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Traumatic brain injury (TBI), Alzheimer’s disease (AD), and epilepsy share 
proposed mechanisms of injury, including neuronal excitotoxicity, cascade 
signaling, and activation of protein biomarkers such as tau. Although tau 
is typically present intracellularly, in tauopathies, phosphorylated (p-) 
and hyper-phosphorylated (hp-) tau are released extracellularly, the 
latter leading to decreased neuronal stability and neurofibrillary tangles 
(NFTs). Tau cleavage at particular sites increases susceptibility to hyper-
phosphorylation, NFT formation, and eventual cell death. The relationship 
between tau and inflammation, however, is unknown. In this review, 
we present evidence for an imbalanced endoplasmic reticulum (ER) stress 
response and inflammatory signaling pathways resulting in atypical p-tau, 
hp-tau and NFT formation. Further, we  propose tau as a biomarker for 
neuronal injury severity in TBI, AD, and epilepsy. We present a hypothesis 
of tau phosphorylation as an initial acute neuroprotective response to 
seizures/TBI. However, if the underlying seizure pathology or TBI recurrence 
is not effectively treated, and the pathway becomes chronically activated, 
we  propose a “tipping point” hypothesis that identifies a transition of tau 
phosphorylation from neuroprotective to injurious. We outline the role of 
amyloid beta (Aβ) as a “last ditch effort” to revert the cell to programmed 
death signaling, that, when fails, transitions the mechanism from injurious 
to neurodegenerative. Lastly, we discuss targets along these pathways for 
therapeutic intervention in AD, TBI, and epilepsy.
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1 Introduction

TBI and CTE are characterized by abnormal tau deposition in brain tissue. Epilepsy 
can also represent a form of tauopathy, as a result of cellular injury due to repetitive seizures. 
Seizure-induced injury responses include neuronal excitotoxicity and inflammatory 
cascades, which can lead to tau deposition and cell death (1–3). Tau is crucial for neuronal 
structural integrity and intracellular axonal transport (4, 5). Although tau is most commonly 
present intracellularly, p-tau is also found in the synaptic cleft (6, 7). Hp-tau leads to 
decreased neuronal stability and extracellular NFT formation, seen in neurodegenerative 
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disorders including AD, CTE, TBI, and epilepsy. Tau cleaved by 
caspases, a family of enzymes involved in programmed cell death, is 
also present in NFTs (8, 9). Tau cleavage at specific sites by caspases 
increases susceptibility to hyper-phosphorylation and NFT formation, 
suggesting that cell death pathways contribute to the pathology of 
tauopathies (9).

The role of inflammation in this cascade, however, is unknown. 
We briefly outline key inflammatory proteins involved in molecular 
signaling in TBI, AD, and epilepsy; discuss ER stress and its differing 
roles in TBI, AD, and epilepsy; and summarize how inflammatory 
signaling imbalances the ER stress response post-injury. We propose 
that, in response to acute moderate–severe TBI or single seizures, both 
inflammatory signaling and an overwhelmed ER stress response 
activate tau-induced signaling pathways to prevent further cellular 
dysfunction and restore intracellular homeostasis. Furthermore, 
we  propose that in response to repeated injury, there is chronic 
activation of pro-inflammatory pathways and continual imbalance of 
the ER stress response, along with chronic activation of tau-induced 
signaling pathways.

We discuss three distinct processes, neuroprotection, injury, and 
degeneration, where injury is potentially reversible, and degeneration 
represents the spread of toxic effects to neighboring neurons and a 
lower likelihood of reversibility. We propose pathways by which the 
neuroinflammatory response to injury (seizures or TBI) contributes 
to tau hyper-phosphorylation and NFT formation, ultimately 
presenting our final hypothesis: tau phosphorylation plays a key role 
in neuroprotection, responding to recurrent seizures/injury, but 
there is a “tipping point” from neuroprotective to injurious effects 
– the repeated or sustained induction of an imbalanced ER stress 
response (specifically, the unfolded protein response [UPR]) and tau 
phosphorylation/hyper-phosphorylation. The ER stress response 
stimulates tau phosphorylation and continued tau cleavage; further 
phosphorylation/hyper-phosphorylation of tau promotes a 
continued UPR response and promotes neurodegeneration. This 
chronic dysregulation results in a shift from a tau-induced signaling 
pathway as a compensatory, neuroprotective response – which once 
reduced cellular dysfunction and attempted to restore apoptotic-
necrotic dynamics and cellular homeostasis – to an injurious 
mechanism that is unable to maintain intracellular homeostasis, nor 
dynamically revert to mechanisms of programmed cell death 
(apoptosis).

Lastly, we propose a role for Aβ and outline its “last ditch effort” 
to mediate the injurious effects of excitotoxicity and chronic tau 
pathway activation, reverting the cell to pro-death signaling. However, 
due to (1) sustained UPR signaling interacting with tau and Aβ (2) the 
inability of reactive astrocytes and microglia to successfully break 
down toxic tau and Aβ aggregates, this leads to further tau hyper-
phosphorylation resulting in NFT formation, as well as Aβ plaque 
accumulation – the hallmarks of neurodegeneration seen in 
AD pathology.

2 Injury response: molecular signaling

Inflammatory signaling, excitotoxic propagation, and ER stress 
play key roles in the atypical activation of cell death cascades and 
excessive phosphorylation of tau, resulting in downstream toxic tau 
aggregates and eventual neurodegeneration.

2.1 Inflammatory proteins and 
neurotransmission

Inflammatory proteins, including receptor-interacting kinases 
(e.g., RIP1/RIP3) and cytokines (e.g., interleukin-1 [IL-1], caspases), 
modulate inflammatory function and regulate forms of cell death such 
as necroptosis and apoptosis (10–12). Effects of inflammatory 
mediators are complex, in that they differ based on injury type, 
location, and chronicity. Even a single, acute TBI can cause sustained 
inflammatory signaling, measured by interleukin (IL) protein levels 
(13). A continued inflammatory response may lead to secondary 
neuronal injury and a decreased likelihood of spontaneous recovery 
over time, with persistent neuropsychological deficits. Additional 
injuries may contribute to chronic functional deficits, due to shortened 
recovery time between injuries and long-term neurodegeneration.

Neurotransmitters can modulate inflammatory responses in brain 
injury by disrupting pro-inflammatory cytokines, microglial production, 
and calcium signaling (14). Glutamate and γ-aminobutyric acid (GABA) 
are the major excitatory and inhibitory neurotransmitters, respectively. 
Glutamate release into the synaptic cleft occurs via calcium influx and 
intracellular calcium-dependent signaling (15). Once glutamate acts 
upon post-synaptic neurons, astrocytes collect and convert it to 
glutamine which is transported back to pre-synaptic neurons (16). 
Neuronal excitotoxicity due to altered glutamate and GABA receptor 
expression and function is evident in models of TBI (17, 18).

N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) are glutamate receptors 
responsible for neuronal influx of calcium in post-synaptic neurons. 
Table  1 summarizes NMDA and AMPA functions during typical 
neuronal depolarization and action potential propagation. The net 
effect of selectively activating these receptors and regulating their 
post-synaptic densities is to potentiate a non-toxic glutamate response, 
which promotes synaptic plasticity, long-term potentiation, and 
learning and memory (17, 19, 20). However, if these receptors are 
unselectively trafficked to/from key synaptic regions in brain injury, 
the result is an acute disruption of these signaling processes. In 
mechanical models of injury, down-regulation of the AMPA GluR2 
and NMDA N2A receptors, along with up-regulation of the NMDA 
N2B receptor, lead to atypical calcium influx resulting in acute 
excitotoxic cell death (21–23).

2.2 Molecular signaling in TBI

Although TBI primarily leads to neocortical cell death, 
hippocampal vulnerability is also apparent. In a controlled cortical 
impact (CCI) mouse model of moderate TBI, apoptosis of immature 
hippocampal neurons was observed 24–72 h after injury (24). Limited 
inflammatory markers may be observed up to 7 days post-CCI, and 
necrosis of immature hippocampal neurons was evident for at least 
14 days post-injury (25, 26). These results demonstrate hippocampal 
vulnerability in response to TBI that may clinically present as 
memory complaints.

Both altered excitatory glutamate signaling and reduced GABA-
mediated inhibition contribute to excitotoxicity in brain injury (27). 
In a mouse CCI model, glutamate expression correlated with 
epileptiform activity within injured and adjacent cortex in the setting 
of decreased GABAergic interneurons. Further, there was significant 
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reduction of the GABAA γ2-subunit in CCI-injured rats with post-
traumatic epilepsy (18). In a mouse CCI model of severe TBI, GABAA 
δ and GABAB B2 receptor subunit expression in dentate gyrus granule 
cells was reduced by 40–43% (24). In contrast, human studies of 
chronic, repetitive injuries in athletes (closed head injury [CHI] 
model) found a compensatory increase in GABAB receptor expression 
(28). Decreased GABAA receptor expression disrupts the inhibitory 
response (29), while increased GABAB receptor expression, 
responsible for membrane hyperpolarization, may serve to avoid 
further depolarization and excitotoxic effects.

2.3 Molecular signaling in AD

AD pathology includes Aβ plaque accumulation and NFT 
formation, with tau aggregation and hyper-phosphorylation 
contributing to dysregulated microtubule dynamics and neuronal 
functioning (30). Necroptosis activation by RIP1/RIP3 kinases was 
found in postmortem AD brains (31). Elevated levels of inflammatory 
markers IL-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) were 
found in postmortem AD and transgenic animal brains, and 
microglial and astrocytic activation was observed in response to 
neurotoxic cytokine expression (32–36).

Excitotoxicity due to dysregulated Ca2+-mediated NMDA receptor 
functioning decreases cell survival (37, 38). Aβ regulates synaptic 
vesicle release and affects NMDA receptor structure, density, and 
electrophysiology – ultimately affecting glutamate transmission and 
resulting in cognitive changes (39–43). In AD patients with severe 
cognitive deterioration, decreased glutamate and GABA levels were 
noted in temporal cortex and CSF compared to AD patients with mild 
cognitive deterioration and age-matched controls (44, 45), and 
decreased concentrations of GABAergic terminals in cortical neurons 
adjacent to Aβ plaques were found in AD patients and transgenic AD 
mouse models (46, 47). These findings suggest impaired receptor 
function and neurotransmission and an imbalance between excitatory 
and inhibitory activity in AD.

2.4 Molecular signaling in epilepsy

Inflammatory responses in epilepsy can contribute to recurrent 
seizures, secondary neuronal injury, and chronic neurodegeneration (2). 
During focal to bilateral tonic–clonic seizures, cytokines exert effects 
through increased AMPA receptor density, NMDA-dependent calcium 
influx, and reduction of GABAA receptor density, resulting in greater 
synaptic glutamate and decreased synaptic GABA concentrations (48–
51). Excess glutamate increases the likelihood of neuronal depolarization, 
excitotoxicity, and eventual cell death (52–54), particularly in models of 
temporal lobe epilepsy (55). Glia rapidly produce interleukins, 
particularly interleukin-1 beta (IL-1β), postictally. IL-1β enhances 
neuronal excitability and sustains inflammatory responses (56, 57). 
Increased IL-1β activity leads to neuronal degeneration in epileptogenic 
regions, while astrocytes that express its receptor have neuroprotective 
functions (1, 58). Astrocytes can mediate the effect of IL-1β on 
hippocampal neurons, contributing to their likelihood of survival. The 
presence of astrocytes in epileptogenic regions is a compensatory 
response to excess synaptic glutamate (59, 60). Increased astrocytes in 
regions of post-ictal neuronal injury suggest IL-1β involvement in the 
initiation and continuation of local seizure activity (59).

We propose that during a single seizure and mild TBI (Figure 1), 
excitotoxic depolarization enhances IL-1β signaling and increases 
NMDA receptor activity, leading to local propagation of excitotoxic 
depolarization and extracellular glutamate accumulation. This 
process, along with increased Aβ and cytokine secretion, recruits 
astrocytes into the synapse (61) to collect glutamate post-seizure. 
Excess glutamate also recruits microglia to clear cellular debris, 
remove excess Aβ, and return to neuronal homeostasis (60, 62, 63). If 
neuronal homeostasis is not achieved, further excitotoxic injury and 
cell death signaling can occur.

Neuronal damage in TBI, AD, and epilepsy can result from 
secondary inflammatory responses and neuronal excitotoxicity. 
Interleukins, particularly IL-1β, are key modulators of pro-inflammatory 
responses and apoptosis. Additionally, dysregulation of the glutamate-
GABA/excitation-inhibition balance leads to excitotoxic injury and 
neuronal death.

2.5 ER stress and its role in TBI, AD, and 
epilepsy

ER stress occurs when there is an imbalance between the ability 
of the ER to fold proteins and the cellular demand for protein folding 
(64). In response to ER stress, the UPR signals to either (1) protect the 
cell by correcting the imbalance between folding ability and demand 
(65) via the protein kinase R-like ER kinase (PERK) pathway or (2) 
promote programmed cell death. Cell death occurs via C/EBP 
homologous protein (CHOP) and Apaf-1-dependent apoptosis or via 
necroptosis involving RIP1/RIP3-activation and rapid ATP depletion 
(66–68). Acute UPRs are protective to the cell. Sustained UPRs, 
however, induce caspase-dependent apoptosis (69), deplete 
intracellular ATP (70), and induce necrosis (70).

ER stress contributes to neuronal loss in TBI (26, 71, 72), AD (73), 
and epilepsy (74) and correlates with tau phosphorylation in TBI and 
AD (75, 76). In a CCI rat model, markers of reactive ER stress were 
associated with increased tau oligomers and tau kinase (GSK-3β) 
activation (77). To study the relationship between tau phosphorylation 

TABLE 1 Typical functionality (during selective activation) of glutamate 
and GABA receptors.

Receptor Subtype Typical functionality (during 
selective activation)

NMDA NR1 Glycine-dependent receptor deactivation

Localizes with NR2

NMDA NR2A Enhancement of excitatory synapses

Localizes with NR1

Responds and initiates LTP

NMDA NR2B Ca2+ influx mediation

Prolongs Ca2+ influx

Responds and initiates LTD

AMPA GluR1 Upregulated density in LTP

Phosphorylates in LTP

Permits Na+ and Ca2+ permeability

AMPA GluR2 Restricts Ca2+ permeability

GABA A-δ Inhibition of potentiated response

Responds to changes in GABA concentrations

LTP, long-term potentiation; Ca2+, calcium; LTD, long-term depression; Na+, sodium.
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and ER-stress in promoting AD-like pathogenesis, tau phosphorylation 
was induced in rat cortical neurons, resulting in a UPR response with 
elevation of p-PERK and other modulator proteins. In the same study, 
an ER stress inducer enhanced tau phosphorylation at specific sites (75).

In human AD autopsy material, PERK correlated with atypical tau 
phosphorylation (78), and tau interacted with ER proteins leading to 
neuronal dysfunction and neurotoxicity (79). In epilepsy, the relationship 
between ER stress and tau phosphorylation is unknown, although 
relationships between epilepsy and unfolded proteins have been 
established. A mouse model of epilepsy suggested that acute, reactive ER 
stress responses may reduce seizure recurrence or severity (80). In 
resected tissue from patients with epilepsy due to focal cortical dysplasia, 
however, there were greater accumulations of unfolded proteins and 
increased levels of CHOP in patients who were not rendered seizure-free 
(81). Hence, acute, reactive stress responses may be protective, while 
chronically increased ER stress may contribute to seizure recurrence.

Aβ can trigger ER stress, just as ER stress can promote Aβ 
formation, leading to excitotoxicity and apoptosis (82–84). While 
amyloid precursor protein (APP) increases resistance to ER stress-
induced apoptosis in specific cell cultures (85), intracellular Aβ 
counteracts APP by activating ER stress and pre-disposing cells to 
other pathways of programmed cell death (86). In brain endothelial 
cells, Aβ increased concentrations of UPR signaling mediators, 
increased intracellular Ca2+, and upregulated pro-apoptotic 
transcription factors (87). The relationship between Aβ and 
excitotoxicity is complex, however, in that Aβ also acts directly on the 
ER stress response protein XBP1 to reduce intracellular Ca2+ 
concentrations and limit excitotoxic injury (88).

Data suggest initial neuroprotective effects of reactive ER stress, 
activation of the PERK pathway, and APP (89). However, we postulate 
that sustained, repeated, or anticipatory (i.e., in the face of chronic 
injury) induction of the ER stress response may increase atypical tau 
phosphorylation and Aβ concentrations, with deleterious effects. Aβ 
has both pro-apoptotic and excitotoxic effects, but to limit neural 
injury, it acts feeds back on the ER stress response to interrupt it. If 
Aβ fails to halt its excitotoxic effects, and microglia and reactive 
astrocytes cannot successfully clear toxic tau and Aβ aggregates, 
neurodegeneration follows.

3 Injury response: the role of tau

Tau plays a key role in ER stress and Aβ pathways. Tau is a 
neuronal protein that supports axonal transport and microtubule 
dynamics (4). In neurodegenerative diseases, tau is abnormally 
present within subcortical neurons, including the hippocampus. Tau 
hyper-phosphorylation results in deposits of neurofibrillary tangles 
(NFTs), corresponding with diminished neuronal stability and 
subsequent aberrant neuronal communication (4, 5). These structural 
abnormalities lead to cognitive deficits, including memory loss (90–
93). Elevated levels of total- (t-), phosphorylated- (p-), and 
hyperphosphorylated- (hp-) tau are detected in CSF at various time 
points post-TBI/seizure (91, 94–98). Accumulation and spread of tau 
aggregates occurs in various cortical and subcortical areas post-injury/
seizure and in AD (93, 94, 99–101).

To explain the role of tau in brain injury and its relationship to the 
above inflammatory and excitotoxic processes, we posit two distinct 
signaling mechanisms, combining components of various pathways 
described in the literature: (1) an acute injury response (AIR; Figure 2), 
and (2) a recurrent injury response (RIR; Figure  3). AIR and RIR 
propose varying degrees of interleukin, NMDA/AMPA receptor, and 
Ca2+/calmodulin-dependent protein kinase (CaMK) involvement. 
We  also propose a slower neuroprotective tau (NPT) response 
mechanism shared by acute seizures and TBI. However, with repeated 
seizures/TBI leading to chronically activated/sustained ER stress 
responses, the NPT pathway will become dysregulated, resulting in 
neural injury (Figure 4).

3.1 Acute injury response (AIR)

The AIR pathway is a pro-inflammatory mechanism that 
minimizes the likelihood of acute excitotoxic effects and cell 
death. In the AIR pathway, an acute TBI or brief seizure leads to 
IL-1β formation (108–110, 122), which has multiple effects on 
NMDA and AMPA receptors (Figure 2), including downregulation 
of NMDA receptors NR1 and NR2B. Unselective CAMK-II 

FIGURE 1

Our proposed contributory mechanism of IL-1β signaling during a single, brief seizure or mild TBI. Enhanced IL-1β signaling from excitotoxic 
depolarization results in increased glutamate receptor activity and further propagation of excitotoxic signaling, resulting in an accumulation of post-
synaptic glutamate. Increased neuroinflammatory signaling, including upregulated cytokine and Aβ secretion and increased concentrations of 
extracellular glutamate, recruit microglia and reactive astrocytes to the post-synaptic cleft. Unsuccessful clearance of extracellular glutamate, cellular 
debris, and Aβ from the synaptic cleft by reactive astrocytes and microglia leads to further excitotoxic propagation and places the cell at risk for 
excitotoxic injury. Successful clearance, however, reduces the risk of excitotoxic injury, as it attempts to revert the cell to neuronal homeostasis.
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FIGURE 2

Our proposed acute injury response (AIR) mechanism outlining reactive signaling to an acute, brief seizure or acute, mild TBI. This mechanism shunts 
cellular signaling away from pro-death response pathways and toward cellular protection, with the goals of restoring the balance between glutamate 
release and reuptake, intracellular Ca2+-driven ER stress responses, and apoptotic-necrotic dynamics. In response to acute injury, caspase-1 cleaves 
IL-1 precursors, resulting in IL-1β formation. IL-1β unselectively up-or down-regulates glutamate receptor subunit densities, resulting in an acute 
disruption of balanced glutamate release and reuptake. There is increased CaMK-II activation that promotes increased glutamate release (102, 103). 
Unselective CaMK-II phosphorylation and autophosphorylation occurs at upregulated AMPA-GluR1 (104) but not at down-regulated NMDA-R2B (105), 
resulting in increased AMPA-GluR1 Ca2+ influx/channel conductance and decreased NMDA-NR2B Ca2+ influx/channel conductance, respectively. 
However, CaMK-II also recruits astrocytes into the affected region (59, 60, 106, 107). Increased astrocytes/IL-1 receptor density aid in clearing excess 
glutamate and ILs, inhibiting further glutamate release, thereby limiting excitotoxic propagation. (1)  =  Neuronal membrane, (2)  =  Synaptic cleft, 
(3)  =  CaMK-II autophosphorylation, (4)  =  CaMK-II-Glutamate receptor phosphorylation. Red  =  Excitotoxic signaling, Green  =  Neuroprotective signaling. 
X  =  response reduction/down-regulation.

FIGURE 3

Our proposed recurrent injury response (RIR) mechanism outlining reactive signaling to chronic and/or moderate–severe TBI and chronic and/or 
prolonged seizures. This mechanism shunts cellular signaling toward pro-death response pathways of apoptosis and necrosis due to imbalanced 
glutamate release and reuptake, Ca2+-driven ER stress responses, and apoptotic-necrotic dynamics. In response to chronic injury, caspase-1 cleaves 
IL-1 precursors, resulting in IL-1β formation, and TNF-α downregulates GABAA receptors (18, 108–113). However, unlike the AIR mechanism, IL-1β 
increases NMDA receptor activity via GluNR2B phosphorylation (112). Increased NMDA receptor densities contribute to atypical Ca2+ influx and 
prolonged excitotoxic signaling. Concurrently, AMPA-GluR1 and-GluR2 receptors are down-regulated in response to chronic injury, resulting in 
dysregulated CaMK-II autophosphorylation and AMPA-GluR1 site phosphorylation (21–23, 49, 114–116). Due to disrupted CaMK-II phosphorylation and 
autophosphorylation, reactive astrocytes cannot be successfully recruited to the synapse to clear excess glutamate and proteasome recruitment into 
dendritic spines is impaired, respectively (117). The result is neuronal excitotoxic depolarization and propagation, neurotoxic release of ATP, and 
preferential apoptotic signaling (118). (1)  =  Neuronal membrane, (2)  =  Synaptic cleft, (3)  =  IL-1β-activated NMDA-NR2B phosphorylation, (4) CaMK-II 
autophosphorylation, (5) CaMK-II-AMPA-GluR1 phosphorylation. Red  =  Excitotoxic signaling, Green  =  Neuroprotective signaling. X  =  response 
reduction/down-regulation.
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activation, coupled with the IL-1β signaling, promotes atypical 
calcium influx and excitotoxic glutamate release. As a result, there 
is an increased probability of cell death unless excess glutamate 
can be cleared from the synapse. CAMK, however, also recruits 
astrocytes into the affected region, evidenced by reactive 
astrocytes and phosphorylated CAMK-II in the hippocampal CA3 
region of a kainic acid mouse model (106). The inflow of reactive 
astrocytes, coupled with increased IL-1 receptor density, clears 
excess synaptic glutamate (59, 60, 107).

3.2 Recurrent injury response (RIR)

The RIR pathway results in excitotoxity and apoptosis (Figure 3). 
Recurrent TBI activates -IL-1 precursors, which are cleaved into 
IL-1β by proteases such as caspase-1 (108–110). Similarly, recurrent 
seizures, through excitotoxic neuronal depolarization, activate 
caspase-1 and lead to IL-1β signaling (108–111). IL-1β, however, does 
not down-regulate NMDA receptors as in AIR. Instead, IL-1β hyper-
activates NMDA receptors via GluNR2B subunit phosphorylation in 

FIGURE 4

Our proposed neuroprotective response mechanism involving tau (NPT). Neuronal excitotoxicity imbalances the ER stress response, which 
activates two pathways: the PERK pathway, responsible for reverting the cell to homeostasis and preserving its integrity, and pro-cell death 
signaling cascades via CHOP and rapid mitochondrial depolarization, such as apoptosis. In typical apoptotic signaling, mitochondrial 
depolarization initiates Apaf-1 and releases cyt-c. Cyt-c, with Apaf-1 and dATP, assembles into an apoptosome complex (119–121). The 
apoptosome complex recruits caspase-9, caspase-9 cleaves caspase-3, and caspase-3 activates apoptosis (122, 123). Tau preserves cellular 
integrity and reverts cellular signaling away from pro-cell death signaling cascades. Although reduction of caspase-3 cleavage of tau reverts 
the cell away from apoptotic signaling, tau is cleaved by additional caspases such as caspase-6, resulting in tau phosphorylation (124–128). 
The increased presence of p-tau decreases the concentration of cyt-c and caspase-3, thereby further inhibiting apoptotic signaling (122, 
129, 130). To avoid additional cell death pathways (i.e., necrosis), increases in cytokine expression, TNF-α, and tau concentrations recruit 
reactive astrocytes and microglia to break down excess tau into non-toxic components (131–136). Successful breakdown of accumulated 
tau by microglia and reactive astrocytes downregulates pro-death signaling pathways and restores cellular homeostasis. PERK, protein 
kinase R-like ER kinase; TNF, tumor necrosis factor; IL, interleukin; Co-stim, co-stimulatory (molecules); cyt-c, cytochrome-c; Apaf-1, 
apoptotic peptidase activating factor-1; dATP, deoxyadenosine triphosphate; NFTs, neurofibrillary tangles; Red, Pro-death signaling; Green, 
Neuroprotective signaling; o-tau, tau oligomers; t-tau, total tau; p-tau, phosphorylated tau; ***, O-tau, t-tau, p-tau; X, response reduction/
down-regulation.
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response to chronic injury (112). The resultant increase in NMDA 
receptor density contributes to atypical calcium influx, prolongs 
excitatory synaptic enhancement, and propagates pathologic 
signaling from excess glutamate.

Further, there is decreased GABAA receptor density (50) and 
downregulation of the GABAA receptor δ-subunit (18, 113), 
contributing to extracellular glutamate accumulation and excitotoxicity 
(18, 113). AMPA-GluR1 and GluR2 receptors are also down-regulated 
in response to injury (21–23, 49, 114–116). As a result of AMPA 
dysregulation, CAMK-II autophosphorylation is impaired and 
recruitment of proteasomes – highly active enzyme complexes that play 
a role in cell-cycle progression – into dendritic spines is blocked, 
resulting in apoptosis (117). Additionally, subsequent phosphorylation 
at AMPA receptors also indirectly decreases astrocytic recruitment and 
clearance of excess glutamate (118).

If the AIR pathway (Figure  2) is unsuccessful in mediating 
excitotoxicity or if the RIR pathway is activated in chronic injury/seizures 
(Figure  3), apoptosis (acute programmed cell death) and necrosis 
(passive cellular degradation and death) result (142). Oxygen free radical 
production, caspase activation (e.g., caspase-3 and caspase-6), 
mitochondrial membrane depolarization, and further neurotoxicity 
occur (143–145). To minimize the possibility of cell death and preserve 
structural and functional integrity of surrounding neurons, an additional 
neuro-protective response is needed. We  posit that tau signaling 
pathways first respond to recurrent seizures/injury in attempt to preserve 
cellular integrity; however, there is a “tipping point” that transitions the 
mechanism from neuroprotective to injurious – the repeated or sustained 
induction of an imbalanced ER stress response (specifically, the unfolded 
protein response [UPR]) and resultant aberrant tau phosphorylation. 
The ER stress response stimulates tau phosphorylation and continued 
tau cleavage; further phosphorylation/hyper-phosphorylation of tau 
promotes a continued UPR response and promotes neurodegeneration. 
This chronic dysregulation results in a shift from a tau-induced signaling 
pathway as a compensatory, neuroprotective response – which once 
reduced cellular dysfunction and restored apoptotic-necrotic dynamics 
and cellular homeostasis – to an injurious mechanism that is unable to 
maintain intracellular homeostasis, nor revert to mechanisms of 
programmed cell death.

3.3 Neuroprotective response (NPT): the 
expression and consumption of tau

In apoptosis, caspase-3 is activated by multiple mechanisms, 
including inflammatory responses, mitochondrial-based pathways, and 
an imbalanced ER stress response (119–123) (Figure 4). To divert the cell 
away from this apoptotic pathway and attempt to restore cellular 
homeostasis while maintaining structural integrity, caspases and ATP 
processes that induce apoptosis must be  downregulated, TNF-α 
expression must be promoted, and tau phosphorylation must be induced, 
in conjunction with ER stress-induced PERK-pathway activation. 
Decreasing available caspases and apoptotic signaling reduces the 
likelihood of further neurotoxic depolarization and cell death, while 
increasing the likelihood that cellular homeostasis is restored (146). 
Induction of tau phosphorylation via caspase-6 cleavage indirectly 
reduces apoptotic signaling while preserving cellular integrity; tau also 
indirectly activates microglia, which are responsible for tau degradation 
to its non-toxic components.

Both caspase-3 and caspase-6 cleave tau (124–126) at multiple 
sites, which increases the susceptibility of tau to phosphorylation (9, 
126–128). However, increased tau phosphorylation will also decrease 
caspase-3 activation in a negative feedback loop (122, 129, 130, 147). 
We posit that although the imbalanced ER stress response induces 
atypical tau phosphorylation (75), its acute effect is minimal due to 
this reduction in caspase-3 activation. As caspase-3 activation is 
required by apoptosis (119–121, 148), we posit that there is a transition 
from apoptosis to cellular preservation. However, with a halt of 
apoptotic signaling in the setting of increased tau concentrations, 
microglial and reactive astrocyte activation via upregulation of TNF-α, 
pro-inflammatory cytokines (IL-1β, IL-6, IL-12) and enzymes, and 
co-stimulatory molecules (131, 132) is required to break down tau. 
Additionally, tau oligomers (o-tau) and aggregates activate microglia 
to phagocytize tau and process its isoforms into non-toxic components 
(133–136). The ER stress response also upregulates Ca2+-ATPases in 
microglia, enhancing their capacity for phagocytosis and tau 
breakdown (149). Tau clearance is crucial to reestablishing cellular 
homeostasis and re-balancing the ER stress response post-
seizure/injury.

3.4 Neuro-injurious tau response (NIT): 
transitioning from neuroprotection to 
injury

We posit that in an acute, mild TBI or brief seizure, tau will 
assist the cell in reverting to balanced ER stress response signaling 
and intracellular homeostasis. However, chronic or sustained 
activation of tau signaling cascades due to severe and/or recurrent 
injury will eventually transition this mechanism from 
neuroprotective to injurious (Figure  5). While tau expression 
benefits microtubule dynamics, overexpression of phosphorylated, 
cleaved isoforms disrupts microtubule transport and increases the 
risk of toxic tau aggregates (150). The overexpression of tau, 
atypical accumulation of p-tau and hp-tau from caspase-3 cleavage 
and apoptosis inhibition, and tau deposition due to the inability of 
microglia to successfully break down toxic tau aggregates, could 
be  a result of the cell’s failed attempt to maintain homeostatic 
microtubule dynamics.

The NPT process depends upon the ability of the cell to revert to 
balanced ER stress responses, balanced apoptotic-necrotic dynamics, 
and intracellular homeostasis. Successful reactive astrocytic 
phagocytosis of tau and microglial clearance of tau play key roles in 
restoring intracellular dynamics. We  posit that in the setting of 
sustained or recurrent injury, however, the ability of reactive astrocytes 
and microglia to break down tau becomes dysregulated. A resultant 
buildup of intra-microglial toxic tau occurs (99), which inhibits 
microglial and reactive astrocytic phagocytosis, threatens neuronal 
integrity, and drives expulsion of toxic tau aggregates from the cell via 
exosomal packaging and secretion. However, these secreted toxic tau 
aggregates are misfolded (151) and therefore more resistant to 
microglial break down. These exosomal tau aggregates have injurious 
effects (99) due to increased likelihood of exosomal leakage and 
surrounding neuronal uptake (152, 153). Further, the recurrent or 
sustained activation of the ER stress response reinforces microglial 
migration and dysregulation and limits the ability of microglia to 
actively break down tau. The inter-neuronal spread of toxic tau may 
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mark the initial transition from a neuroprotective to a more 
widespread injurious process.

The NPT response may be an attempt to preserve cellular integrity, 
by avoiding further injury from apoptosis through tau phosphorylation 
and limiting effects of necrosis through astrocytic and microglial 
involvement. Over time, however, the NPT mechanism will still result 
in cell death if the underlying chronic pathology remains untreated. 

Further, with recurrent injury (e.g., repetitive seizures, repeated head 
trauma), the NPT response will become overwhelmed, and an 
aberrant, injurious process will ensue. Over time, repeated activation 
of injurious pathways will require a “last ditch effort” to revert the cell 
to pro-apoptotic signaling cascades and avoid further transition to a 
widespread neurodegenerative process, which leaves the question – 
what is the role of Aβ?

FIGURE 5

Our proposed injurious response mechanism involving tau (NIT) outlining injurious tau signaling and the resulting imbalance in apoptotic-
necrotic signaling due to a chronic or sustained injury response from TBI or seizures. Similar to the NPT response, neuronal excitotoxicity 
imbalances the ER stress response, which activates two pathways: the PERK pathway and pro-cell death signaling pathway. Increased 
presence of p-tau decreases the concentration of cyt-c and caspase-3, inhibiting apoptotic signaling; although downregulated, caspase-3 
still cleaves tau and contributes to tau’s toxic effects, which further reverts the cell away from apoptotic signaling toward necrosis (119–
121). To compensate for this shift, increased cytokine expression, increased TNF-α, and increased tau concentrations recruit reactive 
astrocytes and microglia to break down excess tau into non-toxic components (107, 131, 132). However, unsuccessful breakdown of tau by 
microglia and reactive astrocytes results in a build-up of toxic tau aggregates that are secreted extracellularly (137, 138). Adjacent cells 
attempt to break down the toxic tau into non-toxic components (99), but chronic activation of the NIT pathway due to recurrent or 
sustained injury dysregulates this response, resulting in an injurious build-up of toxic levels of tau, hp-tau, and NFTs, which reinforce 
necrotic signaling (139–141). PERK, protein kinase R-like ER kinase; TNF, tumor necrosis factor; IL, interleukin; Co-stim, co-stimulatory 
(molecules); cyt-c, cytochrome-c; Apaf-1, apoptotic peptidase activating factor-1; dATP, deoxyadenosine triphosphate; NFTs, neurofibrillary 
tangles; Red, Pro-death signaling; Green, Neuroprotective signaling; o-tau, tau oligomers; t-tau, total tau; p-tau, phosphorylated tau; ***, 
O-tau, t-tau, p-tau; X, response reduction/down-regulation.
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4 The role of amyloid-β in the 
transition from neuroprotection to 
tauopathy

With chronic pathology, Aβ concentrations are also increased by 
caspase-3-mediated APP cleavage and an imbalanced ER stress response 
(88, 154, 155). We posit that, in response to recurrent or severe injury, 
sustained Aβ signaling is a “last ditch effort” by the cell to restore cell 
death signaling and reduce the injurious effects of an imbalanced ER 
stress response and atypical tau (Figures 6, 7). Although Aβ induction 
increases plaque formation, it also has neuroprotective effects, recruiting 
additional reactive astrocytes and microglia for toxic aggregate 
breakdown (157, 167, 168, 170). However, if the cell cannot degrade toxic 
tau and Aβ aggregates and restore cell death signaling, Aβ’s relationship 
with tau further transitions the NPT response to a neurodegenerative 
process because it prevents tau from appropriately binding to 
microtubules and induces atypical tau phosphorylation (154, 156, 171, 
172) (Figures 8, 9).

In both typical functioning and in response to acute neuronal 
injury, we  postulate that tau and Aβ signaling processes occur in 
parallel. In acute neuronal injury, however, we propose greater initial 
reliance on tau signaling in comparison to Aβ signaling, in avoidance 
of necrotic processes and reorientation toward cellular preservation 
and stabilization. With recurrent or severe neuronal injury, 
we postulate that the “last ditch effort” of Aβ indicates a “cellular 
switch” to greater reliance on Aβ signaling, for the purpose of 
activating apoptotic signaling and limiting neurotoxic spread. If the 
underlying injurious pathology is not reduced/halted, the result is a 
transition of the “at risk” neuroprotective response to one 
of neurodegeneration.

The ER stress response can induce apoptotic signaling cascades 
(169) in addition to promoting Aβ formation. Aβ formation comes 
with several costs, in that Aβ will activate pro-inflammatory responses 
and caspase-3 activity, in attempts to revert the cell to pro-apoptotic 
signaling; however, increased caspase-3-selective tau cleavage by Aβ 
and dysregulated mitochondrial production and recruitment results 
in further tau-related toxicity and an imbalanced intracellular 
dynamic (156, 157). While caspase-3 typically promotes tau cleavage 
and phosphorylation during apoptotic signaling, Aβ increases 
aberrant caspase-3 activity during necrosis (Figures 6, 7) (155). Hence, 
Aβ initiates atypical tau cleavage. It renders tau increasingly 
susceptible to hyperphosphorylation and toxic aggregates, because it 
atypically alters tau at specific phosphorylation sites (154), ultimately 
leading to microglial injury and neurotoxicity (Figure 8) (156). In AD, 
soluble Aβ induces tau hyperphosphorylation in hippocampal 
neurons, disrupting microtubule stability. De-phosphorylation of 
Aβ-induced p-tau results in the restoration of tau microtubule binding 
capacity (154), suggesting that the process is at least partially 
reversible, and suggests some initial benefit of Aβ formation.

Extracellular insoluble Aβ aggregates, however, are associated 
with neurotoxicity and degeneration (155). Both soluble and insoluble 
Aβ1-40 and Aβ1-42 levels are elevated in patients with AD compared to 
typical aging brains (174). The soluble forms comprise the greatest 
proportion of total Aβ in typical aging brains but the lowest in AD 
brains (174). Acute cell death is highly dependent upon the 
relationship between soluble Aβ and soluble cytoplasmic tau, which 
can propagate extracellularly (175). The relationship between Aβ and 
tau suggests that each can act on the other in a negative feedback loop, 

triggering the transition from non-toxic to toxic aggregates (175). 
Therefore, it is possible that soluble Aβ reflects typical brain 
functioning, but with neuronal injury, neurons are “at-risk” for soluble 
toxic tau formation and toxic tau/Aβ aggregate propagation 
extracellularly, resulting in an eventual transition to an insoluble state. 
This, in turn, reduces the proportion of soluble to insoluble Aβ and 
soluble phosphorylated to abnormally phosphorylated tau, further 
transitioning the mechanism to one of eventual degeneration (176).

Toxic Aβ accumulation results from several mechanisms, with 
prominent roles of microglia and astrocytes. Similar to tau, Aβ 
clearance requires microglial and reactive astrocytic degradation 
(Figure 6) (157). Aβ plaques can result from microglial dysregulation 
and increased Aβ-induced caspase-3 activity, as caspase-3 cleaves 
APP-β (177). Aβ also activates reactive astrocytes, which cluster 
around Aβ plaques (Figure  6) (167, 168). The astrocytes secrete 
interleukins and TNF-α, promoting further inflammation to break 
down Aβ (167, 168), however, these pro-inflammatory proteins also 
induce APP-β (178, 179), resulting in increased Aβ concentrations. 
Further neurodegeneration can also occur due to astrocytic secretion 
of Aβ (Figure 9) (180). Aβ deposits were found in the hippocampus 
with progression to the cortex prior to the formation of NFTs in a 
transgenic AD model, supporting neurodegenerative signaling 
cascades outlined in Figure 5 (181). Aβ deposits were also found in 
~30% of severe TBI cases postmortem (182, 183). This, coupled with 
Aβ-promoted tau cleavage (9), indicates a relationship between 
amyloid-β, tau, and NFTs.

In vitro and in vivo, microglia clear soluble extracellular Aβ via 
micropinocytosis, in which successful uptake and degradation 
depends on actin and tubulin dynamics (184). Inflammatory processes 
promote signaling cascades and the recruitment of microglia to 
initiate soluble Aβ uptake and degradation (157). In an acute injury 
model, this process is postulated to be neuroprotective. However, with 
recurrent or sustained injury, this process may be dysregulated due to 
unstable actin/tubulin dynamics and imbalanced ATP involvement, 
leading to further neural injury. The transition from soluble to 
insoluble Aβ has yet to be fully understood. However, data suggest that 
a progressive Aβ transition from soluble to insoluble takes place in the 
ER/intermediate compartment pathway, and that the degree of 
insolubility correlates with overexpressed APP-β concentration (185). 
The uptake and degradation of insoluble Aβ, comprised of neurotoxic, 
soluble Aβ oligomers, occur through different endocytic mechanisms 
that are microglia and astrocytic receptor mediated (186–188). 
Further, simultaneous intra-astrocytic accumulation of soluble and 
neurotoxic Aβ for degradation promotes vesicle-induced neuronal 
apoptosis (189). Resulting from cell death, cellular contents, including 
neurotoxic Aβ, are released into cytoplasm and quickly 
re-phagocytosed by surrounding neurons. In acute injury, this process 
would be neuroprotective for the prevention of necrosis; however, 
with recurrent injury, it is a mechanism for further neurotoxic 
propagation and eventual systemic degradation.

Aβ activity disrupts cellular integrity, but we  posit that Aβ 
attempts to minimize neurodegenerative damage by targeting NMDA/
AMPA receptors and mitochondrial membrane potential (MMP) as 
part of a “last ditch effort” to reactivate apoptotic signaling 
(Figures  6, 7). Aβ recruits reactive astrocytes to compensate for 
microglial dysregulation and clear toxic Aβ (Figure  6). However, 
because shared biochemical mechanisms associated with neuronal 
homeostasis and cell death are dysregulated, and neuroprotective 
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mechanisms such as reactive astrocytic phagocytosis of Aβ are 
functioning abnormally (180), these pathways promote further 
excitotoxic signaling and neurodegeneration (Figures 8, 9). If Aβ is not 
properly cleared, it can cause further atypical tau 
hyperphosphorylation, microtubule destabilization, and assembly of 
tau into filament structures seen in AD (190).

Aβ oligomers preferentially activate NMDA NR1/NR2A receptor 
subunits, which initiate LTP and regulate NMDA NR2B-mediated 
calcium influx (191). Aβ oligomers can induce a rapid increase in 
intracellular Ca2+ via NR2B influx and cause mitochondrial damage 
leading to hippocampal cell death (191). Aβ peptides interfere with 
CaMK-II activity and decrease AMPA receptor trafficking, leading to 
atypical synaptic distribution and LTP/LTD disruption (171, 172). The 

Aβ and NMDA relationships may explain a sustained excitotoxic 
response seen post-TBI/post-seizure. Due to sustained NR1/NR2A 
responses to high frequency stimulation, disrupted NR2B-mediated 
calcium influx, and diminished AMPA receptor activity (171, 172), 
downstream effects of RIR continue, along with a failure to clear 
excess synaptic glutamate (Figure 3). AMPA receptors are crucial for 
synaptic plasticity, learning, and memory (192, 193). Loss of AMPA 
receptors results in diminished synaptic transmission, long-term 
depression, and difficulties with learning and memory (193). In both 
brain tissue from AD patients and Aβ-treated neurons, there are 
significant decreases in AMPA receptor densities, with higher receptor 
turnover (194). In the presence of Aβ, decreased AMPA receptor 
expression and greater receptor turnover may be early indicators of 

FIGURE 6

The neuroprotective response of Aβ, aka the “last ditch effort” to revert the cell to programmed death signaling and rebalance the apoptotic-necrotic 
signaling dynamic. In response to a recurrent or sustained ER stress response, imbalanced apoptotic-necrotic signaling dynamic, and atypical tau 
phosphorylation, Aβ activation both induces the ER stress response and increases caspase-3 cleavage of Aβ precursor protein (155). However, Aβ also 
recruits microglia and reactive astrocytes in response to excitotoxic signaling and increased tau concentrations (156). Breakdown of toxic tau aggregates 
and Aβ by microglia and reactive astrocytes mitigates the effect of Aβ-associated tau seeding and propagation (133, 157). As increased microglial trafficking 
is indirectly induced by the presence of Aβ, this mechanism also has detrimental effects due to shared apolipoprotein E (APOE), amyloidosis, and microglial 
transcript pathways and sustained neuroinflammation (158). Due to microglial inflammation and activation, reactive astrocytes are upregulated and 
recruited in attempts to clear toxic tau and Aβ and further orient the cell toward apoptotic signaling (159–162). Ultimately, a reduction in both inflammatory 
signaling and tau phosphorylation are needed once apoptotic-necrotic signaling dynamics have been reestablished, to prevent transition to an irreversible, 
degenerative pathway. PERK, protein kinase R-like ER kinase; Aβ, amyloid beta; XBP1, X-box binding protein 1; TNF, tumor necrosis factor; IL, interleukin; 
Co-stim, co-stimulatory (molecules); Cyt-c, cytochrome-c; Apaf-1, apoptotic peptidase activating factor-1; dATP, deoxyadenosine triphosphate; NFTs, 
neurofibrillary tangles; Red = Pro-death signaling, Green = Neuroprotective signaling, Orange = Aβ-involved signaling; o-tau, tau oligomers; t-tau, total tau; 
p-tau, phosphorylated tau; ***  = O-tau, t-tau, p-tau. X = reduction/down-regulation. Solid line = signaling cascade induced/propagated by the ER stress 
response and tau; dashed line = signaling cascades resulting from Aβ involvement.
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atypical mechanistic changes associated with AD and resultant 
cognitive decline. If Aβ is acutely activated, we posit that the cell 
reorients to apoptotic signaling, minimizing injurious effects of Aβ; 
however, chronic Aβ activation further imbalances apoptotic-necrotic 
signaling and initiates a transition of this “last ditch effort” from 
injurious to neurodegenerative.

Several mechanisms act in concert to increase phosphorylation 
of tau in the setting of repeated injuries. (1) Aβ induces caspase-3 
activation (195) (Figure  5). (2) Aβ-42 reduces MMP in cortical 
neurons (122, 146, 196), thereby increasing ATP production and 
cyt-c release. Cyt-c mediates caspase-3 activation that leads to tau 
cleavage and phosphorylation (197). (3) Endogenous tau interacts 
with the PSD95-NMDA receptor complex, which selectively 
phosphorylates tau (198). To efficiently kill the cell via apoptosis, Aβ 
must activate alternative apoptotic pathways while reducing the tau 
response. (1) Caspase-8 recruitment by Aβ mediates the relationship 
between Aβ and caspase-3, resulting in decreased synaptic 
excitotoxicity and a reorientation toward apoptotic signaling (163). 
(2) NMDA NR1/NR2A receptor activity affects downstream ROS 

production resulting in apoptosis (163, 198). (3) Aβ downregulates 
the PSD95-NMDA receptor complex, decreasing tau 
phosphorylation. In cultured cells, Aβ-induced apoptosis increased 
reactive oxygen species (ROS) production but not hp-tau (165). 
While ROS-produced apoptosis has detrimental effects, as a “last 
ditch” neuroprotective effort of Aβ, it limits further hp-tau and NFT 
formation. Limiting the effects of tau and Aβ toxicity is predicated 
on the acute nature of this response and treatment of the underlying 
pathology to avoid long-term neurodegeneration.

4.1 Summary of NPT, NIT, and Aβ 
hypotheses

Tau phosphorylation antagonizes apoptotic processes in response 
to increased ER stress and imbalanced homeostatic dynamics (147). 
Tau hyperphosphorylation is a reactive response activated when faced 
with apoptotic cell death (120, 129). The build-up of hp-tau, therefore, 
could represent a failed neuroprotective mechanism. NFTs, a hallmark 

FIGURE 7

The neuroprotective response of Aβ, aka the “last ditch effort” to revert the cell to pro-apoptotic signaling and reduce tau and Aβ toxicity. 
Selective NMDA regulation, downregulating scaffolding protein PSD-95, and activating caspase-8 reduce the excitotoxic effects of Aβ and 
atypical tau phosphorylation (154). PSD-95 receptor downregulation results in reduced tau phosphorylation and protection of synapses 
from the effects of Aβ, while caspase-8 activation indirectly reduces synaptotoxicity by mediating the relationship between Aβ and 
caspase-3 (163, 164). Aβ also reduces mitochrondrial membrane potential and directly induces the ER stress response, resulting in 
apoptosome complex formation and eventual ROS-induced apoptosis (165). Reactive astrocytes are recruited to break down Aβ and clear 
tau aggregates. However, Aβ also has injurious effects, as it increases intracellular Ca2+ and ROS production, while also acting directly on tau 
(154). Therefore, this mechanism is considered a “last ditch effort” to acutely kill the cell via apoptotic signaling to minimize the negative 
effects from toxic tau, Aβ accumulation, and necrotic signaling. We posit that limiting the effects of tau and Aβ toxicity is predicated on the 
acute nature of this response and treatment of the underlying pathology to avoid irreversible injury and/or a transition to a more widespread 
neurodegenerative process. XBP1, X-box binding protein 1; Cyt-c, cytochrome-c; ROS, reactive oxygen species; Red = Pro-death signaling, 
Green = Neuroprotective signaling, Orange = Aβ-involved signaling; X = reduction/down-regulation. Solid line = signaling cascade induced/
propagated by the ER stress response and tau; dashed line = signaling cascades resulting from Aβ involvement. (1) = Neuronal membrane, 
(2) = Synaptic cleft, (3) = CaMK-II-autophosphorylation, (4) = CaMK-II-Glutamate receptor phosphorylation, (5) = CaMK-II-tau-phosphorylation, 
(6) = PSD95-NMDA receptor complex-tau phosphorylation.
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FIGURE 8

The injurious response of Aβ, aka its failed “last ditch effort” to downregulate propagation of toxic tau and rebalance apoptotic-necrotic 
signaling dynamics. Due to accumulated toxic tau aggregates and dysregulated tau clearance by reactive astrocytes and microglia, pro-
death signaling mechanisms become favored over cellular preservation signaling. However, a recurrent, reactive ER stress response leads to 
an imbalance of apoptotic-necrotic signaling and enhances atypical tau phosphorylation. Further, Aβ precursor protein is cleaved by 
caspase-3, and Aβ concentrations increase, further propagating the ER stress response (88, 154, 155). Due to the Aβ precursor 
overexpression and increased Aβ production, defective mitochondria are produced, mitochondrial dynamics are altered, and their trafficking 
is reduced, leading to further intracellular Ca2+ influx and apoptotic-necrotic imbalance (166). However, the ER stress response also has 
neuroprotective effects, inducing selective transcription factor XBP1, which mediates Aβ plaque formation (88). Simultaneously, Aβ directly 
recruits reactive astrocytes and indirectly recruits microglia, through TNF-α and pro-inflammatory signaling, which cluster around Aβ 
plaques to clear them (157, 167, 168). Yet, the induction of pro-inflammatory signaling from astrocytic recruitment further induces Aβ 
precursor protein; increased Aβ concentrations result in increased atypical tau phosphorylation/hyper-phosphorylation and further ER stress 
response induction (169). Thus, reactive astrocytes have both neuroprotective and injurious effects (170). Continued apoptotic-necrotic 
signaling imbalance, degradation in cell structure, and NFT formation results from atypical activation of these pathways. PERK, protein 
kinase R-like ER kinase; Aβ, amyloid beta; XBP1, X-box binding protein 1; TNF, tumor necrosis factor; IL, interleukin; Co-stim, co-stimulatory 
(molecules); Cyt-c, cytochrome-c; Apaf-1, apoptotic peptidase activating factor-1; dATP, deoxyadenosine triphosphate; NFTs, neurofibrillary 
tangles; Red = Pro-death signaling, Green = Neuroprotective signaling, Orange = Aβ-involved signaling; o-tau, tau oligomers; t-tau, total tau; 
p-tau, phosphorylated tau; ***  = O-tau, t-tau, p-tau. X = reduction/down-regulation. Solid line = signaling cascade induced/propagated by the 
ER stress response and tau; dashed line = signaling cascades resulting from Aβ involvement.
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of tauopathies, form as a downstream result of the RIR and NPT 
pathways. In addition to containing hp-tau, NFTs contain active 
caspase-6, caspase-6-cleaved tau, and Aβ, further supporting that 
NFTs are the end result of a neuronal degradation pathway – one that 
initially includes a neuroprotective pathway preferred by the cell over 
acute apoptotic death (9), but over time, becomes overwhelmed by the 
accumulation of repeated injuries.

The NPT response suggests that excess tau is phosphorylated in 
attempts to preserve cellular integrity in the short-term. In response, 
microglia and reactive astrocytes are triggered to reinstate homeostasis 
and break down intracellular tau into non-toxic isoforms. However, 
in the setting of repeated injury, when excess tau phosphorylation 
exceeds microglial and astrocytic capacity for tau degradation, toxic 
tau accumulates. This, along with aberrant tau cleavage, aggregation, 
and hyper-phosphorylation, propagates a dysregulated microglial 
response. To combat this, the toxic tau must be expelled from the cell 
and is done so through exosomal packaging and secretion.

We posit that the response mechanism is neuroprotective to the 
point of halting apoptosis, phosphorylating tau, and clearing tau via 
microglia and reactive astrocytes, and that it would continue to 
be neuroprotective if repetitive seizures or head injuries did not (1) 

lead to Aβ accumulation and its production of toxic tau and (2) 
outpace the ability to clear tau. Because epilepsy and repeated TBIs 
are plagued with recurrent cellular injury and ER response 
activation, however, a buildup of cleaved, phosphorylated, and 
hyperphosphorylated tau results in toxic tau aggregates. These toxic 
aggregates are then propagated to surrounding neurons, adversely 
affecting these neighboring neurons and increasing the likelihood 
for localized neuronal degeneration. The extracellular leakage of 
toxic tau also contributes to NFT formation and induces tauopathy-
related necrosis, transitioning the mechanism over time from 
neuroprotective to neurodegenerative.

The role of Aβ is pivotal in the development of 
neurodegeneration. Aβ induces tau phosphorylation, contributing 
to toxic tau aggregates that cannot be  cleared by microglia and 
reactive astrocytes. Additionally, microglia cannot clear the excess 
Aβ, leading to inflammatory signaling, excitotoxicity, and Aβ 
plaque accumulation. Microglial and reactive astrocytic 
dysregulation results in further tau and Aβ leakage that contributes 
to injury. We posit that, although increased Aβ concentration has a 
deleterious effect on cellular integrity and microglial functioning, 
increased Aβ also reactivates preferential apoptotic signaling by 

FIGURE 9

The injurious response of Aβ, aka the failed “last ditch effort” to revert the cell to pro-apoptotic signaling and rebalance apoptosis-necrosis, 
due to recurrent or sustained Aβ signaling. Unlike neuroprotective Aβ responses, preferential activation of NMDA-R1 and-2A/B receptor 
subunits by Aβ (171, 172), and their increased surface expression regulated by PSD-95, adversely affects channel assembly and conductance 
(173), promoting further neuroexcitotoxicity, atypical tau phosphorylation, and increased susceptibility to Aβ (164). Unsuccessful toxic tau 
aggregate and Aβ breakdown by microglia [seen in (A)] propagates the injurious effects of Aβ-associated tau seeding and propagation (133). 
In the presence of dysregulated tau and Aβ mechanisms, as well as dysregulated microglial and reactive astrocytic clearance, the failure to 
reduce neuroinflammation and excitotoxic propagation results in a transition from neuroprotection to neurodegeneration. We posit that this 
point marks the transition from a injurious mechanism to a more widespread neurodegenerative process. XBP1, X-box binding protein 1; 
Cyt-c, cytochrome-c; ROS, reactive oxygen species; Red = Pro-death signaling, Green = Neuroprotective signaling, Orange = Aβ-involved 
signaling; X = reduction/down-regulation. Solid line = signaling cascade induced/propagated by the ER stress response and tau; dashed 
line = signaling cascades resulting from Aβ involvement. (1) = Neuronal membrane, (2) = Synaptic cleft, (3) = CaMK-II-autophosphorylation, 
(4) = CaMK-II-Glutamate receptor phosphorylation, (5) = CaMK-II-tau-phosphorylation, (6) = PSD95-NMDA receptor complex-tau 
phosphorylation.
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targeting NMDA/AMPA receptor functioning, CaMK-II 
phosphorylation, astrocytic recruitment, and mitochondrial 
membrane permeability (Figure 6). Because glutamate transmission, 
apoptosis, and necrotic signaling share related pathways, this Aβ 
compensatory mechanism cannot differentiate between typical and 
atypical activation, such that excitotoxicity continues. Recurrent or 
sustained activation of these mechanisms results in the necrotic cell 
death seen in tauopathies.

5 Clinical correlations: tau and TBI

Early studies lacked an association between TBI and 
cerebrospinal fluid (CSF) p-tau levels, likely because of insufficient 
sensitivity of the assay, requiring development of novel techniques 
(92, 199). An enhanced immunoassay using multi-arrayed fiber 
optics (EIMAF) detected acutely increased t-tau and p-tau levels in 
brain and blood following CCI in rodents and in CSF following 
severe TBI in humans. T-tau and p-tau levels remained significantly 
elevated during the chronic stage of CCI in rodents. While t-tau and 
p-tau levels decreased during the chronic stage of severe TBI in 
humans, elevated levels were still detected in subsequent months 
post-injury. T-tau levels approached normal limits approximately 
one-month post-injury, while p-tau levels remained elevated six 
months post-injury (200). EIMAF also demonstrated increased 
p-tau levels, t-tau levels, and p-tau/t-tau ratios in individuals with 
acute or chronic TBI compared to healthy controls (201). Using a 
single-molecule enzyme-linked immunosorbent assay (SIMOA), 
blood t-tau levels were greater in professional hockey players across 
multiple time points post-head injury (from one to 48 h) compared 
to preseason (pre-injury) (91). Recent studies have also measured 
tau within exosomes isolated from plasma (202, 203). This technique 
has been applied in remote repetitive TBI, with elevated exosomal 
t-tau and p-tau levels negatively correlating with neuropsychological 
measures (202, 203).

Tau levels correlate with clinical recovery, with a negative 
association between CSF tau and clinical improvement (204). 
Ventricular CSF t-tau concentrations in the setting of severe TBI 
negatively correlated with clinical improvement over one year (205). 
Plasma p-and t-tau levels measured in patients ~24-h post-acute head 
injury were associated with short-and long-term outcomes; p-tau and 
p-tau/t-tau ratios in blood negatively correlated with recovery in 
participants with chronic TBI (201). Human data concur with a rat 
model, in which serum and CSF tau levels positively correlated with 
traumatic spinal cord injury severity and negatively correlated with 
locomotor function (206). These results support p-tau as a biomarker 
that reflects a broad picture of axonal injury, TBI severity, cognitive 
functioning, and long-term outcomes.

6 Clinical correlations: tau and AD

Pathological p-tau aggregation is a biomarker of 
neurodegeneration in AD. In a transgenic mouse model of AD, 
microglial activation occurs in a progressive fashion, correlating with 
increased tau hyper-phosphorylation and Aβ plaque accumulation 
(207). Human and animal models of AD and other dementias 
identify atypical tau processes that contribute to increased 

hyper-phosphorylation, microglial activation, NFT formation, and 
neurodegeneration (208), including genetic mutations and post-
translational modifications (209–214). Atypical tau phosphorylation 
and APP mutations correlate with NFT formation in animal models 
and human AD (215, 216). In human AD brain tissue, tau pathology 
was divided into early and late stages, with tau deposition first 
observed in entorhinal cortex and hippocampus. Later tau aggregates 
correlated with cognitive decline (217). In human lateral temporal 
cortex obtained from late-stage AD brains, increased markers of the 
ER stress response correlated with decreased post-synaptic PSD-95 
markers and increased tau (218).

Increased CSF t-tau levels were also found in patients with AD 
(219). Elevated CSF tau levels demonstrated a strong association 
with AD and improved discrimination of AD from other dementias, 
while Aβ levels failed to improve diagnostic accuracy (220). CSF 
p-tau181, 217, and 231 concentrations accurately predicted cognitive 
impairment in patients with AD, but not in patients with other 
dementias or controls (221). P-tau231 was the earliest detector of 
increased Aβ in AD pathology, preceding Aβ identification by 
position emission tomography (PET) (221). Further, increased levels 
of tau and decreased levels of Aβ1-42 in CSF were reported (222–226), 
highlighting their contrasting CSF profiles as biomarkers for AD. In 
plasma, tau levels were significantly higher in patients with AD 
compared to MCI patients and controls, however, use of plasma tau 
as a diagnostic test is not yet validated (227).

7 Clinical correlations: tau and 
epilepsy

A link between AD and temporal lobe epilepsy (TLE) is 
demonstrated by a bidirectional increase in risk, hippocampal 
damage (228), and cognitive deficits in both disorders, in part 
due to shared cortical networks, tau deposition, and amyloid 
pathology. Current research explores the influence of seizure 
activity on tau levels in brain, CSF, and blood, proposing that 
epilepsy is a tauopathy like AD and CTE – with proposed 
mechanisms of tau deposition including production during ictal 
and interictal activity, axonal sprouting and formation of aberrant 
connections in response to injury, cell death, physical injury 
during seizures, and decreased clearance (94). Studying the 
relationship between tau and epilepsy may address how seizure 
activity results in neuronal injury.

Limited data are available regarding tau levels in people with 
epilepsy. Hp-tau deposits were identified in resected temporal 
lobe tissue from patients with hippocampal sclerosis, evident in 
nearly 94% of cases and correlating with post-operative declines 
in verbal memory and naming, though this finding was not seen 
in all resection studies (94). In late-onset epilepsy of unknown 
origin, CSF t-tau levels were increased in comparison to controls, 
with t-tau and p-tau levels predicting onset of dementia (229). 
Elevated CSF t-tau and p-tau levels were detected in patients with 
status epilepticus when tested at a median of 72 h from admission 
(95). In the setting of status, t-tau levels positively correlated with 
medication resistance, status duration, disability, and development 
of chronic epilepsy (95). While a transient increase of CSF t-tau 
was reported within four days of a single, new-onset generalized 
convulsion, tau elevations in isolated or repeated seizures that 
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respond promptly to medications are controversial (96, 97). 
Increased CSF t-tau levels were seen with symptomatic 
convulsions (of acute or remote etiology), but not in subjects with 
seizures of idiopathic or cryptogenic cause when levels were 
obtained within 48 h (98). CSF t-tau levels were decreased, and 
p-tau unchanged, when CSF was collected at least seven days after 
the last seizure, but seizure frequency was unknown (230). Blood–
brain barrier disruption during seizures may release tau to the 
periphery, suggested by small, transient elevations of serum T-tau 
following convulsions (231). Studies of peripheral p-tau and 
exosomal analyses have not yet been applied to people with 
epilepsy, and the impact of epilepsy-related factors (e.g., seizure 
type, epilepsy duration) on peripheral tau levels is unknown.

The relationship between epilepsy and p-tau levels should 
be  explored as a potential marker of neural injury severity and 
predictor of cognitive function and seizure control. Given the above 
similarities in injury pathophysiology between AD, TBI, and epilepsy, 
AD and TBI may serve as guides to identifying overlapping markers 
of neuronal damage and cognition.

8 Treating AD, TBI, and epilepsy: 
pharmacological interventions

8.1 Cytokine targets

A better understanding of tau deposition lends insight into AD, TBI, 
and epilepsy pathophysiology and presents possible targets for 
intervention. Potential approaches include neuroprotection, inhibition 
of inflammatory processes, and disruption of excitotoxic mechanisms. 
Trials focused on various portions of these pathways. In animal models 
of TBI, minocycline and statins demonstrate beneficial anti-
inflammatory and neuroprotective properties, limit the expression of 
pro-inflammatory cytokines, and render cell death-associated astrocytes 
and microglia inactive (232–234). In vitro and in vivo rat brain TBI and 
immune system studies identified human-cultured mesenchymal stem 
cells coupled with purified immune cells as a promising treatment that 
increases production of anti-inflammatory ILs, while decreasing TNF-α 
(235–237). IL-34 selectively enhances microglial neuroprotective effects, 
homeostasis, and neuronal survival by promoting Aβ oligomeric 
clearance and inducing microglial enzymatic activity. These effects 
reduce oxidative stress without promoting neurotoxicity (61). Promotion 
of IL-34 receptor binding or activity may benefit those with recurrent 
seizures/TBI by enhancing microglial function.

8.2 NMDA receptor antagonists

Data regarding NMDA antagonists are mixed. Drugs like 
amantadine, a weak NMDA antagonist, are commonly used in 
acute brain injury rehabilitation, although supporting data are 
limited (238). In some TBI studies, NMDA receptor antagonists 
lacked efficacy and raised safety concerns (239). A trial of the 
competitive NMDA antagonist D-CCP-ene for the treatment of 
intractable focal-onset seizures led to severe adverse events in all 
eight subjects, including sedation, ataxia, depression, amnesia, 
and poor concentration (240). Seizure frequency worsened in 
three subjects and remained unchanged in four subjects; one 

participant demonstrated improved seizure frequency, yet 
experienced status epilepticus upon D-CCP-ene withdrawal 
(240). All subjects withdrew from participation, leading to 
premature termination of the study. However, in a large, 
randomized, double-blind, placebo-controlled trial of 
traxoprodil, an NMDA NR2B subunit antagonist, was found to 
be well-tolerated in adults with severe TBI; they demonstrated 
improved Glasgow Coma Scale outcomes 6-months post-injury 
compared to placebo (241).

In an animal model of hippocampal seizures, MK-801 decreased 
seizure severity at low doses (242). In 68 patients with super-refractory 
status epilepticus, ketamine infusions administered for a length of one to 
four days reduced seizure burden by 50% (243). Upregulated NMDA 
receptor trafficking in the post-synaptic membrane contributes to super-
refractory status epilepticus; NMDA receptor antagonists like MK-801 
and ketamine may be effective due to improved penetration of the blood 
brain barrier and maintain their function even in the presence of 
increased concentrations of intra-and extra-cellular glutamate (244–246).

Memantine, a low-affinity voltage-dependent uncompetitive 
NMDA antagonist, approved for use in AD, reduced tau 
phosphorylation and improved functional outcomes after repetitive 
mild TBI in adult mice (247). In patients with TLE, memantine 
improved cognition compared to donepezil (248). In a double-blinded, 
placebo-controlled trial, once-daily memantine significantly improved 
episodic memory and quality of life in patients with epilepsy, although 
confounded by reduced seizure frequency (248, 249). In contrast, in 
subjects with focal-onset seizures of unchanged frequency, memantine 
yielded no significant improvement in cognition compared to placebo 
(250). However, in an open-label extension phase, there were 
improvements in verbal memory, memory-related quality of life, and 
executive functioning (250). Overall, NMDA antagonists deserve 
further study in TBI, AD, and epilepsy (238, 241).

8.3 AMPA receptor antagonists

Alternatively, perampanel is highly selective for AMPA receptors and 
inhibits AMPA-induced calcium influx in rat cortical neurons (251). 
Pharmacological dampening of AMPA receptor function eliminated 
interictal-like activity in human lateral amygdala in vivo, without 
reducing AMPA receptor densities observed in vitro (252). It is efficacious 
for treatment of focal-onset seizures with a neutral cognitive profile in 
adult, geriatric, and pediatric patients (253–255). In a rat CCI model, 
perampanel preserved neurological function, inhibited apoptosis and 
microglial activation, reduced brain edema, and preserved blood–brain-
barrier functioning post-injury, thereby protecting neuro-vasculature 
(256). It also reduced brain contusion volume and decreased expression 
of pro-inflammatory TNF-α and IL-1β (257).

The effects of perampanel on neurological functioning, 
inflammatory markers, and cognition in patients with AD has yet 
to be comprehensively studied, outside of isolated case reports. In 
a case study of an 89 year old woman with severe AD, intractable 
myoclonic epilepsy, and psychiatric symptoms of circadian rhythm 
disorder and irritability, perampanel improved both myoclonus 
and psychiatric symptoms (258). An additional case report 
demonstrated improved cognitive functioning in a patient with 
non-convulsive seizures and AD, supporting the case for early 
administration (259). In transgenic AD mice, inhibition of AMPA 
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receptors by perampanel reduced hippocampal Aβ40 and Aβ42 levels 
and decreased levels of the soluble peptide APPβ by suppressing 
β-cleavage of APP (260). Further research is needed into the 
potential effect of perampanel in targeting Aβ pathology by 
reducing Aβ production in AD.

8.4 Metabotropic glutamate receptor 
treatments

Metabotropic glutamate receptors (mGluR) may also be  a 
target of interest in generalized and focal seizures, as the group 
II and III mGluR agonists may decrease NMDA receptor function 
and the risk of excitotoxicity. Animal studies showed 
anticonvulsant effects of the group II mGluR agonist, DCG-IV, 
in models of limbic and generalized motor seizures (261–263). 
Anticonvulsant effects were also noted in DBA/2 rodent models 
using agonists that target group III mGluR8 and mGluR4, 4A 
(L-AP4, RS-4-PPG, and ACPT-1) and the antagonist, 
MPPG. These agents were not found to affect group I, which 
contribute to epileptogenesis (264, 265). However, mixed 
responses to mGluR-based treatments have been noted, with 
proconvulsant effects of group III agonists (L-AP4 and L-SOP) 
and the MGluR antagonist, MAP4 (266, 267). Further research is 
needed into safe and effective therapeutic concentrations of 
mGluR-targeting agents, as well as their role in seizure activity 
(266–270).

In our proposed RIR model, upregulation of selected NMDA 
receptors and downregulation of selected AMPA receptors occurs 
as a result of neuroinflammation in response to sustained or 
recurrent injury. As a result, there is an increased likelihood of 
seizure occurrence and atypically high concentrations of intra-and 
extra-cellular glutamate. At low doses, NMDA receptor 
antagonists can reduce seizure severity and frequency, but with 
mixed results. Higher doses, however, risk significant adverse 
effects. AMPA receptor antagonists, such as perampanel, may 
show greater promise due to their potential effects on 
hyperexcitability, underlying pathophysiology of 
neurodegenerative disorders, and tolerability. MGluR agonists 
and antagonists showed varied pro-vs. anti-convulsant effects 
with limited research into safe and effective therapeutic 
concentrations. Caution in targeting glutamate receptors 
is warranted.

8.5 Monoclonal antibody treatments

Anti-amyloid monoclonal antibodies, such as lecanemab and 
aducanumab, represent another treatment approach, possibly as 
maintenance drugs to slow the progression of cognitive decline 
over the course of the disease. Lecanemab demonstrated high 
affinity binding to soluble Aβ, and particularly to Aβ soluble 
protofibrils, which are seen in early AD (271–273). Approved for 
use in Alzheimer’s disease (274), lecanemab reduced Aβ markers 
and moderately slowed cognitive decline over 18 months compared 
to placebo (271, 272), although its effectiveness has been 
questioned. In a transgenic mouse model, aducanumab decreased 
both soluble and insoluble Aβ in a dose-dependent manner (275). 

To evaluate the safety and efficacy of aducanumab in reducing 
cognitive decline in patients with MCI and mild AD, two large, 
double-blind, placebo-controlled studies were conducted. Results 
indicated that aducanumab was associated with dose-dependent 
amyloid related imaging abnormalities (ARIA), with cerebral 
edema and increased risk of intracerebral hemorrhage, particularly 
in ApoE-ɛ4 carriers (276). Infusion-related reactions and other 
adverse events (including ARIA) make anti-amyloid antibodies a 
controversial approach in the setting of uncertain benefits. 
Lecanemab and aducanumab have not yet been tested in patients 
with TBI or epilepsy, and safety and efficacy clinical trials for both 
drugs are on-going.

8.6 Tau-centric treatments

Reduction of tau levels showed promise in tau-expressing 
transgenic mice with repetitive mild CHI. Mice were treated with 
kinase-targeting lithium chloride and R-roscovitine, leading to 
p-tau reduction that correlated with improved cognition (200, 
277). Alternatively, phosphatases dephosphorylate toxic tau into 
non-toxic isoforms. Phosphatase 2A (PP2A) dephosphorylates 
hp-tau, but PP2A activity is decreased in AD brain (278, 279). In 
AD, GSK-3 activation inhibits PP2A (280), and PP2A inhibitory 
proteins (inhibitor-1 and -2) are upregulated (281). 
Pharmacological interventions that inhibit GSK-3, such as 
SAR502250 (282), or support mRNA-based downregulation of 
PP2A inhibitors-1/2, are promising approaches (281). Drugs for 
approved for other indications may also be “repurposed” given 
their effects on tau. Suvorexant, an FDA-approved drug for 
insomnia, reduces tau phosphorylation at selective sites such as 
−181 and decreases Aβ concentrations compared to placebo 
(283); its use should be  investigated in other disorders. 
Angiotensin receptor blockers, FDA-approved for hypertension, 
have anticonvulsant effects in rats (284–286) and decrease 
incidence of epilepsy in humans (287), while decreasing CSF 
t-tau and p-tau in MCI patients (288) and improving cognition 
in hypertensive older adults with early executive impairment 
(289) and prodromal AD (290). These results support the need 
to further investigate the safety and efficacy of tau-targeting 
drugs in epilepsy.

8.7 ER stress response inhibition

Based on our proposed mechanism, drugs that impair the 
PERK pathway would have injurious effects. In a mouse TBI 
model, for example, inhibition of the PERK signaling pathway by 
GSK2606414 exacerbated immature cell loss, dendritic loss, and 
cell death (26).

Conversely, pharmacological upregulation of the PERK pathway 
may be  an effective treatment target to avoid atypical ER stress 
response activation, reduce tau phosphorylation by ER stress response 
signaling (75), and mediate tau hyper-phosphorylation and Aβ 
neurotoxicity (291).

Drugs that target the ER stress response cell death pathways may also 
aid in the restoration of intracellular homeostasis, apoptotic-necrotic 
signaling dynamics, and ER folding capacity. In a rat lateral fluid 
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percussion model of TBI, administration of the ER stress response 
inhibitor, salubrinal, 30 min prior to injury significantly reduced the ER 
stress response, promoted mitochondrial functioning, and inhibited 
downstream apoptotic signaling (292). In a mouse model of autosomal 
dominant lateral TLE, 4-phenylbutyric acid restored LGI1 protein 
function and reduced seizure susceptibility (293). In a mouse model of 
epilepsy, taurursodiol also reduced seizure susceptibility and mitigated 
repeated stress-induced neurodegeneration (294). In reducing seizure 
susceptibility, the likelihood of repeated or chronic activation of the ER 
stress response and tau-induced pathways decreases. This benefits the cell 
by favoring restoration of homeostasis, PERK pathway activation, and 
tau-involvement for maintenance of cellular dynamics; this also reduces 
the likelihood of repeated/chronic activation of Aβ, resulting in avoidance 
of irreversible or long-term neurodegeneration.

The numerous proteins and pathways involved in the brain’s 
inflammatory response make it challenging to identify the most 
appropriate target. Development of inflammatory modulators must 
also consider that acute inflammation can serve to protect neuronal 
integrity and avoid cell death, while chronic inflammation may 
decrease the likelihood of maximal recovery and cell survival. Further 
research is needed to find preventative and therapeutic agents for AD, 
TBI, and epilepsy.

9 Conclusion

AD, TBI, and epilepsy disrupt neuronal function and promote 
atypical response signaling. This review examined inflammatory 
and excitotoxic pathways common to AD, TBI, and epilepsy, the 
role of the ER stress response in the face of excitotoxicity, and tau 
and Aβ signaling. We  proposed a mechanism by which these 
pathways can lead to tau deposition. We  posit that tau 
accumulation represents an attempt to shunt the injury response 
from apoptosis toward neuroprotective signaling that preserves 
the cell, in attempts to restore homeostasis. This could be viewed 
as an acute “neuroprotective” response, although, if the 
underlying pathology is not treated, its recurrent or sustained 
activation will result in neurodegeneration. Our proposed 
mechanism supports the case for early intervention. In patients 
with AD, we must identify risk factors that impact tau and Aβ 
processes prior to the appearance of cognitive decline. In patients 
with TBI, this means reducing the likelihood of recurrent injury, 
reducing injury severity through preventative measures, and 
providing ample recovery time. In patients with epilepsy, we need 
to identify the underlying etiologies and reduce seizure frequency 

and severity. These pathways may present targets for intervention 
in AD, TBI, and epilepsy. Studies that examine mediators of these 
signaling cascades are needed.
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