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Abstract

In this paper, we are going to introduce a fundamental relation on HvBE-algebra

and investigate some of properties, also construct new (Hv)BE-algebras via this

relation. We show that quotient of any HvBE-algebra via a regular regulation is

an HvBE-algebra and this quotient, via any strongly relation is a BE-algebra.

Furthermore, we investigate that under what conditions some relations onHvBE-

algebra are transitive relations.
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1. Introduction and preliminaries

Hyperstructures represent a natural extension of classical structures and
they were introduced by French Mathematician F. Marty in 1934 [10]. A
hyperstructure is a nonempty setH, together with a function ◦ : H×H −→
P ∗(H) called hyper operation, where P ∗(H) denotes the set of all nonempty
subsets of H. Marty introduced hypergroups as a generalization of groups
[4, 3]. Hyperstructures have many applications to several sectors of both
pure and applied sciences as geometry, graphs and hypergraphs, fuzzy
sets and rough sets, automata, cryptography, codes, relation algebras,
C-algebras, artificial intelligence, probabilities, chemistry, physics, espe-
cially in atomic physic and in harmonic analysis [2, 7].
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H. S. Kim and Y. H. Kim introduced the notation of BE-algebra as a
generalization of dual BCK algebra [9]. R. A. Borzooei et al. defined the
notation of a hyper K-algebra, bounded hyper K-algebra and considered
the zero condition in hyper K-algebras. They showed that every hyper
K-algebra with the zero condition can be extended to a bounded hyper
K-algebra [1].

A. Radfar et al. combined BE-algebra with hyperstructures and defined
the notation of hyper BE-algebra. Also, they focused on some types of
hyper BE-algebras and show that every dual hyper K-algebra is a hyper
BE-algebra [11].

We know that the class of the Hv-structures, introduced by Vougiouklis
in 1990 [13, 14], is the largest class of hyperstructures. In the classical
hyperstructures, in any axiom where the equality is used, if we replace the
equality by the nonempty intersection, then we obtain a corresponding Hv

structures.

Algebraic hyperstructures are extension of algebraic structures and for
better understanding their properties we want some connections between
algebraic hyperstructures and algebraic structures, a fundamental relation
is an interesting concept in algebraic hyperstructures that makes this con-
nection. In this paper, for obtain a relationship between BE, hyper BE
and (Hv)BE-algebra, we define a fundamental relation on (Hv)BE-algebra
that is called “δ” also, we study “δ∗” as a transitive closure of “δ” in such
away that is the smallest equivalence relation that contains “δ”. Finally,
a BE-algebras which is quotient of HvBE-algebra via “δ∗” is obtained,
therefore we find a connection between algebraic structures and (Hv)hyper
algebraic structures.

Definition 1.1 ([9]). Let X be a nonempty set, “∗” be a binary operation
on X and a constant 0 ∈ X. Then (X, ∗, 0) is called a BCK-algebra if for
all x, y, z ∈ X it satisfies the following conditions:

F. Iranmanesh et al. present the notation of the HvBE-algebra as
generalization of hyper BE-algebra [8]. They defined new Hv-structures
and considered some of their useful properties. Also discuss Hv-filters and
homomorphism on this structure. Furthermore, they got more results in
HvBE-algebras [8]. Fundamental relations are one of the main tools
in algebraic hyperstructures theory.
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(BCI-1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(BCI-2) (x ∗ (x ∗ y)) ∗ y = 0,

(BCI-3) x ∗ x = 0,

(BCI-4) x ∗ y = 0 and y ∗ x = 0, imply x = y,

(BCI-5) 0 ∗ x = 0.

We define a binary relation“ ≤ ” on X by x ≤ y if and only if x ∗ y = 0.

Definition 1.2 ([9]). Let X be a nonempty set, “∗” be a binary operation
on X and 1 ∈ X. An algebra (X, ∗, 1) of type (2, 0) is called a BE-algebra
if the following axioms hold:

(BE1) x ∗ x = 1,

(BE2) x ∗ 1 = 1,

(BE3) 1 ∗ x = x,

(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z), for all x, y, z ∈ X.

We introduce the relation “ ≤ ” on X by x ≤ y if and only if x ∗ y = 1.
The BE-algebra (X, ∗, 1) is said to be commutative, if for all x, y ∈ X,

(x ∗ y) ∗ y = (y ∗ x) ∗ x.

Proposition 1.3 ([9]). Let X be a BE-algebra. Then

(i) x ∗ (y ∗ x) = 1.

(ii) y ∗ ((y ∗ x) ∗ x) = 1, for all x, y ∈ X.

Example 1.4 ([12]). Let X = {1, 2, ...}. Define the operation “∗” as follows:

x ∗ y =

{
1 if y ≤ x

y otherwise.

then (X, ∗, 1) is a BE-algebra.
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Definition 1.5 ([4]). Let H be a nonempty set and ◦ : H ×H −→ P ∗(H)
be a hyperoperation. Then (H, ◦) is called an Hv-group if it satisfies the
following axioms:

(H1) x ◦ (y ◦ z)
⋂
(x ◦ y) ◦ z ̸= ϕ,

(H2) a ◦H = H ◦ a = H, for all x, y, z, a ∈ H,

where a ◦H =
⋃
h∈H

a ◦ h, H ◦ a =
⋃
h∈H

h ◦ a.

Definition 1.6 ([11] ). LetH be a nonempty set and ◦ : H×H −→ P ∗(H)
be a hyperoperation. Then (H, ◦, 0) is called a hyper K-algebra if satisfies
the following axioms:

(HK1) (x ◦ z) ◦ (y ◦ z) < x ◦ y,

(HK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,

(HK3) x < x,

(HK4) x < y and y < x implies x = y,

(HK5) 0 < x, for all x, y, z ∈ H,

where the relation ” < ” is defined by x < y ⇐⇒ 0 ∈ x ◦ y. For every
A,B ⊆ H, A < B if and only if there exist a ∈ A and b ∈ B such that a < b.

Note that if A,B ⊆ H, then by A ◦ B we mean the subset
⋃

a∈A,b∈B

a ◦ b

of H.

Definition 1.7 ([11]). Let H be a nonempty set and ◦ : H × H −→
P ∗(H) be a hyperoperation. Then (H, ◦, 1) is called a hyper BE−algebra
if satisfies the following axioms:

(HBE1) x < 1 and x < x,

(HBE2) x ◦ (y ◦ z) = y ◦ (x ◦ z),

(HBE3) x ∈ 1 ◦ x,

(HBE4) 1 < x implies x = 1, for all x, y, z ∈ H.
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(H, ◦, 1) is called a dual hyper K-algebra if it satisfies (HBE1), (HBE2)
and the following axioms:

(DHK1) x ◦ y < (y ◦ z) ◦ (x ◦ z),

(DHK4) x < y and y < x imply that x = y,

where the relation “ < ” is defined by x < y ⇐⇒ 1 ∈ x ◦ y.

Definition 1.8 ([8]). Let H be a nonempty set and ◦ : H ×H −→ P ∗(H)
be a hyperoperation. Then (H, ◦, 1) is called an HvBE-algebra if satisfies
the following axioms:

(HvBE1) x < 1 and x < x,

(HvBE2) x ◦ (y ◦ z)
⋂
y ◦ (x ◦ z) ̸= ϕ,

(HvBE3) (HvBE3) x ∈ 1 ◦ x,

(HvBE4) 1 < x implies x = 1, for all x, y, z ∈ H,

where the relation “<” is defined by x < y ⇐⇒ 1 ∈ x ◦ y.
Also A < B if and only if there exist a ∈ A and b ∈ B such that a < b.

Proposition 1.9 ([6]). Every dual hyperK-algebra is a hyperBE-algebra.

2. On HvBE-algebras and some results

In this section, we consider HvBE-structure with some results on its.

Example 2.1.

(i) Let (H, ∗, 1) be a BE-algebra and we know that ◦ : H × H −→
P ∗(H) with x ◦ y = {x ∗ y} is a hyperoperation. Then (H, ◦, 1) is a trivial
hyper BE-algebra and an HvBE-algebra.

(ii) Let H = {1,a,b}. Define hyperoperation “ ◦ ” as follows:

◦ 1 a b
1 {1} {a,b} {b}
a {1} {1,a} {1,b}
b {1} {1,a,b} {1}.

Then (H, ◦, 1) is an HvBE-algebra.
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(iii) Define the hyperoperation “ ◦ ” on R as follows:

x ◦ y =

{
{y} if x = 1

R otherwise,

then (R, ◦, 1) is an HvBE-algebra.

Proposition 2.2 ([8]). Any hyper BE-algebra is an HvBE-algebra.

Example 2.3 shows that the converse of Proposition 2.2 does not hold
in general.

Example 2.3. Define a hyperoperation “ ◦ ” on the set H = {1,a,b} as
follows:

◦ 1 a b
1 {1} {a} {b}
a {1, b} {1} {1,a,b}
b {1} {1,b} {1,b}.

Then (H, ◦, 1) is an HvBE-algebra. And we have that:

a ◦ (b ◦ b) = a ◦ ({1, b}) = {1, a, b} ̸= {1, b} = b ◦ ({1, a, b}) = b ◦ (a ◦ b).

So (H, ◦, 1) does not satisfy (HBE2), therefore (H, ◦, 1) is not a hyper
BE-algebra.

Theorem 2.4. Let (H, ◦, 1) be an HvBE-algebra. Then

(i) A ◦ (B ◦ C)
⋂
B ◦ (A ◦ C) ̸= ϕ for every A,B,C ∈ P ∗(H),

(ii) A < A,

(iii) 1 < A implies 1 ∈ A,

(iv) 1 ∈ x ◦ (x ◦ x),

(v) x < x ◦ x.

Proof: (i) Let a ∈ A, b ∈ B and c ∈ C. We have a◦ (b◦ c) ⊆ A◦ (B ◦C),
b ◦ (a ◦ c) ⊆ B ◦ (A ◦ C), Then by (HvBE2), a ◦ (b ◦ c)

⋂
b ◦ (a ◦ c) ̸= ϕ,

therefore A ◦ (B ◦ C)
⋂

B ◦ (A ◦ C) ̸= ϕ.
Other cases are similar.
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Definition 2.5 ([6]). Let F be a nonempty subset of HvBE-algebra H
and 1 ∈ F . Then F is called

(i) a weak Hv-filter of H if x ◦ y ⊆ F and x ∈ F imply y ∈ F , for all
x, y ∈ H.

(ii) an Hv-filter of H if x ◦ y ≈ F (i.e ϕ ̸= (x ◦ y)
⋂
F ) and x ∈ F imply

y ∈ F , for all x, y ∈ H.

Example 2.6. Let H = {1,a,b}. Define the hyperoperation “◦1” and “◦2”
as follows:

◦1 1 a b
1 {1} {a, b} {b}
a {1} {1, a} {1, b}
b {1} {1, a, b} {1}

◦2 1 a b
1 {1} {a, b} {b}
a {1} {1, a, b} {b}
b {1, b} {1, a, b} {1, a, b}.

We see that (H, ◦1, 1) is an HvBE-algebra and F1 = {1, a} is a weak
Hv-filter of H. Also (H, ◦2, 1) is an HvBE-algebra and F2 = {1, a} is an
Hv-filter of H.

In Example 2.6, F1 is not an Hv-filter, because a ◦1 b ≈ F1 and a ∈ F1,
but b /∈ F1.

Theorem 2.7. Every Hv-filter is a weak Hv-filter.

Notation. By Example 2.6, we can see that the notion of weak Hv-filter
and Hv-filter are different in HvBE-algebra.

Theorem 2.8 ([8]). Let F be a subset of an HvBE-algebra H and 1 ∈ F.
For all x, y ∈ H, if x ◦ y < F and x ∈ F implies y ∈ F , then F=H.

3. Relations on HvBE-algebras

In this section, let (H, ◦, 1) be a HvBE-algebra and presents in summary
with H. We show that there exists a connection between hyper algebraic
structures and algebraic structures by strongly regular relations.
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Definition 3.1. Let (H, ◦, 1) be an HvBE-algebra and R be an equiva-
lence relation on H. If A,B are nonempty subsets of H, then

(i) A R̄ B means that, for all a ∈ A, there exists b ∈ B in such away
that aRb and for all b′ ∈ B, there exists a′ ∈ A in such away that b′Ra′,

(ii) A ¯̄R B means that, for all a ∈ A and b ∈ B, we have aRb,

(iii) R is called right regular(left regular), if for all x ∈ H, from aRb, it
follows that (a ◦ x)R̄(b ◦ x)((x ◦ a)R̄(x ◦ b)).

(iv) R is called strongly right regular(strongly left regular), if for all

x ∈ H, from aRb, it follows that (a ◦ x) ¯̄R(b ◦ x)((x ◦ a) ¯̄R(x ◦ b)).

(v) R is called (strongly) regular, if it is (strongly) right regular and
(strongly) left regular,

(vi) R is called good, if (a ◦ b) R 1 and (b ◦ a) R 1 imply aRb, for all
a, b ∈ H.

It is clear that (a ◦ b) R 1 means that there exists x ∈ a ◦ b in such a
way that xR1.

Example 3.2. Let H = {1, a, b}. Define the hyperoperation “◦” as follows:

◦ 1 a b
1 {1} {a, b} {b}
a {1} {1, a, b} {b}
b {1, b} {1, a, b} {1, a, b}

Then (H, ◦, 1) is an HvBE-algebra. It is easy to see that

R = {(1, 1), (a, a), (b, b), (a, b), (b, a), (1, b), (b, 1), (a, 1), (1, a)}

is a good strongly regular relation on H and for any A,B ∈ P ∗(H), A ¯̄R B.

Example 3.3. Let H = {1, d, b, c}. Define the hyperoperation “ ◦ ” as
follows:

◦ 1 b c d
1 {1} {b} {c} {d}
b {1} {1} {1} {1}
c {1} {b} {1} {d}
d {1} {b} {1, c} {1}
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Then (H, ◦, 1) is an HvBE-algebra. It is easy to see that

R = {(1, 1), (d, d), (b, b), (c, c), (c, b), (b, c), (d, c), (c, d)}

is not regular and strongly regular relation on H.

Notation. Let R be regular relation on H. We denote the set of all equiva-
lence classes of R byH/R. HenceH/R = {x̄ : x ∈ H}. For any x̄, ȳ ∈ H/R,
define a hyperoperation “∗” on H/R by

x̄ ∗ ȳ = {z̄ : z ∈ x ◦ y}

and a binary relation “ < ” on H/R by

“x̄ < ȳ” ⇐⇒ 1̄ ∈ x̄ ∗ ȳ.

Lemma 3.4. Let R be a regular relation on H. Then (H/R; ∗), is a hyper-
groupoid.

Proof: We must show that ∗ be well defined. Let x̄1, x̄2, ȳ1, ȳ2 ∈ H/R
such that x̄1 = x̄2, ȳ1 = ȳ2. Then x1 R x2 and y1 R y2. Since R is a
regular relation, we have (x1 ◦ y1)R̄(x2 ◦ y2) [5]. Let r̄ ∈ x̄1 ∗ ȳ1. Then
there exists z ∈ x1 ◦ y1 in such a way that r̄ = z̄. Now z ∈ x1 ◦ y1 and
(x1 ◦ y1)R̄(x2 ◦ y2), then there exists u ∈ (x2 ◦ y2) such that zRu then
z̄ = ū and r̄ = ū, thus x̄1 ∗ ȳ1 ⊆ x̄2 ∗ ȳ2 and in a similar way we get
x̄2 ∗ ȳ2 ⊆ x̄1 ∗ ȳ1, i.e x̄1 ∗ ȳ1 = x̄2 ∗ ȳ2 therefore ∗ is well defined and
(H/R; ∗) is a hypergroupoid.

Theorem 3.5. If R is a regular relation on H then (H/R; ∗; 1̄) is a HvBE-
algebra.

Proof: Let R be a regular relation on H. If x ∈ H then x̄ ◦ 1̄ = {t̄ : t ∈
x◦1}. Since H is an HvBE- algebra by (HvBE1) we conclude that 1 ∈ x◦1
and so 1̄ ∈ x̄ ∗ 1̄. Therefore x̄ < 1̄. Also 1 ∈ x ◦x and x̄ ◦ x̄ = {t̄ : t ∈ x ◦x},
then 1̄ ∈ x̄ ∗ x̄ and x̄ < x̄.

(HvBE2) Let x, y, z ∈ H. Since (H, ◦, 1) is an HvBE- algebra, then
x ◦ (y ◦ z)

⋂
y ◦ (x ◦ z) ̸= ϕ. If t ∈ x ◦ (y ◦ z)

⋂
y ◦ (x ◦ z), then there

exists s1 ∈ y ◦ z in such away that t ∈ x ◦ s1 by a similar way there exists
s2 ∈ x ◦ z in such away that t ∈ y ◦ s2. We get the t̄ ∈ x̄ ∗ s̄1 ⊆ x̄ ∗ (ȳ ∗ z̄)
and t̄ ∈ ȳ ∗ s̄2 ⊆ ȳ ∗ (x̄ ∗ z̄). Therefore x̄ ∗ (ȳ ∗ z̄)

⋂
ȳ ∗ (x̄ ∗ z̄) ̸= ϕ.
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(HvBE3) if x ∈ H then 1̄◦ x̄ = {t̄ : t ∈ 1◦x}. Since H is a HvBE-algebra,
we have x ∈ 1 ◦ x and x̄ ∈ 1̄ ∗ x̄.

(HvBE4) x ∈ H and 1̄ < x̄ then 1̄ ∈ 1̄ ∗ x̄. Hence 1 ∈ 1 ◦ x and 1 < x.
Since H is a HvBE- algebra, we have x = 1 and so x̄ = 1̄.

Corollary 3.6. Let (H, ◦, 1) be a dual hyper K-algebra and R be an
equivalence relation on H. If R is a regular relation on H, then (H/R; ∗; 1̄)
is an HvBE-algebra.

Theorem 3.7. If R is strongly regular relation on H, then (H/R; ∗; 1̄) is
a BE-algebra.

Proof: If z̄1, z̄2 ∈ x̄ ∗ ȳ, for any x̄, ȳ ∈ H/R, then z1, z2 ∈ x ◦ y. Since R is

strongly regular, for all x, y ∈ H, yRy then (x◦y) ¯̄R(x◦y) and z1, z2 ∈ x◦y,
we have z1 R z2, therefore z̄1 = z̄2 and |x̄ ∗ ȳ| = 1 and so by Theorem 3.5,
(H/R; ∗; 1̄) is a BE-algebra.

Example 3.8. Let H = {1, a, b, c, d, e}. Define the hyperoperation“ ◦ ” as
follows:

◦ 1 a b c d e
1 {1, c} {a} {b} {c} {d} {e}
a {1, c} {1, c} {a} {1, c} {c} {d}
b {1, c} {1, c} {1, c} {1, c} {c} {c}
c {1, c} {a} {b} {1, c} {a} {b}
d {1, c} {1, c} {a} {1, c} {1, c} {a}
e {1, c} {1, c} {1, c} {1, c} {1, c} {1, c}

Then (H, ◦, 1) is an HvBE-algebra. It is easy to see that R={(1, 1), (a, a),
(b, b), (c, c), (d, d), (e, e), (1, c), (c, 1), (e, b), (b.e), (a, d), (d, a)} is a good
strongly regular relation on H and

H/R = {{1, c}, {a, d}, {e, b}} = {R(1), R(a), R(b)}.

Now we have:

* R(1) R(a) R(b)
R(1) R(1) R(a) R(b)
R(a) R(1) R(1) R(a)
R(b) R(1) R(1) R(1)

Clearly, (H/R; ∗;R(1)) is a BE-algebra.
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In this place, we present some results and examples about dual hyper
K-algebras and hyper BE-algebras that are useful.

Lemma 3.9 ([6]). Let (X; ◦, 1) be a dual hyper K-algebra and R be a regular
relation on X. Then for any x̄, ȳ, z̄ ∈ X/R, (x̄ ∗ ȳ) < (ȳ ∗ z̄) ∗ (x̄ ∗ z̄).

Theorem 3.10 ([6]). Let (X, ◦, 1) be a dual hyper K-algebra and R be a
regular relation on X. If R is a good relation, then (X/R; ∗, 1̄) is a dual
hyper K-algebra.

Theorem 3.11 ([6]). Let (X, ◦, 1) be a dual hyper K-algebra and R be a
strongly regular relation on X. If R is a good relation, then (X/R; ∗, 1̄) is
a dual BCK-algebra.

Example 3.12. Let X = {1, a, b, c, d, e}. Define the hyperoperation “◦” as
follows:

◦ 1 a b c d e
1 {1, e} {a} {b} {c} {d} {e}
a {1, e} {1, e} {b} {c} {d} {e}
b {1, e} {a} {1, e} {c} {d} {e}
c {1, e} {a} {b} {1, e} {d} {e}
d {1, e} {a} {b} {c} {1, e} {e}
e {1, e} {a} {b} {c} {d} {1, e}

Then (X, ◦, 1) is a dual hyper K-algebra (HvBE-algebra). It is easy to see
that R={(1,1),(a,a),(b,b),(c,c),(d,d),(e,e),(1,c),(c,1),(e,c),(c,e)} is a good
strongly regular relation on X and

X/R = {{1, e}, {a}, {b}, {c}, {d}} = {R(1), R(a), R(b), R(c), R(d)}.

Now we have:

∗ R(1) R(a) R(b) R(c) R(d)
R(1) R(1) R(a) R(b) R(c) R(d)
R(a) R(1) R(1) R(b) R(c) R(d)
R(b) R(1) R(a) R(1) R(c) R(d)
R(c) R(1) R(a) R(b) R(1) R(d)
R(d) R(1) R(a) R(b) R(c) R(1)

Clearly (X/R; ∗, R(1)) is a dual BCK-algebra.
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4. δ- relation on HvBE-algebra

Let (H; ◦, 1) be a HvBE-algebra and A be a subset of H. The set of all

finite combinations of A with hyperoperation ◦ and
n⊙

i=1

ai = a1 ◦ a2 ◦ ...an,

is denoted by L(A) [5].

Definition 4.1. Let (H; ◦, 1) be a HvBE-algebra. Consider:

δ1 = {(x, x) : x ∈ H}

and for every natural number n ≥ 1, δn is defined as follows:

xδny ⇐⇒ ∃(a1, a2, ..., an) ∈ Hn,∃u ∈ L(a1, a2, ..., an) such that {x, y}⊆ u.

Obviously for every n ≥ 1 the relations δ n are symmetric and no reflexive

and transitive, but the relation δ =
⋃
n≥1

δn is a reflexive and symmetric

relation. Let δ∗ be transitive closure of δ (the smallest transitive relation
such that contains δ).

In the following theorem we show that δ∗ is a strongly regular relation.S

Example 4.2. Let H = {1, a, b}. Define the hyperoperation “◦” as follows:

◦ 1 a b
1 {1} {a, b} {b}
a {1} {1, a, b} {b}
b {1, b} {1, a, b} {1, a, b}

Then (H, ◦, 1) is anHvBE-algebra. δ 1 = {(x, x) : x ∈ H} = {(1, 1), (a, a), (b, b)}.
Since {1, a}, {1, b}, {a, b} ⊆ b ◦ a then 1δ2a, 1δ2b, aδ2b. Also, we know

that {1, a} ⊆ (1 ◦ a) ◦ b =
⋃

x∈1◦a
(x ◦ b) therefore 1δ3a.

Similarly, 1δ3b, aδ3b. Obviously, 1δna, 1δnb and aδnb, since δ =
⋃
n≥1

δn, then 1δa, 1δb and aδb.
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Theorem 4.3. Let (H, ◦, 1) be a HvBE-algebra. Then δ∗ is a strongly
regular relation on H.

Proof: Let x, y ∈ H and x δ∗ y. Then we show that for any s ∈ H :

(x ◦ s) ¯̄δ∗(y ◦ s).

Since δ =
⋃
n≥1

δ n and δ∗ is the smallest transitive relation such that

contains δ, then there exist a0, a1, ..., an ∈ H such that a0 = x, an = y and
there exist q1, q2, ..., qn ∈ N such that

x = a0δq1a1δq2a2 . . . an−1δqnan = y,

where n ∈ N. Since for any 1 ≤ i ≤ n, ai−1 δqi an, then there exists zjt ∈ H
such that

{ai, ai+1} ⊆ zi+1
1 ◦ zi+1

2 ◦ . . . ◦ zi+1
qi+1

,

where for 1 ≤ m ≤ n − 1, we have 1 ≤ t ≤ qm, and 1 ≤ j ≤ n − 1. Now,
since s ∈ H, then for all 0 ≤ i ≤ n− 1,

ai ◦ s ⊆ zi+1
1 ◦ zi+1

2 ◦ ... ◦ zi+1
qi+1

◦ s.

In a similar way, we get that

ai+1 ◦ s ⊆ zi+1
1 ◦ zi+1

2 ◦ ... ◦ zi+1
qi+1

◦ s.

Then for all 1 ≤ i ≤ n, and for all u ∈ ai ◦ s, v ∈ ai+1 ◦ s, We have
{u, v} ⊆ zi+1

1 ◦ zi+1
2 ◦ ... ◦ zi+1

qi+1
◦ s. Therefore u δqi+1

v, and so for all z ∈
a0 ◦ s = x ◦ s, w ∈ an ◦ s = y ◦ s, We have z δ∗ w. Then δ∗ is a strongly
right regular and similarly is a strongly left regular relation, therefore δ∗ is
a strongly regular relation on H.

Corollary 4.4. Let (H, ◦, 1) be a hyperBE-algebra. Then δ∗ is a strongly
regular relation on H.

Theorem 4.5. Let (H, ◦, 1) be a HvBE-algebra. (H/δ∗; ∗, 1̄) is a BE al-
gebra.

Proof: By Theorem 3.7 and 4.3, the proof is obvious.
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Example 4.6. Let H = {1, x, y, z, t}. Define hyperoperation “◦” as follows:

◦ 1 x y z t
1 {1, t} {x} {y} {z} {t}
x {1, t} {1, t} {1, t} {1, t} {1, t}
y {1, t} {1, t} {1, t} {1, t} {1, t}
z {1, t} {1, t} {1, t} {1, t} {1, t}
t {1, t} {1, t} {1, t} {1, t} {1, t}

Then (H, ◦, 1) is aHvBE-algebra. We have (x◦y)◦x = {1, x, t}, (x◦y)◦y =
{1, y, t}, (x◦y)◦ t = {1, t}, (x◦y)◦z = {1, z, t}. Then for any u ∈ H, 1 δ∗u
and so δ∗ (1) = {u ∈ H : 1 δ∗ u} = H = δ∗(u). Therefore H/δ∗={δ∗(1)}
and we see that (H/δ∗; ∗, δ∗(1)) is a trivial BE-algebra.

Example 4.7. Let H = {1, x, y, z}. Define hyperoperation “◦” as follows:

◦ 1 x y z
1 {1} {x} {y} {z}
x {1} {1} {1} {1}
y {1} {x} {1} {z}
z {1} {x} {1, y} {1}

Then (H, ◦, 1) is a HvBE-algebra. We conclude that H/δ∗ = {{1, y}, {x},
{z}} = {δ∗(1), δ∗(x), δ∗(z)} and then:

∗ δ∗(1) δ∗(x) δ∗(z)
δ∗(1) δ∗(1) δ∗(x) δ∗(z)
δ∗(x) δ∗(1) δ∗(1) δ∗(1)
δ∗(z) δ∗(1) δ∗(x) δ∗(x)

Now, by Theorem 4.3, (H/δ∗; ∗, δ(1)) is a BE-algebra.

Notation. We know that δ is reflexive and symmetric but is not transitive
on H. If R is an equivalence relation on H, then H/R is defined and we
have the following theorem;

Theorem 4.8 ([6]). Let (H, ◦, 1) be a hyper BE-algebra and R be an equiv-
alence relation on H. Then, R is a regular relation on H if and only if
(H/R; ∗, 1̄) is a hyper BE algebra.
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Definition 4.9. Let M be a nonempty subset of H. M is called δ-
part if for any n ∈ N, ai ∈ H, and L(a1, a2, . . . , an) ∩ M ̸= ∅, then
L(a1, a2, . . . , an) ⊆ M .

Example 4.10. Let H = {1, x, y, z}. Define hyperoperation “◦” as follows:

◦ 1 x y z
1 {1, x} {1, x} {y} {z}
x {1, x} {1, x} {y} {z}
y {1, x} {1, x} {1, x} {z}
z {1, x} {1, x} {1, x} {1, x}

Then (H, ◦, 1) is a HvBE-algebra. It is easy to verify that for any M ⊆ H
that M ̸= {1} and M ̸= {a}, M is a δ-part.

Corollary 4.11. Let (H, ◦, 1) be a HvBE-algebra and M,N are δ-part
of H. Then M ∩N is a δ-part of H.

Proof: For any n ∈ N, ai ∈ H, if L(a1, a2, ..., an) ∩ (M ∩ N) ̸= ∅,
then L(a1, a2, ..., an) ∩ M ̸= ∅, L(a1, a2, ..., an) ∩ N ̸= ∅. Since M,N
are δ-part, we have L(a1, a2, ..., an) ⊆ M,L(a1, a2, ..., an) ⊆ N and then
L(a1, a2, ..., an) ⊆ M ∩N . Therefore M ∩N is a δ-part of H.

Lemma 4.12 ([6]). Let M be a non-empty subset of a dual hyper K-algebra
H. Then the following conditions are equivalent:

(i) M is a δ-part of H,

(ii) x ∈ M , x δ y imply y ∈ M ,

(iii) x ∈ M , x δ∗ y imply y ∈ M .

Theorem 4.13. Let (H, ◦, 1) be a HvBE-algebra. If H be a dual hyper K-
algebra and for any x ∈ H, δ∗(x) is a δ-part, then δ is transitive relation.

Proof: Let x δ y and y δ z. Then there exist m,n ∈ N, ai, bj ∈ H

such that {x, y} ⊆ (

n⊙
i=1

ai) and {y, z} ⊆ (

m⊙
j=1

bj). Now, δ∗(x) is a δ-part,

x ∈ δ∗(x) ∩ (

n⊙
i=1

ai) and y ∈ (

n⊙
i=1

ai) ∩ (

m⊙
j=1

bj). Since δ∗(x) is a δ-part,

then (

n⊙
i=1

ai) ⊆ δ∗(x) therefore y ∈ δ∗(x)∩ (

m⊙
j=1

bj). Since δ
∗(x) is a δ-part,
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then (
m⊙
j=1

bj) ⊆ δ∗(x) therefore z ∈ δ∗(x). But z ∈ δ(z) by above z δ∗ x,

set M = δ(z) and know that δ∗(x) = δ(z) then by Lemma 4.12 , x δ z,
therefore δ is transitive relation.

Open problem: Under what conditions converse of above theorem is true?

5. Conclusion

In the present paper, we have introduced new HvBE-algebras and BE-
algebras based on equivalence relations.

This work focused on fundamental relations on HvBE-algebras and
we investigated some of their properties. The relations δ∗ and δ are con-
structed and studied, they are one of the most main tools for better under-
standing the algebraic hyperstructures. In future, we try to find an answer
to above open problem.

Acknowledgements. We wish to thank the reviewers for excellent sug-
gestions that have been incorporated into the paper.
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