiro has given
the name “Hilbert algebras” to the dual algebras of Henkin’s implicative
models (see [6, 2]). In [5], A. Diego proved that the class of all Hilbert
algebras is a variety. From Remarks 6.18 and 6.19 of [7] and Remark 3.4
we conclude that

pimpl-BCC = pimpl-BCK
= pi-BCK
= pimpl-aBE
= pimpl-aGE
= H.

Proposition 4.7 ([7], Corollary 6.17). Any algebra (A,→, 1) verifying
(Re), (M), (An) and (pimpl) is a Hilbert algebra.

Remark 4.8. By definition, generalized Hilbert algebras coincide with pos-
itive implicative BE algebras, that is, pimpl-BE = GH. Note that a self-
distributive BE algebra (see [12]) is in fact our pimpl-BE algebra. By
Remark 6.19 of [7], pimpl-BE = pimpl-pre-BCK (= GH).
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Remark 4.9. Note that GT-algebras were introduced and studied in [13].
Since (Re) + (pimpl) imply (L) and (B), see Proposition 4.1 (iv), we have
GT = pimpl-RML = pimpl-pre-BCC. By Proposition 3.7 (iii), GT =
pimpl-GE = pimpl-tGE.

Remark 4.10. A Tarski algebra is in fact a commutative GT-algebra. By
Lemma 2.13, a Tarski algebra verifies (An), hence, by Proposition 4.7, it
is a Hilbert algebra. Therefore, Tarski algebras coincide with commutative
Hilbert algebras, and with commutative GE algebras by Theorem 3.9 of [2].
Thus T = com-GT = com-GE = com-H, where com-GT, com-GE
and com-H denote commutative GT, commutative GE and commutative
Hilbert algebras, respectively.

By above remarks, we obtain that

T = com-H
a)
⊂ H = pimpl-aBE

b)
⊂ GH =

pimpl-BE
c)
⊂ GT = pimpl-RML = pimpl-tGE

d)
⊂ GE.

These inclusions are proper; see Examples 3.10 [2], for a), 10.8 [8], for b);
4.3, for c); and finally, Example 2.5, for d).

By definition, we have

im-BCK ⊂ im-pre-BCK ⊂ im-tGE ⊂
im-pre-BCC ⊂ im-RML ⊂ pi-RML.

These inclusions are proper; see Examples 4.11, 2.6, 4.12, 4.13 and Example
10.1 of [8].

Example 4.11. Let A = {a, b, c, d, e, 1} and → be defined as follows:

→ a b c d e 1
a 1 1 e d e 1
b 1 1 d d d 1
c 1 1 1 1 1 1
d a b b 1 1 1
e a a a 1 1 1
1 a b c d e 1

It is easy to see that the properties (Re), (M), (L), (Ex), (B), (im) (hence
(pi)) are satisfied; (An) is not satisfied for (x, y) = (a, b), (pimpl) is not
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satisfied for (x, y, z) = (a, b, c), Therefore, (A,→, 1) is an implicative pre-
BCK algebra that is not positive implicative.

Example 4.12. Consider the set A = {a, b, c, d, e, 1} and the operation →
given by the following table:

→ a b c d e 1
a 1 1 e d e 1
b 1 1 c d d 1
c b b 1 1 1 1
d a b 1 1 1 1
e a a 1 1 1 1
1 a b c d e 1

We can observe that the properties (Re), (M), (L), (B) and (im) are satis-
fied. Hence, (A,→, 1) is an implicative pre-BCC algebra. It does not satisfy
(An) for (x, y) = (a, b); (Ex) and (GE) for (x, y, z) = (a, b, c); (pimpl) for
(x, y, z) = (a, b, e).

Example 4.13. ([19], Example 3.24) Let A = {a, b, c, d, 1} and → be defined
as follows:

→ a b c d 1
a 1 b b d 1
b a 1 a a 1
c 1 1 1 1 1
d a 1 1 1 1
1 a b c d 1

It is easy to see that the properties (Re), (M), (L) and (im) (hence (pi)) are
satisfied; (An) is not satisfied for (x, y) = (c, d), (GE), (Ex) and (pimpl)
are not satisfied for (x, y, z) = (b, a, d) , (Tr) is not satisfied for (x, y, z) =
(d, c, a). Therefore, (A,→, 1) is an implicative RML algebra (hence also a
pi-RML algebra) that is not a pre-BCC algebra.

Proposition 4.14 ([19], Proposition 3.14). Let A = (A,→, 1) be an alge-
bra verifying (Re), (D), (**) and (im). Then

y ≤ x =⇒ (x → y) → y ⩽ x (4.1)

for all x, y ∈ A.



512 Andrzej Walendziak

Theorem 4.15. If A = (A,→, 1) is an implicative GE algebra with (Tr),
then A satisfies the following condition:

(wCom) (x → y) → y ≤ (y → x) → x.

Proof: Let A be an implicative GE algebra verifying (Tr). By Proposition
4.14, A satisfies (4.1). Let x, y ∈ A. From (K) we have x ≤ (y → x) → x.
Applying (**) twice, we obtain

(x → y) → y ≤ (((y → x) → x) → y) → y. (4.2)

By (D), y ≤ (y → x) → x, and hence, using (4.1), we get

(((y → x) → x) → y) → y ≤ (y → x) → x. (4.3)

Since A satisfies (Tr), from inequalities (4.2) and (4.3) we have (wCom).

Proposition 4.16 ([23]). Implicative aBE algebras satisfy (Tr).

Proposition 4.17. Implicative aGE algebras concide with implicative aBE
algebras.

Proof: From Remark 3.4 it follows that pi-aBE = aGE. Since (im) im-
plies (pi), we have im-aBE = im-aGE.

Proposition 4.18. In GE algebras, we have

(im) + (An) ⇐⇒ (Com).

Proof: Let A = (A,→, 1) be a GE algebra. Assume that (im) and (An)
hold in A. By Propositions 4.16 and 4.17, A satisfies (Tr). From Theorem
4.15 we conclude that A is commutative.

Conversely, suppose that A satisfies (Com). By Lemma 2.13, (An)
is satisfied. To prove (im), let x, y ∈ A. We have ((x → y) → x) →
x

(Com)
= (x → (x → y)) → (x → y)

(pi)
= (x → y) → (x → y)

(Re)
= 1.

Then (x → y) → x ≤ x. Applying Proposition 3.1 (ii), we see that A
satisfies (K). Therefore, x ≤ (x → y) → x. Then, using (An), we obtain
x = (x → y) → x, that is, (im) holds in A.

Corollary 4.19. Let A be a GE algebra satisfying (An). Then the prop-
erty of implicativity is equivalent to the commutative property.

From Corollary 4.19 it follows that com-GE = im-aGE. Since T =
com-GE (see Remark 4.10), we have T = im-aGE. Hence we obtain
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t
T = im-BCK = im-BCC = im-aBE = im-aGE = com-GE

6

HH
HHH

HHY
t
6
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= pimpl-BCK =) H

tZ
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ZZ}
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6
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Figure 2.

Corollary 4.20. Any implicative aGE algebra is a Tarski algebra.

We draw now the interrelationships between some classes of implicative
and positive implicative algebras mentioned before (see Figure 2).
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