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Abstract. The Phenobot platform is comprised by an autonomous robot, instrumentation, artificial 
intelligence, and digital twin diagnosis at the molecular level, marking the transition from pure data-driven to 
knowledge-driven agriculture 4.0, towards a physiology-based approach to precision viticulture. Such is 
achieved by measuring the plant metabolome ‘in vivo' and 'in situ', using spectroscopy and artificial 
intelligence for quantifying metabolites, e.g.: i. grapes: chlorophylls a and b, pheophytins a and b, 
anthocyanins, carotenoids, malic and tartaric acids, glucose and fructose; ii. foliage: chlorophylls a and b, 
pheophytins a and b, anthocyanins, carotenoids, nitrogen, phosphorous, potassium, sugars, and leaf water 
potential; and iii. soil nutrients (NPK). The geo-referenced metabolic information of each plant (organs and 
tissues) is the basis of multi-scaled analysis: i. geo-referenced metabolic maps of vineyards at the macroscopic 
field level, and ii. genome-scale 'in-silico' digital twin model for inferential physiology (phenotype state) and 
omics diagnosis at the molecular and cellular levels (transcription, enzyme efficiency, and metabolic fluxes). 
Genome-scale 'in-silico' Vitis vinifera numerical network relationships and fluxes comprise the scientific 
knowledge about the plant's physiological response to external stimuli, being the comparable mechanisms 
between laboratory and field experimentation - providing a causal and interpretable relationship to a complex 
system subjected to external spurious interactions (e.g., soil, climate, and ecosystem) scrambling pure data-
driven approaches. This new approach identifies the molecular and cellular targets for managing plant 
physiology under different stress conditions, enabling new sustainable agricultural practices and bridging 
agriculture with plant biotechnology, towards faster innovations (e.g. biostimulants, anti-microbial 
compounds/mechanisms, nutrition, and water management). Phenobot is a project under the Portuguese 
emblematic initiative in Agriculture 4.0, part of the Recovery and Resilience Plan (Ref. PRR: 190 Ref. 09/C05-
i03/2021 – PRR-C05-i03-I-000134). 

1 Introduction
Current Precision Viticulture (PV) relies heavily on data 
science and large-scale sensing methods such as 
multispectral sensors, drones, satellites, and individual 
instruments for measuring moisture and temperature. 
This approach does not prioritize the use of in-situ 

physiology-based diagnostics supported by Omics 
measurements. Managing the complex interactions 
between genotype, environment, and management 
(GEM) using a systematic, quantitative, and causal 
methodology is currently challenging with these 
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approaches. The primary obstacle is the lack of tools for 
real-time, in-situ monitoring of plant metabolism, which 
are still in the research phase and have not been widely 
implemented or made available in the context of 
Agriculture 4.0. 

PV relies heavily on data, falling short in representing 
the intricate soil-plant-climate system on a mechanistic 
basis. Consequently, when environmental conditions 
deviate from historical data, models are unable to 
accurately predict plant metabolic and physiological 
networks. Additionally, data-intensive PV techniques are 
not easily transferable between different locations or 
years, since perturbations on relationships are influenced 
by various complex factors acting at different scales. 
Relying solely on data-based AI approaches instead of 
considering the plant's molecular and physiological 
mechanisms is a significant obstacle in PV's 
development. This challenge has hindered the effective 
implementation of biotechnological strategies in 
advanced PV and needs a shift to mechanistic cause-
effect approaches to provide reliable information on plant 
physiological diagnosis. 

The Future of PV faces significant challenges, such as 
how to: i) implement targeted and precise practices based 
on plant physiology; ii) use advanced high-throughput 
digital sensors; and iii) integrate these sensors with 
systems biology in silico to explore grapevine metabolic 
pathways and gain a better understanding on how field 
physiology and metabolism are driven by Genotype-
Environment-Management interactions. INESC TEC 
Omics robotic platforms, such as Metbots, represent the 
cutting-edge in ‘in-situ’ metabolomics, leveraging 
advanced Point-of-Measurement (POM) spectroscopy 
analysis to quantify i) leaves (pigments, minerals, 
metabolites, and biomolecules), ii) fruits (including 
pigments, sugars, organic acids, metabolites, and 
biomolecules), and iii) sap: sucrose, glucose, fructose, 
and NPK. 

Here in we present the Phenobots project - a robotic 
platform for Intelligent photonics for high-throughput ‘in-
vivo’, ‘in-situ’ and ‘in-silico’ vine molecular phenotyping 
in PV, comprising of: i. autonomous robot for geo-
referenced individual plant monitoring (soil, leaf, fruits); 
ii. Point-of-Measurement system for metabolomics, 
physiology state, and precision fertilization; iii. 
Tomography-like metabolomic internal structures 
assessment and multi-scaled diagnosis; and iv. inferential 
genome-scale models digital twins for performing 
inferential omics diagnosis.  

2 Autonomous robotic platform 

There are currently few robots available for use in 
agriculture. Although some robotic solutions have been 
developed for specific agricultural tasks over the last two 
decades, many of these solutions are not easily scalable 
or replicable to other farms due to variations in terrain 
and crop types. However, INESCTEC's robotics lab has 
developed specialized robotic platforms, such as AgRob 
V16 and ROMOVI (P2020 project), designed to operate 
on steep slopes in the Douro Valley terrain. These 

platforms have overcome challenges related to GPS 
signal issues, harsh terrain conditions that limit 
instrumentation, and slopes that require precise path 
planning. 

 
Figure 1. Autonomous robotic platform: (a) robot; (b)  
VineSLAM navigation system reconstructed virtual vineyard 
map ([2]). 

 

Figure 2. Autonomous robotic platform: (a) robotic arm with 
POM, camera, and proximity sensor, (b) computer vision deep-
learning model for leaf and grape/grape bunch recognition; and 
(c) path planning for performing geo-referenced metabolic 
mapping using spectroscopy. 

2.1 Sensors and navigation 

The present generation of robots uses our developed 
Vineyard Simultaneous Localization and Mapping 
VineSLAM system [1], taking into consideration the 
natural and artificial features of the vineyard to recognize 
the localization, which compensates for poor GPS 
accuracy. Tests of AgRob V16 in a real steep slope that 
this platform can overcome ditches, rocks, and high 
slopes (30%). With a robust localization system, it can 
perform autonomously a crop monitoring task (crop 
yield, soil/air temperature/humidity, and crop water stress 
index), being cost-effective for the end-user. 
The system is divided in three main layers: 

• Perception: 3D point cloud processing to extract 
edge, planar and semiplane features; 

• Mapping: Multimodal registration of the types 
of features extracted to build a consistent 3D 
map of the agriculture environment; 

• Localization: PF-based procedure that uses both 
point- and semiplane-based information to 
localize the robot. 

Thus, our approach can efficiently extract point and semi 
plane features from a 3D point cloud and use them to 
build a map of the crop, localizing the robot within this 
map (Fig. 1) [2]. 

2.2 Vision system and Robotic Arm 
Measurement 

Measurement of the vine leaf and grapes is performed by 
the POM mounted on the robotic arm (Fig. 2a). After 
positioning the robot in front of the desired vine plant, the 
following procedure is performed: i. using machine 
vision to locate vine leaves and grape bunches (Fig. 2b) 
[3]; ii. pin-point the grape or leaf to be measured [3-5]; 
iii. calculate the best arm trajectory until 0.5 cm 
proximity; iv. trajectory control with camera and 
proximity sensor [6,],; and v. use spectrometer data to 
finetune the approach in the final 0.5 cm for performing 
the measurement. Grape and leaves recognition using 
deep learning models work as follows:  

I. Data collection: video data recorded by cameras 
mounted on top of an agricultural robotic 
platform; image extraction and storage from 
videos to build the input dataset; 

II. Dataset generation: image annotation by 
drawing bounding boxes around grape bunches 
in images considering two different classes; 
image augmentation by the application of 
several operations to the images and annotations 
to increase the dataset size and avoid overfitting 
when training the DL models; image splitting of 
the image size, to avoid losing resolution due to 
the image resize operation performed by the 
models to their kernel size (in this case, 300 × 
300 px, with three channels); 

III. Model training and deployment: training and 
quantization of the DL models to deploy them in 
a low-cost and low-power embedded device with 
the main goal of performing time-effective grape 
bunch detection in images (Fig. 2) [3]. 

 
Figure 3. Point-of-measurement intelligent photonics 
laboratory: (a) manual hydric potential using Scholander 
chamber vs using Metbots POM device; (b) POM with capsule 
system and IoT Software on mobile phone; (c) direct 
quantification of glucose, fructose, malic and tartaric acids in 
several grape varieties [10]. 

3 Point-of-measurement system 

3.1 Hardware and software 

The POM system is a UV-Vis-SWNIR (200-1200 nm) 
Intelligent of things (IoT) system, using INESC TEC 
AgIoT platform and dedicated spectroscopy electronics 
[8-10] (Fig. 3). The IoT capacity allows the device to be 
remotely operated without any software installation, so 
that is immediately plugged into the robot arm, or used as 
a stand-alone portable intelligent photonics laboratory 
(Fig. 3a) [10,11]. The POM can simultaneously measure 
solid structures (e.g. leaf, grapes, soil) or liquids (sap, 
fertilizer, grape juice, fermentation) by using a plug-in 
capsule system as described in [12]. The POM has no 
other than an on/off key and is an intelligent device 
system that can use distributed learning system for 
creating a collaborative big database for the spectroscopy 
AI system [13]. 

An example of ease of usage is the direct comparison 
of measuring the water potential: i. Scholander chamber 
(Igor Gonçalves - ADVID, Portugal) vs. ii. Metbots POM 
(Renan Tosin - INESC TEC, Portugal). Using the 
Sholander chamber is extremely laborious and not 
practical, whereas the POM is less than 150g and the leaf 
water potential is measured and estimated in less than 1s 
[11] (Fig. 3a).  

 

 
Figure 4. Grape internal tissue decomposition for direct 
analysis of skin, pulp, and seed metabolomics. 

3.2 Spectroscopy information processing 

Spectroscopy data in complex samples, such as plant 
structures (e.g., leaves or grapes) is characterized by 
multi-scaled interference and matrix effects, carrying 
both physical and chemical information in a single 
spectral. Unscrambling the existing information 
contained in each spectrum lies at the heart of intelligent 
photonics, allowing ‘in-vivo’ metabolic quantification 
and a key enabling technology for physiology-based 
viticulture. 

Spectral information is pre-processed for removing 
scattering artifacts and afterward subjected to processing 
by i. Feature space optimization: information about a 
constituent is present in the spectra in different scales and 
wavelengths; and ii. Covariance mode (CovM) search: 
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searching a group of samples within the feature space that 
belong to the same interference pattern, that is, the 
gradient mixture of interferents, where information is 
proportional to the constituent concentration correct 
features and transforms [10,11]. The developed state-of-
the-art CovM search method allows for a significant 
decrease in the error estimation, allowing to attain 
significantly lower detection limits and several 
metabolites possible to be quantified from a single 
spectrum, such as i. leaves (chlorophylls a/b, pheophytins 
a/b, anthocyanins, carotenoids, nitrogen, potassium, 
phosphorous, water potential); ii. grapes (chlorophylls 
a/b, pheophytins a/b, anthocyanins, carotenoids, glucose, 
fructose, malic and tartaric acid, total acidity, tannins, 
nitrogen) [10,11]; iii. sap nutrition (NPK); or iv. fertilizer 
(NPK) [14] (Fig. 3.). 

4 Tomography-like metabolomics 
The POM capacities have recently been updated into 
providing internal tissue reconstruction with the 
SpecTOM technology [15]. The optical configuration of 
the POM allows it to record internal tissue information as 
described in Fig. 4. The observed recorded spectra are the 
convolution of the internal tissue spectra of the different 
spectra: skin, pulp, and seed (Fig. 4). An innovative 
method using hierarchical latent spaces modelling is used 
to provide a bi-directional relationship between the 
observed spectra to the different tissues spectra, allowing 
to infer the internal tissue spectra once a grape spectrum 
is observed (Fig. 4), which enables to determine the 
maturation stage of each tissue or to detect maturation 
abnormalities in internal tissues (e.g. seeds). 

5 Genome-scale model 

Genome-scale models (GEMs) (Fig. 5) are state-of-the-
art mechanistic descriptions of all existing annotated 
genome-scale relationships between genes, proteins, 
enzymes, and metabolites, representing metabolic 
pathways, regulation mechanisms, and cell transport [16]. 
This knowledgebase is translated into a numerical model, 
representing the calculation of pseudo-steady states given 
by the known physiological constraints (e.g., protons, 
nutrients, CO2, photon intensity, and quantified omics 
data) to define a phenotype space and determine 
physiological cell states [17-19]. Current models 
largely benefited from Bioinformatics and Systems 
Biology infrastructure for genome, proteome, 
expression/regulation, and pathways annotation, allowing 
to assemble full plant ‘omics’ model with multi-organ 
and tissue capacities [20-22]. For example, tomato multi-
organ GEMs (root, stem, and leaves) can accurately 
predict metabolic fluxes in the whole plant for central 
metabolism, the impact of photon intensity on 
photosynthesis in leaves and stems, sap composition in 
xylem and phloem, and the impact of nitrate (NO3) 
deficiency on growth rate [22]. 

Gap knowledge challenging (grapevine) GEM 
physiology-based PV, includes: i) incomplete gene 
annotation; ii) limited knowledge of metabolic pathways 
that difficult accurate modelling of the metabolism of 
grapevine cells; iii) lack of experimental data (e.g. gene 
expression data, metabolite measurements, and enzyme 
activities); and iv) limited integration with other omics 
data to fully understand the metabolic network of the 
grapevine. 

The Phenobot project is currently building a Vitis 
vinifera GEM with multi-organ capabilities (Fig. 5), 
based on the duration of VitisNet [23] in curated and 
annotated genes, transcripts, transporters, enzymes, and 
metabolites (7854 genes and transcripts, 1631 proteins, 
and 1998 metabolites), integrating the root, stem, grape, 
and leaves with xylem/phloem transport by 
interconnecting each organ through input-output 
metabolites and nutrients (Fig. 5) [22]. 

 

 
Figure 5. 'In-Silico' Genome scale modelling for physiology-
based Precision Viticulture. 

The GEM model is used for both simulation and 
diagnosis. Simulation is performed using constrained-
based flux balance analysis (FBA) using climacteric data 
(temperature, light intensity, and cycle) (Fig. 2). Flux 
constraints are set from both experimental and 
bibliographic data. Diagnosis is performed by constrain-
based FBA with regression against ‘greenhouse’ 
controlled experiments ‘omics’ quantification - using 
transcription, proteomics, and metabolomics results to 
characterize and diagnose gene-protein-enzyme-flux of 
the functional state within the grapevine phenotype space 
[24,25] (Fig. 5). The GEM model is used to infer 
metabolic fluxes and active pathways, where gene 
transcription and enzyme efficiency is given by external 
variables (nutrients and climate). GEMs can link the 
information between the field and biotechnology 
laboratory through the analysis of the expressed 
phenotype and by understanding the limitations  
of the phenotype space under different conditions, which 
can either limit or enhance cell functions. Phenotype 
spaceallows targeting  specific cellular mechanisms, 
  

introducing viticulture into a more quantitative and 
scientific approach towards physiology-based Precision 
Viticulture. 

5 Time-course monitoring 

Time-course monitoring of individual plants’ physiology 
can be analyzed at the vineyard level, by the creation of 
time-course and geo-referenced spatiotemporal maps 
(Figs. 6 and 7). Previous results in Douro Valley to 
Touriga Nacional, show that there is a direct relationship 
between fruit maturation, terroir features, and climate 
conditions; and that these are extremely dynamic. 

 

Figure 6. Grape geo-referenced metabolic maps from verasion 
to harvest. 

 

Figure 7. Grape geo-referenced variance maps from verasion to 
harvest. 

(Figs. 6 and 7). Previous results in Douro Valley to 
Touriga Nacional, show that there is a direct relationship 
between fruit maturation, terroir features, and climate 
conditions; and that these are extremely dynamic. 

For example, key moments in grape maturation lead 
to increased metabolic variability and dependence on 
terroir and climate, such as during the veraison and 
harvest periods. (Fig. 6) shows that greater differences in 
maturation occur at these stages and that the terrain water 
retention is a great discriminant of the spectral 
characteristics of grapes in terms of pigments, sugar, and 
acids. When climacteric conditions are more stable and 
grape development is within veraison-harvest, grape 
composition tends to be more uniform along the vineyard 
(Fig. 6). 

In another example, one can observe that the grape 
maturation index (ratio sugars/acids) evolves at a slow 

rate until the 19th of August, and after this point, a 
significant acceleration in maturation is observed (Fig. 7).   

The acceleration in maturation is also highly 
correlated to the terroir features, where grapes monitored 
on the left-hand side generally present higher maturation 
ratios of sugars/acids. Phenobots will revise this data with 
GEMs to try to understand what changes are occurring at 
the molecular level, triggering these very significant 
differences in physiological response to climacteric and 
terroir during grape maturation. 

6 Conclusions 

The technology presented in this manuscript is the 
continuous effort to develop state-of-the-art tools that can 
enable ‘in-vivo’ molecular ‘omics’ diagnosis for 
implementing physiology-based precision viticulture. 
Furthermore, it is expected that GEMs can link plant 
biotechnology and field research, for implementing 
targeted molecular management of plant physiology, a 
new way of performing Precision Agriculture. 
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6 Conclusions 

The technology presented in this manuscript is the 
continuous effort to develop state-of-the-art tools that can 
enable ‘in-vivo’ molecular ‘omics’ diagnosis for 
implementing physiology-based precision viticulture. 
Furthermore, it is expected that GEMs can link plant 
biotechnology and field research, for implementing 
targeted molecular management of plant physiology, a 
new way of performing Precision Agriculture. 
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