
TYPE Clinical Trial

PUBLISHED 04 January 2024

DOI 10.3389/fvets.2023.1201017

OPEN ACCESS

EDITED BY

Maren Hellige,

University of Veterinary Medicine

Hannover, Germany

REVIEWED BY

Laurie R. Goodrich,

Colorado State University, United States

Davide Danilo Zani,

University of Milan, Italy

*CORRESPONDENCE

Jolien Germonpré

jolien.germonpre@ugent.be

RECEIVED 05 April 2023

ACCEPTED 27 November 2023

PUBLISHED 04 January 2024

CITATION

Germonpré J, Vandekerckhove LMJ, Raes E,

Chiers K, Jans L and Vanderperren K (2024)

Post-mortem feasibility of dual-energy

computed tomography in the detection of

bone edema-like lesions in the equine foot: a

proof of concept. Front. Vet. Sci. 10:1201017.

doi: 10.3389/fvets.2023.1201017

COPYRIGHT

© 2024 Germonpré, Vandekerckhove, Raes,

Chiers, Jans and Vanderperren. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Post-mortem feasibility of
dual-energy computed
tomography in the detection of
bone edema-like lesions in the
equine foot: a proof of concept

Jolien Germonpré 1*, Louis M. J. Vandekerckhove1, Els Raes1,

Koen Chiers2, Lennart Jans3 and Katrien Vanderperren1

1Department of Morphology, Imaging, Orthopedics, Rehabilitation, and Nutrition, Faculty of Veterinary

Medicine, Ghent University, Merelbeke, Belgium, 2Department of Pathobiology, Pharmacology, and

Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium, 3Department

of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University Hospital, Ghent,

Belgium

Introduction: In this proof-of-concept study, the post-mortem feasibility of dual-

energy computed tomography (DECT) in the detection of bone edema-like lesions

in the equine foot is described in agreement with the gold standard imaging

technique, which is magnetic resonance imaging (MRI).

Methods: A total of five equine cadaver feet were studied, of which two were

pathological and three were within normal limits and served as references. A low-

field MRI of each foot was performed, followed by a DECT acquisition. Multiplanar

reformations of DECT virtual non-calcium images were compared with MRI for

the detection of bone edema-like lesions. A gross post-mortem was performed,

and histopathologic samples were obtained of the navicular and/or distal phalanx

of the two feet selected based on pathology and one reference foot.

Results: OnDECT virtual non-calcium imaging, the two pathological feet showed

di�use increased attenuation corresponding with bone edema-like lesions,

whereas the three reference feet were considered normal. These findings were

in agreement with the findings on the MRI. Histopathology of the two pathologic

feet showed abnormalities in line with bone edema-like lesions. Histopathology

of the reference foot was normal.

Conclusion: DECT virtual non-calcium imaging can be a valuable diagnostic tool

in the diagnosis of bone edema-like lesions in the equine foot. Further examination

of DECT in equine diagnostic imaging is warranted in a larger cohort, di�erent

locations, and alive animals.
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1 Introduction

Lameness is common in horses and is mostly diagnosed in
the distal forelimbs (1). When the diagnosis remains inconclusive
based on radiography and ultrasonography, cross-sectional
imagingmethods can be performed, such as computed tomography
(CT) and magnetic resonance imaging (MRI) (2–8).

MRI is a validated technique and the most commonly used
cross-sectional imaging modality for a wide range of pathologies in
the equine foot (7, 9, 10). Hence, MRI provides a detailed image of
both the osseous and soft tissue structures of the equine lower limb
(9, 11–13). Moreover, MRI can be performed while both standing
(low-field magnet) and under general anesthesia (both low- and
high-field magnets) (14).

The use of computed tomography (CT) imaging is emerging in
equine diagnostic imaging, especially since the upcoming “standing
CT” technique can be performed under sedation and with a short
acquisition time of only several seconds (14–18). Conventional CT
imaging generates grayscale images that are a result of the differing
attenuation values within the scanned tissue. However, attenuation
coefficients are not unique for any given material; it is a function
of the material composition, the incoming photon energy, and the
mass density of the material (19, 20). This limitation can make
tissue and lesion characterization challenging, particularly in the
evaluation of soft tissue.

The upcoming dual-energy CT (DECT) imaging technique
offers improved tissue characterization by obtaining a second
attenuation measurement at a different photon energy. As a
result, two attenuation coefficients for each voxel are obtained
at two photon energy measurements. The ratio of these two
attenuation coefficients allows the unique differentiation of tissues
with differing atomic numbers, based on the energy- and element-
dependent nature of X-ray attenuation (19, 21). Hence, DECT
allows for the decomposition of tissues into their constituent
elements, including soft tissues (22, 23). Soft tissue characterization
via DECT imaging is innovative since the evaluation of soft tissue
usually requires an MRI. Therefore, DECT has allowed a new
approach in human diagnostic imaging, including the detection of
bone marrow edema (24–28).

Bone marrow edema was first described by Wilson et al.
(29) to define the pathological appearance of bone marrow on
MRI in painful human joints for which no specific radiographic
abnormalities were detected (29). Bone marrow edema is an
umbrella term for various histopathologic findings that cause
the accumulation of fluid within the bone marrow, including
hemorrhage, necrosis, fibrosis, and infrequently “true” edema (30–
32). Therefore, the term “bone marrow edema-like lesion” is often
preferred in human diagnostic imaging (31, 33). In the horse,
the navicular bone consists of compacta and spongiosa without a
medulla; therefore, the term “bone edema-like lesion” was chosen
in this study. In equine diagnostic imaging, the presence of bone
edema-like lesions on MRI was observed in cases where osseous
injury of the distal limb was reported while the radiographs were
unremarkable (34, 35). Moreover, Mizobe et al. (34) found that the
presence of bone edema-like lesions on MRI has been clinically
significant since the application of appropriate care based on their
presence would contribute to the prevention of further injury.

The mechanism behind the detection of bone edema-like
lesions differs between MRI and DECT. On MRI, bone edema-
like lesions demonstrate a typically altered signal as a result of
the increased water content, characteristically generating a low
and high signal intensity on respectively the T1- and T2-weighted
sequences, with a hyperintense signal in fat-suppressed sequences,
such as the short-tau inversion recovery (STIR) sequence (28, 36–
39). The STIR sequence provides homogenous fat suppression,
which improves the contrast ratio between high-fluid bone edema-
like lesions and the physiological, fat-rich yellow bone marrow.
Additionally, water/fat separation can be achieved by the XBONE
sequence; this is a gradient echo-type sequence that generates two
sets of images, with one containing only the fat signal and the
other containing only the water signal. On the contrary, DECT
allows the detection of bone edema-like lesions via a three-material
decomposition algorithm (22, 40). This algorithm subtracts the
calcium from the cancellous bone, generating virtual non-calcium
(VNCa) images to evaluate the fat and water components within
the bone marrow.

The added value of DECT in the detection of bone edema-like
lesions has already been thoroughly evaluated at different human
body sites, including knee (40, 41), wrist and hand (26), ankle
(42), hip (43, 44), and spine (45–47). DECT has been found to
be an accurate technique in humans for the detection of bone
edema-like lesions, with sensitivity, specificity, and accuracy values
of, respectively, 81–94, 91–98, and 90–91% in comparison with
the gold standard MRI (25, 28, 46–49). However, this diagnostic
accuracy is considered to be reduced by the presence of bone
sclerosis since it has been reported to be indistinguishable from
bone edema-like lesions in some cases (50).

Despite the great benefits of DECT imaging in humanmedicine
and the increasing availability of compatible refurbished CT
scanners in veterinary medicine, the implementation of DECT in
equine diagnostic medicine in the detection of bone edema-like
lesions and other soft tissue lesions has not been investigated. The
objective of this study is twofold: first, to test the hypothesis that
DECT VNCa imaging is a feasible diagnostic technique to detect
bone edema-like lesions in the equine foot in agreement with MRI,
and second, to contribute to the further optimization of the DECT
protocol for the equine distal limb.

2 Materials and methods

2.1 Material collection

In total, five unfrozen feet were collected from five different
horse cadavers that were euthanized for reasons unrelated to this
study. Two feet were selected based on the pathology of the foot;
these feet were collected from horses that were euthanized due
to an injury to the equine foot with a poor prognosis. Three
other feet were collected randomly as reference feet. Each foot
was removed from the fetlock joint. The post-mortem interval
between euthanasia and diagnostic imaging was noted for each foot.
During this interval, the material was kept refrigerated for up to
a maximum of 6 h prior to diagnostic imaging. For each foot, the
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TABLE 1 Overview of the findings of all feet (I–V) on DECT VNCa, MRI, CT, and histopathology.

Foot DECT MRI and CT Histopathology

I–III: reference Areas of high attenuation:
• Directly adjacent to the cortical edge;
• Linearly obliquely oriented within the

proximal part of P3;
• Adjacent to the proximal articular surfaces.

Areas of high attenuation on DECT VNCa
corresponded to zones of high bone density
on both the MR-T1 sequence and CT.

Foot II NB and P3: within normal limits.

IV: Chronic
penetrating nail
injury

As listed for feet I-III including:

• NB: diffuse increased attenuation.
• P3: mottled increased attenuation in the

proximal half, decreasing gradually toward
the distal tip.

As listed for feet I-III including:

• NB: diffuse, hypointense T1/hyperintense
STIR and XBONE signals. Diffuse
disruption to erosion of the palmar
compacta of the NB.

• P3: marked hypointense T1/hyperintense
STIR and XBONE signals involving the
palmar surface and palmar processes.

• NB: extravasated erythrocytes, fibroblasts,
and fibrous tissue in the spongiosa.
Osteoclastic resorption of trabecular bone.

• P3: eosinophilic material (protein-rich
fluid) in dilated intra-medullary capillaries
and in the interstitium of the
adipose tissue.

V: bacterial
infection of the
distal
inter-phalangeal
joint

As listed for feet I-III, including:

• NB: spherically shaped, decreased
attenuation in the mid-plantar part of the
compacta, surrounded by diffusely
increased attenuation in the spongiosa.

As listed for feet I-III, including:
• NB: cyst-like lesion in the mid-plantar

compacta with sclerotic rim, surrounded
by a hypointense T1 and hyperintense
STIR signal. Content: mixed hypointense
and isointense T1 signal, hyperintense
STIR and XBONE signal, and diffuse
hypodense on CT.

• NB: cyst-like lesions lined by sclerotic
trabeculae adjacent to the macroscopic
indentation of the plantar compacta.
Content: dense, uniform fibrous tissue.
Spongiosa surrounding the lesion:
Extravasated erythrocytes with the
proliferation of fibrous tissue and
trabecular osteolysis.

NB, navicular bone; P3, distal phalanx.

description of the cadaver (age, sex, and cause of death/euthanasia)
was noted.

2.2 Diagnostic imaging

2.2.1 Computed tomography
The DECT acquisition was performed using a 320-slice single-

source CT scanner (Canon Aquilion ONE Vision Edition, Canon
Medical Systems, Tochigi, Japan). Each foot was placed parallel
to the z-axis in the isocenter of the gantry in lateral recumbency.
First, the tube current for the DECT acquisition was determined
via automated tube current modulation through the acquisition of
an initial helical conventional CT scanogram. The DECT protocol
was performed by acquiring two sequential volume scans: a low
(80 kV) dataset and a high (135 kV) dataset at a rotation time of
1.5 s for both. The tube current-rotation time product was noted
for each foot. The volume DECT scan acquisition time was a
standard set time of 3.6 s with a scan length of 16 cm for all feet.
In between the datasets, the positioning of the limbs remained
unchanged, and volume scans were centered on the navicular
bone. The CT dose index and dose-length product were noted for
each foot.

2.2.1.1 Image reconstruction

DECT images were created on the workstation via post-
processing software that was made available by the vendor.
VNCa images (multiplanar reformations, slice thickness of 0.5mm)
were obtained using three-material decomposition software to
differentiate calcium, fat, and water. The dual-energy gradient
for calcium was set at 0.70, and material formulas for fat
and water were, respectively, −136/−106 and 0/0 (80 kV/135
kV). The low and high kilovoltage datasets were automatically
reconstructed into conventional CT images (bone and soft

tissue kernel), with a slice thickness of 0.5mm and sent
to PACS.

2.2.2 Magnetic resonance imaging
The MR acquisition was performed using a low-field MRI

(Vet-MR Grande, 0.25-T, Esaote, Italy). Each foot was individually
covered with plastic coating and placed in lateral recumbency
on the table, in a (human) knee coil centered on the navicular
bone. Five sequences were acquired (Table 1): a 3D SST1-weighted
sequence (slice thickness: 0.35mm; TE: 9ms; TR: 22ms; flip angle:
30◦), a 3D SST2-weighted sequence (slice thickness: 0.43mm; TE:
10ms; TR: 20ms; flip angle: 50◦), a transverse fast proton density-
T2 sequence (slice thickness: 4mm; TE: 25ms; echo train length: 8;
TR: 4,260ms; flip angle: 90◦; slice thickness: 4mm), a sagittal STIR
sequence (slice thickness: 4mm; TE: 30ms; TR: 4,340ms; IT: 70 s;
flip angle: 90◦; slice thickness: 3.5mm), and a transverse XBONE
sequence (TE: 21.2ms; TR: 1,440ms; flip angle: 60◦; slice thickness:
4mm). For feet III and V, the 3D SST2-sequence was not included
in the protocol.

2.2.3 Image reading
The MRI, conventional CT (bone and soft tissue kernels), and

DECT VNCa datasets were transferred to PACS and retrieved in
OsiriX (v. 12.5.2, Geneva, Switzerland) for analysis. All datasets
were randomized by a doctoral candidate and descriptively
analyzed in agreement with two readers (European diplomats
in veterinary diagnostic imaging) who were not present during
material collection and data acquisition. Hence, the readers were
unaware of which feet were considered references or pathologic,
and were blinded to patient description, gross pathology, and
histology findings. First, the DECT VNCa images for each foot
were evaluated for the presence of bone edema-like lesions. Next,
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FIGURE 1

Radiographic examinations of foot IV (A, B): horse with chronic penetrating nail injury of the foot sole. Lateromedial (A) and a dorsal 55◦ proximal to

palmarodistal oblique projection (B). A metal probe was placed in the fistula of the lateral fossa of the frog and advanced in a mildly oblique fashion in

a dorsodistal to palmaroproximal direction, extending toward the navicular region.

the MR images for the same foot were evaluated. The presence of
bone edema-like lesions onDECTVNCawas based on an increased
attenuation; for MRI, its presence was based on a hyperintense
signal on the STIR sequence with a concomitant hypointense signal
on the T1-weighted sequence (28, 36, 39). MRI was used as the gold
standard for the detection of bone edema-like lesions. The bone and
soft tissue kernel CT images were evaluated in addition to MRI to
confirm the presence of pathology and sclerosis that might imitate
bone edema-like lesions on DECT VNCa imaging.

2.3 Gross post-mortem dissection and
histopathology

After image acquisition, the material was kept refrigerated
at 2–5◦C up to 24 h prior to gross post-mortem dissection and
histopathological sample collection. For the feet selected based on
pathology, bone samples were collected from the area where bone
edema-like lesions were observed on MRI. For the third reference
foot, bone samples were collected from the distal phalanx and the
navicular bone. Bone samples were obtained by slicing the foot
into sagittal slices using an automatic slicer. For the distal phalanx,
cuboid samples were carefully collected using a manual saw in the
dorsal plane of the mid-sagittal slice. For the navicular bone, the
entire mid-sagittal slice was collected as a sample. Immediately
following collection, the samples were fixed in a formaldehyde

solution (4%) at room temperature for 1–2 weeks. Subsequently,
the samples were transferred to an acidic decalcification solution.
After a waiting period of 72–96 h (depending on sample volume),
the samples were sliced using tweezers and a standard scalpel into
block slices for histopathology. Successively, the slices were placed
into individual cassettes per sample and immersed in a buffer
solution (Na2SO4 5%) prior to microtomy. The slices were stained
with a standard hematoxylin and eosin stain. The histological
samples were evaluated by a European diplomate in veterinary
pathology, blinded from the MRI and DECT images.

3 Results

3.1 Subject description

In total, three reference feet (feet I-III) were collected from
three different cadavers, for which no orthopedic abnormalities
were reported. Two other cadavers (feet IV-V) were diagnosed
with lameness in the foot. For all cadavers, the left front foot was
collected, except for foot V, which was collected from the right hind
limb. For feet I, II, IV, and V, the average post-mortem interval
to imaging was 33 h (range 2–72 h). For foot III, the day of death
was unknown.

Foot I was gathered from a 17-year-old mare that was
euthanized following the complications of colic, and foot II from a
3-year-old gelding that was euthanized following an inguinal hernia
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after recent castration. Foot III was gathered from a mare with no
anamnesis or description.

Foot IV was gathered from a 23-year-old gelding that was
euthanized because of lameness for 1 month as a result of a
penetrating nail injury with infectious navicular bursitis. This
was confirmed on ultrasound, bacteriology, synovial fluid of
the navicular bursa, and radiographic examinations (lateromedial
and a dorsal 55◦ proximal to palmarodistal oblique projection)
(Figure 1). On the radiographs, a chronic penetrating injury of
the sole was observed. A metal probe was placed in the fistula in
the lateral sulcus of the frog, which advanced in a mildly oblique
fashion in the dorsodistal to palmaroproximal direction, extending
toward the navicular region.

Foot V was gathered from an 8-year-old Selle-Français gelding.
The horse was presented with progressive, chronic lameness. On
clinical examination, there was a diffuse swelling of the dorsal
aspect of the coronary band of the right hind foot with a shortened
stride in the walk and lameness in the straight line trot on the
same foot. The lower limb flexion test of the right hind foot was
strongly positive. Synovial fluid aspiration of the right hind distal
interphalangeal joint revealed a small amount of amber-colored,
viscous fluid. Synovial fluid analysis and bacteriology confirmed a
bacterial infection. Post-diagnosis, the horse was euthanized.

3.2 Imaging

A summary of imaging findings on DECT VNCa, MR, and
CT and the histopathology of the three reference feet and two
pathologic feet is presented in Table 1. An overview of the DECT
VNCa, MR (T1 and STIR sequence), and CT images in the mid-
sagittal plane of all five feet is shown in Figure 2. With a rotation
time of 1.5 s, the mean tube current-rotation time product was 270
(±63) mAs (80 kV) and 111 (±23) mAs (135 kV). With a DECT
scan length of 16 cm for all feet, the mean CT dose index was
24.42 (±5.21) mGy, and the mean dose-length product was 390.58
(±83.37) mGy.cm.

3.2.1 Reference feet (feet I–III)
On DECT VNCa of the reference feet, the normal areas of high

attenuation in the distal phalanx, navicular, and middle phalanx are
presented in Table 1 and shown in Figure 2. The reference feet were
unremarkable on MR and CT imaging. Areas of high attenuation
on DECT VNCa imaging corresponded to zones of high bone
density on both the MR-T1 sequence and CT (Figure 2).

3.2.2 Foot IV
On DECT VNCa imaging of foot IV (Figure 2), besides the

areas of high attenuation as in the reference feet, a uniformly
increased attenuation in the spongiosa of the navicular bone and
a mottled area of increased attenuation in the proximal half of
the distal phalanx, which decreased gradually toward the distal tip,
were present.

TheMR examination showed amarkedly hypointense T1 signal
in the distal phalanx involving the palmar surface, extending into
both lateral and medial palmar processes, with corresponding

hyperintense STIR and XBONE signals. In the navicular bone,
a diffuse, hypointense T1 signal with corresponding diffuse
hyperintense STIR and XBONE signals was observed; this diffuse
signal intensity was more pronounced slightly lateral to the mid-
sagittal plane with diffuse disruption to the erosion of the palmar
compacta, which was observed on both MRI and conventional
CT. Focal osseous resorption of the lateral aspect of the flexor
surface of the distal phalanx was present, visualized by an irregular
hypointense T1 signal, hyperintense STIR and XBONE signals,
and diffuse hypoattenuation with an irregular outline on CT.
Moderate-to-severe distention of the navicular bursa and the distal
interphalangeal joint was present.

The following soft tissue injuries and abnormalities were
present: a dorsal margin lesion with focal thickening of the lateral
lobe of the deep digital flexor tendon at the level of the insertion on
the distal phalanx; moderate tendinopathy of the lateral lobe of the
deep digital flexor tendon proximal to the suprasesamoidean region
with a marked enlargement and dorsal bulging with a moderate
T1 hyperintensity/hypodense lesion on CT; and thickening of the
distal sesamoidean impar ligament. Additionally, a linear, small
(0.3 cm in length), well-defined mineral body was present on CT
that was located just proximal to the proximal ligamentous border
of the navicular bone.

3.2.3 Foot V
On DECT VNCa imaging of foot V (Figures 2, 3), besides the

areas of high attenuation as in the reference feet, a spherically
shaped low attenuation was observed in the mid-plantar part of the
spongiosa of the navicular bone, surrounded by diffusely increased
attenuation in the spongiosa.

The MRI and conventional CT examinations revealed a
rounded cyst-like lesion in the mid-plantar compacta of the
navicular bone, extending dorsally into the navicular spongiosa and
plantarly toward the navicular bursa. The content of the lesion
demonstrated a mixed hypointense and isointense signal on the
T1 sequence and a hyperintense signal on the STIR and XBONE
sequences, surrounded by a T1 hypointense and STIR hyperintense
rim (Figures 2, 3). On CT, the cyst-like lesion was 5.5 cm in
diameter with a diffuse, low-attenuating content surrounded by
a smooth, sclerotic rim. The flexor surface of the distal phalanx
showed a diffuse, irregular outline with a demineralized aspect.
Additionally, a small enthesophyte was observed at the distal
margin of the navicular bone.

Evaluation of the soft tissues revealed dorsal margin irregularity
of the lateral lobe of the deep digital flexor tendon, starting from
just proximal to the navicular bone until the level of the proximal
interphalangeal joint. The soft tissue lesions were not conclusive on
soft tissue kernel CT.

3.3 Gross post-mortem findings and
histopathology

For feet II and IV, two histological samples were taken of both
the navicular bone and distal phalanx. For foot V, two samples were
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FIGURE 2

Overview of the DECT VNCa, MRI, and CT images in the mid-sagittal plane of all five feet. For each foot (left to right), the DECT VNCa image, MR T1,

MR short-tau inversion recovery (STIR), and conventional bone kernel reconstructions of DECT scans are shown. In all feet, areas of high attenuation

were present on the DECT VNCa image in the bone marrow/spongiosa that correspond to zones of high bone density on both the MR-T1 sequence

and CT (dashed arrow), negative for bone edema-like lesions. Feet I–III were unremarkable in all modalities. (IV) In a 23-year-old horse with a chronic

penetrating nail injury, DECT VNCa showed uniformly increased attenuation in the navicular spongiosa and a mottled area of increased attenuation in

the proximal half of the distal phalanx, decreasing gradually toward the distal tip (full arrow), this corresponded to a hypointense T1 signal with a

hyperintense STIR signal. On CT, di�use disruption due to erosion of the palmar compacta was observed. (V) In an 8-year-old horse with chronic

lameness with confirmed bacterial infection of the distal interphalangeal joint, DECT VNCa showed a spherically shaped, decreased attenuation in

the mid-plantar part of the compacta, surrounded by di�usely increased attenuation in the spongiosa (bold arrow). On MRI, a cyst-like lesion in the

mid-plantar compacta of the navicular bone with a sclerotic rim was observed, surrounded by a T1 hypointense and STIR hyperintense signal,

indicating the presence of bone edema-like lesions. The content of the lesion generated a mixed hypointense and isointense T1 signal and a

hyperintense STIR signal and was di�usely hypodense on CT (bold arrow).
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FIGURE 3

Transverse view of the navicular bone of foot V, an 8-year-old horse with chronic lameness and confirmed bacterial infection of the distal

interphalangeal joint (A–D). (A) CT: a cyst-like lesion was observed in the mid-plantar compacta with a di�use, low-attenuating content surrounded

by a smooth, sclerotic rim. (B) MR T1-sequence: the content of the lesion demonstrated mixed hypointense and isointense signals, surrounded by a

hypointense signal. (C) MR short-tau inversion recovery sequence: the contents of the cyst demonstrated a mild hyperintense signal on STIR,

surrounded by a hyperintense signal. (D) DECT VNCa: a moderate, di�use increased attenuation was present in the spongiosa surrounding a

spherically shaped decreased attenuation in the mid-plantar part.

collected of the navicular bone. No samples were collected of feet I
and III.

In foot II, no gross changes were observed. At histological
examination, samples of the navicular bone were unremarkable. In
the distal tip of the distal phalanx, a well-delineated, irregular focal
zone of central fibrosis with a loss of adipocytes was found, rimmed
by sclerotic bone trabeculae.

In foot IV, a diffuse indentation of the articular cartilage
and palmar compacta of the navicular bone was present at gross
examination, as was the hemorrhagic appearance of the underlying
spongiosa (Figure 4A). For the distal phalanx, a resorption lesion of
the flexor surface was observed (Figure 4B). In the histology of the
navicular bone, multifocal, moderately large areas of extravasated
erythrocytes were present in the spongiosa, surrounded by a
mild proliferation of fibroblasts and fibrous tissue (Figure 5A).
In other areas, the fibrosis was more pronounced, demonstrating
densely packed fibrous tissue with osteoclastic resorption of
trabecular bone as observed by the presence of multiple Howship’s
lacunae (Figure 5B). In the distal phalanx, infrequent lumina of
intramedullary capillaries were dilated, containing lightly stained
eosinophilic material (protein-rich fluid). In addition, multiple foci
of expansion of the interstitium of the adipose tissue with similar
material (edema) were present (Figure 5C).

In foot V, an indentation of the plantar compacta of the
navicular bone was present at gross examination. Histologically, a
cyst-like lesion lined by sclerotic trabeculae was present adjacent
to this lesion. The center of the cyst consisted of dense, uniform
fibrous connective tissue surrounded by adipocytes and sporadic

capillaries (Figure 6). In the spongiosa surrounding the cyst-
like lesion, multifocal, small areas of extravasated erythrocytes
with the proliferation of fibrous tissues and trabecular osteolysis
were observed.

4 Discussion

This initial experience with DECT imaging of the equine foot
describes a feasible DECT protocol in the horse, including its
appearance in both physiological and pathological cadaver feet.
This study shows that DECTVNCa imaging appears to be a feasible
technique for the detection of bone edema-like lesions in the equine
foot. Therefore, further examination with a blinded approach in a
larger cohort study is warranted to determine the accuracy of DECT
VNCa in the equine foot in agreement to the gold standard, which
is MRI.

In the three reference feet (feet I-III), no bone edema-like
lesions were detected on MRI, which was confirmed on histology
for foot II. However, on DECT VNCa imaging, high attenuation
was observed in certain anatomic zones within all reference feet, for
which no abnormalities were noted on MRI/CT. This observation
includes the spongiosa and bone marrow directly adjacent to the
cortical edge in, respectively, the navicular bone and the distal,
middle, and proximal phalanx, the proximal part of the distal
phalanx, and adjacent to the proximal articular surfaces in the
distal phalanx and the middle phalanx (Figure 2). Similar recurring
zones of high attenuation have already been described by Pache
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FIGURE 4

Overview of the macroscopic findings of the navicular bone and distal phalanx of foot IV, a 23-year-old horse with chronic penetrating nail injury (A,

B). (A) Mid-sagittal view of the navicular bone with di�use indentation of the articular cartilage and the palmar compacta of the navicular bone

(arrow). (B) Mid-sagittal view of the distal phalanx with a resorption lesion of the flexor surface (arrow).

FIGURE 5

Overview of the histopathological findings of the navicular bone and distal phalanx of foot IV, a 23-year-old horse with a chronic penetrating nail

injury (hematoxylin and eosin stain) (A–C). (A) Navicular bone: intertrabecular space within a pathogenic zone showing the free red blood cells with

the intervening formation of fibrous strands (arrows). (B) Navicular bone: multiple Howship’s lacunae (bold arrow) in the bone trabeculae of the

medullar space with adjacent presence of osteoclasts (dashed arrow). (C) Distal phalanx: increase of the interstitial space with pale eosinophilic

staining (edema).

et al. (40) and Guggenberger et al. (42) in humans; an increased
ratio of bone cortex to bone marrow leads to higher variance in
the calcium subtraction on DECT VNCa reconstructions, caused
by beam hardening and filtering effects. In this study, the high
attenuation observed in the proximal part of the distal phalanx and
articular surfaces is likely to be caused by physiologically high bone
density, which can be observed by a hypointense signal on the MR-
T1 sequence (51) and an increased attenuation on the bone kernel
CT in all feet (Figure 2). These DECT VNCa artifacts appear at
similar locations in the equine foot with a dual-source CT scanner
(Siemens, SOMATOM Definition Flash) (unpublished data, same
research team; see Supplementary Figure 1). Moreover, the role of
increased cortical bone thickness was apparent in DECT VNCa

images of the foot of a draft horse, in which these artifacts were
more pronounced (unpublished data; Supplementary Figure 2).
This breed shows a physiologically marked thickening of the
cortical bone of the distal phalanx. Hence, the beam-hardening
artifact was present to an increased extent in this case. Future
studies need to be aware of this artifact and determine the effect
of pathologically increased bone density (i.e., sclerosis) on DECT
VNCa in the equine foot. The accuracy and inter-reader variability
of DECT VNCa imaging should be determined for each anatomical
location separately, and the diagnostic value of a DECT scan
could possibly be breed-dependent. Finally, future studies cannot
directly extrapolate the accuracy of DECT imaging from adult to
adolescent animals since the bone marrow in these patients is still
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FIGURE 6

Detail of the navicular bone of foot V, an 8-year-old horse with chronic lameness and confirmed bacterial infection of the distal interphalangeal joint

(hematoxylin and eosin stain). Detail of the contents of the cyst-like lesion with sclerotic rim, adipose cells in the peripheral zone, and fibrous tissue

in the center.

immature and undergoing red-to-yellow bone marrow conversion.
Similar to MRI, the immature, red bone marrow can be wrongfully
interpreted as bone edema-like lesions since both have a high water
composition (52). Furthermore, horses with systemic diseases were
not included in this study to avoid the presence of yellow-to-red
bone marrow reconversion, which has been described in human
cases as secondary to an increased physiological demand or an
ongoing systemic stress reaction (53, 54).

In two feet (IV-V), bone edema-like lesions were detected
on MRI, defined by a typical altered MRI signal, including a
hyperintense STIR signal and a hypointense T1 signal (37). In
this study, in the case of bone edema-like lesions on MRI, VNCa
imaging showed a diffuse high attenuation in the affected bone
(i.e., navicular bone and/or distal phalanx). The presence of bone
edema-like lesions on MRI was confirmed via histopathology and
corresponded to the findings described in the literature (Figures 5,
6) (30–32, 55, 56). The bone edema-like lesion area observed on
diagnostic imaging consisted of normal bone marrow/spongiosa,
in which there were focal zones of hemorrhage, fibrosis, foci of
necrosis, osteolytic trabeculae, increased vascularization, and/or
“true” edema (defined in this study as the accumulation of
extracellular protein-rich fluid, as the swelling of fat cells, and by the
incipient disintegration of fat cells). Of all these abnormalities that
are categorized under the umbrella term “bone edema-like lesion”,
there was only a selected range of the abnormalities detected in
every case. Furthermore, for each case, a different abnormality
dominated the histological sample: hemorrhage in foot IV, fibrosis,
and “true” edema in foot V. Consequently, future studies should
determine the influence of the lesion characterization on the
accuracy of DECT VNCa imaging since this imaging technique
solely evaluates the fat and water components within the bone
marrow (22, 40). For example, in foot IV, the presence of iron in
the hemorrhage zone in the navicular bone could be a determining

factor for the increased attenuation of DECT (57). Histology also
confirmed the presence of bone edema-like lesions surrounding
the sclerotic rim of the cyst-like lesion in the navicular bone.
In comparison with MRI, sclerosis and bone edema-like lesions
cannot solely be differentiated on DECT VNCa imaging; therefore,
the evaluation of the DECT VNCa images should be performed
along with conventional CT images. Finally, the etiology of bone
edema-like lesions in horses differs from that in humans. In
the horse, bone edema-like lesions are often associated with
osteoarthritis, soft tissue injury, acute trauma, or biomechanical
stress (35), whereas in humans, they are also often seen in
non-traumatic diseases, including rheumatoid arthritis and gout
(26, 28, 41).

Regarding the DECT scan protocol, the tube current-rotation
time product was calculated by automatic tube current modulation
for each foot via an initial helical conventional CT scanogram.
In this study, the mean CT dose index was 24.42 (± 5.21) mGy
and the mean dose-length product was 390.58 (± 83.37) mGy.cm
for a 16-cm DECT volume scan with a rotation time of 1.5 s.
Although radiation dose restrictions are less strict in animals
than in humans, future studies could determine the minimal
requirement in rotation time per anatomical location to obtain
an acceptable signal-to-noise ratio and minimize radiation dose.
Currently, only limited information is available on human studies
regarding radiation doses associated with multi-energy imaging
compared with platforms that use dual-source technology (58).
Apart from the scan parameter settings, it is crucial to position the
patient or material in the isocenter of the gantry to generate the
most optimal results, especially when using automated tube current
modulation (59). Therefore, future studies should determine the
accuracy of DECT VNCa imaging with the upcoming standing
CT technique since a scanogram and automatic tube current
modulation may not be feasible.
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Another important consideration when evaluating DECT
images is that the DECT material decomposition only works
for the defined substances. Therefore, the bone tissue in the
DECT image is not classified correctly. Hence, the conventional
CT dataset, which is reconstructed from the DECT datasets,
should still be used to evaluate the bone tissue. Additionally,
future studies are advised to focus on the application of DECT
on the equine lower limb (i.e., distal to the metacarpal and
metatarsal region), as the accuracy of material characterization
in more proximal image acquisition may be hampered by a
photon starvation artifact (46). Moreover, as previously mentioned
while discussing radiation dose, DECT can be performed through
different techniques depending on the vendor; therefore, readers
must be aware of the specific limitations of the technique
they are using (60). Similar to traditional CT imaging, the
scanning protocol will require small adjustments between different
anatomical locations.

Certain limitations of this proof-of-concept study should be
considered. Since this study was performed on post-mortem
material, the appearance of bone edema-like lesions on MRI
and DECT VNCa may differ in comparison with the ante-
mortem equine foot. As a result of tissue autolysis, the intra-
osseous STIR hyperintensity may be affected (61, 62). Therefore,
the histopathology of areas where bone edema-like lesions were
observed on MRI was included to confirm the presence of
histopathological changes in line with bone edema-like lesions
described by Zanetti et al. (31), Thiryayi et al. (32), and Plenk et al.
(30). Future examinations should also include the histopathology
of all reference subjects since no consensus has been reached
yet on the definition of normal bone marrow in DECT (63). It
has been hypothesized that differing anatomical regions or DECT
technology may affect the optimal cutoff value to differentiate
bone edema-like lesions from normal bone marrow on DECT
VNCa; therefore, the proposed values range between −80 and 6
HU (64). Furthermore, the sample size was limited. The two feet
that showed bone edema-like lesions on MRI and DECT VNCa
are both of an infectious-inflammatory nature. Nevertheless, as
mentioned above, bone edema-like lesions in the horse are often
of a traumatic nature (35). Hence, further examinations should
be made to determine whether differing etiopathogeneses affect
the accuracy of DECT VNCa in the detection of bone edema-
like lesions. Moreover, DECT VNCa could have been preferred
compared with high-field MRI as a gold standard for the detection
of bone edema-like lesions since, for low-field MRI, a lower
spectral separation between fat and water has been observed, which
imposes limits on the ability to perform frequency-selective fat
suppression (65).

Overall, DECT VNCa imaging encompasses great
advantages since it combines the advantages of high spatial
resolution conventional CT with great visualization of bone
structures, complemented by the ability to detect bone
edema-like lesions, which was previously limited to MRI.
Moreover, a range of additional images can be reconstructed
via the post-processing software beyond the DECT VNCa
imaging, including DECT collagen maps or virtual non-
contrast images. This initial study may contribute to protocol
optimization and future clinical use of DECT in veterinary
diagnostic imaging.

5 Conclusion

In this proof-of-concept study, DECT VNCa imaging allows
the evaluation of bone edema-like lesions in the equine foot. The
appearance of the normal equine foot and feet with bone edema-
like lesions on DECT VNCa imaging are discussed, including
the most important caveats of this initial experience with DECT
in the equine foot. Further examination is warranted in a larger
cohort, different locations, different diseases, different gradations
of lesions, and alive animals, which will simultaneously increase the
experience in DECT in veterinary diagnostic imaging.
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