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Groundwater modelers frequently grapple with the challenge of integrating

aquifer test interpretations into parameters used by regional models. This task is

complicated by issues of upscaling, data assimilation, and the need to assign prior

probability distributions to numerical model parameters in order to support model

predictive uncertainty analysis. To address this, we introduce a new framework

that bridges the significant scale di�erences between aquifer tests and regional

models. This framework also accounts for loss of original datasets and the

heterogeneous nature of geological media in which aquifer testing often takes

place. Using a fine numerical grid, the aquifer test is reproduced in a way that

allows stochastic representation of site hydraulic properties at an arbitrary level of

complexity. Data space inversion is then used to endow regional model cells with

upscaled, aquifer-test-constrained realizations of numerical model properties. An

example application demonstrates that assimilation of historical pumping test

interpretations in this manner can be done relatively quickly. Furthermore, the

assimilation process has the potential to significantly influence the posterior

means of decision-pertinent model predictions. However, for the examples

that we discuss, posterior predictive uncertainties do not undergo significant

reduction. These results highlight the need for further research.

KEYWORDS

pumping tests, data space inversion, geostatistics, upscaling, inversion, Theis equation,

spatial averaging function, conditioning

1 Introduction

In this paper we address a problem that is encountered on an almost everyday basis

when constructing regional or semi-regional groundwater models. It is how to use estimates

of hydraulic properties that are forthcoming from historical interpretation of aquifer tests

that have been conducted within a study area, perhaps over a period of many years. These

estimates may reside in databases, on paper records, or in old reports.

The quality and type of potentially useable information may vary between tests. For

some aquifer tests, drawdown observations may have been taken only in the pumped well.
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For others, drawdown may have been measured in a number of

observation wells. Original drawdown measurements may have

been retained in some cases. In others, all that may remain from

the test are estimates of transmissivity and storativity that were

made through curve matching to analytical pumping test solutions,

or straight-line methods such as Cooper-Jacob analysis (Cooper

and Jacob, 1946). Some pumping tests may have been of short

duration—perhaps a matter of hours. For other tests, pumping may

have proceeded for many days. Drawdown recovery measurements

may (or may not) be available and may (or may not) have been

interpreted. Where drawdown induced by pumping from a single

extraction well was measured in multiple observation wells, it is not

uncommon for different values of transmissivity and storativity to

have been assigned to different pumping-observation well pairs.

Groundwater model parameters are subjected to history-

matching using manual or automated methods. These parameters

will usually include transmissivity and storativity (Anderson et al.,

2015). Ideally, estimates of hydraulic properties that are gleaned

from interpretations of aquifer tests that have been conducted

in different parts of a model domain should inform the prior

probability distributions of model parameters (Neuman, 2003).

If the groundwater model is subjected to calibration, this prior

probability distribution will feature in regularization constraints

that are applied to its parameters as uniqueness is pursued through

attainment of amaximum a posterior (MAP) solution to the inverse

problem that model calibration poses. Alternatively (or as well),

if history-matching employs ensemble-based methods to sample

the posterior probability distribution of model parameters, then

the prior parameter probability distribution is used to generate

initial realizations of parameters; these are then adjusted as regional

measurements of system states and fluxes are assimilated (White,

2018).

So the question of how to use estimates of transmissivity

and storativity that are forthcoming from historical aquifer tests

becomes the question of how these estimates should inform

the prior probability distributions of regional model parameters.

Embodied in this issue are other issues. These issues include

the following:

• The nature of regional model parameterization devices that

can best accommodate information derived from historical

aquifer test interpretations;

• The level of respect that aquifer-test-interpreted transmissivity

and storativity should be afforded as regional model

parameters undergo adjustment during history-matching; and

• Determination of the spatial extent of the regional model

over which these aquifer-test-derived values should

retain influence.

Model parameterization devices vary between models and

modelers. The finest scale available for model parameterization

is that of individual model cells. Depending on the model, cell

dimensions may range from less than a meter to hundreds of

meters. For a regional or semi-regional model, it is common for cell

dimensions to be in the range of tens to hundreds of meters. There

may be some circumstances, therefore, where aquifer-test-inferred

hydraulic properties may influence parameters that are attributed

to a single model cell, and there may be circumstances where they

influence more cells than this. Obviously, the influence of aquifer-

test-derived hydraulic properties diminishes with distance from an

aquifer test site. At the same time, assessment of an aquifer test’s

area of parametric influence, must also account for the duration

of the test (Leven and Dietrich, 2006). Presumably aquifer tests of

longer duration will impact hydraulic properties that are assigned

to a greater number of regional model cells.

Aquifer test estimates of transmissivity and storativity obtained

through analytical curve matching are solutions to an inverse

problem (Kruseman and de Ridder, 1990). Solution of the inverse

problem of pumping test data interpretation generally relies on

hydraulic property uniformity as its sole regularization device. The

uniformity assumption is generally approximate at best. Values

that are interpreted for local transmissivity and storativity must

therefore compensate for errors in this assumption (White et al.,

2014). Their utility in parameterization of a regional model that

simulates non-radial groundwater flow, and that acknowledges

the presence of aquifer heterogeneity, is therefore questionable.

This issue is highlighted when drawdowns observed in different

monitoring wells influenced by the same pumping well are

interpreted to yield different estimates of transmissivity and

storativity. A modeler who intends to make use of information

that was forthcoming from the aquifer test generally uses this

information to define a range of transmissivity and storativity

values which is then used to constrain the prior parameter

probability distributions of regional model parameters in the

vicinity of the aquifer test. Information on the nature and

patterns of local heterogeneity of which these different estimates of

transmissivity and storativity speak is generally ignored.

Because hydraulic properties that are inferred from an aquifer

test are obtained through solution of an inverse problem, they

are both uncertain and correlated with each other. This must be

taken into account when assessing themanner in which they should

inform parameters of a regional groundwater model.

In attempting to solve problems that are posed by the above

issues, we draw inspiration from theories and methods that are

employed in the specialist fields of upscaling, pumping-test analysis

and data assimilation. We attempt to apply these methods in a way

that addresses the practical problem that use of historical aquifer

test data poses.

2 Background

2.1 Aquifer test interpretation

In this and following sections of the paper, we use the symbols

T and S to refer to estimates of transmissivity and storativity that

are obtained from analysis of aquifer test data.

Manewell et al. (2023) show that T and S can be conceived

of as complex spatial averages of real-world transmissivity and

storativity (which we refer to as T and S) over aquifer material

that occupies the vicinity of the test site. This spatial averaging

relationship is exact where departures of T and S from their average

values are small over the integration domain. However, the linearity

relationship that is implied in spatial averaging is less exact where

local heterogeneity has a higher amplitude than this.
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The kernels (a function that assigns weights to contributions

from different spatial locations) of these averaging functions

vary with duration of pumping. For a two-well test, they are

symmetrical about the line which joins the pumping well to the

observation well, and about a line that is perpendicular to this

which passes through the mid-point of the wells. In a real-world

heterogeneous aquifer, these averaging functions cross hydraulic

property boundaries, so that T is sensitive to spatially averaged

S and vice versa. “Contamination” of estimates of one hydraulic

property by values of the other is not an issue unless the medium

in which an aquifer test was conducted is heterogeneous. This is

because cross-property kernels of the spatial hydraulic property

averaging functions integrate to zero.

The averaging kernel for T as a function of aquifer T grows

in area with pumping-test duration. At moderate to large times,

contours of constant kernel value are elliptical in shape. The

averaging kernel for S as a function of aquifer S has a more

complicated shape, with higher values close to the pumping and

observation wells. Its contours are increasingly elliptical with

distance from the pumping-observation well pair. However, most

of its density remains close to these wells.

The implications of these and other aspects of the Manewell

et al. (2023) study to representation of pumping-test-inferred

estimates of transmissivity and storativity within a groundwater

model include the following.

• Unless a pumping test was conducted within the borders of

a very large groundwater model cell, the value of T that is

inferred from a pumping test is likely to be influenced by the

T of aquifer material that occupies a number of neighboring

groundwater model cells.

• Aquifer-test-inferred S is likely to be influenced by S of aquifer

material that occupies fewer model cells than this.

• In a heterogeneous medium, T is partially reflective of S while

S is partially reflective of T of material that occupies one or

more groundwater model cells which include and surround

the site of an aquifer test.

Repercussions of averaging kernel function details on estimated

T and S increase with heterogeneity of the medium in which

the aquifer test was undertaken. That is, it increases in inverse

proportion to departures from the assumption on which estimates

of T and S are based. If hydraulic properties of the tested

aquifer are viewed as stochastic variables, then the effects of these

averaging kernels on estimated T and S can be conceptualized

as dependent on the probability distribution of porous medium

hydraulic properties in which the aquifer test takes place.

2.2 Upscaling

The literature on upscaling as an adjunct to simulation of flow

in porous media is vast; for an overview, see, for example Karimi-

Fard and Durlofsky (2016) andWang et al. (2023). Like aquifer test

interpretation, upscaling solves a kind of inverse problem. It asks

what uniform properties should be assigned to an individual model

cell so that flow rates and directions across the cell’s boundaries

are the same as those that result from the heterogeneous medium

that the cell actually contains. Some upscaling methodologies

that are popular in petroleum reservoir simulation implement

direct solution of this inverse problem by populating individual

model cells with realizations of small-scale heterogeneity, and then

imposing appropriate head/pressure conditions at cell boundaries

to calculate resulting flows. Upscaled hydraulic properties are

calculated from these (Wen and Chen, 2006; Li et al., 2012; Zhang

et al., 2021).

Other upscaling procedures are less precise than this but

are more easily implemented. These include methodologies

such as harmonic, arithmetic and geometric averaging. Where

subsurface media have no clear geostatistical description (which

is often the case in groundwater modeling), and/or where

subsurface distributions of hydraulic properties are approximately

multiGaussian, geometric averaging is often a reasonably good

approach to upscaling (Durlofsky, 1992; Wen and Gomez-

Hernandez, 1996).

Notionally, estimation of aquifer-test-derived T and S can be

considered as a form of upscaling. It imposes a simple set of

boundary conditions on a porous medium, and then determines

what properties should be assigned to an equivalent homogeneous

medium in order to obtain the same drawdown responses at one

or a number of measurement points. However, these boundary

conditions, and the averaging that is implied by use of these

boundary conditions (see above), are very different from those that

are used to replace heterogeneity by homogeneity in a rectangular

or polygonal cell of a groundwater model. These differences in

flow regime, and the averaging functions that they imply, challenge

the appropriateness of populating groundwater model cells with

pumping-test-derived estimates of T and S.

3 Methodology

3.1 Outline

We first outline an “exact” methodology for utilization of

aquifer-test-derived T and S in regional groundwater model

parameterization. We then explore ways through which the

difficulty and numerical cost of this methodology can be reduced.

Figure 1 shows a pumping well and three observation wells. Let

us suppose that these were used for an aquifer test in a fully confined

aquifer that was conducted many years ago. Let us further suppose

(to make the example easier to visualize) that the three observation

wells are separated from the pumping well by a distance of 20m. All

of these wells are presumed to lie within the domain of a regional

groundwatermodel whose cells are 10m by 10m (we recognize that

these cell dimensions are small compared to those used by most

regional models. However, we base our current thought example,

as well as the following practical example, on this cell size in order

to illustrate how T and S interpreted from an aquifer test may

influence more than one model cell. Where regional model cells

are large, and where pumping to observation well distances are also

large, the same principles apply).

Suppose that an old report informs us that the pumping

test lasted for 9 h, and that T and S estimates of (T0), (T1, S1),

(T2, S2), and (T3, S3) were made from drawdowns that were
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FIGURE 1

Pumping test configuration and numerical model cells.

measured in the pumping well and in observation wells 1, 2, and 3

respectively. These were estimated using Cooper-Jacob analysis of

observed drawdowns. We further suppose that pumping test data

are no longer available; only details about pumping rate duration,

distances to observation wells and interpreted T and S values

remain. From application of the Cooper-Jacob method, we surmise

that only “late time” data were used for inference of hydraulic

properties; these pertain to times for which drawdown is a linear

function of the log of time.

We suppose that spatial variability of T and S at the fine scale

are known to be characterized by a variogram whose range, sill

and mean value are known (actually a variogram is more likely to

characterize the log of these quantities than their native values. This

has no effect on the methodology that we now describe).

The first step in implementing this methodology is to

use the Theis equation to generate late-time drawdowns in

the pumping and observation wells using the four sets of

interpreted T and the three sets of interpreted S values. We

may generate these at an interval of, say, 10 per decade of

time. We then add an appropriate realization of measurement

noise to these time series (the choice of noise level is based

on local experience in gathering and interpreting pumping

test data).

Next, we construct a fine-scale numerical model grid with cell

size of 1m or less that extends to something approaching the limits

of pumping-test-induced drawdown (alternatively, it can extend a

shorter distance than this from the pumping well if it is equipped

with a Dirichlet or Neuman circular boundary condition that is

populated under the assumption of hydraulic property uniformity

using the geometric average of the above values of T and S).

Obviously, this fine model grid will contain many cells.

The aquifer test is simulated by pumping from the central

cell of this fine-scale model for 9 h. A cell-to-well correction is

required to calculate drawdowns in the pumping well; this can be

provided by the CLN package of MODFLOW-USG (Panday et al.,

2013) or the MAW package of MODFLOW 6 (Langevin et al.,

2017). Using an ensemble Kalman smoother, we then derive (for

example) 500 realizations of cell-by-cell T and S that fit aquifer-

test-derived drawdowns. These realizations are adjusted from 500

samples of the prior probability distribution of aquifer T and

S; as such, they are samples of the posterior (with respect to

the aquifer test) joint probability distribution of aquifer T and

S. This is a numerically intensive procedure, despite the use of

ensemble methods. Its numerical intensity reflects the number of

fine-scale model grid cells, and the fact that expression of cell-by-

cell hydraulic property variability is likely to impede simulation
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speed. Nevertheless, methods such as that described by Alzraiee

et al. (2022) would (in principle) enable fine-scale posterior T

and S fields to be calculated in this way. Note, however, that

use of ensemble methods places certain requirement on the prior

probability distributions of T and S. These must be multi-Gaussian,

or transformable to multi-Gaussian (Evensen et al., 2022).

For each of the 500 samples of the joint posterior probability

distribution of fine-scale T and S that are derived in this manner,

the geometric average of T and S is evaluated within each cell of the

regional model. Under the assumption that geometric averaging is

suitable for upscaling fine grid properties to coarse grid properties,

we now have 500 samples of the aquifer-test-conditioned, upscaled,

regional model parameter field. We can expect that variability of

these samples between realizations are less in cells that are closer

to the site of the aquifer test than in those that are further from

it. Where inter-realization variability is smaller than that which is

expected for realizations of prior T and S for the regional model

(taking the necessarily upscaled nature of regional model T and S

parameters into account), then pumping test measurements have a

conditioning effect on regional model parameters. As will be shown

below, the conditioning effects of the aquifer test are generally

confined to only a few regional model cells that are close to the

test site.

Note that the prior probability distribution of cell-based values

of T and S used by the regional model can, in principle, be formally

calculated from the prior probability distribution of fine-scale T

and S. If hydraulic property spatial variability is variogram-based,

regional-scale model variograms are easily calculated from fine-

scale variograms through spatial averaging (Journel andHuijbregts,

1978). In most cases of practical interest, however, the correlation

length and variance of upscaled prior T and S will be guessed. This

is because there are rarely sufficient data available to undertake

geostatistical analysis. Furthermore, even if they were available,

stationarity is unlikely to prevail.

The outcomes of the above process are 500 realizations of

aquifer-test-conditioned, upscaled T and S values attributed to

regional model cells that are close to the site of the aquifer test.

Each such realization is comprised of a map of near-test-site

(Tu, Su)i pairs; the “u” subscript indicates “upscaled” and the

“i” subscript refers to the regional model cell to which a pair

of hydraulic properties is assigned. Collectively, these realizations

encapsulate the information content of the four (T, S) estimates

that emerged from interpretation of drawdowns yielded by the

historical pumping test. They account for uncertainties in aquifer

test data interpretation that originate from measurement noise on

the one hand, and from regularization that was required for unique

estimation of four pairs of T and S values on the other hand.

Collectively the set of regional-model cell-based (Tu, Su)i pairs that

populate each of the 500 realizations of (Tu, Su)i maps will exhibit

correlation between Tui and Sui values ascribed to neighboring

model cells; values of Tui and Sui within each model cell will also

be correlated.

Optimal usage of the 500 realizations of test-site-proximal

maps of upscaled Tui and Sui that are obtained in this manner

depends on the parameterization scheme that is adopted by the

regional model. Suppose, for the moment, that history-matching

of this model is also based on ensembles of cell-by-cell parameter

values. In accordance with the operation of ensemble Kalman

methods, samples of the prior regionalmodel parameter probability

distribution are adjusted until they sample the posterior parameter

probability distribution as measurements of system state and flux

that comprise the history-matching dataset of the regional model

are assimilated. The 500 realizations of near-test-site (Tu, Su)i
samples that were obtained in the manner described above can

therefore be used to condition 500 realizations of prior regional

model parameter fields that are used to initiate the regional model

history-matching process. Conditioning of cell-by-cell property

fields is easily undertaken if these fields are generated using the

sequential Gaussian methodology; see, for example, Deutsch and

Journel (1997).

Stochastic (Tu, Su)i maps that surround other historical aquifer

test sites can be obtained in a similar manner. These too can be part

of the spatial conditioning dataset of prior realizations of regional

model parameters.

3.2 Issues

The methodology that is described above is “conceptually

correct” except, perhaps, for its use of geometric averaging as an

upscaling device from fine-scale model cells to regional-scale model

cells. However, this approximation can be justified by the numerical

cost of implementing a more rigorous upscaling methodology,

and by the fact that deployment of a more exact upscaling device

requires an appropriate geostatistical descriptor for fine scale

hydraulic properties. Ideally, the same descriptor could be used

for upscaling as that which is used to generate prior realizations

of fine-scale model parameters that form the basis for aquifer test

data re-interpretation in the manner described above. However, in

groundwater modeling contexts, geostatistical characterization of

subsurface media is approximate at best and unreliable at worst.

Use of geometric averaging for upscaling purposes must be seen in

this perspective.

Vagueness of stochastic characterization of real-world hydraulic

properties is a matter of concern, not just for upscaling to regional

model cells, but also as a fundamental element of ensemble-

based aquifer test data assimilation. Nevertheless, adoption of

a fine-scale hydraulic property prior is something that cannot

be avoided for either of these operations. The methodology

described above places heavy reliance on use of a (generally

multi-Gaussian) prior hydraulic property distribution that yields

hydraulic property realizations that still respect the prior after

history-match adjustment; this is a requirement of ensemble-based

history-matching. This precludes use of a prior that may express

more realistic representations of fine scale hydraulic property

detail. It also mandates use of a prior which may be itself uncertain

and whose uncertainty is not respected in the data assimilation

process. This is a weakness of the methodology.

Another problem with the methodology that is outlined

above is its high numerical cost. The fine model grid that is

used for aquifer-test re-interpretation, and the iterative nature

of ensemble-based data assimilation, impose a considerable

computational burden. Use of “hierarchical methods” that

acknowledge uncertainty in the prior probability distribution of
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subsurface hydraulic properties is likely to increase this burden

considerably (Oliver, 2022).

3.3 Data space inversion

“Data space inversion” (DSI) refers to a class of ensemble

methods that supports direct conditioning of model predictions

by measurements of past system behavior without the need

to adjust model parameters. This can overcome some of the

problems that are discussed above. We briefly describe the

theory on which it is based, while referring readers to papers

such as Lima et al. (2020) and Delottier et al. (2023) for

further details.

We use the vector h to designate a set of observations

of system behavior. Collectively, these comprise a history-

matching dataset. Let the vector o denote model-calculated

counterparts to measurements comprising h. Meanwhile, the

vector s encapsulates model predictions that are of interest to

us. In the present case, these predictions are geometric averages

of aquifer-test-conditioned fine-scale hydraulic properties over

regional model cells.

The first step in the application of DSI is the generation of

stochastic fields at the fine model scale, similarly to the method

described previously. A significant difference with the previously

described methodology, however, is that these parameter fields

are not history-match adjusted. Hence, they can be of arbitrary

complexity and can express arbitrary hydraulic property detail.

For example, they may include categorical features such as

faults or geological boundaries whose positions may change

between realizations. Alternatively, or as well, they can include

a high degree of non-stationarity that allows spatial correlation

and orientation of hydraulic property connectedness to vary

in different parts of the aquifer test drawdown cone. Non-

stationary cell-by-cell parameter fields are easily generated using

the moving average method described by Oliver (1995) and

adapted for non-stationarity by Higdon et al. (1999), Paciorek

and Schervish (2006), and others. Public-domain packages which

implement non-stationary stochastic field generation are readily

available; see, for example, Doherty (2023a,b). Additionally, there

is no reason why different realizations that comprise the prior

hydraulic property ensemble cannot be generated using different

prior hydraulic property distributions. The resulting ensemble of

hydraulic property fields can therefore accommodate limitations in

a modeler’s ability to stochastically characterize spatial variability of

local hydraulic properties.

Each one of these hydraulic property fields (let us again assume

that there are 500 of them) is then used to calculate the geometric

average of T and S in regional model cells whose properties may

be informed by the aquifer test. These upscaled (Tu, Su)i pairs

comprise the vector of predictions s made by the statistical model

(actually, we work with the natural logs of these quantities, as the

hydraulic property inference problem then becomes more linear).

The pumping test is then simulated using each of the 500

hydraulic property fields. Model-outputs o corresponding to h are

thereby generated. On the basis of these 500 model run outcomes,

standard statistical formulas can be used to calculate the means of

both s and o; this is the vector

[

s

o

]

. A covariance matrix that links

s and o is just as easily evaluated. We symbolize this as C

([

s

o

])

(actually, the methodology often performs better if the elements of

s and o are histogram-transformed prior to construction of these

empirical statistical quantities; see Jiang et al. (2021). We adopt this

approach in the example presented below but discuss it no further

here in order to maintain simplicity of the discussion).

Next, a surrogate statistical model (SSM) is constructed that

links o and s. It is formulated as follows.

[

s

o

]

=

[

s

o

]

+ C1/2

([

s

o

])

x (1)

C1/2

([

s

o

])

is derived by subjecting the above-mentioned

empirical C

([

s

o

])

matrix to singular value decomposition, taking

the square root of singular values, and then re-assembling the

matrix. In the example discussed below, we retain 0.999 of total

singular value energy in formulation of the final matrix. It is easily

established that statistical relationships between s and o that are

embodied in Equation 1 are the same as those that characterize the

outputs of the complex model which it replaces, provided that the

parameters of the statistical model (the individual elements of x in

Equation 1) are independently normally distributed.

Once the model of Equation 1 has been formulated, the next

step is to condition predictions s by measurements h. This is done

by subjecting this surrogate model to Bayesian history-matching. In

our example we use the PESTPP-IES iterative ensemble smoother

(White, 2018). This yields posterior samples of statistical model

parameters x which can then be used to generate posterior samples

of s. Because the surrogate model of Equation 1 runs in a fraction

of a second, conditioning of s by h is a numerically trivial exercise.

The outcome of the conditioning process is an ensemble of 500

maps of aquifer-test proximal (Tu, Su)i. These can be used to

condition 500 realizations of regional model parameters in the

manner described above.

We now demonstrate the above methodology using a synthetic

test case. We then discuss ways in which the methodology can be

modified for easier use in real-world settings. In the example that

we present below, we do not avail ourselves of the opportunity to

use a categorical or non-stationary prior probability distribution

for fine scale T and S. Furthermore, the prior parameter probability

distribution that we adopt for regional model parameters is directly

upscaled from the fine scale prior. These controlled conditions

support a systematic assessment of the methodology. Figure 2

shows the steps required to achieve this.

4 An example

For this study, we continue to discuss the example of Figure 1.

At first we assume that hydraulic testing was undertaken several

decades ago. The aquifer is confined. Its mean transmissivity is
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FIGURE 2

Schematic that shows the steps required to assimilate drawdown data to condition regional-scale model cells.

thought to be 100 m2/day while its mean storativity is thought to

be 0.001. Hydraulic property measurements from tests conducted

across the aquifer elsewhere exhibit a standard deviation of 0.8 for

both T and S on the natural log scale.

A hydrogeologist conducted a 9-h pumping test. Drawdown

and recovery were recorded in the pumping well and in

three adjacent monitoring wells. The pumping well had a

diameter of 15 cm. Hydraulic property estimation relied on the

Cooper-Jacob straight-line method applied to late-time drawdown

data. Interpreted T and S were summarized in a brief report

as shown in Table 1. Unfortunately, drawdown measurements

were not included in the report and are absent from project

archive databases.

To begin the workflow described above, we use the interpreted

T and S values and the Theis equation to synthesize drawdowns

in all observation wells. These are represented by the red points in

Figure 3. In keeping with the manner in which data were originally

interpreted, we exclude the first decade of these data when re-

inferring aquifer transmissivity and storativity, thereby retaining

only the linear part of these drawdown curves.

For the sake of comparison, we also assume that drawdown

measurements from this pumping test were eventually discovered.

The aquifer parameters for this synthetic example are thereby

assumed to be calculated from the blue points shown in Figure 3.

Well bore storage effects and hydraulic heterogeneity explain

perturbations of these points from those calculated using the

Theis equation. This effect is readily included in our small-scale

model. We assume that a suite of recovery measurements were also

discovered, these spanning a period of 48 h.

An exponential semi-variogram with a range of 100m and

a natural log standard deviation of 0.8 was used to characterize

T and S stochasticity over a 1m grid spanning 1,000 ×

1,000m (we assume that this simplistic characterization of site

heterogeneity is in accordance with prevailing site concepts. We

note, however, that the methodology described in this paper

requires assumptions of neither stationarity nor continuity of

hydraulic property fields). This fine scale model therefore has

1,000,000 cells. Five hundred and one realizations of T and S fields

were generated; one of these was selected as “synthetic reality.” The

blue drawdown measurements depicted in Figure 3 were generated

from this “reality.”

The pumping test is simulated using a two-dimensional

MODFLOW 6 model. The Multi Aquifer Well (MAW) package is

used for extraction of water from the local aquifer; this accounts

for well bore storage and losses and performs the necessary cell-

to-well correction. In accordance with pumping test specifications

that were provided in the report, we simulate extraction at a rate of

2,000 m3/day for 9 h. We also simulate 48 h of recovery.

The eastern and western boundaries of the model domain are

no-flow while the northern and southern boundary conditions are

Dirichlet. These impose a north-to-south hydraulic gradient of

0.005 on hydraulic heads. These boundary conditions do not affect

aquifer test drawdown measurements because drawdowns do not

extend to aquifer boundaries. However, as a matter of convenience,

they are the same as those used by the regional model for which

upscaled parameters are required (see Figure 4A).

We evaluate the method using a number of different subsets of

the full synthetic observation dataset. This allows us to document

the performance of the methodology that we describe above,

while also illustrating the worth of information residing in aquifer

test data that is often ignored. At first we use only synthesized

drawdown measurements from the pumping well itself over a time

span from 0.01 days to 9 h. The synthetic dataset is then expanded

to include synthesized drawdown measurements from one, and

then two, offset monitoring wells. This illustrates improvements

in the ability of aquifer test data to condition regional model
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TABLE 1 Pumping test interpretation presented in historical report.

Parameter Pumping well
(PB01)

Monitoring well E
(MB01)

Monitoring well NE
(MB02)

Monitoring well N
(MB03)

Location (site coords) (415, 525) (435, 525) (430, 541) (415, 545)

Distance from pump (m) - 20 20 20

Transmissivity (m2/day) 48 60 75 95

Storativity - 0.001 0.0011 0.0007

FIGURE 3

Theis synthesized drawdowns compared to “real” drawdowns at four monitoring locations. T and S values estimated from late-time drawdowns are

also shown in this figure. (A) PB01-Pump. (B) MB01-East. (C) MB02-NE. (D) MB03-North.

parameter fields when drawdown measurements in one or more

observation wells are available. Finally, we use all drawdown and

recovery data from the pumping and three observation wells to

condition the regional model parameter field.

The regional scale model is depicted in Figure 4B. With grid

cell lengths of 10 × 10m the grid is comprised of 10,000 model

cells. Each cell of the regional model therefore contains 100 cells

of the fine model. We suppose that the regional model was built

to predict particle trajectories and drawdowns toward a planned

excavation in the central region of the model domain. This is

further discussed below.

The left part of Figure 5 shows “synthetic reality” T and S fields

over the domain of both models. Note that transmissivities near

the pumping test site are significantly lower (around 30 m²/day)

than the average value of 100 m²/day used for generating this field.

Note also the presence of elevated storativity to the southeast of the

aquifer test site.

The right part of Figure 5 shows upscaled reality T and

S fields for the regional model. Upscaling is performed by

geometrical averaging of fine-scale T and S fields within

each regional model cell. To validate the integrity of this

method of upscaling, flows across all faces of all regional

model cells were compared with summed flows across the

boundaries of fine model cells that coincide with all of

these coarse model cell boundaries. Excluding cells proximate

to the pumping well, the maximum flow discrepancy was

commensurate with errors incurred in the numerical model

solution process.
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FIGURE 4

(A) Aquifer-scale (i.e., fine) model grid, together with locations of pumping well, observation wells and boundary conditions. (B) Regional-scale

model grid and boundary conditions.

4.1 Aquifer-test-constrained upscaling
using drawdowns from pumping well

At first, we apply the above methodology to drawdowns that

are measured in the pumping well only. Figure 6 presents a map

of the mean upscaled (Tu, Su)i parameter field for that part of

the regional model that surrounds the aquifer test site. This is

compared with T and S fields obtained from geometric upscaling

of real parameters fields (see the left side of Figure 6). Samples

of the posterior probability distribution of Tui and Suiat selected

regional model cells are also shown, together with samples of the

prior probability distribution of Tui and Sui, together with the true

values of T and S in these cells. The latter samples are obtained

by geometric upscaling of the 500 parameter fields that were used

for construction of the DSI model. These figures demonstrate that

drawdown measurements from a single pumping well taken over a

limited time do appear to provide some insights into transmissivity

in the vicinity of the test site. The low values of T that prevail in

this area are reflected in the mean upscaled Tui field; they are also

reflective of the T value of 48 m2/day interpreted from pumping-

well drawdown data. In addition to this, the T histogram plot

exhibits a shift in the direction of lower transmissivity, despite the

fact that uncertainty of T is not reduced by much.

Prior and posterior standard deviations of Tui and Sui
(actually their natural logs) can be calculated from prior

and posterior realizations of (Tu, Su)i. From these it is a

simple matter to map relative reduction in standard deviation

of Tui and Sui accrued through conditioning by drawdown

measurements; see Figure 7. The maps presented in this figure

indicate that the uncertainty of Tui is reduced by 78% in

the immediate vicinity of the pumping well. As expected, and

as is indicated by the spatial averaging function presented in

Manewell et al. (2023), information forthcoming from late-

time pumping well drawdowns does not significantly reduce the

uncertainty of Sui.

4.2 Aquifer-test-constrained upscaling
using drawdowns from one observation
well

We now repeat the above numerical experiment, this time

using Theis-equation-synthesized measurements separately from

each of the northern (MB03) and eastern (MB01) observation wells.

Figure 8 shows that when drawdown data from MB1 are used

to produce maps of (Tu, Su)i, the mean Tui decreases across a

wide area; it aligns with the Cooper-Jacob estimated value of 60

m2/day based on drawdowns from this well. In contrast, when

drawdown data fromMB03 is used to producemaps of (Tu, Su)i, the

mean Tui are higher than this; this mirrors the historical estimate

of 95 m2/day derived from Cooper-Jacob interpretation of late

drawdown data in this well. However, drawdowns from neither test

resolve details in the structure of the real T and S fields.

Figure 9 depicts relative uncertainty reduction. This figure

illustrates that the posterior uncertainties of Tui and Sui are

reduced over a wider area than when drawdowns from only

the pumping well are used to estimate aquifer properties.

However, the relative reduction in the standard deviation

of individual Tui values is of lower magnitude, peaking at

around 38%.
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FIGURE 5

The left part of this figure shows fine-scale reality T and S fields. The right part of the figure shows Tui and Sui fields for the regional model derived

through geometric upscaling of the fine scale field.

4.3 Aquifer-test-constrained upscaling
using drawdowns from two observation
wells

Wenow derivemaps of aquifer-test-constrained (Tu, Su)i under

the assumption that historical drawdowns from two observation

wells (i.e., MB01 and MB03) were used to historically interpret

T and S, and that individual values of T and S obtained

from interpretation of each well-specific set of drawdowns were

recorded in the historical report. In accordance with the workflow

described above, we use the Theis equation to generate two sets

of observation-well-specific drawdowns. Then, using data space

inversion, we produce a single posterior ensemble of 500 sets of

(Tu, Su)i maps from which posterior statistics of Tui and Sui can

be calculated.

Figure 10mapsmean Tui and Sui obtained through this process;

these maps are compared with the real Tui and Sui. It is apparent

from these maps that simultaneous re-interpretation of synthetic

high-time drawdowns that are derived from the two, separate,

historical estimates of T and S yields a high level of resolution for

subsurface hydraulic property structure. The patterns of Tui and

Sui heterogeneity that emerge from this process resemble patterns

that occur in reality. Furthermore, inferred mean Tui and Sui values

near the test site are well-aligned with true values. Tui is particularly

well-resolved on the outside lobes of the well-configuration.

Figure 11 reveals that the posterior uncertainty of aquifer-

test-constrained Tui and Sui decreases across a wider area when

drawdowns from two wells are simultaneously reinterpreted than

for when drawdown from a single well is reinterpreted. Relative

reduction of Sui peaks at 44%.
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FIGURE 6

“Real” and pumping-test-constrained mean (Tu, Su)i fields are compared on the left. Prior and posterior distributions of upscaled Tui and Sui are

compared for two model cells on the right.

FIGURE 7

Relative reduction in posterior log standard deviation of Tui (left) and Sui (right) accrued through assimilation of late-time drawdowns in pumping

well.
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FIGURE 8

“Real” and pumping-test-constrained mean (Tu, Su)i fields are compared. Late time drawdowns in a single observation well are used to constrain (Tu,

Su)i. The single well is shown in respective figures.

FIGURE 9

Relative reduction in posterior log standard deviation of Tui (left) and Sui (right) accrued through assimilation of late-time drawdowns in individual

observation wells. (A, B) MB03-north only. (C, D) MB01-east only.
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FIGURE 10

“Real” and pumping-test-constrained mean (Tu, Su)i fields are compared. Late time drawdowns in two observation wells are used to constrain (Tu,

Su)i. Prior and posterior distributions of T and S are compared for two model cells on the right.

FIGURE 11

Relative reduction in posterior standard deviation of Tui (left) and Sui (right) accrued through simultaneous assimilation of late-time drawdowns in

two observation wells.
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4.4 Aquifer-test-constrained upscaling
using all drawdown and recovery data

As stated above, our final numerical experiment utilizes the

“recently discovered” original set of field-observed drawdown

and recovery data over a 48-h period. Use of the original

drawdown data allows us to base our upscaling workflow on actual

drawdown measurements instead of relying on Theis-synthesized

data. We also assume that data rediscovery has given us access to

supplemental information in the form of groundwater flow rates

into the pumping well-provided by in-line flow meter records.

To demonstrate worth of early-time, late-time, recovery, and

flow data components of the rediscovered dataset, we repeat the

upscaling process multiple times. On each occasion we introduce

a new component of aquifer test data to the workflow. Figure 12

provides maps of relative reduction of Tui and Sui as more historical

data are introduced to the workflow. Measurement data from the

pumping well and three observation wells are used in production

of all of these plots.

In accordance with results that have already been presented,

Figure 12 demonstrates that use of late-time drawdowns alone

(which is equivalent to Cooper-Jacob interpretation) offers limited

insights into the heterogeneity and uncertainty of Sui. In contrast,

simultaneous use of all drawdown data reduces the uncertainty

of upscaled storativity; the addition or recovery data shines

further light on the magnitude and disposition of subsurface Sui.

Interestingly, the addition of well-entrant flows to the aquifer

test data reinterpretation process appears to have a significant

effect on the uncertainties of both Tui and Sui. Maximum absolute

uncertainty reduction for these is now 80 and 56%, respectively.

At the same time, the area over which uncertainty reduction is

experienced is dramatically increased.

Figure 13 shows mean (Tu, Su)i parameter fields calculated

using the above-described workflow where all components of

drawdown and recovery data from all wells are included in the data

re-interpretation process. The resolution of upscaled transmissivity

and storativity in the vicinity of the pumping test site that is

afforded by re-interpretation of these data is marked.

4.5 A regional model prediction

We now deploy the regional model. Two predictions are made

using this model. Our intention is to examine how conditioning

of the model’s parameter field using the workflow discussed above

affects the values and uncertainties of these predictions. The

predictions are affected by a large volume of aquifer that is close

to the location of the historic pumping test. We use the full set

of data that were gathered during the historical pumping test.

Recall that these are comprised of drawdowns and recoveries in the

pumping well and three observation wells, together with flow into

the pumping well.

We consider that a proposal has beenmade to excavate through

the entirety of the aquifer at the south-east of the study site.

These excavations will reduce the water table by about 100m.

Excavation is simulated through emplacement of a MODFLOW 6

drain boundary condition at the excavation site. Excavation to the

maximum depth is considered to be instantaneous. As part of an

environmental impact study, the regional-scale model is required

to calculate drawdowns induced by this excavation. Also of interest

are travel times of a contaminant of interest across the aquifer test

site toward the pit. To explore this issue, a single particle is released

at the moment of pit excavation; the time taken for this particle to

terminate its trajectory at the pit is the prediction of interest.

Figure 14 compares prior and posterior particle paths across the

study area from the same release point at the left of the aquifer

test site. These are calculated using MODPATH 7 (Pollock, 2016);

porosity is assumed to be 0.1 and spatially uniform. Prior particle

paths are calculated using prior upscaled (Tu, Su)i fields. Recall that

these are obtained by geometric averaging of the 500 prior fine-

scale T and S fields that were used for construction of the DSI

model. Posterior (Tu, Su)i fields are the same as prior fields except

in the immediate vicinity of the test site where they are conditioned

by aquifer test data using the methodology described above.

Figure 14 suggests a mild narrowing of the posterior probability

distribution of particle trajectories accrued through aquifer test

data conditioning. However, the mildness of this narrowing is

noteworthy. Diversity of particle paths is affected by the presence

(of otherwise) of areas of low transmissivity within the subsurface,

as groundwater must flow around these areas. The existence of this

area has been exposed by aquifer test data re-interpretation.

The first of the two predictions on which we focus are the

particle travel time to the excavation site. The second is excavation-

incurred drawdown at a feature to the west of the aquifer test site

after 30 years of excavation. The prior and posterior probability

distributions of these predictions are depicted in Figure 15. It is

apparent from these plots that the posterior medians of both of

the particle travel time prediction and the drawdown prediction

are lower than the prior medians of these predictions. The lower

median drawdown may reflect lower transmissivities that are

inferred in the vicinity of the point of interest. The faster median

particle travel time may reflect a shortening of the mean particle

travel path. What is noteworthy, however, is that the uncertainties

of neither of these predictions are reduced by much.

The above analysis was repeated for the most data-poor of

our analyses, this being the case for which high-time pumping

well drawdowns alone are used for regional model (Tu, Su)i
conditioning. In this case prior and posterior uncertainties are

almost identical. However, the analysis yielded a similar reduction

in median posterior drawdown (a shift of 5m for this data-poor

case vs. 7m for the data rich case). However, it yielded a smaller

reduction in median particle travel time (128 days for the data-poor

case vs. 287 days for the data-rich case).

5 Discussion

The methodology whose concepts are presented in earlier

sections of this paper, and whose practice is exemplified in the

previous section, has some significant benefits. It embodies re-

interpretation of old but useful data in ways that can extract

more information from these data than was hitherto extracted.

Additionally, it delivers this information in a way that maximizes

its utility in addressing a current-day issue that is the subject

of investigation by a regional groundwater model. This can be
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FIGURE 12

Relative uncertainty reduction of upscaled transmissivity and storativity as extra data are added to the (Tu, Su)i estimation workflow. Hydraulic

property estimation is based on measurements in the pumping well and in three observation wells. (A, E) Late drawdown. (B, F) Drawdown. (C, G)

Drawdown and recovery. (D, H) Drawdown, recovery, and flow.

FIGURE 13

“Real” and pumping-test-constrained mean (Tu, Su)i fields are compared. Drawdowns, recoveries and borehole-entrant flow from the original

pumping test are re-analyzed. Prior and posterior histograms of Tui and Sui are shown for two di�erent regional model cells on the right.
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FIGURE 14

Prior (left) and posterior (right) single particle travel paths from 500 realizations. These are underlain by a map of relative reduction of posterior

standard deviation.

FIGURE 15

Cumulative exceedance statistics of particle travel time (left) and drawdown (right).

achieved whether the original drawdown dataset is retrievable,

or whether the contents of this dataset must be inferred from

interpretations of it that were made at the time of its acquisition.

Furthermore, the method is relatively easy to implement.

The data re-interpretation process that is described herein

benefits from its reliance on relatively few assumptions. It is

easily automated and is model-run-efficient. It can accommodate

limitations in a modeler’s capacity to ascribe a complex prior

probability distribution to subsurface hydraulic properties, while

still applying knowledge of site hydrogeology and propensities for

hydraulic property connectedness that site conditions may imply.

The methodology is easily extended to more complex contexts than

those that are illustrated above wherein aquifer test interpretation

may embody concepts such as delayed yield and/or leakage through

underlying or overlying aquitards that are stressed using multiple

pumping wells.

In practice, however, despite its benefits and despite the fact

that it is rooted in Bayesian and upscaling concepts that are

widely accepted, the methodology is unlikely to be adopted as

“standard modeling practice.” This is due to the moderate level

of numerical skill that its implementation requires, and the time

and expense pressures under which modelers generally operate. Its
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practical adoption is also likely to be hindered by doubts about

whether information that is resident in old data is indeed worth

harvesting. We therefore now explore what can be learned from

the concepts and examples presented above that can assist modelers

as they ponder how to use historical pumping test records when

building and history-matching a regionalmodel that addresses local

groundwater management issues.

We first note that it cannot be assumed that a regional

groundwater model will employ cell-by-cell parameterization, nor

be history-matched using ensemble methods. Therefore, it may

not be possible to use realizations of aquifer-test-constrained (Tu,

Su)i maps that are yielded by the above method to condition

cell-by-cell realizations of regional model prior hydraulic property

fields. In many contexts regional history-matching may first be

pursued through calibration, wherein a unique parameter field of

minimized error variance is sought (Doherty, 2015). Additionally,

pilot points, rather than cell-by-cell parameterization, may be used

as a regional model parameterization device so that sensitivities can

be calculated using finite parameter differences.

To address this issue, we suppose that a modeler has built

fine-scale models that enclose the sites of historical aquifer tests,

and that they have employed DSI in the manner described above

to obtain realizations of (Tu, Su)i maps surrounding each site.

As is shown in the above example, these maps will normally be

comprised of just a few regional model cells. From realizations

of these maps, a map of mean (Tu, Su)i can be constructed. An

empirical covariance matrix of upscaled Tui and Sui values can

also be built. Mean values of Tui and Sui can be introduced to

the regional model calibration process as “observations;” obviously

these observations pertain to parameters rather than to system

states and fluxes that may comprise the bulk of the regional model

calibration dataset. However, if properly weighted, this does not

diminish their history-matching utility. Importantly, weights can

be replaced by the above-determined empirical (Tu, Su)i covariance

matrix that expresses both variability and spatial correlation of

“observed” Tui and Sui values. Use of covariance matrices instead of

weights is supported by inversion packages such as PEST (Doherty,

2023a,b).

This methodology for constraining history-match-adjustable

regional model parameter fields using information that is resident

in historical aquifer tests is independent of the parameterization

device that is ascribed to the regional model. However, if

pilot points comprise the regional model parameterization

device, it makes sense to place at least one pilot point in

the vicinity of each aquifer test so that observations of local

Tui and Sui pertaining to any one aquifer test are sensitive

to at least one regional model parameter. Ideally, pilot point

spatial density should allow emplacement of more than a

single pilot point in the vicinity of each historical aquifer

test site.

Where a regional model is parameterised using pilot points,

a second option is available. For this option, spatial conditioning

is directly applied to the prior probability distribution of pilot

point parameters. Despite pilot point parameterization of the

regional model, a modeler may commence the regional model

parameterization process by generating cell-by-cell realizations of

hydraulic property fields conditioned by realizations of (Tu, Su)i

maps in the manner described and exemplified above. These cell-

by-cell parameter fields can then be sampled at the locations of pilot

points. Samplingmay be either direct or employ least squares fitting

[software for both of these options is available through Doherty

(2023a,b)]. An empirical pilot point prior covariance matrix is

easily constructed from realizations of pilot point parameter sets

that are obtained in this manner. These aquifer-test-conditioned

prior covariance matrices can then be used for regularization or

uncertainty analysis.

All of the methods that have been discussed so far require the

production of (Tu, Su)i maps in proximity to the sites of historical

pumping tests. If a modeler considers that production of these

maps is not worth the trouble, he/she is then left with the original

dilemma of how to use estimates of T and S forthcoming from

historical aquifer tests to inform regional model parameters.

To address this question, we continue to suppose that

parameterization of the regional model domain relies on pilot

points. When presented with a database or cachet of reports that

cite values of T and S at different locations within the model

domain, a modeler may be tempted to place pilot points at these

locations, and to then ascribe these T and S values to the T

and S parameters associated with these pilot points. These then

become the prior mean values of respective pilot point parameters.

However, the modeler is then left with the question of what prior

uncertainties to assign these values for either regularization or

uncertainty analysis purposes. A prior uncertainty of zero implies

that these parameter values will be fixed rather than adjusted.

Analyses that are presented in the above example suggest that

regional model parameter prior uncertainties are reduced relatively

little in the vicinity of historical aquifer tests. Reductions in

regional model cell-based parameter uncertainty of generally lower

than 50% are encountered in the cells surrounding the historic

pumping well; intuitively, prior uncertainty reduction would be

smaller for pilot point parameters. For regional scale predictions

of management interest that are discussed in the above example

posterior means are shifted, but posterior standard deviations are

relatively unaltered. The above considerations suggest that while

initial/prior pilot point parameter values should reflect aquifer-test-

derived hydraulic property values at the sites of these tests, there is

little need to reduce the prior uncertainties of these parameters, nor

alter the collective covariance matrix that is applied to the entire

set of pilot point parameters for the purposes of regularization or

uncertainty analysis. More investigatory work is needed to support

this suggestion. If it is correct, it has important implications for

everyday groundwater modeling practice.

6 Conclusions

This paper addresses a problem that is routinely encountered

by modelers, but that has received little, if any, attention in the

groundwater modeling literature. This problem encompasses issues

that are variously associated with upscaling, data assimilation and

assignment of a prior probability distribution to regional model

parameters. A conceptual and practical solution to this problem is

presented. The solution is amenable to automation and incurs little

numerical burden.
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At the heart of the problem is what to do with information

that costs money to acquire and looks as if it may be useful but

has no clear path of entry into a standard groundwater modeling

workflow. Furthermore, original datasets may have been lost so

that their information content is summarized in numbers whose

calculation has suffered from a simplistic interpretation process.

The methodology described herein addresses the issues of

hydraulic property heterogeneity, its depiction in a regional

groundwater model, and the extent to which measurements made

at a different scale and under different flow conditions should affect

this depiction. In doing so it provides a mechanism for use of

information that may otherwise be disregarded. The methodology

relies on few assumptions. Furthermore, it can be readily

adapted to nuances that characterize different hydrogeological and

modeling circumstances.

Whether or not the method that is described herein is

implemented at a particular study site, its continued deployment

at synthetic sites has the potential to suggest heuristic means for

the profitable use of data that are nearly always available but are

often under-utilized. Under-utilization often arises from legitimate

fears of misutilization. This is both frustrating and disappointing as

records of aquifer test interpretations are an important knowledge

asset of most institutions that are charged with management of

regional groundwater systems.

Investigations that are reported herein suggest that a regional

groundwater model’s predictive utility can indeed benefit from

use of historical aquifer test interpretations. It suggests that their

assimilation may alter high-likelihood values of some decision-

critical model predictions. However, they may not reduce the

uncertainty intervals of these predictions by much, particularly

where pumping test locations are sparse and the scale of predictions

is broad.
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