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Introduction: Land use classification plays a critical role in analyzing land 
use/cover change (LUCC). Remote sensing land use classification based on 
machine learning algorithm is one of the hot spots in current remote sensing 
technology research. The diversity of surface objects and the complexity 
of their distribution in mixed mining and agricultural areas have brought 
challenges to the classification of traditional remote sensing images, and 
the rich information contained in remote sensing images has not been fully 
utilized.

Methods: A quantitative difference index was proposed quantify and select 
the texture features of easily confused land types, and a random forest (RF) 
classification method with multi-feature combination classification schemes 
for remote sensing images was developed, and land use information of the 
mine-agriculture compound area of Peixian in Xuzhou, China was extracted.

Results: The quantitative difference index proved effective in reducing 
the dimensionality of feature parameters and resulted in a reduction of 
the optimal feature scheme dimension from 57 to 22. Among the four 
classification methods based on the optimal feature classification scheme, 
the RF algorithm emerged as the most efficient with a classification accuracy 
of 92.38% and a Kappa coefficient of 0.90, which outperformed the support 
vector machine (SVM), classification and regression tree (CART), and neural 
network (NN) algorithm.

Conclusion: The findings indicate that the quantitative differential index is a 
novel and effective approach for discerning distinct texture features among 
various land types. It plays a crucial role in the selection and optimization 
of texture features in multispectral remote sensing imagery. Random forest 
(RF) classification method, leveraging a multi-feature combination, provides 
a fresh method support for the precise classification of intricate ground 
objects within the mine-agriculture compound area.
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1 Introduction

Land use classification is a crucial component in the study of land 
use/cover change (LUCC) (Jansen and Gregorio, 2002). It holds 
significant importance in adjusting land use structures, rationalizing 
the development of land resources, dynamically monitoring land use 
status, and uncovering the underlying mechanisms of LUCC (Lambin 
et al., 2003; Azizi et al., 2022; Singh et al., 2022). Current monitoring 
land use changes not only requires identifying the location and 
direction of change, but also involves assigning relevant attribute 
information to those changes, effectively recognizing the dynamic 
types of land use. Remote sensing offers a proficient and swift technical 
means for extracting land use information, thanks to its macro, real-
time, cyclical, and cost-effective benefits (Sertel et al., 2022). Thus, 
using remote sensing technology to obtain the temporal and spatial 
distribution characteristics of land cover information rapidly and 
accurately has become a fundamental technology in land use 
classification research.

The success of land use classification using remote sensing 
technology hinges on identifying ground objects by differentiating 
their spectral, textural, and morphological features in remote sensing 
images, thereby providing them with accurate labels. In recent years, 
as the temporal, spectral, and spatial resolution of remote sensing 
satellite images improve, the accuracy of land use classification is also 
enhanced (Inglada et al., 2016; Mazzia et al., 2020). Current methods 
of land use classification comprise supervised classification, 
unsupervised classification, Object-Based Image Analysis (OBIA), and 
deep learning (Phiri and Morgenroth, 2017; Macarringue et al., 2022). 
Supervised classification utilizes prior knowledge in the classification 
process through the selection of training samples, with the most 
common classifiers being maximum likelihood, minimum distance, 
and artificial neural network (ANN) (Ritter and Hepner, 1990; Otukei 
and Blaschke, 2010; Abida et al., 2022). Unsupervised classification 
was developed first through different clustering methods such as 
K-means, interactive self-organization data analysis (ISODATA), and 
principal component analysis (PCA) (Abbas et al., 2016; Foroughnia 
et al., 2022; Macarringue et al., 2022). OBIA uses geographic objects 
as the fundamental units for land cover classification (Macarringue 
et  al., 2022; Shi et  al., 2022). Its advantage lies in its ability to 
incorporate various sources of information such as texture, shape, and 
position as the basis for classification (Hussain et al., 2013; Peña et al., 
2014). With the advent of deep learning, methods such as support 
vector machine (SVM), neural network (NN), classification and 
regression tree (CART), and random forest (RF) have become widely 
adopted due to their high classification accuracy (Alhassan et al., 2020; 
Navnath et al., 2022). Singh and Tyagi (2021) used a deep learning 
neural network (DLNN) to classify Landsat 8 OLI multispectral 
images in flood-prone areas, resulting in an accuracy improvement 
of 8.52% compared to traditional classification methods. 
Chamundeeswari et  al. (2022) classified crops using the deep 
convolutional neural network crop classification model, yielding 
results superior to other methods. Davydzenka et al. (2022) markedly 
enhanced the remote sensing classification accuracy of machine 
learning by combining images to generate additional image training 
data sets. Employing the iterative CART algorithm, Wu et al. (2019) 
extracted land cover types in sequence, which significantly improved 
the accuracy by minimizing the phenomenon of mixed division at 
different levels. However, due to the complexity of ground objects, 

image resolution, and limitations of processing methods, uncertainty 
in the classification of remote sensing data is unavoidable (Zhang and 
Zhang, 2019). Consequently, the design of a reasonable remote 
sensing image classification algorithm is key to enhancing the 
accuracy of remote sensing image classification.

Feature selection, a critical component of the remote sensing 
image classification process, involves choosing multiple features from 
the initial features to maximize the classification’s separability 
criterion. This method reduces the initial feature variables, thereby 
accomplishing the goal of dimensionality reduction of the 
classification dataset and fulfilling the classification goal of minimal 
intra-class difference and substantial inter-class difference (Qin and 
Song, 2008). Li et al. (2011) utilized Landsat image data to compare 
and analyze the supervised classification results of different 
combinations of spectral information, principal component analysis 
information, and texture parameter information. The findings indicate 
that the remote sensing supervised classification effect, when 
supplemented with texture parameters, was significantly more robust 
than that of pure spectral data classification. Lu et al. (2022) integrated 
a semantic segmentation network with artificial feature selection to 
determine the best combination of texture features for remote sensing 
image classification. Despite the extensive research on remote sensing 
image classification focusing on deep learning models and their 
enhanced algorithms, there is relatively few research on classification 
feature selection and data generalization.

Random forest (RF) algorithm is a relatively new and efficient 
combination classification method. It can effectively process high-
dimensional data, provides excellent classification results, and is 
simple to operate (Breiman, 2001; Belgiu and Dragut, 2016). At 
present, it has been successfully implemented in various applications 
such as remote sensing image classification (Zhang and Yang, 2020), 
urban information extraction (Belgiu and Lucian, 2014), big data 
analysis (Kumar and Venkatesulu, 2019), and vegetation biomass 
computation (Karlson et  al., 2015). Numerous studies have 
demonstrated the practicality of using RF with feature combinations 
for land cover classification using remote sensing images (Hennessy 
et  al., 2020; Zhang et  al., 2021). However, the diversity of surface 
objects and the complexity of their distribution in mixed mining and 
agricultural areas have brought challenges to the classification of 
traditional remote sensing images, and the rich information contained 
in remote sensing images has not been fully utilized. To date, 
numerous studies have focused on the performance and efficiency of 
machine learning classification algorithms (Hennessy et  al., 2020; 
Zhang et al., 2021; Navnath et al., 2022), while mining classification 
features from remote sensing images has received relatively less 
attention. Existing methods for image feature selection, such as PCA 
(Macarringue et al., 2022) and RF feature variable importance (Ma 
et al., 2015), exhibit certain limitations. Particularly, there is a lack of 
research addressing the combination of classification features of 
confusing land use types in mine-agriculture compound areas. As a 
result, innovative and efficient classification solutions that overcome 
these challenges are urgent needed.

This paper introduced the quantitative difference index to select 
the different texture feature parameters of easily confused land classes, 
such as cultivated land and woodland, and combined with the spectral 
features and remote sensing indices to form a variety of feature 
variable classification schemes. RF algorithm and feature combination 
schemes were used to study the land use classification of 
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mine-agriculture compound areas in plain, and compared with CART, 
NN and SVM classification algorithm, respectively. The purpose was 
to evaluate the practicability of the RF algorithm with multi-feature 
combination classification schemes in the land use classification of the 
plain mine-agriculture compound area, and to provide a basis for 
monitoring the utilization of land resources and planning management 
in mine-agriculture compound area in plain.

2 Materials and methods

2.1 Study area

Peixian County in Xuzhou City, Jiangsu Province is as a case study 
(Figure 1). The study area is situated west of Weishan Lake, part of the 
Nansi Lake system within the Sishui River system of the Huaihe River 
Basin. It extends over 34°28′-34°59′N, 116° 41′-117°09′E, covering a 
total area of 1,806 km2. Peixian is a typical alluvial plain with a flat 
terrain and temperate monsoon climate. These conditions create a 
favorable agricultural environment. According to comprehensive 
statistics of Peixian Bureau of Natural Resources and Planning in 
2022, The current cultivated land area is about 77,000 hectares. As part 
of the East China coal accumulation area, the Peixian coal mining 
region is an important coal-producing and coal-related industry hub 
with proven coal reserves of 2.4 billion tons and an annual output of 
12 million tons of raw coal. Due to the prolonged period of continuous 
coal mining, serious ecological problems have emerged, such as 
ground subsidence, cultivated land destruction, and landscape 
fragmentation. The intensity of land use/cover change and the high 
degree of landscape fragmentation pose significant threats to the 
ecological security of Peixian County (Xu et al., 2019). According to 
the actual land cover characteristics of the study area, satellite images 
and the current land use classification standards in China, the primary 

land use types in this area include cultivated land (dry land and paddy 
fields), woodland, garden land, water bodies (subsidence ponds, 
reservoir ponds, rivers), construction land, industrial and mining 
land, and unused land.

2.2 Data sources and preprocessing

The data used in this paper consists of a Landsat 8 OLI satellite 
image (LC81220362021211LGN00), obtained on July 30, 2021. This 
Level-1 product has a spatial resolution of 30 m and is projected in 
UTM/WGS84. It was downloaded from the United States Geological 
Survey (USGS,1). The images underwent radiometric calibration and 
atmospheric correction using the radiometric calibration and 
FLAASH atmospheric correction modules in ENVI. Following 
preprocessing, the remote sensing image was clipped to the extent of 
the study area and histogram equalization was employed for image 
enhancement. Given the minimal surface variation in Peixian County 
and the consequent limited impact of terrain on the distribution of 
land types, this study did not consider the influence of topographic 
data on land use classification.

2.3 Methods

2.3.1 Feature selection
 1 Spectral characteristic factor

In this paper, band 2–7 of Landsat 8 OLI were selected as the 
characteristic factor for classification considering that Landsat 8 OLI 

1 https://earthexplorer.usgs.gov/

FIGURE 1

The study area located on the northern of Xuzhou City, Jiangsu, China.
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provides rich reflection spectrum information of ground objects. Due 
to the significant spectral characteristics of specific land classes 
(vegetation, water area and buildings), normalized difference 
vegetation index (NDVI), improved normalized water area index 
modified normalized difference water index (MNDWI) (Xu, 2005) 
and normalized difference building index (NDBI) (Huang et al., 2013) 
were selected as the remote sensing indices for classification (Table 1).

 2 Texture feature factor
Texture feature is a type of visual feature determined by intrinsic 

attributes such as the shape and physical and chemical properties of 
ground objects. It manifests periodically and repetitively in the form 
of local spatial gray distribution. The arrangement of texture features 
is not influenced by image attributes such as spectrum and color, 
hence, it can effectively highlight similar image features of 
homogenous elements to distinguish between different ground objects 
(Huang et al., 2014). In this study, we used the gray-level co-occurrence 
matrix (GLCM) to extract the texture features from the remote 
sensing images (Hu et al., 2008). The calculation formula is as follows:

 P i j N i ja b, , ,( ) ( ) = ( )

where i and j represent the gray scale of the pixel pair, while (a, b) 
describes the spatial distance relationship of the pixel pair. The pairs 
(1.0), (0.1), (1.1), and (−1, −1) correspond to horizontal 0° scanning, 
vertical 90° scanning, 45° scanning, and 135° scanning of the pixel 
pair, respectively. N(i, j) denotes the frequency of the corresponding 
spatial relationship of the pixel pair. In this study, we employed the 
(1.1) scanning method to extract texture features (Table 1).

 3 Construct quantitative difference index
Peixian is a typical alluvial plain, with woodlands primarily 

distributed around both rural settlements and some cultivated lands. 
Given their spectral and vegetation index similarities, woodlands and 
cultivated lands are typically confused landscapes. However, in terms 
of texture, most of cultivated land is smooth and flat from June to 
October, while most of woodlands are rough and scattered.

Therefore, this study selected texture features with significant 
differences between these two types to improve classification accuracy. 
In this paper, a quantitative difference index was constructed to 
quantify and select the variation in texture characteristics between 
these easily confused land types, such as cultivated land and woodland. 
The calculation formula is as follows:

 
RA A B

A B
mean mean

mean mean
=

-
( )min ,

where RA represents the value of quantitative difference index, 
while Amean and Bmean are the mean values of a texture feature of land 
type A and land type B, respectively. The purpose of constructing this 
index is to analyze and extract the characteristic factors with large 
differences among confusable land use types by statistically analyzing 
the degree of texture difference. In this study, we used the remote 
sensing interpretation method to extract sample data for the different 
land use types. We then utilized the quantitative difference index to 
extract the feature combinations with significant differences among 
the easily confused types for classification. We eliminated redundant 
features based on their importance, thereby reducing the data 
dimensionality of the feature factor.

2.3.2 Classification method
 1 Random forest algorithm

The random forest (RF) algorithm is a relatively new machine 
learning algorithm that consists of multiple classification and 
regression trees (Breiman, 2001). By employing bootstrap resampling 
technology, it continuously generates training samples and test 
samples. These training samples are used to create multiple 
classification trees, forming a ‘random forest’. The algorithm then 
utilizes a voting method on these classification trees to derive the final 
classification results. Essentially, the RF algorithm enhances the 
decision tree algorithm while exhibiting a stronger generalization 
capability (Briem et al., 2013). Benefits of the RF algorithm include its 
rapid training speed, minimal risk of overfitting, balanced error 
judgment, and its ability to discern the importance of features 
(Gislason et al., 2006), making it particularly well-suited for remote 
sensing land use classification. The steps of the RF algorithm are as 
follows (Amit and Geman, 1997):

 
H x I h x Yi

i

k
i( ) = ( ) =( )

=
åarg

max

g
1

where H xi ( ) represents the combined classification model, while 
h xi ( ) stands for the decision tree classification model, Y is the output 
result, I(...) denotes the indicator function, and Y is determined by 
selecting the result with the most votes from multiple decision tree 
votes. The RF algorithm requires two important inputs: the number 
of decision trees and the number of features assigned for each split. In 
this study, the number of decision trees is set to 100, while the number 
of features per split is set to 1.

 2 Classification and regression tree algorithm.
Classification and regression tree (CART) algorithm is an effective 

non-parametric supervised learning method (Zhang et al., 2015), that 

TABLE 1 Statistic of characteristic parameters.

Characteristics Parameters Number

Spectrum (OLI)
Band(B2-B7): blue, green, red, nir, 

swir1, swir2
6

Remote sensing index 

(RSI)

Normalized Difference Vegetation 

Index (NDVI),

Modified Normalized Difference Water 

Index (MNDWI),

Normalized Difference Building Index 

(NDBI)

3

Texture (TEX)

Mean (MEAN),

Variance (VAR),

Homogeneity (HOM),

Contrast (CON),

Dissimilarity (DIS),

Entropy (ENT),

Second Moment (SM),

Correlation (COR)

8
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is, it summarizes decision rules from a series of data with features and 
labels, presents these rules in a tree structure to solve classification and 
regression problems. CART uses Gini coefficient in economics as the 
criterion for selecting the best classification feature and feature 
threshold, defined as follows:

 
GiniIndex p j h

j

J
= - ( )å1

2
|

 
P |j h

n h
n h
j( ) = ( )
( )

 j

J
p j h

=
å ( ) =
1

1|

where p j h|( ) is the probability that a sample is randomly selected 
from the training sample set and belongs to class j when the value of 
a certain test variable is h, n hj ( ) is the number of samples belonging 
to class j when the test variable value is h in the training sample, n(h) 
is the number of samples in the training sample whose value of the test 
variable is h, j is the number of categories.

 3 Neural network algorithm
Neural network is a computational model that mimics the human 

nervous system and consists of many basic processing units that 
perform computations through their interconnections and signaling 
(Wilkinson, 1996). Neurons are the basic units in neural networks, 
which receive multiple input signals, generate output signals through 
certain calculations and transmit them to other neurons. The 
composition of neurons formula is as follows:

 
a g w x b

i

n
i i= +

æ

è
çç

ö

ø
÷÷

=
å

1

Where a represents the output of the neuron, g (·) represents the 
activation function, wi represents the weight of the i th input signal, xi 
represents the i th input signal, and b represents the bias.

 4 Support vector machine algorithm.
Support vector machine (SVM) is a machine learning algorithm 

based on statistical learning theory (Vapnik et al., 1994). By solving 
the optimization problem, it can find the optimal classification 
hyperplane in the high-dimensional feature space, so as to solve the 
classification and regression problems of complex data. The basic 
mathematical form and limitations of SVM are as follows:

 
minj w b w w,( ) = *( )1

2

 y w x b i ni i*( ) +éë ùû ³ = ¼1 1, , ,

where w is the normal vector of the hyperplane, b is the intercept 
of the hyperplane, xi is the eigenvector of the training sample, yi is the 
label of the training sample, and n is the number of samples.

2.3.3 Accuracy evaluation
Based on the principle of randomness and uniformity, this study 

selected 847 sample points to establish an accuracy evaluation 
database, utilizing Google Earth and prior knowledge. The confusion 
matrix of the classification results is calculated to obtain the overall 
accuracy (OA) and kappa coefficient for accuracy verification. The 
calculation formulas of OA and Kappa coefficients are as follows:

 
OA

x

N
i
r

ii
= =å 1

 

Kappa
N x x x

N x x
i
r

ii i
r

i i

i
r

i i
=

- ( )
- ( )

= = + +

= + +

å å
å

1 1

2

1

Where r is the number of land use types; N is the total number of 
samples; xii is the number of samples in row i and column i of the 
confusion matrix (i.e., the number of correct classification); xi+ and 
x i+  are the total number of pixels in row i and column i.

3 Results

3.1 Feature combination

To accentuate the visual differences between various land use 
types with similar spectra, this study utilized a false color synthesis 
(using a 7,5,3 band combination) to enhance the efficiency and 
accuracy of sample data acquisition, as depicted in Figure  2. The 
spectrum and remote sensing index were standardized according to a 
95% confidence interval, and the mean values of spectrum and remote 
sensing index for the seven landscape categories were tallied and 
normalized to generate remote sensing parameter curves (Figure 3). 
As can be observed from Figure 3, water areas, construction land, and 
industrial and mining land can be efficiently differentiated from other 
land types via decision tree classification, while cultivated land, 
woodland, and garden land pose more of a challenge for differentiation.

Due to the confusion between woodland and cultivated land in 
Peixian, studying the distinction between these two land types is vital 
for enhancing the accuracy of classification. Given the small area of 
the garden and its significant spatial distribution characteristics, 
appropriate texture feature parameters were selected by analyzing the 
differences between woodland and cultivated land types to improve 
overall classification accuracy. In this study, the quantitative difference 
index of texture characteristics for woodland and cultivated land was 
calculated. This process involved extracting different bands and 
texture parameters to distinguish woodland from cultivated land, 
ultimately identifying the texture parameters with substantial 
interclass variation.

As shown in Table 2 and Figure 4, the most significant quantitative 
differences between woodland and cultivated land with respect to 
texture were seen in the variance, contrast, and correlation parameters, 
and these varied across different bands. The quantitative difference 
indexes for variance and contrast in the blue, green, and red bands were 
greater than 0.8, and for correlation in the swir1 band, it was greater 
than 0.7, which were substantially higher than other texture parameters. 
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The quantitative difference indexes for variance, contrast, and 
correlation in the nir and swir2 bands were around 0.3 to 0.5, which 
were of medium level. The quantitative difference indexes for other 
texture parameters were less than 0.3, marking them as the lowest level.

To verify the accuracy of the quantitative difference index in 
distinguishing texture feature differences, we analyzed the histogram, 
frequency, and first-order derivative distribution of texture parameters 
for cultivated land and woodland, corresponding to the blue band 
which showed significant differences in features. This analysis enabled 
us to assess the relationship between the distribution and variations of 
these two landscape texture features (Figure 5).

As Figure 5 illustrates, for parameters such as mean, homogeneity, 
dissimilarity, entropy, second-order moment, and correlation, the 

distributions for cultivated land and woodland are relatively concentrated, 
and the frequency and trend of the peaks are largely similar. Viewed from 
the first derivative’s perspective, the degree of dispersion for both 
landscapes are relatively large, suggesting that they share similar trends 
and rules and exhibit high inter-class similarity. When it comes to 
variance and contrast, cultivated land shows an even distribution with 
fewer peaks compared to woodland. Viewed from the perspective of the 
first derivative, cultivated land has better continuity and relative stability 
compared to the disjointed distribution of woodland. Therefore, variance 
and contrast effectively reflect the differences between cultivated land 
and woodland. This aligns with the general understanding that cultivated 
land in the mine-agriculture compound area of Peixian is locally uniform 
and singular, whereas woodland is locally complex and discrete. 

FIGURE 2

Characteristics of land use types in the study area on Landsat 8 OLI image [false color synthesis (7,5,3 band combination)].

FIGURE 3

Characteristic statistics of spectrum and remote sensing index of different land types. B-blue, G-green, R-red, N-nir, S1-swir1, S2-swir2, V-NDVI, 
C-NDBI, W-MNDWI.
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Moreover, it confirms the accuracy of the quantitative difference index 
method for optimizing characteristic parameters.

The texture features were divided into three groups based on the 
quantification difference index between woodland and cultivated land 
(RA > 0.7, 0.3 < RA < 0.7, RA < 0.3). These were, respectively, T1 (blue 
(Variance, Contrast), green (Variance, Contrast), red (Variance, 
Contrast), swir1 (Correlation)), T2 (nir (Variance, Contrast, 
Correlation), swir2 (Variance, Contrast, Correlation)), and T3 
(textures other than T1 and T2). As outlined in Table 3, five types of 
classification schemes were constructed by combining spectrum, 
remote sensing index, and the three texture combinations.

3.2 Classification results

To identify the optimal classification scheme, the RF algorithm 
was applied to the land use classification according to the five schemes 
outlined above. The classification results of the different schemes are 

presented in Figure 6. By calculating the confusion matrix (Table 4), 
the accuracy of the classification results was obtained. As Table 4 
reveals, with the incremental addition of texture features, the overall 
accuracy and Kappa coefficient of classification gradually increased 
until finally stabilizing. Water area, construction land, and industrial 
and mining land, were easier to distinguish than others, maintaining 
a classification accuracy consistently above 85%. The classification 
accuracy of woodland and cultivated land initially increased, then 
stabilized. The misclassification of construction land and industrial 
and mining land was limited, with the accuracy of each model 
remaining above 90% consistently. The accuracy of garden land 
fluctuated within a range of 90 to 95%. Given that gardens cover a 
relatively small area, this level of accuracy was deemed acceptable, 
thus no further analysis was performed in this regard.

Compared with Scheme I, both Scheme II and Scheme III 
demonstrated improvements in the overall classification accuracy and 
kappa coefficient, with increases of 4.18%, 0.06 and 1.64%, 0.03, 
respectively. The classification accuracy of cultivated land increased by 

TABLE 2 The quantitative difference index values of texture characteristics between woodland and cultivated land.

Spectrum Textural features

MEAN VAR HOMO CON DIS ENT SM COR

blue 0.0160 1.091 0.0022 0.9836 0.1478 0.0224 0.0234 0.0855

green 0.0337 1.0922 0.0270 0.9234 0.2225 0.0629 0.0383 0.0084

red 0.0360 0.9405 0.0363 0.8264 0.2366 0.0413 0.0148 0.0821

nir 0.0273 0.4399 0.0292 0.3198 0.0714 0.0191 0.0473 0.5021

swir1 0.0062 0.2463 0.0927 0.1575 0.1046 0.1270 0.2858 0.7486

swir2 0.0029 0.4278 0.0282 0.3355 0.0237 0.1006 0.1324 0.4208

Bold and underline values represent significant differences in features.

FIGURE 4

Comparison of texture characteristic difference between woodland and cultivated land.
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FIGURE 5

Statistical distribution of texture features of cultivated land and woodland in Blue Band.CL: cultivated land, WL: woodland.
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1.54 and 1.72%, respectively, upon the addition of two texture 
combinations, and the accuracy of woodland rose by 14.80 and 3.74%, 
respectively. Compared with Scheme III, Scheme II, which had larger 
quantitative difference index values, had a more pronounced effect on 
the classification of woodland and cultivated land. The improvement in 
woodland accuracy was more significant than that of cultivated land. 
Scheme IV incorporated all texture difference features of woodland and 
cultivated land with RA > 0.30. Compared with Schemes II and III, the 
classification accuracy of Scheme IV was only lower for construction 
land, while the accuracy for other categories surpassed that of Schemes 
II and III. This suggests that as the number of differences increased, the 
classification accuracy improved significantly. Compared to Scheme IV, 
Scheme V had a slightly higher overall accuracy of only 0.40%, but the 
improvement in accuracy was not particularly noticeable.

Based on the above analysis, incorporating the texture difference 
features of easily confused land types can significantly enhance the 
classification accuracy for a mine-agriculture compound area in a 
plain region. Furthermore, the greater the feature difference, the more 
precise the classification results become. Considering both 
classification accuracy and efficiency, the optimal classification 
scheme consists of 22 characteristic factors: OLI (B2-B7), NDVI, 
MNDWI, NDBI, VAR (blue, green, red, nir, swir2), CON (blue, green, 
red, nir, swir2), and COR (nir, swir1, swir2). Compared with the 
indifference feature classification model, the accuracy of the cultivated 
land classification improved by 1.79%, while the accuracy of woodland 
classification increased by 17.49%. The overall accuracy and kappa 
coefficient were significantly enhanced, with improvements of 6.46% 
and 0.07, respectively.

3.3 Comparison of classification methods

To assess the impact of varying classification methods with 
feature selection on land use classification in mine-agriculture 
compound area, the optimal feature combination scheme that 
composed of 22 characteristic factors was used for CART, NN and 
SVM methods for classification, respectively, which were 
designated as OS_ CART, OS_ NN and OS_ SVM. These results 
were then compared with the RF algorithm (marked as OS_ RF). 
The classification results and the accuracy were shown in Figure 7 
and Table 5.

TABLE 3 Multi-feature combination scheme of remote sensing 
classification.

Classification 
scheme

Feature 
combination

Dimension

I OLI*, NI* 9

II OLI, NI, T1 16

III OLI, NI, T2 15

IV OLI, NI, T1, T2 22

V OLI, NI, T1, T2, T3 57

*OLI represents B2-B7, * NI represents NDVI, MNDWI, NDBI.

FIGURE 6

Classification results of different feature combination schemes based on the RF algorithm. I-V represents the five classification schemes.
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According to the classification results, the RF algorithm 
demonstrated the highest accuracy in the classification of mine-
agriculture compound area based on Landsat 8 OLI image, achieving 
an overall accuracy of 92.38%. The SVM algorithm followed, with an 
overall accuracy of 87.04%. Both the CART and NN algorithms 
exhibited overfitting problems to varying degrees, yielding overall 
accuracies of 84.03 and 82.91%, respectively. From Figure 7, the OS_
SVM method classified the land type outlines in the image smoothly 
and there were fewer small, fragmented patches. Only a small 
proportion of cultivated lands were misclassified as woodland. 
Conversely, using the OS_CART method, many woodlands were 
misclassified as cultivated lands. In the classification using the OS_NN 
method, many cultivated lands were misclassified as woodland types, 
rendering the worst overall classification effect. These results indicate 
that the RF algorithm is more proficient in utilizing the selected 
features to perform land use cover classification for the mine-
agriculture compound area in plain.

4 Discussion

4.1 Impact of feature selection and 
classification methods on results

In this paper, we used Landsat 8 OLI remote sensing images to 
extract spectral data, remote sensing indices and texture features to form 
five classification feature combination schemes. Our objective was to 
classify land use types in Peixian, a typical mine-agriculture compound 
area in plain, using the RF classification algorithm. We analyzed the 
impact of different feature combination schemes on the results of land 
use classification through an evaluation of classification accuracy, overall 
accuracy, and the kappa coefficient. It became evident that the selection 
of features critically influences the accuracy and performance of remote 
sensing image classification. On the one hand, few feature parameters 
cannot encapsulate effective information for all land types, leading to 
issues in precise distinction. On the other hand, having a larger number 
of features is not necessarily better. An excess of features can create data 
redundancy, drastically increasing computational demands and leading 
to a “curse of dimensionality,” which will complicate the classification 
process and may even cause the decline of classification accuracy (Yao 

et al., 2012; Cadenas et al., 2013). Our results revealed that adding more 
feature parameters can significantly improve classification accuracy. 
Moreover, a greater degree of feature differentiation results in more 
accurate classification outcomes. Nonetheless, the overall classification 
accuracy of Scheme V only marginally exceeded that of Scheme IV, by 
just 0.40%. The main reason is that the addition of characteristic 
parameters increases the dimension of classification parameters, from 
22 dimensions of Scheme IV to 57 dimensions of Scheme V, which leads 
to an overfitting issue, yielding only a negligible improvement in 
accuracy (Zhang et  al., 2019). Through a comprehensive analysis, 
we found that the feature combination Scheme IV, based on the RF 
algorithm, provides the most effective land use classification in mine-
agriculture compound area in plain. With an overall accuracy and kappa 
coefficient of 92.38% and 0.90 respectively, these findings align with the 
conclusions of other studies (Stromann et al., 2020; Zhang et al., 2023).

The paper used four classification methods to classify the land use 
in the mine-agriculture compound area, using an optimized feature 
combination scheme comprised of 22 feature factors. Figure  7 
illustrates that the OS_RF method demonstrated strong classification 
performance, particularly in differentiating between woodland and 
cultivated land. The extraction of overall feature classification was 
more detailed, resulting in an optimal classification outcome. By 
constructing numerous unrelated random decision trees, the RF 
algorithm accomplishes data set classification through model 
prediction, guiding and aggregating decision trees (Teluguntla et al., 
2018). Owing to its ability to set the variable contribution rate to 
classification, the RF classifier boasts higher accuracy than alternatives 
such as the standalone CART algorithm, SVM algorithm and single 
NN algorithm (Chan and Paelinckx, 2008; Wingate et al., 2016). These 
findings align with earlier conclusions stating that RF algorithms offer 
superior performance compared to other methods (Chutia et al., 2015; 
Belgiu and Dragut, 2016).

4.2 Uncertainty analysis in classification 
result

Currently, the integration and comprehensive use of multi-source 
remote sensing data is a critical aspect of remote sensing classification 
research (Chen et al., 2017; Judah and Hu, 2022). However, this study 
solely employed Landsat 8 OLI and prior knowledge to classify the 
land use in mine-agriculture compound area, thus limiting the data 
source. Due to the complexity of mixed pixels and spectral 
characteristics of terrestrial objects exemplified by the “same object, 
different spectrums” and “different objects, same image” phenomena 
it remains challenging to distinguish the boundary between woodland 
and cultivated land sections in the 30 meters resolution Landsat 
image. This complexity leads to instances of misclassification. 
Similarly, in the sample points chosen via Google Earth and prior 
knowledge, the “different objects, same image” factor introduces errors 
despite field research and auxiliary image references. Consequently, 
establishing a classification and identification database for land use in 
the mine-agriculture compound area is essential, as it can help 
mitigate the influence of outliers. Moreover, since the classification 
algorithms are pixel-based, a certain “salt and pepper” effect is 
unavoidable (Zhang et  al., 2019; Qu et  al., 2021). This effect is 
particularly pronounced in the distribution of woodland and garden 
land but decreases as the number of texture features increases. This is 

TABLE 4 Classification accuracy of different feature combination 
schemes.

Land use 
types

I II III IV V

Cultivated land 95.82 97.36 97.54 97.61 97.68

Woodland 73.39 88.19 77.13 90.88 91.78

Water area 85.40 92.75 86.29 93.98 93.76

Construction land 90.20 90.10 89.49 90.00 92.45

Garden land 89.66 90.34 90.34 94.48 90.34

Industrial and 

mining land
85.87 89.59 91.08 91.82 91.45

Other land 82.07 86.44 85.26 87.25 85.66

OA/% 86.92 91.10 88.56 92.38 92.78

Kappa 0.83 0.89 0.86 0.90 0.91
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primarily because woodland and garden land distributions are 
discrete, often situated near cultivated land and residential areas, 
making it difficult to accurately identify mixed pixels resulting from 
the overlap of woodland and cultivated land. Future research will 
consider the spectral and texture features of multi-temporal remote 
sensing data. We  aim to establish a model that characterizes the 
differences by quantifying the difference index and histogram 
statistics. This will more accurately reflect the degree of land type 
distinction. We also plan to explore remote sensing image classification 
methods using the RF algorithm and popular deep learning 
algorithms, such as 3D convolution neural network (3DCNN), long 

short-term memory (LSTM), transformer, and graph neural network 
(GNN). The goal is to enhance the accuracy of land use classification 
in typical plain mine-agriculture compound areas.

5 Conclusion

In this paper, we  extracted spectral features, remote sensing 
indices, and texture features from Landsat 8 OLI images. By utilizing 
the RF algorithm and determining five different feature classification 
schemes via a quantitative difference index, we managed to extract 
land use types in a typical mine-agriculture compound area in Peixian, 
China. The results show as follows:

 1 In the multi-feature comprehensive classification scheme based 
on RF algorithm, the quantitative difference index used to 
optimize the feature variables, can effectively improve the 
classification accuracy and efficiency of easily confused land 

FIGURE 7

Classification results of different classification methods.

TABLE 5 Classification accuracy of different classification methods.

Classification 
accuracy

OS_RF OS_
CART

OS_
NN

OS_
SVM

OA/% 92.38 84.03 82.91 87.04

Kappa 0.90 0.80 0.78 0.84
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use types. Furthermore, we  observed that the greater the 
difference in texture features, the more accurate the 
classification outcome.

 2 Among the four classification methods based on the optimal 
feature classification scheme, the RF algorithm demonstrated 
the most effective land use classification. With a classification 
accuracy of 92.38% and a Kappa coefficient of 0.90, it 
outperformed the SVM algorithm, CART algorithm, and NN 
algorithm. These findings indicate that coupling the RF 
algorithm with multi-source feature information can effectively 
classify the land use types in mine-agriculture compound area 
in plain.

The primary advantage of this study lies in the construction of 
a quantitative difference index to select differing texture 
characteristics for easily confused land use types, such as woodland 
and cultivated land. Additionally, our research verified the 
feasibility of the RF algorithm in land use classification within 
mine-agriculture compound areas. Future studies will consider 
using multi-temporal remote sensing data to establish the 
difference of spectral and texture characteristics in different 
seasons, thereby enhancing the accuracy of distinguishing between 
land use types. Methods such as quantitative difference index and 
histogram statistics will be adopted to achieve a comprehensive 
understanding of spectrum and texture, reality, and characteristics, 
thereby improving the accuracy of land use classification in mine-
agriculture compound area.
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