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Abstract. Accurate and early yield estimation (from pea size) allows 1.- Make decisions at field level: 
green harvesting, irrigation management. 2.- Advance or organise the purchase of grapes from suppliers. 
3.- Forecast the volume of wine produced in the campaign that has not yet begun. 4.- Define the quality 
of the vintage: regular and detailed monitoring of whether, or not, the heterogeneity of the leaf surface, 
photosynthetic activity or soil moisture observed in the vineyards is as expected at this time, compared 
with historical values. 5.- Precise control of each vine in production, knowing which vines are no longer 
productive or should be grubbed up. The Sentinel-2 satellite has generated a time series of images 
spanning more than six years, which is a great help in analysing the state of permanent crops such as 
vineyards, where grapes are produced every year. The weekly comparison of what is happening in the 
current season with what has happened in the previous six seasons is information that is in line with 
agricultural practices: Winegrowers make the mental exercise of comparing how the vines are 
developing today with how they developed in previous seasons, with the aim of repeating the years of 
good yields. In addition, several commercial satellites can now capture images of 50 centimetres pixel 
resolution or even better, making it possible to check the health of each vine every year. Since 2020, 
GMV and Pago de Carraovejas have been working together to develop a yield estimation service based 
on field information and satellite images that feed machine learning algorithms. This paper describes the 
path followed from the beginning and the steps taken, summarising as follows: 1. - Machine learning 
algorithm trained with cluster counting and satellite data. 2. - Adjustment of the number of vines in 
production in each vineyard using very high-resolution imagery. 3. - Machine learning algorithm trained 
on real production from past campaigns and historical Sentinel-2 time series. The results obtained by 
comparing the actual grape intake in the winery with the yield estimation range from 91% accuracy in 
2020 to 95% accuracy in 2022.  

 
 
 
 

 

1 Introduction 
Knowing in advance and accurately vineyard yield from 
the grape’s pea size stage is a piece of very valuable 
information for winegrowers and winemakers: they can 
control the quality of the vintage according to whether 
heterogeneity in leaf area, photosynthetic activity or 
humidity is as expected, knowing which areas are no 
longer productive, better watering and green pruning 
management, forecast the volume of wine to be produced 
and organise in advance the purchase of supplies if 
necessary. 

Traditional methods or direct methods of yield 
estimation are based on theoretical equations with 
explanatory variables such as the number of grape 
bunches, the number of berries per bunch and the average 
berry weight [1]. They are static estimates based on a 
multi-stage process, highly dependent on adequate human 
resources, from counting bunches by visiting control 
parcels once to managing extensive historical databases 
of bunch weights and past yields. Bunches number and 
grape weights vary yearly according to the climatic 

conditions, the general health status of the vineyards and 
the agronomic practices such as grubbing up of 
unproductive vines [2]. 

Indirect methods are leading alternatives to traditional 
methods. The number of vines in the vineyard decreases 
with the age of the vineyard, as the vines can become sick 
and die. Aerial imagery can update variables such as the 
fault factor due to the dead vines' grubbing-up process 
[3]. Likewise, aerial imagery can account for spatial 
variability within each vineyard, based on well-known 
vegetation indices such as the Normalized Difference 
Vegetation Index (NDVI) and the Leaf Area Index (LAI) 
indices. Both indices are widely used with satellite 
imagery as well [4]. Since 2017, the Sentinel-2 mission 
stands out, which has meant a leap in satellite imagery 
with monitoring every five days at 10-20 m spatial 
resolution, making it possible to monitor the vegetation 
health status at any instant in time over large areas. Yield 
estimation with satellite imagery has focused on the 
NDVI and LAI indices, but few studies have introduced 
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indices such as the fraction of Absorbed 
Photosynthetically Active Radiation (fAPAR), which 
refers only to the green and alive elements of the canopy 
or the Disease Water Stress Index (DSWI), which refers 
to plant water stress [5-6]. 

In addition, in recent years, artificial intelligence (AI) 
has been added as a cutting-edge technology in machine 
learning and data mining for yield estimation [1]. Most of 
the research is based on local studies based on RGB 
cameras and computer vision techniques. There are few 
AI-based studies for yield estimation using satellite 
imagery plus artificial intelligence algorithms [7]. Here, 
the authors show the first research to apply deep learning 
techniques to regional yield estimation using satellite 
imagery. Sentinel-2 NDVI index time series is the 
satellite imagery analysed. 

This publication presents a methodological approach 
for yield estimation at the vineyard parcel level using a 
suitable regressor machine learning algorithm trained 
with cluster counting from fieldwork reduced to a few 
vineyards, an aerial image to update grubbed vines and 
dedicated value-added products generated from time 
series analysis of Sentinel-2 vegetation indices. 

2 Materials and methods 

2.1 Study area 

The vineyard extends over 200 hectares. 160 hectares are 
dedicated to the production of top-quality wines. It´s 
located in the Ribera del Duero Appellation of Origin 
(VQPRD Vin de Qualité Produit dans une Région 
Déterminée) region at an average altitude of 850 m, on a 
slope perpendicular to the Duero River that crosses 
Peñafiel village from east to west (Fig. 1). The terrain is 
slightly undulating, flat in the centre of the valley and 
steep and abrupt as one ascends. The vineyard is 
governed by the precepts of organic viticulture. Three 
varieties are grown: mainly Tinto Fino (Tempranillo), 
together with Cabernet Sauvignon and Merlot.  There are 
different training grapevines adapted to the orography in 
each case: Cordon Royat, vertical vase and Echalas vase. 
Yields are limited depending on the cluster-canopy ratio 
combined with green harvesting. Sensors, soil analysis, 
meteorological data collection and modelling are 
fundamental axes for decision-making in the vineyard. 

 
Figure 1. Study area Pago de Carraovejas State winery.  

2.2 Manual sampling 

Counting bunches requires an investment in staff time 
and dedication. The process is exhaustive: Bunches are 
counted every ten rows and every ten vines, excluding the 
headers. On each vine, larger, intermediate, and smaller 
bunches are counted. For every certain number of vines, 
the grapes of a larger, intermediate, and smaller bunch 
are counted. To calculate the total kilos in a vineyard, the 
number of vines is multiplied by the average number of 
bunches classified into larger, intermediate, and smaller 
bunches, by the average number of berries according to 
bunch size and by the weight of the berry according to 
plot and variety history. At least two field visits are made. 
Once the maturation stage is reached, the weight of the 
berry from the historical databases is replaced by the real 
average weight of the bunches. The predictions estimated 
by this method are very close to reality. 

2.3 Aerial imagery 

An aerial orthophoto of the Instituto Tecnológico Agrario 
de Castilla y León (ITACyL) was used here. The flight 
was carried out in the summer of 2020 at 25 centimeters 
spatial resolution and spectral resolution in the blue (B), 
green (G) and red (R) bands.  The time of the flight 
coincides with the veraison stage where the reflectance of 
the vegetated vines is very different from the reflectance 
of the bare soil, so it is an optimal imagery for fault factor 
updating works. Two steps have been carried out. 

Firstly, the boundaries of the parcel from the 
Integrated Administration and Control System (IACS) 
were refined and adjusted to the extent of the vineyards. 
This step was made by a photo interpreter. Secondly, an 
algorithm that finds the best grey thresholds for each 
aerial band (RGB) was implemented to separate 
vegetated areas and bare soil. The thresholds vary for 
each vineyard as the soil conditions. Next, the vegetated 
areas were increased using an adjusted buffering process 
in each vineyard according to its planting frame, so that 
the bared rows between vines lines were included like 
productive areas. The remaining area is the non-
producing area in each vineyard, this being the fault 
factor. Figure 2 shows the productive area and the fault 
factor in a vineyard. 

 
Figure 2. Fault factor product generated from aerial imagery.  
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2.4 Satellite imagery 

The complete series of Sentinel-2 satellite images from 
May 2017 to August 2022 was processed. Three 
vegetation indices were selected as follows: 
1 - The LAI index, which provides canopy information. 

The relationship between NDVI and LAI is widely 
known. The NDVI index is indicated in crops where 
at maximum vigour the bare soil component is 
missing in the measured reflectance from the satellite, 
so it comes from vegetation reflectance only. This is 
not the scenario in vineyards, where bare soils remain 
in the phase of maximum vigour, so to isolate the 
bare soil component leaving the part coming from 
vegetation the reflectance measured from the satellite, 
the indexes that correct the soil brightness are 
recommended. The Soil Adjusted Vegetation Index 
(SAVI) was the selected index. The best relationship 
between SAVI and LAI in the study area was then 
established by working on the time series, the aerial 
orthophoto and local information. The relationship 
between SAVI and LAI must be adjusted to each crop 
and meteorological conditions [4]. 

2 - The fAPAR index, which quantifies the fraction of 
solar radiation absorbed by living leaves for 
photosynthetic activity. The used equation was 
adapted to Sentinel 2 from the algorithm developed 
for the Copernicus Global Land Service.  

3 - The DSWI index, which accounts for the moisture at 
the soil/vegetation interface. Previous studies have 
reported a very good correlation with the LAI index 
[8]. 

Table 1 Summarises the managed vegetation indices.         
More than 700 images have been processed to generate 
75 fortnightly vegetation indices composites from March 
to October each year. 17 composites could not be 
generated because the cloudy conditions in each Sentinel-
2 satellite pass (revisit every 5 days) were permanent in 
all the vineyards under study. Within the 75 generated 
composites, gaps due to partial cloud coverages were 
filled by applying an interpolation process. A fortnightly 
LAI composite time series over one vineyard is shown in 
(Fig. 3). The handling of the historical series is of great 
importance, as it allows the comparison of current values 
with the averages or maximum that could be expected 
based on what was observed in previous years. An 
example of this is the recent general heatwave episode in 
Spain in the summer of 2022, the effect of which is 
reflected in LAI values that, fortnight by fortnight, are 
permanently below the expected average. 

In addition to the temporal analysis at the parcel level, 
spatial analyses are also made within the parcels. Within 
each plot, the status of the LAI, fAPAR and DSWI 
indices is monitored every 10 metres in comparison to the 
historical average and maximum values recorded, which 
in turn are the inputs for a second block of value-added 
products oriented to support decision-making. An 
example of this is shown in (Fig. 4), where a zoned 
vegetation quantity product is generated from the LAI 
index and updated fortnightly. The information provided 
is summarised in three possible scenarios:  
- Bellow expected: below the historical average. 
- Slightly high: between the average and the historical 

maximum. 
- Very high: the vegetation quantity is at an all-time high. 

Table 1. Sentinel-2 vegetation indices description. 

Acronym Name Algorithm Inputs 

SAVI Soil Adjusted Vegetation 
Index (NIR - RED) / (NIR + RED + L) * (1.0 + L) B04, B8A, L 

LAI Leaf Area Index (-1 / a2) * Ln ((SAVI - a0) / (-a1)) SAVI, a0, a1, a2 

fAPAR 
fraction of Absorbed 

Photosynthetically Active 
Radiation 

Function of GREEN, RED, REDEDGE1, 
REDEDGE2, REDEDGE3, NIR, SWIR1, SWIR2, 

ViewZen, SunZen, RelAzim 

B03, B04, B05, B06, B07, B8A, 
B11, B12, ViewZen, SunZen, 

RelAzim 
DSWI Disease water stress index (NIR + B03) / (B11 + B04) B03, B04, B8A, B11 

 

 
Figure 3. Fortnightly LAI composite time series. The purple line shows the evolution of the plot-averaged LAI, while the blue and 
green lines are repeated every year because they are the historical average and maximum fortnightly values, respectively.  
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Figure 4. Vegetation quantity product derived from the current 
and historical fortnightly LAI index.  

2.5 Methods 

The methodological approach is based on a machine 
learning (ML) model implemented and refined over the 
last three years of collaboration between GMV and Pago 
de Carraovejas. Inputs are manual sampling, aerial 
orthophoto and satellite imagery. Field visits are carried 
out on reference parcels and grape cluster counting is 
performed following the steps described in Sect. 2.2. The 
expected yield can then be estimated by following 
theoretical equations used by winegrowers. A general 
theoretical equation would be the following: 

Theoretical yield estimation [kg/ha] = Function (nº of 
vines, nº of bunches per vine, nº of grapes per bunch, 

berry weight, vineyard area)   (1) 

In Eq. (1) the number of vines is calculated from the 
planting frame and the area of the vineyard. Here the 
fault factor, generated from aerial imagery as described in 
Sect. 2.3, is used to indicate the current number of vines 
in each vineyard instead of the theoretical one.  

Once the theoretical yield estimation was improved 
thanks to the updated fault factor, the ML model was 
implemented using satellite imaging in the current year 
plus the value-added products generated from the 
analysis of the historical series. The general equation is as 
follows: 

Satellite yield estimation [kg/ha] = Function (Theoretical 
yield estimation, LAIf (c,h), fAPARf (c,h), DSWIf (c,h), 

VA-LAIf, VA-fAPARf , VA-DSWIf)   (2) 

Where f indicates the fortnightly composite starting with 
the sprouting of the vineyard, c indicates the current year, 
h indicates the historical years and the prefix VA indicates 
the value-added products. The dataset entered in Eq. (2) 
are yields and satellite-based statistic values at the parcel 
level. 

The choice of the ML model to be implemented 
started with a previous exploration work based on Auto 
Machine Learning (AutoML). AutoML trains and tests a 
wide range of regression ML algorithms starting from a 
dataset. The result is ranking the regressors by the score 
achieved by each one and a summary of the needed 

preprocessing or feature engineering. The results cannot 
be considered definitive, as the probability that the 
winning algorithms are overtrained is high, but it is a 
starting point as it gives clues as to which algorithms are 
the best along with their hyperparameters. Figure 5 shows 
the result of AutoML work on a dataset generated 
according to the indications in Eq. (2). 

 
Figure 5. Result of AutoML processing trained with a formed 
dataset following the Eq. (2) indications. 

3 Results and Discussion 
3.1 Season 2020 

Every year Pago de Carraovejas schedules field visits in 
the first fortnight of August to conduct cluster counting. 
The 2020 season was focused on the implementation and 
calibration of the best ML model: 68 parcels were visited 
(65 Tempranillo and 3 Cabernet Sauvignon varieties). 
The vineyards have planting dates ranging from 1989 to 
2015, with different planting frames from 2.8*1.1 metres 
to 3.0*1.5 metres. They range in size from 0.24 to 
5.6 hectares. The theoretical yield estimation was made 
according to Eq. (1). 

Aligned with their planning, the fortnightly LAI, 
fAPAR, DSWI and the corresponding value-added 
composites were generated up to that fortnight. Statistics 
were generated at the parcel level such as averages, 
standard deviations, and percentages. This information, 
together with the yield estimation, constitutes the dataset 
needed for the satellite yield estimation following Eq. (2). 
In the AutoML exercise, the parcels are sorted from the 
smallest to the largest area, leaving 33% of the sample for 
validation. This ensures that parcels of any extent are 
available for both training and validation. The best model 
results in a predictive score of R2 equal to 0.82 and an 
RMSE of 1.66 Tons. 

The largest deviations in yield estimation were 
observed in vineyards where vegetation indices indicated 
high heterogeneity, especially in vineyards where there 
were patches without vegetation at veraison, which was 
an indicator of non-productive areas. This was contrasted 
with the 2020 aerial orthophoto as shown in (Fig. 6). As 
explained in Sects. 2.3 and 2.5, the fault factor layer was 
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generated and incorporated into Eqs. (1) and (2). The 
AutoML exercise was repeated with the sample sorted in 
the same way and results were achieved in a predictive 
score of R2 equal to 0.91 and an RMSE of 1.14 Tons. 
Considering the fault factor had an impact of a 9% 
improvement in R2 and 0.5 tonnes in RMSE. 

Up to that point, an ML model was established which 
was well-trained with data from manual sampling plus 
satellite imagery. The final ML model validation was 
carried out with the real yield once the harvest was 
finished. The result found was that the yield estimation 
following only the theoretical equation yielded an 
average deviation per plot of 2.68 tonnes, while the 
satellite yield estimation lowered this deviation to only 
1.65 tonnes per parcel, i.e., decreasing the deviation by 
almost 50%. 

 

 
Figure 6. Left, the LAI index for the fortnight of July 2020. 
Right, the generated fault factor using the aerial imagery from 
the 2020 flight. 

3.2 Season 2021 

The objective for 2021 is to test with a small sample of 
field data that the ML model implemented in the 2020 
season works properly. More parcels were added in 2021, 
bringing up to 89 parcels in total (70 Tempranillo, 13 
Cabernet Sauvignon, and 6 Merlot varieties). For the new 
parcels, the fault factor was generated using the 2020 
aerial orthophoto. That is, the fault factor layer was the 
one corresponding to 2020. Regarding satellite imagery, 
on one hand, historical LAI, fAPAR and DSWI 
composites were updated with the 2020 fortnightly 
composites, on another hand, fortnightly composites were 
generated until the first fortnight of August of 2021. In 
that fortnight Pago de Carraovejas visited them for bunch 
counting except for the Merlot parcels because they are 
located on terraces. Just 20 vineyards were considered for 
running the ML model following Eqs. (1) and (2).  

The estimation was validated against the real yield. 
The satellite estimation underestimated the total yield, 
achieving an overall accuracy of 94.2%, but improved on 
the 92.3% achieved theoretically. Figure 7 shows the 
yield estimation at the parcel level and the overall 
accuracy achieved. According to these results, the ML 
model trained with satellite images estimated the yield 

better than only based on field visit plus theoretical 
equation. The ML model required a small sample of 
bunch counts, but only in a few reference vineyards, 
which means fewer visits to the field. Moreover, it 
estimated the production in the entire property, regardless 
of its location on terraces and the difficulty of counting 
bunches in these areas. 

 
Figure 7. Map with the estimated yield at parcel level (kg/ha), 
veraison stage, 15th August 2021. The bar chart shows the total 
yield versus the estimated yields, according to the theoretical 
equation and ML model with satellite. 

3.3 Season 2022 

The objective for 2022 is the consolidation of the ML 
model. The same path described in the 2021 season was 
repeated in 2022. Just 20 vineyards were considered for 
running the ML model following Eqs. (1) and (2). The 
estimation was validated against the real yield and the 
overall accuracy was 95.1%. However, the yield was 
underestimated again, being significant in the case of the 
Merlot variety, where the accuracy achieved was 70%. 
There are two important factors to consider here: 

1 - In the vineyards with Merlot variety, past visits for 
cluster counting were not conducted, as they are 
located on terraces, which complicates their 
implementation.  Therefore, the ML model was 
trained with Tempranillo and Cabernet Sauvignon 
varieties. 

2 - Season 2022 was an anomalous year marked by low 
precipitation and high temperatures, as reflected in 
(Fig. 3), where the LAI index was permanently below 
the expected average value. 

To assess the impact of these two factors, a simple 
analysis was carried out. The yield of Merlot vineyards 
was divided by the number of vines and the average yield 
per vine was obtained. The same exercise was carried out 
with the Tempranillo and Cabernet Sauvignon. The result 
was that in season 2022, the Merlot variety had an 
average yield of 3.08 kilos per vine, and the Tempranillo 
and Cabernet Sauvignon vineyards had a yield of 
2.12 kilos per vine. The difference of almost one 
kilogram per vine in 2022 needs to be analysed in detail 
in previous years to assess whether it is the expected 
difference or whether it has been accentuated due to the 
anomalous climatic year. If the difference is maintained, 
it must be considered in Eq. (1) that the weight of the 
berry is different according to variety.  
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A simulation was carried out by introducing different 
berry weights in Eq. (1) according to variety and the ML 
model was re-run. The result was an estimated yield 
slightly higher than the real yield, reaching up to 98% 
overall accuracy, such that the underestimation 
disappeared in global terms, but was maintained in the 
Merlot variety. Nevertheless, a positive noteworthy 
aspect is the accuracy achieved in Merlot improved from 
the previous 70% to 86%. Table 2 summarises the 
accuracies achieved for each planned target. 

Table 2. Planned targets each season and achieved results. 

Season Targets Results 

2020 ML model 
implementation  

Predictive R2: 0.91 
Predictive RSME: 1.14 Tns 

2021 ML model testing 
Real yield: 452 Tns 

Estimated yield: 425 Tns 
Overall accuracy: 94.0% 

2022 ML model 
consolidation 

Real yield: 568 Tns 
Estimated yield: 540 Tns 
Overall accuracy: 95.1% 

4 Conclusions 
This study presents a methodology for yield estimation at 
the vineyard parcel level with an overall accuracy of 90-
95% compared to the total real vintage for Tempranillo, 
Cabernet Sauvignon and Merlot varieties. The vineyards 
under study range in age from 6 to more than 30 years old 
with surfaces from 0.24 hectares, several training 
grapevines and different planting frames. The 
methodological approach is based on a suitable ML 
regressor selected from AutoML processing.  The input 
data are an aerial orthophoto, fieldwork reduced to a few 
vineyards for bunch counting and satellite vegetation 
indices in fortnightly time series. The time for yield 
estimation has been aligned with the time of the field visit 
for bunch counting, which is at veraison. The same 
approach can be adopted if the bunch counting fieldwork 
is brought forward to the pea-size stage.   

The improvement in yield estimation at the parcel 
level when considering the fault factor in both theoretical 
and satellite estimation was 9% and 0.5 tonnes in the 
predictive R2 and RMSE scores, respectively. The 
frequency of updating the fault factor depends on the 
dynamism of the vineyards. It may be necessary to update 
it every year or it may be sufficient every 3 or 5 years. In 
this study, public area orthophoto from the Spanish 
National Aerial Observation Plan (PNOA) of 2020 was 
used and the fault factor was not updated in 2021 and 
2022 either. In the case that an annual update is required, 
it is not possible to carry it out with public aerial 
orthophoto, but nowadays images from commercial 
satellites with spatial resolutions of up to 30 centimetres 
can replace aerial orthophoto. In addition, it is possible to 
programme the capture at the time of veraison of the 
vineyards, so that, at the same time as updating the fault 
factor, vegetation indices of very high resolution can be 
calculated, since they not only have RGB spectral 

resolution, but also in other bands of the electromagnetic 
spectrum such as the red edge or mid-infrared. 

Once the ML model is fixed, the cluster counting 
fieldwork is reduced to a few reference parcels, whereas 
the yield estimation is made for a much larger number of 
vineyards than those visited. The extent may be much 
larger than the study area in this work. However, it is not 
always possible to do cluster counting fieldwork, either 
because there is no staff with the time and dedication to 
do it or because the location of the vineyards, for 
example on terraces, makes it very difficult to carry out. 
At present, efforts are being made to develop a predictive 
model without counting bunches but trained with real 
yields from past seasons at the parcel level. In addition, 
not only satellite-based explanatory variables are 
considered, but also climatic variables from weather 
stations. Moreover, this model will be trained with years 
that are in the expected climate average, such as the past 
anomalous year 2022. The theoretical yield estimation 
Eq. (1) will not be used and there is no dependence on 
berry weight per variety as seen in the case of Merlot. 

The Sentinel-2 time series began in 2017 with the 
commissioning of the Sentinel-2A satellite. Today it is 
the Sentinel-2A/2B satellites that monitor every point of 
the earth with a 5-day review and its continuity is 
guaranteed with the scheduled launch of the Sentinel-2C 
satellite in 2024 plus the Sentinel-2D satellite undergoing 
tests with a view to its launch at the end of Sentinel-2B's 
lifetime. This means that the historical fortnightly 
vegetation index composites used here will continue to be 
fed from a growing inter-annual sample, picking up the 
particularities of each event as the machine learning 
algorithms learn better from each of these events. 
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