

APPROVED:

Kirill Morozov, Major Professor
Kamesh Namuduri, Co-Major Professor
Bill Buckles, Committee Member
Cihan Tunc, Committee Member
Gergely Záruba, Chair of the Department

of Computer Science and
Engineering

Paul S. Krueger, Dean of the College of
Engineering

Victor Prybutok, Dean of the Toulouse
Graduate School

USING BLOCKCHAIN TO ENSURE REPUTATION CREDIBILITY IN

DECENTRALIZED REVIEW MANAGEMENT

Zachary James Zaccagni

Dissertation Prepared for the Degree of

DOCTOR OF PHILOSOPHY

UNIVERSITY OF NORTH TEXAS

December 2023

Zaccagni, Zachary James. Using Blockchain to Ensure Reputation Credibility in

Decentralized Review Management. Doctor of Philosophy (Computer Science and

Engineering). December 2023, 125 pp., 2 tables, 23 figures, references, 76 titles.

In recent years, there have been incidents which decreased people’s trust in some

organizations and authorities responsible for ratings and accreditation. For a few

prominent examples, there was a security breach at Equifax (2017), misconduct was

found in the Standard & Poor’s Ratings Services (2015), and the Accrediting Council

for Independent Colleges and Schools (2022) validated some of the low-performing

schools as delivering higher standards than they actually were. A natural solution to

these types of issues is to decentralize the relevant trust management processes using

blockchain technologies. The research problems which are tackled in this thesis consider

the issue of trust in reputation for assessment and review credibility at different angles,

in the context of blockchain applications.

Copyright 2023

by

Zachary James Zaccagni

ii

ACKNOWLEDGMENTS

I would like to express my gratitude to my major professor, Kirill Morozov, for his

guidance, advice and sharing of his expertise. His support helped hone my scientific writing

and focus, while fundamentally transforming who I am as a researcher at the doctoral level. A

sincere thanks goes to my master’s thesis advisor and co-major professor, Kamesh Namuduri,

whose continued confidence and support has always encouraged me to expand beyond my

knowledge in computer science, connecting me with UNT to pursue this degree.

Thanks are also due to Professor Ram Dantu for accepting me into his lab and funding

the first two years of my program. I would also like to extend my gratitude to the other

members of my committee, Professor Bill Buckles and Professor Cihan Tunc.

Also, I would like to express my sincere gratitude to NSWC Crane and my colleagues

who have funded me through a PhD fellowship program to finish this degree.

With great love and gratitude, I would like to say a significant thank you to all

my family and friends, especially my fantastic wife and brilliant children, whose continued

encouragement and sacrifices have enabled me to finish this degree. To the Moon, Mars,

Meow Wolf, and back we have been to make this happen. Thank you for entertaining the

probabilistic models and maths with me. Thank you for listening to me bounce my research

ideas and concepts repeatedly over the years.

Thank you to my wonderful mom, who had given me the tools and opportunities

for learning while growing up, and for buying me my first computer. And thanks to my

parents-in-law who have always encouraged and supported me, especially in my pursuit of

this degree.

My thanks to IEEE and the Association for Computing Machinery for allowing me

to reproduce the following published articles in my dissertation:

• Zachary Zaccagni, Aditya Paul, and Ram Dantu, “Micro-accreditation for Match-

ing Employer e-Hire Needs,” 2019 IEEE International Conference on Blockchain

(Blockchain), 2019, pp. 347–352. This material is located in Chapters 1 and 3, and

sections 6.1.1 and 6.2.3.

iii

• Zachary Zaccagni, Ram Dantu, and Kirill Morozov, “Maintaining Review Credi-

bility using NLP, Reputation, and Blockchain,” 2022 IEEE 4th International Con-

ference on Trust, Privacy and Security in Intelligent Systems, and Applications

(TPS-ISA), 2022, pp. 58–66. This material is located in Chapters 1 and 4, and

sections 6.1.2 and 6.2.1.

• Zachary Zaccagni, Ram Dantu, and Kirill Morozov, “Proof of Review - Trust

Me, It’s Been Reviewed,” 2023 5th Blockchain and Internet of Things Conference

(BIOTC23), 2023 (in press). This material is reproduced with permission from the

Association for Computing Machinery, and is located in Chapters 1 and 5, and

sections 6.1.3 and 6.2.2.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS iii

LIST OF TABLES ix

LIST OF FIGURES x

CHAPTER 1 INTRODUCTION 1

1.1. Research Focus of This Work 5

1.1.1. Problem 1: Accreditation for Workforce Development 5

1.1.2. Problem 2: Reputation Management for Review Systems 8

1.1.3. Problem 3: A Fitting Consensus Mechanism. 11

1.2. Organization of This Thesis 14

CHAPTER 2 BACKGROUND 15

2.1. Related Consensus Models 15

2.1.1. Proof-of-Work Blockchains 15

2.1.2. Proof-of-Stake Blockchains 15

2.1.3. Proof-of-Reputation Blockchains 16

2.1.4. Discussion 16

2.2. Notations and Definitions 17

2.3. Overview of Ethereum 20

2.4. Algorand Overview 21

CHAPTER 3 MICRO-ACCREDITATION FOR MATCHING EMPLOYER E-HIRE

NEEDS 25

3.1. Introduction 25

3.2. Problem Description and Requirements 26

3.3. Related Works 28

3.4. Proposed Architecture 29

v

3.4.1. Requirements Considered 30

3.4.2. Course creation and a peer-review component 32

3.4.3. Detailed Design 33

3.4.4. Application for Course Peer-Review 34

3.4.5. Application for Enrolled Students 35

3.5. Experimental Methodology and Steps to Goal 35

3.5.1. Tests for Simulating the Hiring Data 36

3.5.2. Tests for Simulating a Course and Course Peer Review 36

3.6. Results and Discussion 38

3.6.1. Metrics Used 38

3.6.2. Datasets and Results 39

3.6.3. Discussion 44

3.7. Limitations 47

3.8. Additional Considerations and Challenges 48

3.9. Conclusions 50

3.10. Future Work 50

CHAPTER 4 MAINTAINING REVIEW CREDIBILITY USING NLP, REPUTATION,

AND BLOCKCHAIN 53

4.1. Introduction 53

4.2. Related Works 54

4.3. Overview of Our Contribution 56

4.4. Review Analysis and Reputation Management 58

4.4.1. Review Analysis Using NLP 58

4.4.2. Reputation Systems 60

4.5. Proposed Architecture 61

4.5.1. High-Level Architecture 61

4.5.2. Modification of Algorand 61

4.5.3. Integrating the Review Evaluation Component 62

vi

4.5.4. Modifying the Algorand Core Code 64

4.5.5. Analysis of the Proposed System 65

4.6. Simulation Results 66

4.6.1. Testbed 66

4.6.2. Metrics and Simulation Results 68

4.7. Conclusion 71

CHAPTER 5 PROOF OF REVIEW: A NEW CONSENSUS PROTOCOL 73

5.1. Introduction 73

5.1.1. Comparison to The Existing Consensus Mechanisms 74

5.2. Related Works 75

5.2.1. Overview of Our Contribution 79

5.3. Our Proposal 80

5.3.1. Overview of the Proposed Architecture 80

5.3.2. Details of the Proposed Architecture 83

5.3.3. Proof of Review Consensus 86

5.3.4. Integrating the Blacklisting Component 87

5.3.5. Integrating the Minimum Reputation Component 89

5.4. Security Analysis 90

5.4.1. Further Examination of Blacklisting 96

5.4.2. Analysis of Practical Attacks 98

5.5. Simulation Results 99

5.5.1. Testbed 99

5.5.2. Testing Process 100

5.5.3. Metrics and Simulation Results 102

5.6. Conclusion 104

5.6.1. Concluding Remarks 104

5.6.2. Future Work 105

vii

CHAPTER 6 CONCLUSION AND FUTURE WORK 107

6.1. Conclusion 107

6.1.1. Micro-Accreditation Using Blockchain Applications 107

6.1.2. Review Credibility via NLP Analysis on the Blockchain 110

6.1.3. Proof-of-Review Consensus 113

6.2. Future Work 116

6.2.1. Combining Reputation and Tokens 116

6.2.2. Block Re-Assembly 116

6.2.3. Industrial Applications 117

REFERENCES 118

viii

LIST OF TABLES

Page

4.1 Fields of a Review Transaction. 60

4.2 Sample Reviews and Ratings. 70

ix

LIST OF FIGURES

Page

3.1 Possible Peer Review using Peer Groups. 28

3.2 Structure of the Ledger for a School. Note: What is stored on the

blockchain in the ledger. In the future, for better efficiency, most of this

will be stored off-chain possibly in BigChainDB or other system. 30

3.3 Work Sequence for a Peer Review. Note: This sequence was used as the

base for peer review work. 31

3.4 Micro-Accreditation Participants on the Blockchain. 32

3.5 Architecture of the Proposed System. Note: Web-based dApp using

web3.js to connect to the contract on the Ethereum network. The contract

connects to the BigChainDB for adding and retrieving data that is stored

off-chain. 33

3.6 Work Flow for Peer Review. 34

3.7 Work Sequence for Peer Review – The work sequence used in our

simulations for peer reviewing. In future work, we may need a third party

contract to handle times it doesn’t come to consensus, as well as a new

consensus model for rigor. 37

3.8 Hiring Practices. Note: We utilized data sets and simulating hiring

patterns. This graph shows that the current algorithm is generally capable

of distinguishing hiring patterns 40

3.9 Gas Cost of Transactions. Note: The transaction gas cost generally

remains the same as the number of entities on the network increases. The

only transaction whose gas cost grows is the Approve-Credit transaction. 40

3.10 Knowledge Units mapped to UNT Courses Note: A listing of some

Computer Science Computer Engineering (CSCE) courses at UNT with

their number of respective Knowledge Units (KU) [16] covered per each

course. Majority of courses cover 3-4 KUs, with Intro to Computer

x

Security covering 17. Each KU is broken down into topics (see Fig. 3.11). 41

3.11 Topics Mapped to Knowledge Units (KU). Note: Listing of KUs covered

in list of CSCE courses (Fig. 3.10), broken down into the number of

Topics covered in each. Both the KU and Topics are associated with each

course and directs what is to be learned. 43

3.12 Gas Cost to Deploy School Contract. Note: The initial gas cost on

the Ethereum network to deploy the School and Peer contracts and the

associated Libraries (also seen as contracts in Ethereum). After the initial

deployment, any further gas cost is related to transactions (i.e. functions). 44

3.13 Peer Review Transaction Cost. Note: The transaction times for calling

different transactions (i.e. functions) during a Peer Review. This peer

review model was simplified and does not yet calculate rigor, though

requires manual entry from each peer for each part of an assignment.

What was learned in this is that increasing the Gas Price increases the

incentive, and subsequently transacts faster on the network. 45

3.14 Gas Cost for Transactions by Student. Note: This is the gas cost for

each transaction related initiated by/for a Student. The transaction

handinAssignment consumes the most gas due to the amount of work it

is doing including parsing through the assignment – just turned in by

Student – calling several internal functions including grading. 46

3.15 Transaction Times for Student Transactions. Note: These are transactions

to and for Students and their respective cost times in milliseconds to

transact. Similar to (Fig. 3.13) for Gas Prices, when the Price was

set higher, the miners were much more eager to do the work, and thus

times were significantly faster. The addAssignment times dropped from

approximately 18 minutes to 1.5 minutes. Though the handinAssignment

costs the most to transact (Fig 3.14), it does the transaction in a

reasonable time. More work is needed on transaction times overall. 47

xi

4.1 High-Level Architecture of Our Proposal. Note: The proposed model

contains an NLP evaluation system (CoreNLP) and a custom reputation

system, where the reputation values are stored on a Proof-of-Stake

blockchain (Algorand). 56

4.2 Workflow of the Proposed System. Note: A review is submitted to the

Blockchain nodes’ transaction pool. This shows the set of interactions

with the PoS Blockchain, Reputation-based system, and an Evaluation

system. 64

4.3 Consensus Timings for Payment and Review Transactions. Note: On

average, the Review transactions are 9 seconds slower as compared to

the Payment transactions. 67

4.4 NLP Evaluation Overhead for Block Consensus Timing. Note: The

block consensus timings are shown for the case when the real-time

NLP evaluation is used versus when it is not used. The average delay

introduced by the NLP component is 36 seconds. 67

4.5 NLP Scores Versus Ground Truth (Human Evaluation). Note: The

average difference between the NLP evaluation and the ground truth is

about 21 points, with the standard deviation of those differences at 26. 69

5.1 Steps of Proof of Review. 82

5.2 Blacklisting Nodes vs Time to Consensus. 103

5.3 Minimum Stake’s Effect on Consensus Time. Note: Each bracket is the

percent of nodes with a higher reputation than initially. 103

xii

CHAPTER 1

INTRODUCTION

In recent years, there have been incidents which decreased people’s trust in some

organizations and authorities responsible for ratings and accreditation. For example, there

was a security breach at Equifax in 2017 [25], where 148 million records were leaked. Hack-

ers stole personal information of users, such as names, social security numbers, birthdays,

license numbers, addresses, credit card data, and other information. Another example was

a misconduct found in the Standard & Poor’s Ratings Services in 2015, where this company

misrepresented methodology in their credit ratings process in order to raise their own finan-

cial interest above that of their investors. Most recently, the US Department of Education

stripped the recognition as an accreditation agency from the Accrediting Council for Inde-

pendent Colleges and Schools (ACICS) in 2022 [64]. This agency had been validating some

of the worst low-performing for-profit schools as being high quality and crediting them as

performing at higher standards than they actually were. This led to a higher-than-average

loan default rates for students (about 20%) [43], and eventually the closing of some of the

schools, leaving some students without a degree and in financial hardship. Of course, in

addition, the trust in the education quality and degrees of the students who graduated from

these schools came into question [10].

The above are only a few prominent examples of recent security incidents and breaches.

This motivated us to investigate ask the following problems related to trust and reputation

management for accreditation and assessments. How can we trust courses in one college to

provide a student with the type and level of knowledge needed in the workplace? How can

we accurately compare schools and the students graduating from them? Can we increase

confidence in online reviews and trust that they reflect a credible assessment? How can

we trust that this data is secured against unauthorized modification and other malicious

actions?

A natural solution is to decentralize the relevant trust management processes using

1

blockchain technologies. Decentralization removes a single point of failure by bringing a

multiple participants/stakeholders into play. In particular, a blockchain lends itself well to

solving the above-mentioned issues in trust as a well-established technology for decentraliza-

tion.

With these considerations in mind, we first directed our focus on accreditation for

workforce development, specifically in micro-accreditation. We explored ways to help match

employers’ knowledge requirements with students’ knowledge earned inside and outside of

classes. Currently, knowing what a person has specifically learned is mostly from assumption

about a course in school. How well they learned certain topics can only be gleaned from

the grade they received on their transcript. For example, if one sees a class in e-commerce

security, one may assume a student learned about threats, vulnerabilities, and solutions for

protecting an e-commerce site from malicious players. Of course, it is possible to access to

the specific knowledge/skills learned in the class by inspecting the course syllabus. However,

the actual presented material evolves over time, sometimes very significantly, which may not

be fully reflected in the syllabus’ updates. Additionally, a student or a potential employer

may not be able to adequately assess how well the student understood each particular topic

in a class. The final grade does not permit such the fine-grained assessment. Currently, the

only effective way to achieve the above is to invest some resources (time and money) into

testing a potential hire on each and every topic that is important for the job in question.

This evaluation process may be resource-consuming, prone to evaluation bias and human

errors. Also, it does no scale well, meaning that say a 100 applicants will require a 100

evaluations. This begs the question whether we can shift the load on the applicant’s side,

seeing that the testing is routinely performed in the educational institutions anyways.

Since a blockchain is a standard way to decentralize processes, our research focused

on using that to assure credentials and track student records. This decentralized approach

proposes using the micro-accreditation of topics from the CAE framework [31]. We define

a course by breaking it down to topics, knowledge units, and associated tasks. After the

course is created, students enroll in classes where the knowledge and topics are explicitly

2

defined. What was learned in the individual topics can be discerned once the course is

completed. This approach helps establish immutable proof of academic credentials and what

was specifically learned. For each student, this data is stored on the blockchain or at least

a location pointing to where it’s stored off-chain (in a database not on the blockchain). An

employer can disregard the course grade if they can see a job’s specific topic requirements

are met satisfactorily. Meaning, a student may have received a lower overall grade for a

course, but still meets (or exceeds) the proven expertise in topics for a job.

We also introduce a blockchain-based rigor score assessment. Our micro-accreditation

framework required an introduction of a peer-review system for determining a “rigor” of

a course components (knowledge units). Rigor is the level of difficulty some problem is

in regards to the student’s expected level of understanding and knowledge. If it is more

difficult and challenging, it has greater rigor. Applying rigor to topics in a course, we can

better understand what a student has learned. Additionally, we can better compare what is

learned from one institution to another. Peer-reviewed rigor scoring is very important for the

accuracy of evaluating a student’s knowledge. One example would be comparing a Calculus

I class offered at a top national university versus that at an average regional university. We

aim at soliciting multiple peer reviews and mitigating the effects or bias and human errors.

Assigning reputation to peers is a natural method to ensure correctness of the assess-

ments. By doing so, those peers with a greater reputation would have a greater influence

on the overall rigor assessment values. Since we needed to trust that the peer reviews were

honest, we needed a completely new automated reputation system. This led to exploring

decentralized reputation management. The reputation of the peers providing rigor scores

needs to come into the calculation for an overall rigor for a course, its topics, and its tasks.

Meaning, those with a higher reputation have more influence on the total score. How is a

peer’s reputation determined, gained, or lost? With that, how can we trust the reputation

to be credible and not manipulated by malicious players and actions? With this, we needed

to investigate and develop a system that included both reputation and evaluation systems.

Moreover, the peers would need to come to a consensus on the scores for knowledge units. In

3

a blockchain, consensus typically means that a majority agree on something. In our case, this

also means they agree on the evaluation of the peer scores. We figured we would eventually

need a new consensus protocol to ensure a trust in that reputation system (discussed later in

Problem 3), but focused on answering the former question first. In this implementation, we

focused on a different scenario, decentralized marketplaces. We use a Proof-of-Stake based

Algorand system as a base of our implementation, since this system is open-source, and it

has a rich community support. It also allows for easy modifications, such as adding extra

components. With this, the proposed approach to this new problem can also be fitted to

the micro-accreditation, which was described above. Additionally, by using PoS, we did not

have to worry about gas costs (for completing transactions) and other computational pains

associated with a Proof of Work platform (PoW), and just focus on solving our problem.

The next important problem was to ensure that peer’s reputation is assigned cor-

rectly. In turn, this will provide the review credibility. This led us to introducing a new

consensus protocol, which we call a “Proof of Review” (PoRev). Here, providing congruent

reviews earns a reputation for parties, which in turn serves as an asset ensuring their higher

weight in the system. In that way, PoRev borrows from the earlier concepts of Proof-of-Stake

and Proof-of-Reputation. It is worth noting that this consensus mechanism can be applied

beyond reviews and the peer-reviewed assessments, although in this thesis, we are focusing

on these application. Our proposed architecture includes a reputation system managed by

an automated evaluation system and the minimum-reputation and blacklisting components

used to protect the system from the malicious players. This system then provides a trust in

evaluations (review/assessment credibility) and those who provide them (reputation credi-

bility) using a blockchain. With this, we can trust the rigor scores to reflect an accurate

value in various platforms such as micro-accreditation and reviews of products and services.

Additionally, we can use this concept for other types of applications with similar needs of

trust in assessments and the players providing them, including but not limited to: sensor

arrays, autonomous caravanning cars, and marketplaces.

4

1.1. Research Focus of This Work

Let us now go into specifics of the research problems which are tackled in this thesis.

They all investigate the issues of trust and reputation for assessment and review credibility

at different angles, in the context of blockchain applications.

1.1.1. Problem 1: Accreditation for Workforce Development

First, we explore the issue of trust in education systems to provide knowledge and

skills needed for the workforce. Currently, there are several related problems, which concern,

e.g., existing hiring methods and with students transfer support. In particular, hiring is

multi-stage process, which involves recruitment processes, rounds of interviews, and the

related paperwork. Much of this process is performed by human resources or it is outsourced

to third parties who must be trusted. Much of the complexity and confusion in finding the

right candidates arise from these parties being too removed from the actual work for which

an applicant is being hired. Currently, this hiring process usually lacks regular, organized,

and established definitions of knowledge and skills, encompassing both academic aspects and

the workforce expectations.

Generally, it is difficult to locate information on new graduates to deduce their po-

tential performance in the new workplace. Most information about them is contained in

transcripts, which are difficult to interpret correctly from only course grades and the school

name. Moreover, this information is not normalized from one institution to another, and

it rarely reflects what specific knowledge was learned. For this reason, comparing courses

taught in different schools is very challenging. Accuracy is also an issue, since the skills re-

quired for a career may not be matched to the courses precisely, as different skills are taught

in different courses at different schools.

Furthermore, it is difficult to discern if any bias existed during grading. A student’s

grade for an assignment or overall course could have been influenced by bias (e.g., how good

was the relationship between teacher and student), diligence of the grader, and a level of

oversight provided by the instructor. Finally, making mistakes in hiring may be both risky

5

and expensive. For recruiting and replacing a bad hire, costs can be up to $240,000, see,

e.g., [23,24].

Due to the above-listed reasons, it is of tantamount importance to create a system

that efficiently and accurately reduces the risk involved in the hiring process through an

effective matching algorithm. In addition, this system must normalize grades as well as the

rigor of an institution, while eliminating any middlemen involved in the process. Since the

rigor is peer-reviewed, it reflects the most accurate standard in the score determination. In

general, combining rigor and knowledge topics creates an effective solution for comparing

courses from different academic institutions for either school transfers or job placements.

Our solution was to create a decentralized system. The student’s records are stored

in an Ethereum-based blockchain network, along with a decentralized course storage system.

Each course has a required set of Knowledge Units (KU) and micro-accredited topics mapped

to assignments. The KU topics are defined by the Center of Academic Excellence (CAE) [31].

Each assignment element will be tagged with both a KU topic and a rigor score, determined

by a peer-review process. Rigor is defined as the level of difficulty some problem is in regards

to the student’s expected level of understanding. If it is more difficult, it has greater rigor.

The process of a course’s peer-review is handled by smart contracts on this blockchain.

Each course assignment (e.g. homework, project, quiz, etc.) is segmented into elemental

parts, and each element’s rigor score is determined by peer-review. Once a consensus is

reached, the course is made available to students. This technology will expedite a course’s

peer-review, helping set an overall rigor for the course and its assignments. This also matches

the course rigor of one institute with another, helping to establish an immutable record of

academic credentials and what was specifically learned by each student.

This helps one to eliminate the task of measuring what the student explicitly learned

to match them successfully with their next course at their new school or next job. By

connecting these topics both generally (to a course) and specifically (to each part of an

assignment), we can compare courses’ contents easily by examining both of their clearly

defined Knowledge Units and topics. Then, to further weigh the value of similar courses, one

6

can compare their rigor scores and determine if one course has a greater value and covers

more material than the other.

Student assignments could also be evaluated on the blockchain via smart contracts.

This would streamline the grading process and shorten the grading time, while reducing

human error and bias. A customized algorithm is then used to calculate a proficiency score

for each student for each KU topic, using student grades as well as the course rigor score

within the parameters of the CAE framework. We will focus only on the CAE framework,

and in the future, this should be expanded to include other educational frameworks.

Once a student completes a course, the proposed blockchain can be accessed by

prospective employers who can select employees based on the scores in these KU topics. Using

the skills required for a possible position opening, employers can specify the importance of a

topic and match an applicant to an opening based on a compound score calculated from the

student’s proficiency in the relevant topics. This system enables the employers to efficiently

check student records and verify the rigor level of each course and a student’s success in a

specific topic. Blockchain is an effective strategy to solve this problem in that each grade

assigned can be modeled as a series of transactions, and it requires a consensus among both

students and professors. The rules and regulations that are put into place in this system are

outlined by the FERPA laws, and in turn, can be easily implemented in a smart contract.

The auditability of the blockchain makes it easier for employers to review student transcripts,

and in turn, make more educated decisions on hires, not only because of the immutability of

the blockchain record, but also because of the rigor of the course. Results demonstrate that

the system was successful in increasing the accuracy of hires through simulated data sets,

and that it is efficient, as well as scalable.

For our research, we chose Ethereum [72]—the most popular distributed blockchain

computing platform at the time (2019), which is equipped with smart contracts—the pro-

grams running on the blockchain. In process of our experiments, we realized that we needed

a faster platform with lower requirements for the cost of blockchain computations. And

hence, for our next implementation, we switched to the Proof-of-Stake based Algorand plat-

7

form [16], which is open-source, and which has a good community support. We believe that

our micro-accreditation system can be easily ported into the Algorand platform—we leave it

as a future work. We note that in our current implementation, we needed to trust the peer

review process, specifically, we assumed that the course evaluators are honest. Since it might

not be necessarily the case in practice, we needed a completely new automated reputation

system. This led us to exploring decentralized reputation management in our next problem,

since the reputation of the peers providing rigor scores should influence the calculation for

an overall rigor for a course, its topics, and its tasks.

1.1.2. Problem 2: Reputation Management for Review Systems

In order to normalize the rigor of a course or an institution, the process requires

coming to a consensus on a peer-reviewed rigor score for assignments and the overall course.

The next problem to be addressed is that there is no ready-made consensus mechanism which

ensures that a given peer-reviewed rigor score given is honest, unbiased, and trustworthy.

As a sample application, we will choose reviewing products and services in decentralized

marketplaces. Trust is one of the major concerns in any online marketplace framework.

Major challenges in this setting include data privacy, trustworthiness, efficiency, and many

other aspects which concern both buyers and sellers alike. In practice, all the parties with an

interest in the marketing process may deviate from the prescribed procedures at any given

point. Therefore, it is important to devise a mechanism that would allow us to gauge the

parties’ trustworthiness.

Customer feedback is a powerful tool, which is commonly used in trust management.

Often, it is implemented as review systems. In many marketplaces, this feedback mechanism

is recursive in the sense that it allows others to up- or down-vote reviews seen as helpful, that

is to provide feedback on reviews. Some marketplace platforms assign a certain status to a

party in order to enhance the credibility of their feedback. An example of this is Amazon’s

“verified buyer” status. Other platforms, such as eBay, use human-driven reputation systems

to ensure some level of trust in either the seller or buyer [59]. This time-consuming process

is typically prone to biases and errors, in part due to the massive quantity of data to be

8

evaluated. Note that it is still up to the buyer to evaluate products and sellers by manually

going through the reviews and evaluating their accuracy—this adds an extra hurdle, now on

the consumer’s part. In practice, buyers usually rely on the top-rated (perceived as most

helpful) or the most recent comments—which, in general, may not paint an objective picture.

A natural question, which arises in this context, is what kind of mechanism may enable us

to deliver an objective view of a product to the customer. In particular, we focus on the

setting of decentralized marketplaces, which have been gaining popularity in recent years,

such as BitBay, OpenSea, Ocean Market, Origin Protocol Markets, to mention a few.

It is worth noting that trust in the context of online marketplaces has a wide variety

of aspects. For instance, the buyer trusts the seller to accurately present the product, to

deliver it in a timely fashion, to properly process payments and reimbursements, and so on.

These aspects have been addressed in a large body of literature, such as, e.g., [13,57].

In this work, we are focusing on a particular aspect of trust in reviews and reputation

of the parties who provide them: review credibility. Specifically, we are focusing on the

following particular scenario, which is the first step towards the above-mentioned mechanism:

A party leaves a review (say, on a product or service), which consists of a text and a rating.

We will use NLP to evaluate the “positivity” of the text, and then we will compare it to

the rating. A trustworthy review is expected to have a good match of the positivity to the

rating.

Next, we need a system that would provide an incentive for the reviewers’ trustworthy

behavior. A natural solution would be to apply a reputation system in order to leverage

trust in the reviewers and their feedback. A moderator could be hired to handle incongruent

ratings, as well as spam and fake reviews. They would be charged with processing reputation

adjustments and dolling penalties for infractions. The challenges with this are the substantial

human resources needed in both cost and time due to the manual handling, and being

prone to bias analysis due to human handling. A better approach is to handle the review

evaluation automatically using NLP, with the reputation and rating administration also

driven automatically. Finally, in the decentralized scenario, it is natural to use blockchain

9

for storing the reputation values and updating them (automatically, using NLP evaluation)

according to the reviewers’ performance.

Our solution is an architecture for a reputation-based review evaluation system, which

is built on top of the blockchain system, to ensure correct and trustworthy assessments. We

focus on a particular aspect of trust in the reviews, and reputation of the parties who provide

them—altogether, this ensures the review credibility. Additionally, we provide the incentive

for the reviewers’ trustworthy behavior. Since a peer review is like other types of review, we

focused our problem on the lack of trust and review credibility in decentralized systems like a

marketplace. In our proposal, the trustworthiness of reviews is evaluated using NLP and the

reviewers are assigned a reputation according to this evaluation. The reputation is stored on

the blockchain and is used as an asset for the consensus process. With what we concluded,

we believe we could apply this solution eventually to help trust micro-accreditation peer-

reviewed rigor scores in the future.

As the underlying blockchain system, we use Algorand, which we mentioned above.

We use the “reputation as a stake” approach as in [37] [61], and map the reputation directly

to stake. This allows us to directly use Algorand as the blockchain system. In testing,

our simulation results showed that the NLP component incurred a reasonable delay this

new type of review transactions. Additionally, we measured the time required to add a

standard payment transaction in Algorand and that for our review transaction and observed

comparable results. Also, we observed that the NLP component ensures an accurate credible

evaluation (compared to the ground truth) of the product review texts. With this new model,

we have moved towards showing how technology can be used to evaluate the trustworthiness

of both the reviews and the corresponding reviewers. We deploy NLP to determine whether

the reviews are congruent and trustworthy. Additionally, we show how NLP can used for

self-regulating trust management in a decentralized marketplace ecosystem.

As mentioned above, our implementation relied on the underlying Proof-of-Stake

blockchain system, Algorand, which is deployed at the blockchain layer. However, we dis-

covered that our applications to review assessments require a certain level of flexibility and

10

fine-tuning, which the existing Proof-of-Stake consensus mechanisms do not provide. The

main reason is that the existing PoS systems are mainly designed to support the digital

payment systems. At the same time, the existing Proof-of-Reputation systems are either

tailored for a specific application or too general to cater for the review assessment purposes.

Therefore, a need for a new consensus mechanism arises, which will serve this particular

scenario best.

1.1.3. Problem 3: A Fitting Consensus Mechanism.

In order to address the above mentioned problem, we present a novel consensus model

called Proof-of-Review (PoRev), which borrows concepts from Proof-of-Stake (PoS) [12]

[15] and Proof-of-Reputation (PoR) [26] [6]. The participants of the proposed blockchain

system agree on evaluated reviews, which will be added as transactions to the system. The

reviews and the related evaluation data are stored on the blockchain. The reviews drive the

reputation model, where reputation is used to regulate a user’s participation in the system.

PoRev is a tool that can be used to aid applications by ensuring honest and unbiased reviews

and assessments, hence providing an immutable and transparent record of data related to

both the reviews and the reviewers.

The motivation to introduce such a system is to derive a trust in the participants’

reputations through a consensus of their evaluated reviews. In doing that, applications

could use this data to apply trustworthy weighted calculations towards an overall value of

something or a rating. This system lends itself easily to decentralized marketplaces, where

the trust in the reviews and reviewers is important to gauge the objective value of a product

or service.

Our model could be used to mitigate some common challenges in a review system as

bad reviews, spamming, bias, and human errors. The proposed model can be used in a wide

variety of applications. For example, in micro-accreditation, the rigor of a course could be

settled from the aggregation of peer-provided reputation-weighted scores. In sensor-array

systems, a node’s assessment being incongruent could indicate a failure in a sensor or its

corruption by an attacker. The PoRev consensus can then be used to steer the influence

11

away from the failing/corrupt nodes and provide a ”heads up” to an overall monitoring

system. Furthermore, this concept can be applies to ad-hoc networks of autonomous vehicles,

e.g., those that caravan together on a highway. Here, the PoRev consensus can be used

for decisions on routing or speed based on the information on road conditions or behavior

of neighboring vehicles, hence empowering a “well-behaving”—meaning well-configured—

vehicles. The evaluation component is generalized to provide a conclusive binary answer

to the questions, ”does this proposed assessment look right, and do I agree the assessor is

providing it in good faith, with honest intent and faithful performance?” This is evaluated

as either a good review or a bad one, whether in the manner of congruence in a review-rating

or other gauged conditions and validations. These are just a few examples of applications

where this system can be applied, outside of the common review (as for products or services)

systems, especially taking into account the community-based blockchain systems, such as

neighborhood watch [61] gaining prominence.

We propose a Proof-of-Review system, which integrates the reputation system into

Algorand’s PoS engine, and we add the two useful components which enable blacklisting and

enforcement of the minimum-reputation requirements.1 Specifically, we update and modify

the Algorand core to implement our new protocol.

A player may be blacklisted and prevented from participating in the protocol, as

decided by a majority vote during the consensus. This can be applied to both reviewers or a

selected block leader, depending on the type of malicious actions like spamming or deviating

from the prescribed protocol. A certain minimum reputation is required to participate in

the committee selection. It is chosen in a way that prevents an access by malicious (and

hence under-performing in terms of reputation) users to participation in the system, while

also preventing a condition where only a small percentage of high-reputation nodes skew

the committee selection. An adversary, as with any new player, would need to put in some

honest work to gain reputation in order to participate beyond submitting reviews.

1We note that the minimum stake handling in Algorand does not quite satisfy our goals. See Section 5.3.5
for discussion.

12

For security analysis, we argue that our modification to the Algorand core preserve

the properties of the original PoS system up to adjustment of some parameters, so that the

resulting blockchain system remains secure under an assumption that up to 1/3 of total

reputation (instead of stake in the original Algorand) is controlled by the malicious parties.

Specifically, we adapted the security analysis on Algorand to show that our modifications

preserve liveliness and completeness of the proposed system.

Instead of using Algorand in the off-the-shelf model—as it is done in [74]—we modify

the engine by generalizing the validators (we use NLP, but other evaluation systems can be

used for other purposes), adding the Proof-of-Review mechanism and blacklisting. Since we

assume that the participants belong to a community of users contributing towards a certain

goal, the assumption that no more than 1/3 of the total reputation is controlled by the

dishonest parties appears to be reasonable.

With our new consensus, we have also shown how our model prevents maliciousness

and provides strong security guarantees for the data, participants, and reputation values.

We employed blacklisting and the minimum-reputation requirement. We showed how our

Proof of Review model addresses several types of attacks that are common for Proof of Stake

and Proof of Review systems. We also presented a distributed application (dApp) to allow

us to validate our system as well as to demonstrate the performance of blacklisting and

minimum-reputation components.

In testing, our simulation results showed that our proposed blockchain system has

liveliness and completeness properties. Specifically, blacklisting does not affect liveliness or

completeness (that a transaction is guaranteed to be added to the blockchain eventually)

when less than 75% of nodes are blacklisted. Additionally, blacklisting players for technical

or behavioral maliciousness does not affect that round’s time interval of when the honest

players agree and know of that round’s block. We also show that requiring a minimum stake

to participate always shows liveliness and completeness (when properly tuned) regardless of

the number of parties not meeting the stake requirement (as long as there are many enough

left to satisfy the 2/3 honest majority).

13

1.2. Organization of This Thesis

This work is organized as follows. In Chapter 2, we provide the basic notations and

definitions and also briefly describe the Algorand blockchain platform [16]. In Chapter 3,

we discuss a solution for trust and assuredness in education systems to provide students

the knowledge needed in the workforce. It is based on the work in [76]. In Chapter 4,

we provide a system that will provide trust in the credibility of reviews (specifically in a

decentralized marketplace). This result was initially published as [74]. Chapter 5 is devoted

to presentation of the Proof-of-Review consensus. This result was presented in [75]. Finally,

concluding remarks and open problems are discussed in Chapter 6.

14

CHAPTER 2

BACKGROUND

Let us briefly describe the blockchain systems which serve as the main building blocks

of the proposed constructions.

2.1. Related Consensus Models

2.1.1. Proof-of-Work Blockchains

In a nutshell, the Proof of Work (PoW) consensus implements a “lottery” between

the nodes (participants) of the system, where the “winner” gets to add the next block to the

blockchain (a distributed and tamper-resistant ledger of transactions and states). Winning

requires the node to perform some calculations to solve a computational puzzle, which is

normally quite energy-demanding. This is also known as mining. The fastest miner gets

rewarded to add a new block. This block is verified by the other miners who implicitly

accept it by mining on top of it or ignore it. Once the block is added (and being mined

on top of), it is supposed to remain there permanently, hence making its data immutable.

The success of Bitcoin [50] made PoW consensus model popular. We omit the details of the

blockchain operation and refer the reader to [58] [42] for details.

2.1.2. Proof-of-Stake Blockchains

Proof of Stake (PoS) is another protocol which is commonly considered as an alter-

native to Proof of Work (PoW). PoS has the same goal as PoW which is to pick a node that

adds the next block to the blockchain. It uses a different mechanism to get to that goal by

operating with a finite amount of coins (tokens purchased by a user) used as a stake in the

overall system. Proof of Stake only considers a peer’s stake of coins, which they possess in

the system. Those nodes with the most coins in the system have the most stake. The higher

the stake, the higher the probability of being selected to participate in the system (being a

”miner”), and also having the most to lose financially if found to be acting improperly.

15

2.1.3. Proof-of-Reputation Blockchains

In Proof of Reputation (PoR), the protocol uses the users’ reputation values in se-

curing the network. It is similar to the PoS consensus as there is no mining process (puzzles

to solve), but with the reputation of a node being used to determine block forging. Only

those with the highest reputation act as participants, or trusted validators, in the system

(creating blocks, signing blocks, etc.). In most PoR platforms, it acts like an advanced Proof

of Authority network, where once a company’s reputation is verified by external entities, it

acts as a trusted authorized validator node to others externally verified. This also means

that the nodes are not fully anonymous, since the reputation is derived from parties outside

the network. Only those validated can participate. Any improper action risks that com-

pany’s reputation, with possible financial consequences. We refer readers to [73] for those

interested in further details.

2.1.4. Discussion

For discussion, our contribution —including Proof of Review (PoRev)— may be seen

as a kind of special adaptation of Proof of Reputation, where the reputation system is only

one component of the consensus protocol. Compared to PoR system of Gai et al. [26],

PoRev reputation model and associated values persist beyond a round’s block being added.

We use the reputation values of the nodes at the beginning of a round, instead of the top-

ranked node at the end of the round. Our nodes’ reputation values are calculated from

each node’s history of submitted transactions since initially joining the network, instead of

calculated only from the ratings given in each transaction within that round’s block. Instead

of transactions being ratings (reputation scores) given by other nodes’ raters (humans), a

review transaction in our system contains the review, the analysis of that review, and the

direction on how to adjust the reputation of that reviewer (increase or decrease). Our review

evaluation is done automatically with the purpose to exclude a human factor (e.g., a possible

bias). Furthermore, since the reputation of the nodes is not validated by external parties, the

identities remain as anonymous as they would on a common PoS platform. Additionally, in

discussing PoS, one can see that PoS is not associated with reputation and hence it cannot be

16

directly applied in our scenarios. A natural similarity to these types of systems is seen when

directly mapping reputation to stake (as it is done, e.g., in [60,74]). Then, the components

such as committee selection and block mining work in a similar manner as in PoS systems.

Some major differences from the currently popular PoS systems is their focus on financial

applications rather than community-based applications (such neighborhood watch [61] and

similar ones such as data cooperatives—see the references in [61]).

2.2. Notations and Definitions

Definition 2.1. (Block). A block is an immutable structure of data representing the state

and a payset of transactions of a system for a specific round. When linking on a blockchain,

a block B also contains a record of the previous block’s cryptographic hash, which is used

to create its own digital hash identifier, unless it is the Genesis Block B0. The block B is

added to the ledger at the end of each Round r. In the circumstance where an agreement

can’t be made within a set time, or other cases, an empty block is voted on to be added to

the ledger. An empty block has an empty payset (set) of transactions.

Definition 2.2. (Blockchain). A blockchain is a linked series of blocks starting with the

Genesis Block B0, showing an immutable history of a system’s states and transactions.

Mostly used as a distributed ledger, in which every peer maintains the exact copy of the

ledger. A blockchain platform is also a decentralized system of nodes, all which maintain the

same ledger of transactions and contracts within those blocks. Compared to a centralized

system in which information retrieval could be bottle-necked, or prevented (temporally or

permanently), the same transaction data and ledger are available from each node. If one

node disappears, the others can still be accessed. A blockchain has three extremely important

properties: immutability, auditability, verifiability. It is computationally hard to modify a

block after a set number of blocks, auditable in that it represents a transparently traceable

sequence of changes to the network, and verifiable in that all blocks must be verified before

being appended to the blockchain. This ensures the validity of the block once appended.

For further details on blockchain, we refer the reader to [36].

17

Definition 2.3. (Leader). A leader ℓr is a stakeholder whose proposed block is selected for

a round from all potential leaders. A leader can be cryptographically self-selected to be a

potential leader and then again for any step in the protocol as a verifier. The leader’s block

is assembled from review transactions, in which these transactions been evaluated by them

in step 1.

Definition 2.4. (Potential Leaders). Potential Leaders (PL) are cryptographically self-

selected to assemble a block of transactions for a round. They evaluate the review in each

transaction and update the review fields in the transaction header before adding it to the

payset of the block. Once the block has reached its size or time-limit, they then broadcast

the block and their credentials to the network to potentially be chosen as the leader. A par-

ticipant can only be in PL if they meet the minimum stake and are not currently blacklisted

for that round. Like in other PoS systems, the larger the stake a peer has, the more likely

to be selected as a leader.

Definition 2.5. (Round). Rounds start after an initial block (Genesis Block), peers, and

reputation have been determined. The round is a set of 5 steps (simplified for definition sake,

its process has a repeating set of steps until a consensus is achieved or time runs out). At

the end of each round, a block will be added to the ledger, regardless of transactions within

the payset of the block. In certain cases, the block may be empty. In the best-expected case,

the review transactions of a block are finalized at the end of the round with the reputation

adjustments completed and the block added to to the ledger.

Definition 2.6. (Genesis Block). The Genesis Block is the initial block B0 containing the

list of initial online participants with their respective identifying information including their

initial reputation of 1 and their stake, which is initially distributed equally.

Definition 2.7. (Stake). A stake is a proportional advantage in the system when partici-

pating in the consensus protocol. User’s i stake is calculated from their current reputation R

for round r (Rr
i) and is balanced against the currently online peers’ reputation. Specifically,

18

ωr
i = Rr

i/R
r
PKr ,

where Rr
i is reputation of a user i, PKr represents the public keys of all active users at round

r, and hence Rr
PKr is the total sum of reputation of all active users at round r. Simply, a

user’s weight is calculated from round r reputation for that user i divided by the total

reputation in the system of all active users.

Definition 2.8. (Participant, Stakeholder). A participant is an online peer with a reputa-

tion greater than zero. They are identified by their public key (pk) and are a stakeholder

in the system. They may be selected to participate in the consensus process for a round in

one or multiple steps. Their stake is dependent on their reputation proportional to the total

reputation of all currently online (non-blacklisted) participants. Though a participant may

never submit a review, with their reputation remaining stagnant at a value of 1, they are

considered a potential reviewer. Since their stake is based on their reputation, it is probable

that they are never selected to participate in the protocol but will not affect their other types

of actions (e.g. payments) on this platform.

Definition 2.9. (Verifier, Set of Verifiers). A verifier is a part of the Set of Verifiers (SV)

cryptographically self-selected for each round in each step. Selection is limited to participants

with a minimum stake and not currently blacklisted. A new SV is selected for each step,

and Verifiers are tasked with different actions at each step in the round. In step 1 they

are referred to as both Potential Leaders and a member of SV r,1 and propose blocks. In

step 2, they select the leader. Steps 3-5 are discussed in more detail later. Verifiers, in

addition to validating each transaction technically in the leader’s block, will validate each

review transaction through evaluation (in the same way the leader has). They then compare

this against the leader’s evaluation to ensure the correctness of the evaluation and thus the

block. When a discrepancy is seen, the verifiers vote to blacklist the leader. If the majority

concludes the same, then the leader is blacklisted.

19

2.3. Overview of Ethereum

In this section, we briefly discuss the Ethereum blockchain platform as we use it in our

micro-accreditation system presented in Chapter 3. We refer interested readers to [71], [32],

and [70] for more details. The Ethereum platform uses a Proof of Work verification method

for blocks. Whenever a transaction is to be completed, it is sent with a specific amount

of ether as well, in order to compensate the miner, or the node executing the transaction,

appropriately for the amount of computational power expended for executing the transaction.

On this platform, the Ethereum Virtual Machine (EVM) is used as the distributed

computational environment where smart contracts can be executed or deployed. Ethereum

transaction rules are codified in these “smart contracts”, which are like programs that run

when specific conditions are met and helps ensure multiple parties complete their side of the

contract (or meet the conditions required to complete the contract). Whenever a transaction

is to be completed, it is sent with a specific amount of ether as well, in order to compensate the

miner, or the node executing the transaction, appropriately for the amount of computational

power expended for executing the transaction.

The amount of computational power used is determined by calculating the gas con-

sumed by the transaction. For details, we refer the reader to the gas calculation algorithm

outlined in the Ethereum yellow paper [72]. Because the amount of gas consumed is deter-

mined by the number of opcodes (individual instructions of what to do) as well as the amount

of data being handled by a function, it is safe to say that the amount of gas consumed by a

transaction is a measure if its efficiency.

An Ethereum transaction “smart contract” can be accessed through a web3.js API,

through which users can send transactions. Recall that smart contracts are agreements

between two entities that automatically do something when certain conditions are met. A

fast food kiosk is a simple kind of a smart contract that can be explained in a way outside

of blockchains. You press what you want to order, pay with credit card, and the system

delivers you the food. The contract is programmed to ensure you get food only after you

have finished certain instructions.

20

In Ethereum, a wallet is needed to hold the ether (a cryptocurrency), and this ether is

used to send/transact transactions (also known as the transaction cost). An Ethereum wallet

that contains ether can be accessed through applications like the Mist Browser and Metamask

and is also available for the user to access. Truffle, a development framework for Ethereum

distributed applications, also supplies a wallet. A digital wallet is used to hold the keys to the

cryptocurrency instead of the actual coins. The public key is used as an address where a user

can send coins to and receive from another. The private key is used as a kind of password to

access and control the cryptocurrency. Ethereum provided three globally-accessible networks:

Mainnet, and two testnets, Ropsten [5], and Rinkeby [65]. Truffle also provides a network

emulator, known as Ganache [4], for testing purposes. Ganashe is typically used before

deploying a dApp to the testnets, since it is a personal, simulated, self-contained blockchain

network with no other outside users. This allows one to test functionality without the wait

times before eventually moving on to the testnets for performance tests. The testnets are

used by developers to test their applications without requiring or using actual ether, though

you are sharing this network with other users (aka nodes) also testing their own dApps. These

other nodes will compete and be incentived like those on the Mainnet, so one can test and

tweak their code for better performance. Times and cost do not reflect the actual numbers

compared to being on the Mainnet, but do give the developer a sense of the performance

when eventually deployed there.

2.4. Algorand Overview

In this section, we briefly discuss the PoS-based Algorand blockchain system and its

mechanics, and we refer the interested reader to [16] for details. Algorand is an open-source,

scalable, and decentralized blockchain that is applied as a payment system.

Algorand’s consensus is an asynchronous protocol which is organized in rounds. By

the end of a round, a committee will come to a consensus on a block to be added to the

ledger. Each user is identified by their public key and has an associated amount of digital

currency (tokens) to make payments. A new user can join the network when an existing user

pays a new user tokens, creating a new account.

21

In this section presentation, we closely follow the presentation of [16]. At the start

of network, the initial state of the system is publicly known, with a sets of users’ public

keys and associated amount of money. Round r starts by randomly selecting and publicizing

(the identity of) a user, ℓr, the round leader. The leader constructs, digitally signs, and

propagates a block B, which is their own candidate for the r-th block and which includes a

set of new and valid payments. Next, a small set of selected verifiers, SV r, referred to as the

committee, is randomly chosen and publicized. The size of the committee is such that, with

the overwhelming probability it has at least a 2/3 honest majority. The committee reaches a

Byzantine agreement on the block B proposed by ℓr. Upon termination, each honest verifier

locally outputs his own block, whose hash value he digitally signs and propagates. Block

Br is defined to be the block that has been signed by a given number of properly chosen

verifiers.

The following five steps present a simplified view of the Algorand protocol, highlight-

ing the steps, which are important in the context of Proof of Review. There are other virtual

steps that form a cycle from the last two steps to ensure convergence, but they are omitted

for clarity since they are not directly relevant to our proposal. We refer the interested reader

to Section 4.2 of [16] for details.

In the below description, when we say that a participant ”cryptographically self-

selects” themselves, we mean that they use a cryptographic self-selecting mechanism as

described in Section 1.2 of [15] (cryptographic sortition) for constructing a committee of

verifiers and potential block leaders at each step. This functionality is based on the results

from a Verifiable Random Function acting like a weighted lottery, which uses a participant’s

key, stake, and the round’s selection seed to return a string indicating committee membership.

This membership is verifiable by others on the network. Additionally, Algorand restricts

participation to nodes existing at round r − k, where k is the set number rounds before

the current one. This prevents new account activity, regardless of the percent of tokens the

account owns.

Step 1: Block Proposal. First, the participants cryptographically self-select themselves

22

to be Potential Leaders (PL) for the round. These PL assemble a block by verifying

that the transactions are properly formed before adding them to the payset (a

structure in the block that is the set of payment transactions) of their potential

block. The block is signed, then PL propagates a message, including the signed

block and their hashed credentials, to the network for a soft vote (next step).

Step 2: Block Leader Selection (soft vote). Again, participants cryptographically self-

select themselves to be a verifier in the current round’s set of selected verifiers (SV).

Each player in Step 2’s SV seeks to determine the round leader by listening to

incoming messages and comparing the hashed credentials to all other hashed cre-

dentials received so far. After a certain amount of time, the leader is determined by

the message with the least hashed credential value. Each player i in SV will then

propagate their vote for this leader (and block) in a message.

Step 3: Block Verification (certify vote). As in previous steps, participants cryptograph-

ically self-select to be a verifier. Each player in Step 3’s SV seeks to verify and val-

idate the leader’s block by iterating over associated transactions within the payset

and performing technical checks, such as checking if the transactions are properly

formed, validating the corresponding signatures, and so on. Once all transactions

have been verified and validated (certified), the player propagates a cert vote mes-

sage for that block [7]. If any transactions are considered incorrect, then the message

is a vote for an empty block instead.

Step 4: BBA begins (GC to BBA). We simplify the explanation of steps 4 and 5 for

clarity since the Graded Consensus (GC) and Binary Bynzatine Agreement (BBA)

are not important or relevant elements to our specific research proposal, and are

used technically to converge to agreement and end a round due to the asynchronous

nature of their network. Again, we refer readers to Section 4.2 of [16] if interested.

Each player in Step 4’s SV wait a maximum amount of time to receive the minimum

number of messages (from Step 3’s participants) who are in agreement on the leader

and respective block.

23

Their next message will be similar to the previous steps’ messages, but it will

include a flag (b) that indicates whether they have heard the minimum number of

votes that are still in agreement for the leader and block (true), or not (false).

Step 5: Block Decision. Each player in Step 5’s SV seeks to come to a final decision on

a block by converging on an agreement on the leader and block.

If they receive the minimum number of messages from Step 4’s SV with the flag

(b) being true, then the round concludes. If the block is not empty, the transactions

within the block will be executed before the block is added to the ledger. Other-

wise, a cycle of virtual steps begins (referred to earlier and omitted for clarity) to

eventually come to consensus.

We chose Algorand as the underlying blockchain system, because its consensus model

was easy to adapt to add additional components for our purposes. Additionally, it is open-

source, easy to modify its engine (the Proof-of-Stake mechanisms) such as the committee

selection, stake calculation, and other mechanisms for our purposes, and it has a rich com-

munity support.

24

CHAPTER 3

MICRO-ACCREDITATION FOR MATCHING EMPLOYER E-HIRE NEEDS

3.1. Introduction

We explore the issue of trust in education systems to provide knowledge and skills

needed for the workforce. How can we trust courses in one college to provide a student with

the type and level of knowledge needed in the workplace? We present a decentralized micro-

accreditation system to track student records throughout an academic process at schools

and to help matching employers’ requirements to students’ knowledge. Specifically, the

system will help establish immutable proof of a student’s academic credentials, what one

specifically learned and how well they learned it, by breaking down each course into topics,

knowledge, and tasks, then storing it on a blockchain. The student’s records are stored

in an Ethereum-based blockchain network, along with a decentralized school system where

all courses, assignments, and assessments are accessed and normalized across the schools

participating. Each school’s course has a required set of Knowledge Units (KU) and micro-

accreditations (topics) to be fulfilled comprehensively via assignments. In our case, we use

the KU topics defined by the Center of Academic Excellence (CAE) [31]. Each assignment

element will be tagged with both a KU topic and a rigor score, with the rigor determined

by peer-review. These student assignments could also be evaluated on the blockchain via

smart contracts. This would streamline the process and shorten the grading time, while

reducing human error and bias. A customized algorithm is then used to calculate a score for

each student for each KU topic, using student grades as well as the course rigor within the

parameters of the CAE framework. Rigor is defined as the level of difficulty some problem is

in regards to the expected level of understanding of the problem-solver. If it is more difficult,

it has greater rigor. In this work, we focus only on the CAE framework [31], but in the future,

the proposed system can be expanded to include other industry frameworks. This result was

initially published as a paper titled “Micro-Accreditation for Matching Employer E-Hire

Needs” in the proceedings of 2019 2nd IEEE International Conference on Blockchain [76].

25

The process of a course’s peer-review is handled by smart contracts on the Ethereum

blockchain. Each course assignment (e.g., homework, project, quiz, etc.) is segmented into

logical elemental parts, with each elements’ rigor score determined by peer review. Using

this technology will help expedite a course’s peer-review, helping to set an overall rigor for

the course and its assignments. This also matches the course rigor of one institute with

another, helping to establish immutable proof of academic credentials, what was specifically

learned by each student, and how well it was learned.

This school blockchain can then be accessed by prospective employers who can select

employees based from the scores in these KU topics. Students can also get certified based

from the scores calculated for each topic. Using this, it becomes much easier for employers to

comb through student records and verify not only the authenticity of courses, but the rigor

of each course and a student’s success in a specific topic. Blockchain is an effective strategy

to solve this problem in that each grade assigned can be modeled as a series of transactions.

The rules and regulations that are put into place in this system are outlined by the FERPA

laws, and in turn, can be easily implemented in a smart contract. The auditability of the

blockchain makes it easier for employers to review student transcripts, and in turn, make

more educated decisions on hires, not only because of the immutability of the blockchain

record, but also because of the rigor of the course. Results demonstrate that the system

was partially successful by demonstrating it has potential to increase the accuracy of hires

through simulated data sets, and that it is efficient, as well as scalable.

3.2. Problem Description and Requirements

Let us first identify several problems with existing hiring methods. We note that

similar problems arise when students transfer to different schools.

The current hiring process is resource-heavy and somewhat cumbersome, as it in-

volves a lot components, such as recruitment processes, interviews (sometimes a series of

them, which go in rounds), and paper cuts. Much of this overall process is often outsourced

to expensive trusted third parties such as recruiter companies, and it always involves the

human resources staff. Much of the complexity and confusion in finding the right candidate-

26

match arises from these hiring parties being too removed from the actual working duties

and required skills. Hence, these parties do not fully understand the needs of the hiring

manager. Currently, the hiring process lacks regular, organized, and agreed-upon defini-

tions of knowledge and skills, encompassing both academic performance and the workforce

expectations.

It is difficult to locate information on new graduates in order to deduce their success

in the workplace. Most info about them is contained in transcripts, which are difficult to

interpret correctly from only course grades and the school name. This information is not

normalized from one institution to another, and rarely reflects what specific knowledge was

learned. Also, comparing courses between schools is very challenging. Accuracy is also

an issue, since the skills required for a career is not matched to the courses accurately, as

different skills are taught in different courses at different schools.

It is also difficult to discern if any bias existed during grading. A student’s grade

for an assignment or overall course could have been influenced by bias (i.e., how good was

the relationship between teacher and student), moods of the grader, general oversight or

carelessness.

It is worth noting that making mistakes in hiring is both risky and expensive, some-

times costing up to $240K due to recruitment, replacement, lost customers and brand image,

re-ramping up for projects left behind, etc. as listed in [23,24].

Due to the above-listed reasons, it is of tantamount importance to create a system

that efficiently and accurately reduces the risk involved in the hiring process through an

effective matching algorithm, normalizes grades as well as the rigor of an institution, and

eliminates middlemen involved in the process. Since the rigor is peer-reviewed, it reflects the

most accurate standard in the score determination. In addition, combining rigor and KU

topics creates a better solution for comparing courses from different academic institutions

for school transfers. This helps eliminate the task of measuring what the student explicitly

learned to match them successfully with their next course at their new school or with the

skill-set required at the next job.

27

Figure 3.1. Possible Peer Review using Peer Groups.

By connecting these topics both generally (to a course) and specifically (to each part

of an assignment), we can compare courses’ contents easily by examining both of their clearly

defined Knowledge Units and topics. Then, to further weigh the value of similar courses, one

can compare their rigor scores and determine if one course has a greater value and covers

more material than the other.

3.3. Related Works

Learning Machine’s [67] applications use proof of existence in order to ensure the

validity of credentials. Using Blockcerts, Learning Machine’s technologies are currently used

by the Massachusetts Institute of Technology in order to verify degrees and transcripts.

However, this is different from our application, as it only serves to verify the authenticity of

a record, and not effect on hiring specifically.

Chronobank [18] operates similarly to the above, in that it streamlines background

checks, and it is more structured towards hiring and loading the transcript into the blockchain.

However, this application is not oriented towards predicting success in a specific career and

28

matching students to a specific job.

TeachMePlease [69] is more oriented towards micro-accreditation through customiz-

able and learning units. However, a transcript is not stored in this case, as it is more of a

marketplace for educational material.

The Holburton School [63] is a learning platform that uses blockchain technologies in

order to create an auditable and verifiable transcript in the form of transactions. However,

this does not help with hiring, and is structured like any other traditional course, so that

micro-accreditation is not covered.

Woolf University [44] is another learning platform that follows a scheme similar to

the above, in that it is auditable and verifiable transcript-wise. However, there is no micro-

accreditation due to a lack of peer review, and it does not help students or employers in the

search for careers.

In the work [53], Ocheja et al. propose to place all student record data on the

blockchain and to normalize it, regardless of origin. However, their “Secure Box” transforms

the data from each Learning Management System to uniform data records for each student,

which is seemingly very resource heavy, so the cost may not be scalable.

Hu et al. [30] present the idea of a “custodian contract” that spurs and manages

new contracts. This is similar to the role of a course in our proposal. Using the course

as a custodian that generates new smart contracts between students and assignments is

something that naturally aligns with our proposal.

The work by Diana et al. [19] is related to auto-grading systems, specifically for their

programming. However, their solutions do not use blockchain. This could be adapted into

our proposal in the future and integrated into smart contracts for auto-grading.

3.4. Proposed Architecture

The proposed system is based on a traditional web-based dApp architecture. The

frontend is web3.js (a Java library), using RPC to interact with the smart contracts on the

network.

29

Figure 3.2. Structure of the Ledger for a School.
Note: What is stored on the blockchain in the ledger. In the future, for better
efficiency, most of this will be stored off-chain possibly in BigChainDB or other
system.

Essentially, javascript runs the frontend Ethereum Universe which is coded in HTML,

connecting this web3.js-infused webpage to the Ethereum blockchain in the backend (Fig.

3.5). We chose this because it was the most common and most supported way to deploy

a dApp outside a mobile Android app. Web3.js is also utilized to interface with IPFS, a

decentralized filesystem in order to store assignment files, as storing files on the blockchain

directly is far too expensive. One difference between the proposed design and the final design

of the dApp is that BigChainDB, a blockchain-based decentralized database, was not utilized

due to lack of time. In the future, for efficiency and scalability, the structure of the ledger

should be stored off-chain in that or another decentralized database.

3.4.1. Requirements Considered

Blockchain is able to address many of the aforementioned problems, as its auditability,

immutability, and verifiability serves to eliminate the need for recruiters, auditors, and other

hiring staff, while the consensus-based nature of a blockchain enables us to normalize courses,

and the system itself would make the hiring process cheaper due to the lack of third parties,

30

as well as the reduced risk due to the streamlined matching algorithm.

A solution for the e-Hiring match component must eliminate the need for a third

party and normalize courses. The workload required by a third party is picked up by all

the nodes on the network. All blocks can be assumed to be valid, and all the transcript

materials included are valid as well. It automates much of the work that HR does in terms of

shortlisting candidates by grades. The system could normalize courses through the properties

of peer review and consensus, as it enables all nodes to come to an agreement as to the rigor

of the course itself. This will be factored into our grade calculations and skill calculations.

The candidate’s ability to succeed in a career is determined by the individual skills taught

in the course, also determined by the peer review process.

Figure 3.3. Work Sequence for a Peer Review.
Note: This sequence was used as the base for peer review work.

31

Figure 3.4. Micro-Accreditation Participants on the Blockchain.

3.4.2. Course creation and a peer-review component

Each course has multiple assignments. with multiple parts, and each part includes

connected Knowledge Units, topics and a rigor score associated with it. The rigor of each

problem (assignment part) will be peer-reviewed and determined through consensus. This

consensus will most likely use a new consensus mechanism involving peer groups (Fig. 3.1).

that will be explored extensively in future work. Currently we are doing this manually.

These peer groups could be defined as follows:

• Peers with similar education and knowledge.

• Peers in similar field of study.

• Peers with PhD.

• Peers in same school or department.

• Peers teaching similar courses.

Once complete, the course is made available for student enrollment as shown (Fig.

3.3). Each participant will have their own node on the blockchain. The teacher, admin, and

peers will have different web interfaces for interacting with the smart contract, and different

access to the data stored.

32

Figure 3.5. Architecture of the Proposed System.
Note: Web-based dApp using web3.js to connect to the contract on the
Ethereum network. The contract connects to the BigChainDB for adding
and retrieving data that is stored off-chain.

3.4.3. Detailed Design

The system participants are professors, students, and employers (Figure 3.4). The

purpose of the inclusion of the students in the system is for them to complete coursework

so that professors can assign grades to them. Professors are tasked with assigning grades

and peer-reviewing courses, while employers are tasked with posting job opportunities. Once

students graduate, they can apply for career opportunities, at which point all job applications

are ranked by a compounded skill score calculated by the following equation (Equation 3.1),

where sk is the score for keyword k, ga,k is grade for assignment with keyword k, ra is rigor

for assignment a, and nk is the number of assignments with keyword k:

(3.1) sk =

∑n
a=1 ga,k − ga,avg + ra

nk

.

33

Figure 3.6. Work Flow for Peer Review.

For a job with ktotal keywords, each with desirability dk and skill score sk the match

index m is calculated as follows:

(3.2) m =

ktotal∑
k=1

dksk.

A work flow was created for course creation and review showing where it starts (Fig 3.6).

Note: In future work, we may need a third party contract to handle times it does not come

to consensus for Peer Reviewed rigor, as well as a new consensus model for rigor.

3.4.4. Application for Course Peer-Review

This application methodology will proceed in the following manner. We are going

to assume course is ready for review, that it exists to enroll in and is currently containing

34

assignments. The course admin (typically, the teacher) starts the process in the work flow,

and the smart contract ends it once peer review consensus on rigor has been achieved. Once

a course is complete (i.e., all assignments and parts are set and ready), the admin calls a

transaction to “Complete Course”.

Then, the admin calls a transaction for Peer Review. This generates a new Peer-

Review contract between the admin and the peers. The admin furnishes the completed

course, and the peers will provide their analysis of rigor for each assignment. Once a certain

condition has been met (for example, a specific number of reviews have been entered), a

consensus is made on the rigor. Once the peer review is complete, the course is open for

either admin review or for student enrollment. The transaction with the course data is sent

to the blockchain, and the smart contract executes it, while any assignment files required for

the course are submitted to IPFS (see Section 3.4), and the respective references are stored

on the blockchain.

3.4.5. Application for Enrolled Students

This application methodology will proceed in the following manner for all students. A

student enrolls in the course, and their address is stored. As a student completes coursework,

the grades are added to a mapping of their address to their grades. A student applies for

credit, and a professor approves it. Upon approval, the student’s associated knowledge scores

are calculated and are stored in a global contract, accessible by only certified parties. A new

course block is appended to the student’s transcript blockchain.

A student applies for graduation and is approved by at least 3 professors. Once

approved, a student then applies for jobs, and the match score is calculated by the algorithm

mentioned above.

3.5. Experimental Methodology and Steps to Goal

The system was tested for operational success as well as efficiency.

35

3.5.1. Tests for Simulating the Hiring Data

We tested utilizing data sets and simulating hiring patterns. The data sets were

publicly accessible grade distributions from three institutions (UNT, UT Austin, and UC

Berkeley), as well as hiring statistics for one specific company (Amazon) found through

LinkedIn statistics. The rigor for this test was determined using csrankings.org’s CS rankings,

and it was defined as s = 50 + 50((100− r)/100), where s is the given rigor rating, and r is

the ranking given by csrankings.org. The success of this test was determined by the variance

from the real statistics for last year. The independent variable here is the university selected,

while the dependent variable is the selection rate of people from the university who are hired

by Amazon.

The efficiency is determined by the amount of gas consumed by the algorithm. The

amount of gas consumed by a function is proportional to its efficiency and the amount of

computational work required by a node. Because of this, we measure the gas consumed

by each function on the Ropsten network, in order to provide an appropriate testbed for

the application, simulating the network load at the time of deployment. The independent

variable here is the function type, and the dependent variable is the amount of gas consumed

The test for scalability was conducted by measuring the increase in gas price as the

number of participants increases. This shows the decrease of efficiency of the program as

the number of users increases and will also demonstrate exactly how the system responds to

higher loads.

3.5.2. Tests for Simulating a Course and Course Peer Review

For the blockchain network backend, We used the programming language Solidity.

Solidity is an object-oriented language used to write smart contracts. It’s similar to other

high-level languages, such as Java or C++, but does have many limitations since it was

relatively new in 2019. This was used with the Truffle framework to allow easy compiling,

linking, deploying, and migrating the contracts on an Ethereum network. We paired Truffle

with Genache, development Ethereum blockchain that runs on your system providing you

free ether crypto-wallets associated with each account (node) it sets up for you.

36

Figure 3.7. Work Sequence for Peer Review – The work sequence used in
our simulations for peer reviewing. In future work, we may need a third
party contract to handle times it doesn’t come to consensus, as well as a new
consensus model for rigor.

You need ether to transact on the network, as well as “gas”, which Genache also

manages.

In our setup, we manually created two courses with 3-4 assignments and 5 parts

to each assignment. These were coded into files in the Solidity language, then JSON files

were produced at build time from them. This was our test data. We used this test data

to load these courses and assignments into the contract when starting the dApp, after an

admin clicks the ”Load Data” button. This established a base data set to start with. At

37

that point, since the assignments were now available, the Admin/Teacher could perform

actions like closing course, calling for peer review, viewing the course. Additionally, for

simplicity in grading, all assignments are exact answers and had no rigor assigned. We used

a browser plugin named Metamask to help simulate different peers. MetaMask helps bridge

the connection between the Ethereum network and the DApp your looking at by ”seeing”

the accounts created in Genache and will manage the “handshake” agreement for every

transaction against the contract on the network. It also can be used on the Mainnet and

Testnet if configured manually with public addresses given.

To simulate the peers, we set up a few peers and a course admin. After the test

data loaded, we first ran through the dApp as the admin, closing, calling for peer review,

recording the performance metrics for transaction time and gas cost. We compared multiple

peer reviews both on a stand-alone simulated network, and the Ropsten Test Network for

transaction times. JavaScript’s performance.now() was needed to obtain transaction times

for each transaction. A dependent variable might be Gas Price, which we discuss in the

Results section below.

To simulate the students, we used the same test data for assignments and courses to

simulate them enrolling and completing assignments. Using Metamask (similar to the Peer

testing above), we created four students to run through the student interface to complete

assignments in a course (Fig. 3.7). When completing a course, the student hands in the

answers, with the contract processing them, bundling together and storing a copy of the

question parts (which include the directions, KU topics, and the rigor score) with the student

answers. This allows changes to the course’s assignments without affecting the existing

student completed datasets.

3.6. Results and Discussion

3.6.1. Metrics Used

The metrics utilized in our analysis of hiring include those reserved for efficiency,

scalability, and operational success. The metrics utilized in our analysis of peer-review

include gas cost, transaction times, showing the effect of gas price (incentive for the miners

38

to do the work) on transaction time. These metrics and their testing methodologies are

outlined above.

To measure success, we simulate a representative dataset gathered from Amazon’s

LinkedIn hiring data utilizing data sets from UC Berkeley, UT Austin, and UNT, as well as

rigor rankings from CSRankings.org.

To measure efficiency, we measure the amount of gas consumed by each transaction

run on the network, as gas is a measure of the efficiency of a function.

To measure scalability, we measure the amount of gas consumed as the number of

entities accessing the network grows, in this case, students. We track this using the Ganache

emulator and use this to measure how different transactions respond to a high network load.

3.6.2. Datasets and Results

We compared the simulated and real hiring of Amazon based on data sets. The

graph (Fig 3.8) shows that the current algorithm is somewhat capable of distinguishing

hiring patterns, and that the new graduates’ hiring rates from UT Austin and UC Berkeley

are similar to that of the given data set. However, it is observed that the data for UNT in the

simulated run is completely zeroed out. The error for this measurement can be attributed

to the algorithms extra weight on the rigor of an academic program. Because of this, one

can say that the current data set is not capable of properly representing the state of real-

world hiring, and because of this, is insufficient to properly deduce the success of the hiring

algorithm.

We focused on the efficiency of running transactions on the network next. The graph

(Fig. 3.9) shows the growth of transaction gas cost as the number of entities on the network

increases. The only transaction whose gas cost grows is the Approve-Credit transaction.

This is due to the de-allocation of memory containing the student data structure. Once

again, this problem can be fixed through the inclusion of BigChainDB, as most memory-

management functions can be handled by BigChainDB. Because of this, we can say that the

system is scalable to an extent as well.

39

Figure 3.8. Hiring Practices.
Note: We utilized data sets and simulating hiring patterns. This graph shows
that the current algorithm is generally capable of distinguishing hiring patterns

Figure 3.9. Gas Cost of Transactions.
Note: The transaction gas cost generally remains the same as the number of
entities on the network increases. The only transaction whose gas cost grows
is the Approve-Credit transaction.

40

Figure 3.10. Knowledge Units mapped to UNT Courses
Note: A listing of some Computer Science Computer Engineering (CSCE)
courses at UNT with their number of respective Knowledge Units (KU) [16]
covered per each course. Majority of courses cover 3-4 KUs, with Intro to
Computer Security covering 17. Each KU is broken down into topics (see
Fig. 3.11).

Next we look at the number of Knowledge Units (KU) covered in some of the Uni-

versity of North Texas courses (KU defined by CAE framework). The graph (Fig. 3.10)

shows the number of Knowledge Units (KU) covered – defined by the CAE Framework [31]

– by each course in the Computer Science Computer Engineering Department. Only some

courses are shown. These KU categories occasionally change and evolve (e.g. a KU that

existed in 2016 might be split into multiple KU in following years). A KU consists of the

base required topics to cover in addition to other information. The course Intro to Computer

Security covers the greatest number of KUs in our chart, suggesting the course’s breadth in

knowledge covered.

41

We then look at the number of topics each Knowledge Unit covers. The graph (Fig

3.11) shows a general breakdown of the number of topics per Knowledge Unit. Some KUs,

like IT Components and System Administration cover a lot more topics than others, as

expected. To fulfill the requirements of the KU, one must typically satisfy all the topics and

subtopics for that KU, defined by the CAE framework

We also explored the gas cost to deploy School and PeerReview contracts. The graph

(Fig. 3.12) shows the gas cost is steep for deploying the School contract for peer-review. The

School contract manages all the courses which all have assignments, as well as managing and

interacting with the PeerReview contracts when necessary. The School contract has every

function that can be transacted on by the user through RPC call from the dApp. There are

additional functions (not shown in the graph) used in each library that are only called from

another function.

Peer Review transaction times were then studied, comparing times when Gas Price

(miner’s incentive to do the work) is increased. The graph (Fig 3.13) shows the transaction

times for the peer-review transaction. By default, when you call a transaction, the gas price

is 1. The gas price (GP) is the incentive for a miner to work, and the higher the price is, the

faster the transaction will happen. Changing the GP from 1 to 50 significantly and positively

affected the transaction times. The Gas Price increase incentivizes the transaction. Man-

ually adjusting the GP using Metamask is laborious due to there being many transactions

and needing to change it for every transaction as they transact [49]. So we changed the

transaction call in the code to reflect a specific GP of 50. We refer the reader to Section

3.5.2 for how Metamask was used and configured. In the future, testing should be done on

the optimal price when needing a more immediate response calling the transaction.

We looked at the Gas Cost of each function in the Assignment Grading part. The

zero gas costs are calls, meaning they do not alter any state (i.e., contract variables). The

graph (Fig. 3.14) shows the gas cost for calling the Assignment Grading functions. The

handinAssignment function consumes the most gas and will need to be worked differently in

the future code-changes to significantly lower that cost.

42

Figure 3.11. Topics Mapped to Knowledge Units (KU).
Note: Listing of KUs covered in list of CSCE courses (Fig. 3.10), broken
down into the number of Topics covered in each. Both the KU and Topics are
associated with each course and directs what is to be learned.

The current cost is associated with main transaction of handing in the assignment as

well as all the ”children” transactions associated with each part of an assignment (tasks).

Perhaps an off-chain solution for all the parts of the assignment could be employed.

Finally, we analyzed the transaction times for the Assignment Grading. The graph

(Fig. 3.15) shows the transaction times for the Assignment Grading. Similar to the Peer

Review times, increasing the GP to 50, significantly lowered the times.

43

Figure 3.12. Gas Cost to Deploy School Contract.
Note: The initial gas cost on the Ethereum network to deploy the School
and Peer contracts and the associated Libraries (also seen as contracts in
Ethereum). After the initial deployment, any further gas cost is related to
transactions (i.e. functions).

In example, at GP = 1, the “addAssignment” function times started at about 18

minutes to a much more reasonable 1.5 minutes (approximately). More research is needed

to find a good balance for speed and gas price.

3.6.3. Discussion

Once a course and its assignments are completed, peer-reviewed with rigor calculated,

and opened to Students, outside entities will be able to compare courses between different

institutions (academic or other). The fuller picture would be established to gain better

insight into a course, the course parts, what is to be learned.

44

Figure 3.13. Peer Review Transaction Cost.
Note: The transaction times for calling different transactions (i.e. functions)
during a Peer Review. This peer review model was simplified and does not
yet calculate rigor, though requires manual entry from each peer for each part
of an assignment. What was learned in this is that increasing the Gas Price
increases the incentive, and subsequently transacts faster on the network.

It would especially establish how well it will be learned (i.e. the established rigor of

the material taught). As students take these courses, potential employers will be able to

connect with the system to help match what they are needing in a position with students

who have proven successful in gaining that specific knowledge. This will help in the hiring

process and may prove useful in finding and filling the many positions left unfilled due to a

perceived skills-gap.

45

Figure 3.14. Gas Cost for Transactions by Student.
Note: This is the gas cost for each transaction related initiated by/for a Stu-
dent. The transaction handinAssignment consumes the most gas due to the
amount of work it is doing including parsing through the assignment – just
turned in by Student – calling several internal functions including grading.

Tod Beardsley stated recently, “If you’re only looking at college graduates with com-

puter science or electrical engineering degrees from the top ten universities in the U.S. then

yes, there are hardly any candidates, and most of them are going off to the five largest em-

ployers.” [45] Our approach provides a possible way to open widely the pool of candidates

to fill those positions by assuring their knowledge credentials, so employers can be better

secured and trusting in understanding what a student has accurately learned, regardless of

school reputation (i.e. does this student know, and how well, the required knowledge for a

position).

46

Figure 3.15. Transaction Times for Student Transactions.
Note: These are transactions to and for Students and their respective cost
times in milliseconds to transact. Similar to (Fig. 3.13) for Gas Prices, when
the Price was set higher, the miners were much more eager to do the work,
and thus times were significantly faster. The addAssignment times dropped
from approximately 18 minutes to 1.5 minutes. Though the handinAssignment
costs the most to transact (Fig 3.14), it does the transaction in a reasonable
time. More work is needed on transaction times overall.

3.7. Limitations

Limitations for this project in testing include the testing data sets utilized. As stated

earlier, they are not a representative sample of the current state of hiring. In order to address

this, future tests must include data sets that are taken from the company itself in order to

properly model hiring processes. Another limitation in the data sets utilized is the rigor

rating, as traditionally, that would be determined through ABET and CAE accreditation

methods. However, these were taken through more research-oriented rigor rankings.

47

An important aspect that was left as future work is privacy. The system needs to

protect assignment data from unauthorized user. Given FERPA requirements as well as

organizations’ user privacy policies, we need to prevent malicious players such as black-

market dealers from accessing the course data. A standard combination of encryption and

access control mechanisms should suffice to achieve these goals, but they are left out of scope

of this work.

Finding a way to accommodate students with special needs is especially challenging

using a blockchain. Smart contracts do not lend themselves well to multiple tracks of required

coursework on the Etherium network [72]. We would need to find a way to accommodate

special circumstances. (e.g. special needs kid requiring a shortened assignment, gifted child

having additional work or more depth in the work, etc).

Lastly, though not implying this list is exhaustive, there are still logistics and scal-

ability concerns. Can a blockchain handle the number of Teachers, Peers, Students, and

Employers with all associated data in a feasible way (transaction cost and time)? Also,

when running on Ropsten Testnet, probably due to the latency and long transaction speeds,

our DApp would occassionally get confused and show assignments and assignment parts out

of order. Even using promises and asyc/await clauses the course would show it out of order.

This won’t work well, since the handing in and grading depend on that order. It is possible

that research is needed on “chunking” a blockchain consensus for massive-node systems.

3.8. Additional Considerations and Challenges

On the road to the defining our next problem, we focused on the issues currently

associated with peer-reviewed course rigor and academic course equivalency for matching

students’ records between two schools (e.g., transfer students).

First, there is no peer-reviewed course rigor structure that is normalized across aca-

demic systems. The rigor of one course can be significantly different from a similar course

at a different institution. Additionally, presently in peer reviews, whether of papers or

courses, can have some elements where the reviewer can give a high quantitative review

while commenting the opposite qualitatively (e.g., setting a 4 out of 5, and then incongru-

48

ously “trash-talking” the subject matter in the comments). Humans must weigh what they

know of reviewer and their review against other relevant reviews and historical data. They

come to a consensus on how to handle the internally-inconsistent review.

Currently, we are lacking regular, organized, and agreed-upon definitions of knowledge

and skills, encompassing both academic and the workforce. This needs to change. A student’s

transcript of courses contains limited information. What a student learned in a course is

not normalized from one institution to another, and rarely reflects what specific knowledge

was learned. Comparing courses between schools is very challenging. Even when a general

learned topic of a course is known, it is difficult to determine how well it was learned, as well

as how rigorous that topic was covered.

The goal is to find solutions to solve the above problems. Moreover, we need to

ensure consistency in how we define the knowledge learned across different institutions and

industries. It is also important that the student’s information is protected and secured.

Definitively, students’ credentials must be assured in a perpetually existing environment,

and accessible by permission (i.e., on a “need to see” basis by allowed entities).

In this part of the research, we further explored using a blockchain to help solve

these problems. Specifically, we at first honed in on the Hyperledger (HL) platform, instead

of the Etherium network, Truffle platform, and Solidity language for smart contracts and

processing.

At first we studied which HL framework is best for this project (e.g., Burrow, Fabric,

Grid, Indy, Iroha, or Sawtooth). We decided we would use Caliper to collect metrics, Com-

poser to help create and deploy contracts, and most likely HL Explorer to view transaction

data. Also, we would need to either set up a Hyperledger Associate Member account for re-

search (free), or use the Open Source Hyperledger, or go a completely different direction with

another OS Blockchain network. Additionally, setting up our own network was important

to test the various consensus algorithms and compare metrics. Eventually, we decided to

move away from HL because we needed the ability to change out (or extend) the consensus

model. We explored the Corda, Ouroboros, and Algorand platforms. For the next problem’s

49

solution (Chapter 4), we selected Algorand since it was open source and its consensus model

was easy to adapt and extend for our purposes.

3.9. Conclusions

From the results presented, we can deduce that the system was efficient. This is seen

in the second metric, as all transactions with exception of one transaction, fell beneath a

safe threshold. The exception transaction can be fixed in that through implementation of

the proposed system, it is possible for one to further optimize the system.

We can also see that the system is scalable. Again, all transactions had O(1) com-

plexity when varied with network load, except for credit. The scalability of the entire system,

with all parts together, suggests possibly needing a different blockchain network requiring

the consumption of fewer resources with faster transaction times. Since the cost to incen-

tivize faster transaction times still leaves us with an undesirably slow process, new forms of

consensus also may be needed to aid these above goals. The Ethereum network, currently,

is not suitable for our future work needs. Although Ethereum developers are working on

making that network more efficient in the future by introducing a type of ledger sharding

and working towards a Proof of Stake consensus (versus Proof of Work that it presently

uses) [46]. Since Ethereum 2.0, named Serenity, is not fully available or actualized, and we

are needing to develop our own consensus model for Peer Review, moving to another open

source blockchain model is necessary.

Finally, a can deduce your system is successful (partially). Outside the above scala-

bility issues, success has been demonstrated through our earlier investigation of hiring rates

from UT Austin and UC Berkeley, as the relative hiring ratios for the two institutions from

the data given was quite close together. However, the algorithm places quite a bit of weight

on rigor, which requires further investigation.

3.10. Future Work

Future work includes full implementation of the system by further fine-tuning the

algorithm to properly account for rigor scores. This will allow us to further investigate the

50

relationship between rigor of an institution and hiring rates, and further optimize the dApp.

Part of our micro-accreditation research includes using a peer review system to de-

termine the rigor of a course, then coming to a consensus on those review scores. Rigor is

defined as the level of difficulty some problem is in regards to the expected level of under-

standing of the problem-solver. If it is more difficult, it has greater rigor. Applying rigor

to topics in a course, we can better understand what a student has learned. Additionally,

we can better compare what is learned from one institution to another. Peer-reviewed rigor

scoring is very important for the accuracy of evaluating a student’s knowledge. One exam-

ple would be comparing a Calculus I class from Ivy Tech to one at Indiana University. As

we currently do, we can make assumptions about the quality and rigor of what is learned.

Assumptions are prone to human bias and misunderstandings, so we need to explore ways

to prevent that.

Since we needed to trust that the peer reviews were honest, we needed a completely

new automated reputation system. This led to exploring decentralized reputation manage-

ment. The reputation of the peers providing rigor scores needs to come into the calculation

for an overall rigor for a course, its topics, and its tasks. Meaning, those with a higher

reputation have more influence on the total score.

How is a peer’s reputation determined, gained, or lost? With that, how can we trust

the reputation to be credible and not manipulated by malicious players and actions?

Our research evolved into an investigation and development of a system that also

included both reputation and evaluation systems (discussed in Chapter 4). We figured we

would eventually need a new consensus protocol to ensure a trust in that reputation system

(discussed later in Chapter 5), but focused on answering the former question first. Since the

micro-accreditation system is complex (e.g. using smart contracts to manage other smart

contracts, etc.), we chose a simpler existing system instead, a decentralized marketplace, to

implement and show how to answer this problem. Additionally, it allowed us to explore a

non-PoW platform, which would fit better for micro-accreditation in the future. We did not

have to worry about gas costs and other computational pains associated with PoW, and just

51

focus on solving our next problem.

52

CHAPTER 4

MAINTAINING REVIEW CREDIBILITY USING NLP, REPUTATION, AND

BLOCKCHAIN

4.1. Introduction

Trust is one of the major concerns in any online marketplace framework. Major

challenges in this setting include data privacy, trustworthiness, efficiency, and many other

aspects which concern both buyers and sellers alike. In practice, all the parties with an

interest in the marketing process may deviate from the prescribed procedures at any given

point. Therefore, it is important to devise a mechanism that would allow us to gauge the

parties’ trustworthiness.

Customer feedback is a powerful tool, which is commonly used in trust management.

Often, it is implemented as review systems. In many marketplaces, this feedback mechanism

is recursive in the sense that it allows others to up- or down-vote reviews seen as helpful, that

is to provide feedback on reviews. Some marketplace platforms assign a certain status to a

party in order to enhance the credibility of their feedback. An example of this is Amazon’s

“verified buyer” status.

Other platforms, such as eBay, use human-driven reputation systems to ensure some

level of trust in either the seller or buyer [59]. This time-consuming process is typically

prone to biases and errors, in part due to the massive quantity of data to be evaluated. Note

that it is still up to the buyer to evaluate products and sellers by manually going through

the reviews and evaluating their accuracy—this adds an extra hurdle, now on the consumer’s

part. In practice, buyers usually rely on the top-rated (perceived as most helpful) or the most

recent comments—which, in general, may not paint an objective picture. A natural question,

which arises in this context, is what kind of mechanism may enable us to deliver an objective

view of a product to the customer. In particular, we focus on the setting of decentralized

marketplaces, which have been gaining popularity in recent years, such as BitBay, OpenSea,

Ocean Market, Origin Protocol Markets, to mention a few.

53

It is worth noting that trust in the context of online marketplaces has a wide variety

of aspects. For instance, the buyer trusts the seller to accurately present the product, to

deliver it in a timely fashion, to properly process payments and reimbursements, and so on.

These aspects have been addressed in a large body of literature, such as, e.g., [13,57].

In this work, we are focusing on a particular aspect of trust in reviews and reputation

of the parties who provide them: review credibility. Specifically, we are focusing on the

following particular scenario, which is the first step towards the above-mentioned mechanism:

A party leaves a review (say, on a product or service), which consists of a text and a rating.

We will use NLP to evaluate the “positivity” of the text, and then we will compare it to

the rating. A trustworthy review is expected to have a good match of the positivity to the

rating.

Next, we need a system that would provide an incentive for the reviewers’ trustworthy

behavior. A natural solution would be to apply a reputation system in order to leverage

trust in the reviewers and their feedback. A moderator could be hired to handle incongruent

ratings, as well as spam and fake reviews. They would be charged with processing reputation

adjustments and dolling penalties for infractions. The challenges with this are the substantial

human resources needed in both cost and time due to the manual handling, and being

prone to bias analysis due to human handling. A better approach is to handle the review

evaluation automatically using NLP, with the reputation and rating administration also

driven automatically. Finally, in the decentralized scenario, it is natural to use blockchain

for storing the reputation values and updating them (automatically, using NLP evaluation)

according to the reviewers’ performance

The work presented in this chapter was published as ”Maintaining Review Credibility

Using NLP, Reputation, and Blockchain” in the 2022 IEEE 4th International Conference on

Trust, Privacy and Security in Intelligent Systems, and Applications Proceedings [74].

4.2. Related Works

There is a large body of work on applications of blockchain to decentralized market-

places, e.g., [9,20,22,33,34,55], to mention just a few. Let us briefly discuss the works,

54

which are the most relevant to our result.

Bajoudah et al. [9] apply a trust and reputation framework on top of a marketplace

model to encourage trustworthy sellers. The paper suggests a model where an increase in

reputation (which is not compared against others in detail) decreases the cost of the overall

data delivery. This is achieved by reducing the number of transactional checkpoints that

are ensuring an honest delivery. A low reputation would require more checkpoints than a

trusted high reputation would, therefore incurring higher overall transaction costs. Although

their reputation model is similar to ours in that it is pervasive through each transaction and

block, the reputation is stored and used at the dApp level, instead of in the core. Though in

our model, reputation can be used for purposes at the dApp level, one of our main focuses

is using reputation as part of the consensus process at the core. Also, the authors do not

specify how the reputation model functions, that is, they explain that the reputation model

used is currently outside the scope of the paper, leaving it to future work.

Jiang et al. [33] show a correlation with product ratings, review texts, and customers’

probability of purchasing products through the use of sentimental analysis (SA) to create

a ”product reputation”. They use SA as we do, however, they assign a reputation to a

product, rather than to a reviewer, as in our case.

Joshi and Kumar [34] introduce a reputation and blockchain model to keep fraud-

ulent reviewers and sellers in check. Specifically, they set some initial requirements to be

a reviewer, and they limit the seller’s control over the final price of their product. The

reviewers are submitting estimated prices against the seller’s price rather than feedback on

the product. Although this paper introduces an approach that is somewhat similar to ours

in using weighted reputation, their model is mainly focused on marketing, such as determin-

ing accurate product cost estimates. On the contrary, our proposal focuses on an accurate

evaluation of the reviewers’ reputations.

Salau et al. [60] use reputation as a stake in the context of data cooperatives [29].

The idea of using reputation to incentivize the parties’ honest behavior—which originates

from earlier works such as [26]—is employed in our construction as well.

55

Figure 4.1. High-Level Architecture of Our Proposal.
Note: The proposed model contains an NLP evaluation system (CoreNLP)
and a custom reputation system, where the reputation values are stored on a
Proof-of-Stake blockchain (Algorand).

However, we apply it in a different context of evaluating review credibility. Also, the

work [60] uses a different blockchain system, the Snow White protocol.

4.3. Overview of Our Contribution

We propose an architecture for the reputation-based review evaluation system, which

is built on top of the blockchain system, in order to ensure correct and trustworthy as-

sessments. In our proposal, the trustworthiness of reviews is evaluated using NLP and the

reviewers are assigned a reputation according to this evaluation. The reputation is stored

on the blockchain and is used as an asset for the consensus process.

We constructed a proof-of-concept implementation of the proposed architecture, which

is shown in Fig. 4.1. We chose Algorand as the underlying blockchain system, because it

was easy to adapt its committee selection mechanism for our purposes.

In a marketplace, we consider sellers to be more regularly and consistently available

online than buyers. Additionally, we consider buyers to be more active in submitting reviews,

consequently reflecting a longer, more credible history of reputation. For this reason, we

56

suppose that the pool of nodes (we will also refer to them as “players”) will be restricted to

buyers. Recall that the nodes will take part in the consensus protocol, hence running the

blockchain system. At each step in a round of the consensus protocol, a new, anonymous,

and random set of players is selected to form a committee. In our approach, for the reasons

stated above, Algorand nodes are now directed to only consider the sellers’ reputations in

self-selecting for a committee.

We consider the following three main aspects of assessments made by the parties

(sellers and buyers) involved in the marketplace. The reputation of the seller, that of the

buyer, and the rating of the product or service offered (henceforth referred to as “Product”,

for simplicity). The sellers’ reputation values are derived from reviews submitted by buyers,

and in return the sellers review buyers (e.g., their speed of payment, quality of communica-

tion, and other points). The buyers also review Products they have purchased (henceforth,

we called it a “Rating” which is given to a Product). As discussed later, in general, the

reputation of the parties is adjusted positively or negatively in each round based on the

comparative evaluation of the reviews and ratings they submit in each round.

Reviewers submit their reviews as transactions in the blockchain system. A chat

dApp was created for this purpose, where any message from a user (that is a reviewer) is

interpreted as a review. A reputation system is implemented as a stored numerical value

associated with each reviewer’s public key, and stored on the blockchain as part of the current

state of the system in that round’s block. We note that the reviewer is in effect a user in the

Algorand system. This means that a single user may create multiple identities if they wish.

However, since a beginner is assigned a minimal reputation of zero, it is beneficial for the

user to work under the same identity in our system, in order to build up their reputation.

Then, the reviewers’ reputation is adjusted in each round, according to the NLP-based

evaluation. This evaluation system analyzes the sentiment (negative, neutral, positive) of

a review text to determine congruency with the associated submitted review rating. As

mentioned, the reviewer’s reputation is adjusted based on this analysis, and the state of all

reputation values is stored on the blockchain at the end of each round.

57

By mapping reputation to stake, these reputation values assume the role of tokens.

Hence, the reputation forms a “quasi-stake”, which each reviewer has in the system. This

approach is the same way as it is done, e.g., in [60]. This way, the reputation is used as an

asset/incentive to encourage honest behavior of the participants.

Our simulation results showed that the NLP component incurred a reasonably small

delay to review transactions. Specifically, we compare the time requires to add a standard

payment transaction in Algorand with that to add our (custom-designed) review transaction,

and for about 50% of them the timing was similar, while most of the outliers took about

2-3 times longer. Also, we observed that the NLP component ensures an accurate credi-

ble evaluation of the product review texts taken from a custom-picked dataset of Amazon

reviews.

In our work, we augment the Algorand protocol (refer to 2.4 to include both an NLP-

based evaluation system for reviews and a reputation system reflecting the peers’ ranking

(see next sections).

4.4. Review Analysis and Reputation Management

4.4.1. Review Analysis Using NLP

Our proposed architecture includes the NLP component, which is used for the analysis

of the reviews. Specifically, we apply sentimental analysis (SA) [66], which is typically used

for data analysis in various areas, such as social media [21] and health care [56, 68], to

mention a few. We refer the reader to the survey [28] by Gupta et al. on details of this

topic.

SA is the process of breaking down sentences and paragraphs into finite terms to

identify the writer’s feelings in relation to the categorized bounds of positive, negative, or

neutral attitudes towards a specific topic. In our design, we use SA to gauge the “accuracy”

of the customer’s textual review with their numerical rating (e.g., “4 out of 5 stars”). This

accuracy directly affects the adjustments to a reviewer’s reputation.

SA is used in several NLP tools, such as Lexalytics [40], Google Cloud Natural

Language [27], and Natural Language Toolkit (NLTK for python) [52]. We chose to use

58

the Stanford CoreNLP [47] suite of tools, because it is a comprehensive “out of the box”

ready-to-use open-source system that fits our purposes. Their recursive neural network

model is already trained on a sentiment dataset for movie reviews, hence it fits well for our

evaluation system needs. Another useful feature of CoreNLP is that it furnishes instructions

for extending and training their model further, and it maintains online support.

Specifically, CoreNLP calculates the positivity of the text on a 0-100 scale (100 being

the most positive). In other words, the sentimental analysis determines how positive the

reviewer is expressing themselves, converging the result into a numeric scale. Though SA

can be seen as a mechanism to determine the degree of polarity of both positive and negative

in the opinion, we focus on positivity.

Then, accuracy is ascertained by comparing the evaluation score output by CoreNLP

to the review rating scaled to the range [0, 100]. Specifically, in our application, we first map

the original quantitative (review rating) interval [a, b] to [0, 100] to more easily compare

against the qualitative (review note) interval of [0, 100]. (See Table 4.1 for the structure of

a Review Transaction).

The scaled quantitative (rating) value is computed as follows:

f =
(100− 0)

(b− a)
v ≡ 100

(b− a)
v,

where v is an original quantitative (rating) value.

Example: With a rating system of [0, 5], the scaled value is computed as f = 20v.

Denote the NLP qualitative score for a particular review as Q ∈ [0, 100]. We can

compare it to f and use the discrepancy to determine the adjustment to the reviewer’s

reputation. The details of how the adjustment is done are discussed in the next subsection.

Example: Suppose that the book review reads “This is very good!”, and a given

rating is 3 out of 5 stars. Also, suppose that the NLP system evaluates this phrase as 80%

positive (Q = 80). Then, the scaled rating is f = 20 · 3 = 60.

59

Table 4.1. Fields of a Review Transaction.

Field Type Default Value

Type Tx Type Review Tx

Header Header Type (transaction header info)

ReviewNote byte[] empty (text-based review)

ReviewRate numerical 0 (quantitative rating)

ReviewEval numerical empty (scale 0-100)

RepAdjust numerical 0

Note: We note that in the actual Review Transaction, there are other fields, which are
either blockchain-related data for transactions (such as, e.g., sender, receiver, etc.) or
others that are not used in our design (such as, e.g., fees, notes, etc.). They are omitted
from this table for the sake of simplicity.

4.4.2. Reputation Systems

Reputation systems have a long history of applications both in computer networks

and also in blockchain systems [6, 8, 14]. In our proof-of-concept implementation, we use

a simple variation of the AIDM algorithm [17], which is described below and with further

specifics in the next section (High-Level Architecture).

Each user has a reputation value RV also associated with their public key (PK) in

our system. The RV can be used in evaluation of users, services, and products. In our case,

we are using it specifically with users. Beyond this, RV can be used to calculate a weighted

overall rating for some product or service. Also, it can serve in the selection process of

committees each round by using that reputation in calculating a pseudo-stake, instead of

tokens (money).

Reputation is earned following a common policy of additive-increase, meaning incre-

mentally one unit at a time. Using the multiplicative decrease as punishment reduces the

player’s reputation—and subsequently their weight—quite quickly. Therefore, this mitigates

any intended payload damage, e.g., the use of a high-reputation / high-stake position to

increase the probability for contiguous successful malicious actions. The integration of this

algorithm is discussed in Section 4.5.3.

60

4.5. Proposed Architecture

In this section, we describe the proposed system in detail. Specifically, we discuss the

changes, which we made to the Algorand protocol, in order to use the consensus function

with reputation instead of stake.

4.5.1. High-Level Architecture

As shown in Fig. 4.1, as the underlying blockchain system, we use Algorand. We

extend a blockchain’s consensus protocol model to include both a reputation system and a

review evaluation mechanism. The latter is responsible for the reputation adjustment.

Some main modifications of Algorand include adding a new reputation field and a

new type of transaction called a Review Transaction. We then changed how stake was used

through mapping this new reputation to stake. This furthermore altered how a committee

is formed from this new mapping. Additionally, some steps of the consensus protocol were

modified, introducing a new activity for leaders and verifiers in evaluating reviews. Based

upon these evaluations, we devised a system to adjust the reputations of the reviewers, and

now store these participants’ reputations as part of the current state of the system in a

round’s block.

4.5.2. Modification of Algorand

We have added a new reputation field which is associated with each player’s public

key. With its numeric value starting at zero, it is codified to not allow negative values, and

have a maximum value of 10000, an arbitrary number selected to limit the field to prevent

possible integer overflows if unrestrained. As mentioned above, we map this reputation to

stake, with these reputation values assuming the role of tokens. This forms a quasi-stake,

which each player has in the system.

Furthermore, we modify how committee participants are self-selected in each round.

Instead of employing the number of tokens a player has in the input to Algorand’s verifiable

random function, we apply the player’s reputation value. The higher the reputation the

greater the chance of being selected for a committee.

61

In each round, the reputation values are received from the reputation system from

the blockchain’s last block state. Any changes to that state are stored in the current block

at the end of the current round.

Additionally, we added a new type of transaction named Review Transaction, which

does not require payment—see Table 4.1. This type of transaction contains a review text,

a review rating, an evaluation rating, and a reputation adjustment value. Potential Leaders

are now tasked to call for evaluating these Review Transactions, and Verifiers later analyze

those evaluations similarly as part of their validations. A review is evaluated for congruency

(e.g., checking for fake inconsistent reviews) in addition to other deviant behavior such as

spamming and showing bias.

Before the round ends, we have introduced an algorithm that calculates a reputation

adjustment based on an accepted Leader’s evaluation. Then, another function subsequently

adjusts that reviewer’s reputation, which consequently could affect a user’s “stake”. For

this adjustment, we employ the additive increase and multiplicative decrease method in our

algorithm, which is discussed explicitly in the next section.

Our approach does not allow trading, buying, or selling of reputation; therefore,

changes to reputation cannot be traced back through previous transactions between different

parties. For review transactions, we removed the need for a second party. We can verify a

party’s reputation value by tracing the user’s review transactions and associated adjustment

fields stored on the blockchain. Recall that each review transaction stored in a block on

the blockchain contains the review itself, the NLP-evaluated score, and the RV adjustment

made. This furnishes the tools needed to validate those values by tracing the transactions

that changed the RV of a party over time.

4.5.3. Integrating the Review Evaluation Component

Our review evaluation component consists of the reputation system and the NLP

evaluation system (cf. Fig. 4.1).

Each (honest) reviewer has a reputation RV assigned to them, with their reputation

being adjusted only when all the below conditions hold:

62

• The reviewer i had submitted a review (for simplicity, we assume that a numerical

rating is a part of it);

• A Review Transaction was created and it was included in a block, which was added

to the blockchain in the current round.

For purposes of this discussion and to simplify the concept, let us constrain the

player’s maliciousness to only incongruent reviews, and start the RV at 0. Also, we will

restrict a reviewer to submit only one review per round, so that the latter is added to a

single block in some round.

Obviously, one may define different rules for adjusting the reputation, which will

depend on a particular application. In our work, for simplicity, we use the absolute value of

a difference between the NLP qualitative score Q and the scaled quantitative rating f . This

quantity is denoted as ∆ = |Q− f |. Now, for our testing, we set the rule that if ∆ ≤ 20, the

rating is adequate and the reviewer’s reputation increases, and otherwise it decreases. We

choose this rule for simplicity of our proof-of-concept implementation. In principle, different

rules can be used depending on a specific application.

Taking the above rule into account, we use a variation of an AIMD algorithm [17] to

compute the reputation adjustment as follows:

RVi(r + 1) =


RVi(r) + δ, if ∆ ≤ 20

RVi(r) ∗ λ, if ∆ > 20

where r is the current round, RVi(r) is i-th user’s reputation in round r, δ is the additive

increase parameter (δ > 0), and λ is the multiplicative decrease parameter (0 < λ < 1). In

our simulations, for simplicity, we set δ = 1 and λ = 0.5.

We explored other reputation adjustment methods, but they didn’t fit well for our

purpose. Consider the simple AIAD, where reputation increases and decreases in steps. This

would allow ”bad” actors to continue much longer in the system. Comparatively, AIMD

swiftly reduces the player’s reputation and effectiveness in the system.

63

Figure 4.2. Workflow of the Proposed System.
Note: A review is submitted to the Blockchain nodes’ transaction pool. This
shows the set of interactions with the PoS Blockchain, Reputation-based sys-
tem, and an Evaluation system.

4.5.4. Modifying the Algorand Core Code

As mentioned earlier, our implementation for testing uses a derivative of the Algorand

blockchain core code. To simplify our description, we will limit our discussion to review-

related notions and use Algorand’s steps for convenience in our explanations. We present a

general workflow overview of these steps in Fig. 4.2 and more specifically below. To start,

64

a reviewer using a dApp submits a review, creating a review transaction. At every step,

verifiers are selected randomly to form a committee (see the previous section on Modification

of Algorand) for verifying, voting, or evaluating the reviews and are anonymous to each other.

This process follows these steps:

• Step 1: In addition to Algorand’s standard security checks (e.g., valid signatures,

etc.), potential leaders evaluate each review transaction by calling the NLP eval-

uation system to retrieve a review score and reputation adjustment values before

adding it to their potential block. Any invalid reviews are removed.

• Step 2: A new group of randomly selected participants agree on the leader in the

same way as in Algorand.

• Step 3: Verifiers “open” the leader’s block and re-evaluate each review, comparing

their evaluation to the leader’s evaluation. If the results are matching, the original

review’s evaluation is considered good. When all the reviews are considered good,

then the leader’s block is deemed good. If there is more than one divergent evalu-

ation, then the entire block is considered bad, and a vote of no confidence for the

leader and a vote for an empty block is sent.

• Step 4: The fourth group of verifiers counts all the votes of the previous group.

This step is done in the same manner as in Algorand.

• Step 5: The final step is the application of the reputation adjustments from each

review transaction in the approved block (if there no approved block, this step is

skipped). The block is added to the blockchain, with the new reputation values

stored as part of the current state of the system in that round’s block.

4.5.5. Analysis of the Proposed System

Let us discuss the functionality of our system. Even after the modifications, the

system works. Adding reputation values and mapping them to stake does not change the

way the underlying blockchain system functions. Committee selection and the consensus on a

block are still handled in a similar way. We assume that automated adjustments to a player’s

65

reputation will either positively or negatively affect their probability to be selected to engage

in the consensus process. We expect the system to deliver the performace comparable to

that of Algorand where players buy or sell their tokens. Although CoreNLP adds an average

36 seconds delay due to processing time to evaluate a review, we expect the system to come

to a consensus on a block within a reasonable time frame.

There could be a review transaction created but not added to a block. We assume the

transaction is signed correctly and the player is allowed to submit a review as a transaction

to the system. In cases where it is not, we expect the review transaction to be handled in

the same way as the blockchain does by removing it from the transaction pool. The system

will never consider that review again.

If a reviewer creates a review, but somehow it never gets added to a block due to

running out of time repeatedly, the transaction will expire. An expired transaction is removed

from consideration and no further action is performed on it. This is the way Algorand handles

the similar cases, so we expect the system to continue working in the regular manner. In

our model, the review will cease to exist and reputation will not be adjusted. This does not

affect the blockchain.

4.6. Simulation Results

4.6.1. Testbed

In order to test our proof of concept, we developed the dApp, which is a modified

chat application written in the programming language Go. We augmented and adapted the

code in this dApp, the associated SDK, and the main core blockchain system (Algorand) to

test our new system. To the dApp, we fed the data (reviews) both manually and through

using a file loaded at run-time.

Since decentralized marketplaces are still relatively new, there are not many publicly

available datasets. For this reason, we used data from Amazon. Specifically, we handpicked

random product reviews, which were relatively short, 2-3 sentences maximum, and placed

them into a JSON file to be loaded to the dApp. For testing, we read this dataset file, or

manually entered data into the dApp input box (especially for the transaction timing tests).

66

Figure 4.3. Consensus Timings for Payment and Review Transactions.
Note: On average, the Review transactions are 9 seconds slower as compared
to the Payment transactions.

Figure 4.4. NLP Evaluation Overhead for Block Consensus Timing.
Note: The block consensus timings are shown for the case when the real-
time NLP evaluation is used versus when it is not used. The average delay
introduced by the NLP component is 36 seconds.

67

All our test were made on a single Ubuntu 18.04 Linux system running on a Dell Optiplex

7040 8-core, with 16GB memory (henceforth, we call it “the system”).

The implementation starts with installing AlgorandPoR [2] (”core”), the SDK [3],

and downloading the proof of concept dApp (algochatPoR) [1] on the system, following

instructions found in the source. In the PoC dApp, we used Python scripts to create and

launch a private test network specified in a configurable template. Creating a network calls

the core to setup nodes with associated wallets and other blockchain parameters including

the network name. Once that is complete, the scripts create each node’s directory structure

and startup shell scripts. Once finished, we call the script to start the network.

Our most common system setup started with three simulated nodes (clients), each

in their own console window tab. In each tab, an instance of AlgoChatPoR is launched,

presenting a console user interface (CUI) allowing a user to enter text to submit a payment

or a review transaction with the help of the SDK. To load the JSON data file of reviews, we

had to quit one node’s instance, then relaunch it with its associated generated shell script

and some command-line arguments (e.g. “-autofile ./data.json”) to specify which file to load.

The SDK defines what a review transaction is, wrapping the submitted review and rating

into a newly created transaction, and finally broadcasting that to the network. AlgorandPoR

core installation is coded to handle that transaction (see the steps of consensus in a previous

section).

4.6.2. Metrics and Simulation Results

Our first focus was testing transaction times (or how long it takes for a transaction

to be added to a block). In other words, we were investigating whether review transactions

are slower than the regular payment transactions. Next, we ran a study on an overhead

which the NLP component introduces. These tests are important for showing that the new

review transaction does not affect the timing significantly, and that the system continues to

perform well even when review transaction are evaluated by NLP in real time.

Next, we tested an accuracy of the NLP evaluation. We expect the NLP technology

to perform similarly to what human would deliver— the results are shown in Fig. 4.5.

68

Figure 4.5. NLP Scores Versus Ground Truth (Human Evaluation).
Note: The average difference between the NLP evaluation and the ground
truth is about 21 points, with the standard deviation of those differences at
26.

In Fig. 4.3, we compared consensus times for both Payment and Review transactions.

We used a simulated non-live evaluation of reviews for the Review transaction. The block

consensus times for review transactions range from 40 seconds to 1 minute 52 seconds, with

a few outliers above 2 minutes, when using tokens as a stake type in a Proof of Stake

system. The timings were similar for both types of transactions. This shows that using

different transaction types in a non-live evaluation setting does not affect the overall time

for consensus on a block to be added to the ledger.

In Fig. 4.4, we tested block consensus times when using real-time NLP to evaluate

reviews using a small dataset adapted from Amazon’s data (see Fig. 4.2). This dataset was

handpicked from random product reviews, 2-3 sentences maximum, and placed into a JSON

file to be loaded at dApp runtime. Since we are using NLP’s resource-heavy sentimental

analysis evaluation on three simulated nodes, we limit each block to one review transaction.

The block consensus times for real-time NLP range from 49 seconds to 3 minutes and 4

seconds (with one outlier of 4 minutes 26 seconds).

69

Table 4.2. Sample Reviews and Ratings.

TX REVIEW TEXT USED RATING SCALED

1 This is Good 3 60

2 Best book ever read 1 20

3 Best item ever and awesome fantastic 5 100

4 Some good and some bad it’s ok 2 40

5 trash filled with more trash 1 20

6 I’ve never seen anything so bad and worthless 1 20

7 This is the best thing ever 4 80

8 I do not recommend! It doesn’t work 1 20

9 good but has a lot of work to do to be great 4 80

10 if I could rate this 0, I would 1 20

11 This is so awesome that I wouldn’t give it to my enemy 1 20

12 recommend to everyone. Best ever. Super 2 40

13 it’s ok. won’t buy again. likely will trash it. Yuck 3 60

14 total fake knockoff that uses junk material 5 100

15 This is very Good 4 80

16 good in the trash. great in the dump. buy it to junk it 4 80

Note: The NLP evaluations are the scaled values computed as described in Section 4.4.1.

This shows that time to consensus can fluctuate when using a real-time evaluation

system, with more than 50% of the transactions finishing within the range of cases when NLP

is not used (less than 1 minute 52 seconds). This may be caused by either the complexity of

the text being evaluated in Fig. 4.5 or the resources available during the round. We empha-

size that the custom-selected review dataset consisted of comments of about 2-3 sentences,

and therefore the real-life timing may differ from the one reported above, depending on a

specific dataset.

In Fig. 4.5, we tested the accuracy of the NLP evaluation feature. Our goal is to

use the technology which evaluates reviews in the same way as humans do. This means

that if a person perceives a review as mostly positive, then the NLP system should also

appraise the same text as mostly positive. The same dataset of product reviews was used

(Fig. 4.2) as in Fig. 4.4. We gauge how positive the review comment is through sentimental

70

analysis, which provides a single number (0-5) evaluation for each sentence, where 0 denotes

very negative, and 5 denotes very positive. If this system is provided multiple sentences,

it returns an evaluation for each sentence. Our implementation computes an average of all

those evaluation scores and then the result is scaled to the invterval (0-100). In some cases,

the rating matches the evaluation: e.g., see the review text 5, “Trash filled with more trash”.

In other cases, the rating given by the reviewer does not match the associated text: e.g., see

the review text 2, “Best book ever read”. In the latter case, the reviewer’s rating does not

match their comment; however, our system catches this, evaluates the comment accurately,

and determines the level of (in)congruence. From this, our system will decide whether the

reputation should be increased or decreased.

4.7. Conclusion

With this new model, we have moved towards showing how technology can be used

to evaluate the trustworthiness of both the reviews and the corresponding reviewers. We

deploy NLP to determine whether the reviews are congruent and trustworthy.

We note that this information can also be useful at a higher level, such as in dApps

for various purposes. For instance, a dApp can rely on this immutable information, using

the evaluation scores of the reviews for making decisions. The sole incentive in our model

is to increase one’s reputation. No financial incentive is currently present, although it may

be introduced in the future if potential applications demand it. Our system provides an

accurate way to implement an automated analysis of reviews ensuring the trustworthiness

of the evaluation.

Our preliminary results show comparable block consensus timings for the cases of

using tokens or reputation as a stake in our Proof of Stake component. Additionally, we

show that a real-time NLP evaluation may introduce a substantial overhead to about 50%

of transactiona. This may be caused by either the complexity of the text being evaluated or

the resources available during that round.

More significantly, by using a dataset adapted from Amazon product reviews, it is

demonstrated the NLP evaluation component performs similarly to a human evaluation

71

(ground truth). As mentioned in previous sections, our proposal derives the trustworthiness

and credibility of a participant via evaluation of their reviews, which is in turn reflected in

their reputation. Then, this reputation is used by the consensus algorithm.

Our future research focus is on constructing a formal security analysis for the proposed

system. Other future work is related to exploring ways this model can be leveraged in

autonomous systems or micro-accreditation (a way to connect students with employers) to

aid in assigning rigor to knowledge units in courses. We realize that it is important to

establish conditions under which the proposed system will function robustly, along with

experiments to confirm the corresponding results.

72

CHAPTER 5

PROOF OF REVIEW: A NEW CONSENSUS PROTOCOL

5.1. Introduction

We present a novel consensus model called Proof of Review (PoRev), which combines

concepts from Proof-of-Stake (PoS) and Proof-of-Reputation (PoR). The participants of the

proposed blockchain system agree on evaluated reviews, which will be added as transactions

to the system. The reviews and the related evaluation data are stored on the blockchain. The

reviews drive the reputation model, where reputation is used to regulate a user’s participation

in the system. PoRev is a tool that can be used to aid applications by ensuring honest and

unbiased reviews and assessments, hence providing an immutable and transparent record of

data related to both the reviews and the reviewers.

The motivation to introduce such a system is to derive a trust in the participants’

reputations through a consensus of their evaluated reviews. In doing that, applications

could use this data to apply trustworthy weighted calculations towards an overall value of

something or a rating. This system lends itself easily to decentralized marketplaces, where

the trust in the reviews and reviewers is important to gauge the objective value of a product

or service. Our model could be used to mitigate some common challenges in a review system

(bad reviews, spamming, bias, and other errors). In micro-accreditation applications, the

rigor of a course could be settled from the aggregation of peer-provided reputation-weighted

scores. Currently, comparing courses from one academic institution to another, determining

what level of knowledge has been gained, or which school provides a more rigorous application

is either done with bias or by humans in an assigned authority to do so. PoRev could be

leveraged to in trusting that analysis by trusting the reputation of those doing the work. In

sensor-array systems, a consensus on a node’s assessment being incongruent could indicate

a failure in a sensor. Furthermore, we see how this problem also applies to the future of

autonomous vehicles that caravan together in an ad-hoc manner. Artificial Intelligence (AI)

is making decisions (routes, re-routing, speed, safety actions, etc.) and other assessments to

73

deliver a vehicle safely from point A to point B. Currently, autonomous vehicles are making

these decisions independently using the data retrieved and the sensors onboard. The trust

in that vehicle’s AI decisions should not be blind and independent, since any failure in

the sensor hardware or in receiving data could be detrimental to its success and possibly

dangerous to others. There is a wide range of applications where this system can be applied,

outside of the common review (as for products or services), especially with community-based

blockchain systems, such as neighborhood watch [61], and the others mentioned above.

The proposed system uses the review as a “contribution” which entails a reward for

the respective honest user in terms of increasing their reputation. The reputation in turn

will function as the user’s asset which increases their influence in the system.

The work presented in this chapter is to appear as “Proof of Review - Trust Me, It’s

Been Reviewed” in proceedings of the 5th ACM International Conference on Blockchain and

Internet of Things (BIOTC 2023) [75].

5.1.1. Comparison to The Existing Consensus Mechanisms

Let us compare the proposed consensus mechanism to the existing ones.

Proof-of-Work: The major difference is a type of the contribution: review vs. hash power.

Our system lends itself naturally towards the Byzantine Agreement like consensus which is

used in some Proof of Stake systems such as Algorand [16], by using committees to determine

a block leader (instead of a hash power based competition). The latter types of consensus

models are known to be more cost-efficient and environmentally-friendly compared to PoW

systems such as Bitcoin [50].

Proof-of-Stake: A natural similarity to these types of systems is seen when directly mapping

reputation to stake (as it is done, e.g., in [60,74]. Then, the components such as committee

selection and block mining work in a similar manner as in PoS systems. Some major differ-

ences from the currently popular PoS systems is their focus on financial applications rather

than community-based applications (such neighborhood watch [61] and similar ones such

as data cooperatives—see the references in [61]). The community-based blockchain systems

may be seen as specialized data repositories and this work can be seen as a step towards

74

tuning blockchain systems in this direction. In particular, in such the systems, it may be

easier to detect a misbehaving user hence taking a corrective action upon the committee’s

approval. In particular, we introduce the blacklisting and minimum-reputation component

which results in decreasing of the number of malicious players in the network, and mitigating

their actions and extent of their influence on the system.

Proof-of-Reputation: Proof of Review is similar to this type of consensus as there is no

mining process and reputation is used in lieu of tokens (money) to determine block forging.

PoRev can be seen as an extension of Proof of Reputation, where the reputation system is

only one component of the consensus protocol. Compared to PoR system of Gai et al. [26],

PoRev reputation model and associated values persist beyond a round’s block being added.

We use the reputation values of the nodes at the beginning of a round, instead of the top-

ranked node at the end of the round. Our nodes’ reputation values are calculated from

each node’s history of submitted transactions since initially joining the network, instead of

calculated only from the ratings given in each transaction within that round’s block. Instead

of transactions being ratings (reputation scores) given by other nodes’ raters (humans), a

review transaction in our system contains the review, the analysis of that review, and the

direction on how to adjust the reputation of that reviewer (increase or decrease). Our review

evaluation is done automatically with the purpose to exclude a human factor (e.g., a possible

bias).

5.2. Related Works

A large body of works on Proof of Reputation and Proof of Stake exists but they do

not quite deliver on the automation, flexibility, or trust we need. Let us briefly discuss some

of these works which are most closely related to ours.

Bashar et al. [11] introduce a process where the role of the block leader is split into

multiple parties validating transactions before adding to their own potential block. Then,

a union is performed on these blocks to create a master block, signed by each party. This

expedites the block-creating process and helps mitigate individuals from omitting or altering

a transaction, since all parties involved have to agree on master block. Our focus is on

75

stopping ”bad” transactions by mitigating malicious players from being involved as quickly

as possible.

Khan et al. [48] introduce a method to identify a transaction malleability attack

(where someone changes the hashed ID before the transaction can be validated) in order to

study how to protect from it. They do this by adding a secondary layer to the blockchain

that maintains transaction-provenance (origin) to check transactions against. Our focus is

more general, but could see incorporating this as part of an evaluation process.

Schaub et al. [62] propose a new blockchain-based reputation system to preserve

privacy in a trustless environment. They focus on seller (a service provider) reputation in

e-commerce applications, letting customers to give feedback as both a numerical rating and

a textual comment. Reputation is based on an aggregated functionality from all reviews of

the service provider. Their protocol does not evaluate the review itself, which is different

than Proof of Review (PoRev). Instead, in our system, reviews are evaluated to determine

any modification to the reviewer’s reputation. Additionally in PoRev, reputation for a user

is the summation of all reputation adjustments to the current round for that user.

Kleinrock et al. [35] introduced a reputation-fair lottery to be used for the Byzantine

Agreement based PoR blockchain with an auxiliary “fallback” Nakamoto based blockchain.

Differently from our work, they did not specify the reputation system, and just assume using

one which satisfies certain properties.

Larangeira [37] introduced a reputation-based trust delegation layer over a PoS

blockchain. This layer allows groups of users to assign their trust to arbitrary participants

(trustees). This work introduced a concrete reputation system, but differently from our

work, the reputation system is functioning at the ”application” layer while relying on the

PoS ledger at the ”blockchain layer”.

Salau et al. [60] use reputation as a stake in the context of data cooperatives [29].

The idea of using reputation to incentivize the parties’ honest behavior—which originates

from earlier works such as [26]—is employed in our construction as well. However, we apply

it in a different context of evaluating review credibility. Also, the work [60] uses a different

76

blockchain system, the Snow White protocol.

Leonardos et al. [38,39] introduce weighted voter profiles in which a round’s block

is decided by the weighted majority of participants for that round. They leave the stake,

committee selection mechanism, and the reward system intact in a proof of stake (POS)

blockchain platform to concentrate on their contribution. Their focus is an extension of the

”Optimal Weighted Voting Scheme” defined by R. C. Ben-Yashar et al. [51], which offers

an alternative to typical majority rule (e.g., 2/3 super majority) and allows for a dynamic

consensus threshold that adapts to the players selected in a round. A participant’s weight is

determined as a percentage [0.0, 1.0], calculating the number of times they voted consistent

with their peers compared to the number of times they were selected to participate. i.e. The

more frequently they agree with the majority of their peers, the higher their weight would

be.

In [38, 39], the weight is defined as the probability the player will vote correctly

and is adjusted at the end of each round. A wrong decision/vote may be malicious or

accidental, such as being temporarily offline, or high latency. In their setup, any node with a

weight less than 0.5 is suspended from being selected for the round. They show this scheme,

through example, improves consensus times by scaling the vote threshold dynamically and

mitigating scenarios where it is not possible to reach a 2/3 majority due to the number of

low-weight participants. Though solving one problem, this introduces new vulnerabilities

such as maintaining anonymity, and issues of recovering from suspension. Although this

paper introduces an approach of weighted votes to essentially and gracefully “blacklist”

participants, it only focuses on the consistency of consensus protocol votes compared to the

majority in that round. On the contrary, our research blacklists users for both technical (e.g.

bad signatures, double spending) and grievous behavioral infractions like spamming, ganging-

up, bias. Additionally, our blacklisting is not directly related to the voter’s reputation (or

weighted voter profile in this paper).

Pal et al. [54] introduces a decentralized solution to a centralized ride-sharing plat-

form that helps ensure a fairness in the evaluation of a ride(complaints and reputations of all

77

participants) as well as a mechanism to negotiate fare payments. The paper discusses their

blockchain-based system (BlockV) which addresses both smart-contracted paths/fare costs

and payments between the driver and rider, and a complaint action that affects both repu-

tation and monetarily. They use a built-in reputation system where driver gains reputation

through a successful completion of a ride. The driver loses reputation if a complaint is made

and found that they had deviated from the agreed contracted route. The rider is penalized

monetarily if they enter an unjustified complaint. Validating road side units (RSU) are used

as an external oracle to record locations of participants during the route, and is used for com-

parisons against the decentralized route fare database (RFD) which contains all the possible

routes and fares for computation and determination. Complaints regarding behavior, or any

other type outside the technical contracted route, is not addressed. Location and reputation

is used by the rider to select a driver to contract with, though this is still a manual choice

and completely decided by the rider. Alhough this paper shows a novel way to maintain

transparency in the ride details, including routes, fares, and complaints, it only focuses on

the technically malicious actions and consequences of the parties. On the contrary, we also

want to focus on the behavioral maliciousness and analysis of the reviews left for both the

driver and the rider.

Li et al. [41] propose a decentralized system to mitigate the effects of compromised

routers. Their paper suggests using a blockchain to manage, calculate, and store reputations

of routers, using the immutable data to evaluate these reputations based on their history of

behaviour (the trustworthiness of the router). Their goal is to remove the single-point failure

of currently centralized Reputation Management (RM) solutions to improve IoT systems’

QoS and without needing complete trust in any external third party. This blockchain system

(BC, and referenced as the Edge Server Layer) exists outside of the router network layer.

Neighbors of the data-forwarding router (DFR) submit reports of that DFR to the nodes

on the blockchain as transactions, and contain the information needed to determine whether

it’s acting cooperative or not. This is called the cooperative feedback and is used in the

calculation of a router’s reputation in the next BC round. The routers’ reputation values

78

are stored on the blockchain. If a reputation falls too low, the router is blacklisted, with the

BC nodes broadcasting to the routers to avoid this router. They showed that their approach

significantly reduces the impact of malicious (compromised) routers within an acceptable

number of transactions, when up to 50% are malicious. Additionally, they show that the

average reputation value increases quickly as the corrupted routers are blacklisted over 1000

transactions.

5.2.1. Overview of Our Contribution

We propose a Proof of Review system which integrates the reputation system into

Algorand’s PoS engine, and we add the two useful components which enable blacklisting

and enforcement of minimum-reputation requirements.1 Specifically, we update and modify

the Algorand core to implement our new protocol. For security analysis, we argue that our

modification to the Algorand core preserve the properties of the original PoS system up to

adjustment of some parameters, so that the resulting blockchain system remains secure under

an assumption that up to 1/3 of total reputation (instead of stake in the original Algorand) is

controlled by the malicious parties. We also release our code and show the simulation results

which confirm that liveliness is assured and consensus times are not significantly affected

by requiring a minimum stake to participate. We also confirm blacklisting does not affect

liveliness or completeness (that a transaction is guaranteed to be added to the blockchain

eventually) when < 75% of nodes are blacklisted. In these tests, for our review validation

and reputation adjustments, we use the same NLP component as in [74]. However, we note

that in practice, any other application-specific components can be used.

In this paper, we depart from the Algorand construction because we are changing the

engine to construct a system that is more suitable for our purposes, which is review systems.

Instead of using Algorand in the off-the-shelf model—as it is done in [74]—we mod-

ify the engine by generalizing the validators (we use NLP, but other evaluation systems

can be used for other purposes), adding Proof of Review, blacklisting, and re-assembly of

1We note that the minimum stake handling in Algorand does not quite satisfy our goals. See Section 5.3.5
for discussion.

79

transactions in a block before being it is added to the blockchain. Since, we assume that

the participants belong to a community of users contributing towards a certain goal, the

assumption that no more than 1/3 of the total reputation is controlled by the dishonest

parties seems to be reasonable.

In our system, a correct review serves as a participant’s asset (we will call it a ”con-

tribution”). Bitcoin’s contribution is hash power. PoS contribution is a token. In PoRev,

contribution is doing the ”right thing” that earns reputation. In Proof of Review, as a spe-

cial case, the ”right thing” is providing a congruent review, meaning that the review has an

adequate evaluation as compared to the ground truth value.

5.3. Our Proposal

First, we discuss our proposed architecture, which generally follows the construction

of Algorand, focusing on their differences. Then, we describe in detail the new components,

which allow the proposed system to function effectively in the context of review systems.

5.3.1. Overview of the Proposed Architecture

In our proposed system, we modified the consensus protocol model to implement Proof

of Review, with components and mechanisms such as working with reputation (instead of

tokens) and a evaluation mechanism (we chose to use an NLP system like [74] does, though

other types of evaluations can be done for other types of reviews).

The reviewer’s reputation is adjusted up or down depending on that evaluation at

the end of the round, and the ability to participate further in the system (beyond writing

reviews) is dependent on that reputation. In this context, participation in the blockchain

system is the ability to create or validate blocks to be added to the blockchain. These

blocks contain the reviews, the analysis of the reviews (added at the block proposal stage),

as well as other associated data. The users with the most consistent reviews are more likely

to have earned higher reputations and therefore chosen more frequently to participate. In

contrast, if the parties produce too many incongruent reviews, the reviewer’s reputation will

significantly decrease, and they may be restricted from participating in the consensus process

80

due not meeting a minimum reputation stake. This will be discussed in more detail in the

next section.

First, a user joins the network by writing and submitting a two-part review, a text

comment and numerical rating. An account is created with generated public and private

key pairs, and an initial reputation (value of 1) is given and associated to their public key.

When a review is submitted, the system creates a review transaction and it is broadcast to

all the nodes’ transaction pools awaiting further action.

Next, a potential block leader gathers these transactions, and submits each review to

an evaluation system for analysis (Fig. 5.1, Step 1). In our work, that review is evaluated to

determine if it is a “congruent” one, that is that the review text is consistent with the review

rating. Evaluation also looks for malicious actions such as spamming, trolling, or acting in a

biased manner (the properties that make up a congruent review are discussed later). Once

the evaluation is complete, those results and reputation adjustment info are added to the

transaction, and it is added to the leader’s potential block. At the end of Step 1, all the

potential blocks are broadcast, and in the next step, a block leader is selected, vote on, by

a new committee in the same manner Algorand does.

In the next step, the block is verified. Meaning, each review transaction is opened

and the review is re-evaluated using the same evaluation mechanisms the leader used. This is

performed to ensure agreement with the leader. If there are inconsistencies in the evaluation

of any reviews between the verifiers and the leader, the verifier will consider the leader as

malicious and vote to blacklist the leader (using a flag in their next message). In addition

to that flag, they will vote for an empty block, since that leader’s block of transactions is

considered ”bad” now.

At step 4, If enough messages are heard from the previous step is to blacklist, then

that message (the flag and the vote for an empty block) will be propagated onward to the

final step. The other mechanism employed during this step are handled the same way as

Algorand. In the final step, if the block is not empty, then each review transaction is applied

by adjusting the reputation of the reviewer. Any blacklisting flags will also be applied.

81

Figure 5.1. Steps of Proof of Review.

At the end of the round, the block is added to the blockchain, with the new state

which reflect the new reputation values.

The data forged in the blocks can be used by various dApps for further handling

at a higher level, if desired. Examples of how dApps may use this data include showing

the review along with its evaluation, automatically hiding low-reputation reviewers from the

public until manually approved, calculating an overall item score from reputation-weighted

reviews, and many others. Proof of Review is a dynamic, self-regulating, general-purpose

tool for various types of reviewer systems. Similarly to other consensus models, it is used

to help prevent malicious parties from dominating the network in addition to providing

supplementary information for dApps to use if needed.

82

5.3.2. Details of the Proposed Architecture

We select Algorand as a basis of our design, because it is open-source and it was easy

to adapt its Proof-of-Stake mechanisms such as the committee selection, stake calculation,

and other mechanisms for our purposes. The modifications which we made to the Algorand

system are described below.

Maintaining Reputation. Reputation is used in calculating the stake, instead of tokens

(money). Reputation, denoted as R, is mapped to stake similar to how it is done in [60,74].

Reputation2 is associated with each public key pk, which is generated and owned by each user.

The initial reputation value given a new account is 1 (an integer). The stake is calculated

based on the reputation of a user in the system proportional to the total reputation in the

system at the beginning of a specified round r. Unlike Algorand, reputation (and hence

the stake) cannot be increased through purchase or trade. Reputation must be earned

(mechanism explained later). This stake is used as one of the inputs for VRF Sortition for

committee selection and also in calculating weighted votes during consensus.

Let us define the weighted proportional stake as follows:

ωr
i = Rr

i/R
r
PKr ,

where Rr
i is reputation of a user i, PKr represents the public keys of all active users at round

r, and hence Rr
PKr is the total sum of reputation of all active users at round r. Simply, a

user’s weight is calculated from round r reputation for that user i divided by the total

reputation in the system of all active users. Offline and blacklisted users’ reputation is not

considered.

Public Ledger. In our system, it is extended as follows. Making payments is now an

ancillary feature instead of a primary one. This evolution fundamentally changes how we

present this attempt at an idealized public ledger and its Initial State. Users may join

the system whenever they wish by generating their own public and private key pairs by

submitting a review. Upon joining, an account is given an initial reputation value of 1.

2In principle, tokens can also be associated with a public key but is not necessary for our system to function.

83

Let pk1, . . . , pkj be the set of initial public keys, R1, . . . ,Rj be the set of initial respective

reputations, md1, . . . ,mdj be the set of initial respective private metadata. In other worlds,

at the start of the network, the sets of public keys, associated initial reputation value,

and associated metadata are publicly known. With this, the modified initial state can be

simplified to

S0 = (pk1,R1,md1), . . . , (pkj,Rj,mdj)

We remark that the Algorand tokens are still present as a part of transaction, but

they are not used by our system, and hence we omit mentioning them.

Review Transaction (ReviewTX). It is derived from PaymentTX as defined in [15], but

in our system, it does not require payment. This is similar to the review transaction in [74],

but we codify the fields into newly added public and private metadata (discussed later). A

pk (reviewer), for a review transaction REV where I represents non-sensitive information

(e.g. review fields) and the I is additional information that is considered sensitive (e.g.

identifiers, private metadata defined later in this section, etc) and hashed to protect it.

The review fields may be empty and not used in every transaction, except for two fields

(ReviewNote and ReviewRate) which are mandatory to submission.

REV = SIGpk(pk, I,H(I))

Potential Leaders (PL) actions now evaluate the review within a Review Transaction

before adding it to their block through the help of an evaluation system. In our instance, we

employ NLP as our evaluation component like [74] does. With this, a review is evaluated

for congruency between the review text and the review rating (checking for fake reviews).

With other evaluation components, a review may be analyzed for correctness or consistency,

like in a sensor-array network, the data could be checked for validity against other sensors

or in another manner.

A Verifier Committee (SV) later evaluates the same reviews in the Leader’s block, then

compare their results to the Leader’s results. This is in addition to the common technical

validations (e.g. digital signatures, etc.). If the block is valid, and the Leader’s evaluations

84

are consistent with a Verifier’s, the Verifier will vote in favor of adding the block to the

blockchain; otherwise, not in favor. If the majority of the committee votes in favor, then

then the block will be added at the end of the round.

Minimum Reputation is required to be selected for a committee (note that reputation is

mapped to stake). Every round and every step maintain the following: Let ωr
i represent the

proportional stake of user i for Round r. Every honest verifier

i ∈ HSV r,s ∧ i ∈ {PKr : ωr
i ≥ ωr

min}

where ωr
min is chosen in a way to prevent malicious new users access to participate, while

still ensuring that SV r,s ̸= ∅.

A Reputation Adjustment algorithm uses the evaluated congruency (mentioned above)

to calculate whether the reviewer’s reputation should be adjusted positively or negatively.

Finer details of the mechanism are explained later. Additionally, at the end of the round

before a block is added, another mechanism adjusts the reputation of each reviewer. The

reputation state of all users is stored in the ledger. These adjustments consequently could

affect a user’s stake. We employ the additive increase/multiplicative decrease functionality

in our algorithm similar to how [74] does.

An analysis for behavioral maliciousness is added to the existing technical checks to

mitigate corrupt dishonest nodes further. This is defined in a later section ”Technical and

Behavioral Honesty Component”.

New metadata (md) is added to an account and associated with each public key pk. The

md is divided into two types. The private type fields include originating institution, organi-

zation, country of origin, group membership, etc. and is used in detecting certain malicious

behaviors (e.g. bias). This data is added to a ReviewTX and becomes associated with the

review and reviewer. The public fields include the account’s number of reviews, timestamp

of the last and 100th prior review, blacklisted information (described below), etc. and used

in detecting other malicious behaviors (e.g. spamming, bot activity).

85

Blacklisting mechanism is employed for most malicious behaviors (defined in a later sub-

section) instead of simply ignoring nodes. This is voted on by a committee (a new “flag” is

propagated with a message to the next committee indicating which account). The blacklist-

ing information is part of the public md and includes the following fields: BL (Boolean flag),

the number of rounds BL lasts, Timestamp of most recent BL, and the number of times

account has been BL. New methods are added to the technical checks on committee mem-

bership to check if an account is blacklisted. An SV will ignore messages from determined

blacklisted accounts.

5.3.3. Proof of Review Consensus

Steps of Proof of Review: (1) Evaluation of reviews; (2) Selection of the round’s

leader and their associated block containing reviews; (3) Reevaluation of reviews; (4) Block of

reviews agreement (block decision); (5) Block addition to the ledger, reputation adjustment,

blacklisting (see Fig. 5.1).

A round starts regardless of any transactions in any transaction pool and ends in a

new block (even an empty one) being added to the ledger. Transactions are created and

propagated to the network using a dApp (web-based, console-based, mobile-based, desktop-

based). A reviewer on the network (or newly joins the network, if not) uses this dApp to

submit a review containing both text and a numerical rating. The transaction is created,

signed, and disseminated to the network.

Step 1: Block Proposal. Potential Leaders gather review transactions (vs payment), ver-

ify their technical details, use an evaluation system to evaluate the review within the

transaction TX, add the evaluated score and reputation adjustment to the TX, then

add them to their payset of their proposed block. If an evaluation shows malicious

behavior (like spamming), a blacklisting flag within the transaction will be set true

for that reviewer. Blacklisting reviewers is applied at the end of the round.

Step 2: Block Leader Selection. Methods and communication to and from Step 2 Veri-

fiers remain the same as Algorand.

86

Step 3: Block Verification. The block is certified. A Verifier Committee waits for a cer-

tain number of messages for v (a vote for the leader). Once receiving enough votes,

the Verifiers check the technical details of the block, evaluates the review transac-

tions in the Leader’s block, then compares their results to the Leader’s results. If

the block is technically valid, with the Verifier’s and Leader’s evaluations also being

consistent (including any flag for blacklisting reviewers), they broadcast a vote for

that Leader and the proposed block. If the block is not valid, it’s same as Algorand

(with one exception).

If any review transaction evaluation is inconsistent with the Leader’s evaluation,

the Verifiers vote to blacklist the leader and submit their vote for an empty block.

Step 4: Binary Byzantine Agreement. Methods and communication to and from Step

4 Verifiers remain the same as Algorand.

Step 5: Block Decision. If a block decision was in favor of the Leader’s block, application

of review transactions’ reputation adjustments are performed. Any reviews flagged

for blacklisting are applied to the associated reviewer. Otherwise, the block is an

empty block, and if enough votes are heard to blacklist the Leader, blacklisting is

applied. Finally, the block and reputation state are added to the blockchain.

5.3.4. Integrating the Blacklisting Component

We extend the definitions of an honest and malicious user to include behavioral honesty

in addition to technical honesty. Most players will be technically honest since a lot of research

has been done to catch or prevent this from occurring in a system. We deem a player to

be acting behaviorally dishonest when there exists a pattern of bias, bullying, ganging-up,

stuffing the ballot, and more (this list is not exhaustive). The technical honesty definition

and the prevention of maliciousness are addressed by Algorand and remain valid when it is

extended by our reputation model. Furthermore, in extending the definition of Honest and

Malicious to include both technical and behavioral models, this does not weaken the security

of the Algorand’s original technical model. The same requirements and conditions still hold

for correctness, completeness, and soundness. The addition of a reputation model does not

87

impact the sets of honest or malicious verifiers beyond further constraints such as not being

blacklisted. Instead of merely being ignored, both technical and behavioral maliciousness

(e.g. bias, ganging-up) is handled punitively by blacklisting the participation of the user

responsible for a certain number of rounds. This is in addition to reviewers’ reputation

adjustments which encourage reviewers’ consistent reviews and discourages incongruous ones

through a negative reputation adjustment.

A user is considered to act behaviorally honest when they submit a review where:

• The review text is consistent with the review rating, and

• The review text is unbiased and honest, and

• This review and the user’s immediately previous review is consistent with an ex-

pected human time interval, and

• The user is acting independently and for themselves in submitting this review.

A user is considered to act behaviorally malicious when they:

• Submit a review, where the review text is incongruent with the review rating (e.g.

1 star, “Great book!”), or

• Act in a biased way, like always giving positive (or negative) reviews for specific

people, types of people, items, ideas, etc. regardless of the quality of what they are

reviewing, or

• Submit a review inconsistently irrelevant with what they are reviewing, acting like

a troll or bully, or

• Submit multiple reviews in succession within a time interval either incompatible

with a human ability (e.g. using a bot), or in such a way that reviews are likely of

discordant and inadequate value (e.g spamming), or

• Submit a review incongruent with the majority of other reviews. Being an outlier

cannot absolutely establish that a user is acting maliciously since the user could be

acting honestly and independently. Other factors, like the frequency of this behavior

over a certain time interval, may indicate maliciousness.

We now address how the different types of behavioral maliciousness is mitigated

88

and handled. While incongruent or dishonest reviews lead to a reduction in reputation,

technical and behavioral maliciousness is handled by blacklisting a node. Reasons to blacklist

include bias, bullying, ganging-up, stuffing the ballot, and more (this list is not exhaustive).

Blacklisting prevents a node from self-selecting for any committee and can be verified as

being blacklisted by other nodes. Nodes are blacklisted by majority vote for a certain number

of rounds. The blacklisting information is part of the public metadata associated with an

account (defined in an earlier section). New methods were added to both blacklist an account

and to verify blacklisting status.

5.3.5. Integrating the Minimum Reputation Component

Our minimum reputation component aims at cutting under-performing users from

gaining influence in the system. In our implementation, each new user is assigned a starting

reputation value of 1, and then this value is being increased if the user makes their con-

tributions to the system in the form of congruent reviews. Such the users will eventually

gain enough reputation to have a chance to be selected as block leaders. At the same time,

the users who are idling or who lose reputation, e.g., due to incongruent reviews or due to

incorrect behavior described in the previous section, will eventually lose this opportunity.

Note that in Algorand, the minimum stake handling does not directly addresses the

problem. It requires an account (a node) to own greater than zero tokens to potentially

participate in the network; otherwise, the account is closed. It cannot be directly translated

into our reputation scenario our system, because our community-based scenario allows for

zero-reputation case. Even though, a node may have reputation below the minimum, its

account is not closed and it still has a potential of playing in future rounds.

In our implementation, we use a simple ad-hoc approach by taking the minimum

reputation value to be the median of reputation values of all users in each round. This

way, we allow a substantial fraction of nodes to participate assuming that the reputation

distribution is reasonably even. That is, the distribution of potential leaders will be skewed if

there are a few nodes with very high reputation. In this case, one may apply the reputation-

fair lottery of Kleinrock et al. [35] to resolve the issue.

89

5.4. Security Analysis

Algorand’s security proof can be adapted to our proposed architecture. Public and

private keys are generated the same way as Algorand, and verifiers use the same mechanism

to sign messages. Unlike Algorand, we have limited participation to users with a minimum

stake/reputation who have not been blacklisted. The minimum stake is factored into the

committee selection and checking if a user is blacklisted applies to both self-selection and

credential verification when receiving messages from previous steps’ nodes. As we will estab-

lish in the next section, adding the blacklisting and minimum-reputation components does

not significantly affect the timing of the underlying blockchain system. In this section, we

argue that our modifications effectively preserve the security properties claimed in [16].

For the adversary model, similarly to Algorand, the adversary can corrupt any node,

control the corrupted nodes’ actions, and can create new nodes that join the network at

any time. We assume that the probabilistic polynomial-time bounded adversary is able

to control strictly less than 1/3 of the total reputation in the network. Specifically, in

any round, the adversary can only control the set of parties such that the sum of their

reputation values Ri is less than RTOTAL/3. Though an adversary can make the nodes of

the system wait to receive messages the maximum amount of time allowed, they are still

bound by those time limits indirectly. Honest nodes will simply stop waiting after the

system determined time (as discussed in the Steps earlier, and below in definitions of λ and

Λ). Additionally, the adversary can submit reviews as frequently as they can, and they can

coordinate in submitting multiple reviews simultaneously at any time. It should be noted

that the adversary is not assumed to be aware of the real-world identities of any participant

other than themselves.

Since we are altering and extending Algorand’s engine for our protocol, we examine

Algorand’s Theorem 1 and associated security properties from [16]. We borrow the following

notation from their work:

• λ and Λ are the time bounds for sending one message and upper bound time to

propagate a non-empty block (i.e., the maximum time that the block reaches the

90

majority of nodes), respectively.

• T r: the time when the first honest user is sure about Br−1, the previous round’s

agreed upon block.

• Ir: the time interval [T r, T r + λ].

• αr,1
i is the time a user i starts step 1 of the round. βr,s

i is the time user i ends step

s of the round.

• h is the fraction of honest users in the system (2/3, 1].

• Ph is the probability of the leader ℓr is honest (0, 1).

• PAY r is the payset within the block for each round r. In our proposal, the leader

gathers review transactions and adds them to the block’s payset.

The following theorem is adapted from Theorem 1 of [16].

Theorem 5.1. The following properties hold with overwhelming probability for each round

r ≥ 0:

(1) All honest users agree on the same block Br, and all transactions in Br are valid.

(2) When the leader ℓr is honest, we have the following.

• The block Br is generated by ℓr and all honest users know Br in the time

interval Ir+1.

• If PAY r = ∅ then T r+1 ≤ T r + 6λ ; otherwise Br contains a maximal payset

received by ℓr by time αr,1
ℓr and T r+1 ≤ T r + 4λ+ Λ.

• Let Br′ be the last block before Br with a non-empty payset. If ℓr
′
was honest

or if T r − T r′+1 ≥ Λ, then PAY r ̸= ∅.

(3) When the leader ℓr is malicious, all honest users become sure about Br in the time

interval Ir+1, and T r+1 ≤ T r + (6L+ 8)λ+ Λ.

(4) Ph = h2(1 + h− h2) for Lr, and the leader ℓr is honest with probability at least Ph.

We would like to argue that the changes, which we introduced to Algorand, did not

substantially affect the protocol flow. Therefore, we are able to use a very similar security

91

proof to argue security of our proposal.

To summarize, the main changes, which we introduced to Algorand are review trans-

actions, an evaluation and reputation system, and in addition, we introduced the blacklisting

and minimum-reputation components.

Although properties 1 and 2 remain unchanged from Algorand, we did change the

time-bounded variables and increased the values for λ and Λ (in Algorand’s parameter system

file) to offset the extra time needed to do evaluations on the reviews. Without those changes,

while running our simulated tests, the system ”timed out” and continually added empty

blocks (PAY r = ∅) to the blockchain. Since only values of the time-bound parameters

changed and not what they represent theoretically, Properties 1 and 2 in our theorem hold

similarly to [16].

At this point, we can borrow the Completeness Lemma (Lemma 5.3 of [16]), which

is stated as follows.

Lemma 5.2 (Completeness Lemma). Assume Properties 1–3 of Theorem 5.1 hold for rounds

0, ..., r − 1. When the leader ℓr is honest, Properties 1 and 2 of Theorem 5.1 hold for round

r.

Next, we note that Properties 3 and 4 are affected by introduction of the black-

listing component. Specifically, in Step 3 (see Section 5.3.3), when the potential leader ℓr

is considered technically or behaviorally malicious, the set of verifiers vote to blacklist ℓr,

which removes the leader from further affecting the consensus protocol. (We discussed these

blacklist-worthy behaviors in detail in the previous section.) Let us now discuss changes to

the above mentioned properties below. We will argue that the Soundness Lemma of [16]

will still hold taking into account those changes.

Lemma 5.3 (Soundness Lemma). Assume that Properties 1–3 hold for rounds 0, ..., r − 1.

When the leader ℓr is malicious, Properties 1 and 3 hold for round r.

Proof. Let us analyse how blacklisting affects the probability of an honest leader being

selected.

92

In [16], the authors prove the Soundness Lemma (when ℓr is malicious) by analyzing

the SV messages during the graded consensus protocol GC and BBA* at Step 4+.

Differently from their construction, our protocol introduces blacklisting of ℓr when

they are malicious. In Step 3, SV r,3 will vote for an empty block and their message will

include a flag to blacklist the leader. In Step 4, if enough votes are sent and agreed on for

blacklisting ℓr, the protocol follows Property 2 maximum time definition when PAY r = ∅,

because the leader and their potential block are then ignored. The participants continue by

voting for an empty block (with an empty payset) in their messages.

If PAY r = ∅ then T r+1 ≤ T r + 6λ

We introduce our new Property 3 as stated in Theorem 5.1: when the leader ℓr is malicious,

all honest users become sure about Br in the time interval Ir+1, and

T r+1 ≤ T r + 7λ < T r + (6L+ 8)λ+ Λ.

By the proof of [Lemma 5.4] [16] proof, a malicious leader can force honest users to

wait the maximum amount of time 2λ at each step after Step 2, and an honest leader and

verifiers send messages more promptly within time at most λ.

In our system, a malicious leader ℓr only affects the maximum time for Step 3 due

to the way the blacklisting works (e.g., vote for empty block and payset PAY r = ∅). For

sake of argument and our proof, we assume the majority of verifiers to be honest if the

majority vote to blacklist the leader. Since honest verifiers send messages as prescribed in

the protocol (that is without delays), ℓr being malicious or honest is irrelevant in regards

to the maximum time for each remaining step after Step 3. Therefore, 2λ is the maximum

time that Step 3 can take (since the malicious leader might be forcing the maximum time).

Hence, λ is the maximum time for Steps 4 and 5: recall that blacklisting causes a change in

vote to an empty block and payset, so the leader is ignored and so they are unable to affect

the maximum time.

93

According to the above discussion, we set the maximum time for a user to end Step

3 to

βr,3 ≜ βr,2 + 2λ.

When the original PAY r ̸= ∅ for the malicious ℓr, then following the calculation

in [16], we have:

βr,2 ≜ T r + 3λ.

When we trace the running time from the beginning of the round until the end of

step 5 of the round, from definitions above, we now have

βr,3 ≜ (T r + 3λ) + 2λ.

βr,5 ≜ ((T r + 3λ) + 2λ) + λ+ λ = T r + 7λ.

With all honest nodes seeing this empty block Bϵ (voted on from Step 3 onward) by

βr,5, within the Ir+1 time interval, with T r+1 ≤ T r + 7λ < T r + (6L+8)λ+ Λ.

In summary, Properties 1 and 3 hold for round r when the leader ℓr is malicious, so

the soundness lemma holds as well.

□

It remains to argue that the block leader is honest with substantially high probability.

We can directly apply the Lemma 5.4 from [16].

Lemma 5.4 ([16]). Assuming that Properties 1-3 of Theorem 5.1 hold for rounds 0, ..., r−1,

we have Ph = h2(1 + h− h2) for Lr, and the leader ℓr is honest with probability at least Ph.

The above lemma directly applies to our setting. We would only like to mention that

blacklisting malicious users in our system only increases the fraction of honest users h.

Combining the completeness and soundness lemmas as well as Lemma 5.4, Theorem

5.1 follows by induction (similarly to [16]).

94

Lemma 5.5 (Block Correctness from Honest Leader Lemma). Restricting the protocol par-

ticipation to users having a minimum stake and not blacklisted increases the probability of

an honest leader being selected for each round r.

Proof. Note from our integration described previously, we map reputation to stake.

Since Ph ∈ [0, 1]: a constant greater than or equal to 2/3 representing the fraction

of reputation ”owned”/associated by honest participants, then Pm ∈ [0, 1]: a constant less

than 1/3 representing the fraction of reputation ”owned” by malicious participants. The

probabilities that the leader selected is honest or malicious are at least Ph and at most Pm,

respectively.

To prove the minimum stake requirement, we consider the following instance. Recall

that we use the median of reputation values of all users in each round (M) to determine the

minimum stake (ωr
min).

M ≥ RLEAST , meaning the more than half the nodes have a reputation greater than

the node with the least reputation. With that, ωr
min = M/RTOTAL, where RTOTAL is the

sum of all reputation of active users in the system for round r

For simplicity in our proof, let’s consider an example having 100 nodes and RTOTAL =

1000, with M = 10 and the first 49 nodes having a reputation of 5. We also restrict the

system to no transactions created and consequently no reputation is adjusted (reputation

remains constant). Additionally, we give the adversary more power by allowing participation

immediately (versus needing to wait k number of rounds). Then, ωr
min = 10/1000 ≡ 1%.

The first half of the nodes will not be able to participate in the consensus for round r since

their calculated stake is ωr
i = 5/1000 ≡ 0.5%.

An adversary (A) can create new accounts in an attempt to increase their odds of

being selected. Before a new round begins, 50 new nodes appear in the network, all controlled

by A. Since every player started at a reputation of one, and the M is 10, these new nodes

cannot participate in being a leader ℓr (or in any of the consensus protocol) until their

95

reputation is increased to at least M .

At the beginning of the new round, we have 150 nodes (RTOTAL = 1050, 50 new

nodes each with a reputation of 1). In our instance, we can deduce that the M is now 5,

since the original first nodes get ”bumped” up in sorted location in the reputation set. The

new nodes of A do not meet the minimum stake and are prevented from participating, since

their reputation is 1.

There may be other instances whereA floods the network with enough new nodes/accounts

that it allows the new ones to be selected (e.g. 500 new accounts). A is still limited by a low

weighted influence in the system. We have shown at least one instance where requiring a

minimum stake prevents participation, which proves it increases the probability of an honest

leader.

We have previously shown the positive effects of blacklisting users on the probability

of an honest leader above 5.4. With this, the Block Correctness from Honest Leader Lemma

holds. □

5.4.1. Further Examination of Blacklisting

We introduced blacklisting malicious users in our system, which removes them from

the pool of potential participants. We use deduction to show the probability of selecting an

honest leader is the same or greater Ph with respect to the blacklisting changes made to the

engine.

It can be deduced that by removing these players, it increases the fractional value

of honest users to adversarial ones in the system. To show this more formally, let b be

the fraction of users blacklisted, h and m be the fraction of honest and malicious users,

respectively.

h : m is the fractional ratio of honest to malicious users.

h+m = 100% ∴ hX +mX = 100%

96

So, without removing any blacklisted b users,

(h+m)X = 100 ⇒ X = 100÷ (h+m) ∴ X = 1

When b is removed from m,

hX + (m− b)X = 100 ⇒ (h+m− b)X = 100

XΩ = 100÷ (h+m− b)

Since (h+m− b) will always be < 100 for any b > 0, then

XΩ = 100÷ (h+m− b) > 1 ∴ XΩ > X

If XΩ > X, then hΩ > h, which proves formally the fraction of honest users h increases when

a fraction of malicious users b are blacklisted and removed.

In removing malicious players from the pool, we increase the h fraction which de-

creases (1−h). In doing this, we deduce that Ph will increase, and in turn the probability of

an honest leader being selected also increases. Though the value of h changes, blacklisting

does not alter the probability calculations provided by [16] based on location of the first

honest user in a random permutation of participants in a round.

As an example, consider a pool of 1500 potential participants, 80% honest and 20%

malicious. During the course of one round, 10% (or 150) malicious players are blacklisted

and removed from the pool. We apply the numbers to our calculation as

XΩ = 100÷ (80 + 20− 10) = 100÷ 90 ∴ XΩ = 1.11

hΩ = 80 · 1.11 ≈ 88.89%. This leaves the system with 89% honest participants afterwards.

It is easy to deduce that the probability of an honest leader increases in connection

with the increase in b and consequently h. Therefore, if a number of parties are blacklisted,

then Ph is better than when they are not.

97

5.4.2. Analysis of Practical Attacks

We will discuss several types of attacks that are common for Proof of Stake and

Reputation systems, and how our Proof of Review model addresses those attacks.

Spamming: In this type of attacks, the reviewer floods the system with reviews that are

positive or negative to skew results. These are orchestrated actions which may be set in

motion by parties who are wanting to influence a reputation quickly and deliberately, or just

wanting to be troll or nuisance. In our model, spamming is mitigated due to an evaluation

checks a review’s current timestamp against the timestamps of the immediate prior and the

100th prior review (from stored public metadata discussed in Section 5.3.2). The frequency

of reviews may indicate spam or even bot activity.

Sybil Attacks: Recall that any adversary entering the system newly is given the starting

reputation value. Recall that value is only increased when reviewing is properly done and it

remains unchanged when simply being present (idling) in the system. Our model implements

a minimum reputation requirement, so that a newly joined sybil node (controlled by the

adversary) would not be allowed to participate without putting in some honest work. Hence

this attack is mitigated.

On-Off Attack: is where malicious actions may appear to be a random anomaly to avoid

detection. Meaning, an adversary could try pretending to be an honest reviewer, increasing

their own reputation by submitting many honest, uniform, and unbiased reviews to reach

a high reputation. Then, after reaching that high reputation, act maliciously (spamming,

corrupt block leader actions, dishonest reviews, etc.). This is mitigated already by our model

due to account parameters (metadata), multiplicative-decrease of reputation for incongruent

reviews, and blacklisting ability.

Ballot Stuffing / Badmouthing: In these attacks, the reviewer inundates the system

with reviews in an attempt to influence the perceived value of what is being reviewed. The

purpose of the adversary in a ballot-stuffing attack is to lift an entity’s reputation to fool

others into a false sense of trustworthiness. Bad-mouthing is the opposite, where parties are

98

attempting to undermine the trustworthiness by quickly flooding the system with negative

reviews. Our model mitigates this through an evaluation of the review plus using the same

mechanisms discussed to prevent spamming.

Bias (i.e. always giving great or poor reviews for a brand, person, or institution origin) is

handled through blacklisting. The evaluation of a review is checked against the history of the

reviewer using the metadata of what is being reviewed (public metadata discussed in Section

5.3.2). Since submitting a seemingly biased review cannot absolutely establish that a user

is acting maliciously, other factors, like the frequency of this behavior over a certain time

interval, may indicate maliciousness. This was not explicitly implemented, but theoretically

we add here for discussion.

5.5. Simulation Results

5.5.1. Testbed

We implemented the proposed Proof of Review consensus by modifying the Algorand

blockchain system as explained above. This allowed us to validate our system as well as to

demonstrate the performance of blacklisting and minimum-reputation components.

Specifically, the engine of Algorand and its associated SDK code was modified as

described in Section 5.3, and the resulting is made available in [2]. A new metadata struct

was associated with each node (see section 5.3.2 for more detail), including blacklisting data

such as whether a node is blacklisted, for how long, and how many times it was blacklisted

in the past (described further in section 5.3.2 ”Blacklisting”). In particular, we added extra

queries and conditional statements in the committee selection process that checked if a node

is blacklisted and whether the node’s reputation meets a required minimum. Since Algorand

already had functions to retrieve total tokens of active users in the system (and specific

user’s token quantity) for its calculation for a user’s weighted stake, we copied and modified

them to retrieve reputation values instead. We used our functions in place of theirs, and

employed our calculated reputation-based weighted proportional stake as one of the inputs

for committee selection and determining whether the user meets minimum stake.

99

We needed a way to test our new functionality in an easy and controllable way. We

decided on the distributed app (dApp) used from [74], since it had a re-configurable graphical

interface and its simplicity to reprogram for testing parts of our protocol. Additionally, this

dApp already had a mechanism to output metrics, which could be adapted for the metrics

we needed. This dApp [1] takes input from a user, wraps it into a transaction, and with the

help of the SDK it broadcasts it to the network. We updated it to include new GUI buttons

and functional actions for retrieving that node’s status information. We added buttons tied

to actions for testing blacklisting and testing minimum stake. We also needed a way to see

the current node’s info (metadata, and blacklist status). These would display whether the

node is blacklisted, how long the node is blacklisted, reputation, and the node’s metadata.

Additionally, the tests for blacklisting and minimum stake were implemented in the code of

the dApp, tied to those buttons. For both tests, it utilized the blockchain core’s messaging

system to retrieve a list of all online participants to use for these purposes. Upon clicking the

test buttons, the testing would begin and was controlled entirely in the coded structure of the

dApp. Meaning, the code would select 25% of the participants from the retrieved list, then

send messages as transactions to the core to blacklist or increase their reputation, depending

on the test. Then, it would sleep (enough time for the work to be done, with the block added

to the chain). After the sleeping pause, it would send out messages for the next 25%, and

so on until 100% of participants handled. We also needed to add new programming to the

blockchain’s engine to handle these new requests, when certain keywords were seen in the

transaction note (e.g. blacklist——¡some node’s address¿). Further specifics are discussed

in the next section.

5.5.2. Testing Process

The goal of our simulations is to show that the modifications which we introduce

to the Algorand system do not affect the functionality of the resulting PoRev architecture.

In particular, we show that our proposed blockchain system has liveliness and complete-

ness properties. Specifically, blacklisting does not affect liveliness or completeness (that a

transaction is guaranteed to be added to the blockchain eventually) when < 75% of nodes

100

are blacklisted, and requiring a minimum stake to participate always shows liveliness and

completeness regardless of the number of parties not meeting the stake requirement when

based upon the rules defined in a previous section.

Our tests were made on a single Dell 8-core system running Ubuntu 18.04 Linux with

16GB of memory. For both tests, our most common system setup started 12 simulated nodes

(clients), each in their own console window tab.

Let us now discuss the process we followed for testing. For blacklisting, we want to

show that liveliness and completeness are preserved when an increasing number of partici-

pants are removed through BL. The test sent three messages (as transactions) in quick succes-

sion for each blacklist bracket (0% blacklisted, 25%, 50%, 75%, 100%). When blacklisting was

performed (25% and larger brackets), the message contained the note “blacklist|| < addr >”,

which the core interprets as “blacklist this address” and proceeds to call the functionality to

do that.

At every bracket, the dApp would submit three more addresses to be blacklisted.

When the core added those transactions to the blockchain, it would signal back to the

dApp the completion and the dApp would write out the metrics to a file (which node, time

submitted to network, time transaction added to a block). This test was run three separate

times, and the aggregated outcome is discussed in the next section (see Fig 5.2).

For minimum reputation (stake) testing, the message transactions were done in a

similar manner with each bracket (0%, 25%, 50%, 75%, and 100%) representing the percent

of nodes with higher reputation than their initial value of one. The message sent as a

transaction would be “minstake|| < addr >”, which the blockchain core would interpret

as “increase the reputation of this address by 500” in our tests and then it would run that

functionality.

When the core added those transactions to the blockchain, it would signal back to the

dApp the completion and the dApp would write out the metrics to a file (which node, time

submitted to network, time transaction added to a block). With those metrics and additional

data from the node’s log (current MinStake, number of eligible nodes to participate), the

101

results were aggregated and discussed in the next section (see Fig. 5.3).

5.5.3. Metrics and Simulation Results

Our first focus was to study how blacklisting affects the consensus times (the agree-

ment on which a block of transactions are added to the blockchain). We wanted to show

that liveliness and completeness in each round is preserved regardless of having nodes black-

listed. Informally, liveliness implies that the consensus round ends in a reasonable amount

of time, i.e., the protocol does not get caught waiting indefinitely, and proceeds to the next

round. Also informally, completeness implies that a transaction is eventually added to the

blockchain, regardless of the number of rounds it takes.

Next, we ran a study to test how a minimum stake (MinStake) requirement affects

the dynamic reputation and consequently the time it took the system to come to a consensus,

while assuring the set of possible participants is never zero. All twelve nodes started with

the same reputation value of 10001, and therefore the same stake value calculated from that

reputation. Although we assume that initially, the user joins the system with a reputation

of 1, for this test, we assumed that we are working with a ”bootstrapped” version of the

system where the parties already gained a substantial yet equal reputation. This is done in

order to save time on running the experiments by ensuring large jumps in reputation values.

In Fig. 5.2, we show that nine messages (as transactions) were submitted for each

blacklisting bracket (0% blacklisted, 25%, 50%, 75%, and 100%), tested as a triplet of mes-

sages. The first two brackets, 0% and 25%, had similar times of 23-36 seconds. When 50%

were blacklisted, the timing doubled to 75-84 seconds. At 75% blacklisted, only the first

test run produced completed transactions at 107-113 seconds. With the other tests, it never

completed and consequently showed a lack of completeness for transactions when 75% of the

nodes in the system are blacklisted. None of the 100% bracket completed, as expected. The

system continued adding empty blocks and progressing to the next round. The shape of this

plot (and of 5.3), specifically where the message triplets show a pattern of timing decline

(e.g. see message 10, 11, 12), is most likely due how time metrics were implemented. It

records the time when a message is submitted, and then when it is added to the block.

102

Figure 5.2. Blacklisting Nodes vs Time to Consensus.

Figure 5.3. Minimum Stake’s Effect on Consensus Time.
Note: Each bracket is the percent of nodes with a higher reputation than
initially.

103

Since the three messages are added to a block at the same time, but are submitted

successively one after the other, it can be deduced that the timing will be different (with the

first message trivially longer than the next).

This experiment has shown that blacklisting players for technical or behavioral mali-

ciousness does not affect that round’s “honest users agreeing on the same block” or the time

interval of when they know of that block (properties from [16]). Essentially, blacklisting

does not affect liveliness, correctness, or completeness (that a transaction is guaranteed to

be added to the blockchain eventually) when < 75% of nodes are blacklisted.

In Fig. 5.3, we again ran our system with 12 nodes each having equal initial reputation

values of 10001. Three messages (as transactions) were submitted to the blockchain system

for each reputation bracket (0% with higher reputation, 25%, 50%, 75%, and 100%). At each

bracket, three additional nodes had their reputation increased the same amount from their

initial reputation value. In the results of the Minimum Stake test, the first two brackets,

0% and 25%, showed similar times for completion, i.e., when a transaction is added to the

blockchain. At 50%, the second median of the set of reputation (R) values is greater than

the lowest value in R, so 50% of the nodes are excluded from participating in the consensus

protocol. In this case, the timing increased to 47-51 seconds. At 75%, the minimum stake

has increased and 75% of the nodes meet this stake value at equal or higher levels. The

timing jumped again upwards to 62-68 seconds, which could be caused by the amount of

time it took to form committees due to there being fewer possible participants available.

As expected, when 100% of the nodes have a reputation higher than their initial value,

then 100% can participate again (similar to the 0% bracket), since all nodes have the same

reputation and stake values again.

5.6. Conclusion

5.6.1. Concluding Remarks

With this new model, Proof of Review (PoRev) we have shown how technology can be

used to derive the trustworthiness of both the review and the reviewer participants. It does

this through an evaluation of reviews to determine whether it is congruent, trustworthy, and

104

honest. Additionally, we have shown how our model prevents maliciousness and provides

strong security guarantees for the data, participants, and reputation values. We employed

blacklisting and a minimum stake requirement. We showed how our Proof of Review model

addresses several types of attacks that are common for Proof of Stake and Reputation sys-

tems. We implemented the proposed Proof of Review consensus by modifying Algorand’s

core engine. We also modified an existing dApp to allow us to validate our system as well as

to demonstrate the performance of blacklisting and minimum-reputation / minimum-stake

components. Since we altered and extended Algorand’s engine for our protocol, we examined

Algorand’s Theorem 1 and associated security properties in respect to our changes. We show

in proofs that our modifications effectively continue preserve the security properties.

In testing, our simulation results showed that our proposed blockchain system has

liveliness and completeness properties. Specifically, blacklisting does not affect liveliness or

completeness (that a transaction is guaranteed to be added to the blockchain eventually)

when < 75% of nodes are blacklisted. We also show that requiring a minimum stake to

participate always shows liveliness and completeness regardless of the number of parties not

meeting the stake requirement when based upon the rules defined this paper.

5.6.2. Future Work

The following directions are recommended for the future work.

Combining reputation and tokens. This approach will aid in determining a user’s weighted

influence in a token-based system, with reputation calculated into that weight. This could

allow a user with a high reputation and a small amount of tokens to have a greater influence

and opportunity to participate in the protocol.

Block re-assembly. During the consensus steps, we may allow the block leader to modify

their block by removing review transactions, when the majority of verifiers identify any

transactions as “bad”. Such transactions can be defined as either technically incorrect or

the verifier’s evaluation is disparate from the leader’s evaluation (including the blacklisting

flag for the reveiwer). A one-time cycle is used to give the leader a single opportunity to

remove ”bad” TXs and reassemble a block of ”good” TXs. If the leader fails to remove

105

them, the verifiers will vote to blacklist the leader; otherwise, the new block is voted to be

the round’s block.

Application, Micro-accreditation. Exploring ways this model can be leveraged in micro-

accreditation (connecting students with employers) to aid in assigning rigor to courses and

associated knowledge units. Since computational costs of PoW should be avoided, a PoS

system or similar would be beneficial in speeding up transaction times. Proof of Review is

an excellent fit, especially when it mitigates some specific pain points in our earlier research.

We believe micro-accreditation can be programmed using our new platform.

Application. Other future work includes investigating uses in autonomous systems, like ad-

hoc caravanning vehicles and swarm drones. In the context of the discussion on minimum

reputation in Section 5.3.5, it is interesting to study the application reputation distributions

and the approaches to ensure a reputation-fair lottery.

106

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1. Conclusion

In this work, we investigated solutions for decentralizing trust management processes

using blockchain technologies. We have provided some answers to problems with innovative

direction and testing. We explored and shown how a blockchain lends itself well to solving

these issues in trust by decentralizing the respective architecture. The following is our overall

results and conclusions.

6.1.1. Micro-Accreditation Using Blockchain Applications

We first set our focus on accreditation for workforce development, specifically in

micro-accreditation. We examined ways to help match employers’ knowledge requirements

with students’ knowledge earned.

The metrics utilized in our analysis of hiring include those reserved for efficiency,

scalability, and operational success. The metrics utilized in our analysis of peer-review

include gas cost and transaction times, showing the effect of gas price (incentive for the

miners to do the work) on the latter. These metrics and their testing methodologies are

outlined in Chapter 3.

In order to measure an impact of our proposed solution, we simulated a representative

dataset gathered from Amazon’s LinkedIn hiring data, which utilize data sets from UC

Berkeley, UT Austin, and UNT, as well as rigor rankings from CSRankings.org. In order

to gauge efficiency, we measured the amount of gas consumed by each transaction run on

the network, taking gas is a measure of the efficiency of a function. To gauge scalability,

we measured the amount of gas consumed as the number of entities accessing the network

grows—in this case, we considered students. We tracked this using the Ganache emulator

and observed how different transactions respond to a high network load. Next, let us discuss

the results of our testing in detail.

107

Simulated and real hiring of Amazon based on data sets.

We showed that the current algorithm is generally capable of distinguishing hiring patterns,

and that the new graduates’ hiring rates from UT Austin and UC Berkeley are similar to that

of the given data set. However, it is observed that the data for UNT in the simulated run is

completely zeroed out. The error for this measurement can be attributed to the algorithms

extra weight on the rigor of an academic program. Because of this, one can say that the

current data set is not capable of properly representing the state of real-world hiring, and

because of this, is insufficient to properly deduce the success of the hiring algorithm.

Efficiency of running transactions on the network.

It was observed that the growth of transaction gas cost was generally stable as the number of

entities on the network increased. The only transaction whose gas cost grows is the Approve-

Credit transaction. This is due to the de-allocation of memory containing the student data

structure. Once again, this problem can be fixed through the inclusion of BigChainDB, as

most memory-management functions can be handled by BigChainDB. Because of this, we

can say that the system is reasonably scalable as well.

Gas cost to deploy School and PeerReview contracts.

Additionally, we found that the gas cost is steep for deploying the School contract for peer-

review. The School contract manages all the courses which all have assignments, as well

as managing and interacting with the PeerReview contracts when necessary. The School

contract has every function that can be transacted on by the user through RPC call from

the dApp. There are additional functions (not shown in the graph) used in each library that

are only called from another function.

Peer Review transaction times, comparing times when gas price (miner’s incen-

tive to do the work) is increased.

Furthermore, we analyzed the transaction times for the peer-review transactions. By default,

when you call a transaction, the gas price is 1. The gas price (GP) is the incentive for a

miner to work, and the higher the price is, the faster the transaction will happen. Changing

the GP from 1 to 50 significantly and positively affected the transaction times. The Gas

108

Price increase incentivizes the transaction. Manually adjusting the GP using Metamask is

laborious, so we changed the transaction call in the code to reflect a specific GP of 50. In

the future, testing should be done on the optimal price when needing a more immediate

response calling the transaction.

Gas Cost of each function in the Assignment Grading part.

We examined the gas cost for calling the Assignment Grading functions. The 0 (zero)

gas costs are Calls, meaning they do not alter any state (i.e., contract variables). The

handinAssignment function consumes the most gas and will need to be improved in the

future code-changes to significantly lower that cost.

Transaction times for the Assignment Grading.

Finally, we analyzed the transaction times for the Assignment Grading. Similar to the Peer

Review times, increasing the GP to 50, significantly lowered the times. In example, at

GP = 1, the “addAssignment” function times started at about 18 minutes to a much more

reasonable 1.5 minutes (approximately). More research is needed to find a good balance for

speed and gas price.

From these results presented, we can deduce that the system was:

• Efficient. This is seen in the second metric regarding the transaction gas cost, as all

transactions with exception of one transaction, fell beneath a safe threshold. The

exception transaction can be fixed in that through implementation of the proposed

system, it is possible for one to further optimize the system.

• Scalable. All transactions had constant complexity when varied with network load,

except for credit. The scalability of the entire system, with all parts together,

suggests possibly needing a different blockchain network requiring the consumption

of fewer resources with faster transaction times. Since the cost to incentivize faster

transaction times still leaves us with an undesirably slow process, new forms of

consensus also may be needed to aid these above goals. Switching to Proof-of-Stake

or Proof-of-Review (proposed in Chapter 5 and deploying sharding will be helpful

as well.

109

• Successful (partially). Outside the above scalability issues, success has been demon-

strated through our earlier investigation of hiring rates from UT Austin and UC

Berkeley, as the relative hiring ratios for the two institutions from the data given

was quite close together. However, the algorithm places quite a bit of weight on

rigor, which requires further investigation.

Future work includes full implementation of the system by further fine-tuning the

algorithm to properly account for rigor scores. This will allow us to further investigate the

relationship between rigor of an institution and hiring rates, and further optimize the dApp.

For this research, we initially chose the most popular platform in 2019, Ethereum,

with smart contracts. We learned we needed a faster and lower-cost platform to use for

the remaining research and decided on proof-of-stake Algorand which had numerous things

we needed as its base (including being open-source). We believe micro-accreditation can be

programmed using our new PoS-derived platform in the future.

6.1.2. Review Credibility via NLP Analysis on the Blockchain

The next problem we examined is that there is no blockchain mechanism or consensus

that exists to ensure that a peer-reviewed rigor score given is honest, unbiased, and trust-

worthy. We focus our attention on the lack of trust and review credibility in decentralized

systems such as online marketplace. We are focused on a particular aspect of trust in reviews

and reputation of the parties who provide them: review credibility. Specifically, we are focus-

ing on the following particular scenario, which is the first step towards the above-mentioned

mechanism: A party leaves a review (say, on a product or service), which consists of a text

and a rating. We used NLP to evaluate the “positivity” of the text, and then compared it

to the rating. A trustworthy review is expected to have a good match of the positivity to

the rating.

For this problem, our first focus was testing transaction times (or how long it takes

for a transaction to be added to a block). In other words, we were investigating whether

review transactions are slower than the regular payment transactions. Next, we ran a study

on an overhead which the NLP component introduces. These tests are important for showing

110

that the new review transaction does not affect the timing significantly, and that the system

continues to perform well even when review transaction are evaluated by NLP in real time.

Next, we tested an accuracy of the NLP evaluation. We expect the NLP technology to

perform similarly to what human would deliver.

We compared consensus times for both payment and review transactions. We used

a simulated non-live evaluation of reviews for the review transaction. The block consensus

times for review transactions range from 40 seconds to 1 minute 52 seconds, with a few

outliers above 2 minutes, when using tokens as a stake type in a Proof of Stake system.

The timings were similar for both types of transactions. This shows that using different

transaction types in a non-live evaluation setting does not affect the overall time for consensus

on a block to be added to the ledger.

We then tested block consensus times when using real-time NLP to evaluate reviews

using a small dataset adapted from Amazon’s data (see Chapter 4). This dataset was

handpicked from random product reviews, 2-3 sentences maximum, and placed into a JSON

file to be loaded at dApp runtime. Since we are using NLP’s resource-heavy sentimental

analysis evaluation on three simulated nodes, we limit each block to one review transaction.

The block consensus times for real-time NLP range from 49 seconds to 3 minutes and 4

seconds (with one outlier of 4 minutes 26 seconds). This shows that time to consensus can

fluctuate when using a real-time evaluation system, with more than 50% of the transactions

finishing within the range of cases when NLP is not used (less than 1 minute 52 seconds).

This may be caused by either the complexity of the text being evaluated or the resources

available during the round. We emphasize that the custom-selected review dataset consisted

of comments of about 2-3 sentences, and therefore the real-life timing may differ from the

one reported above, depending on a specific dataset.

We note that although the underlying system prefers the quickest times to ensure an

accurately credible reputation for each reviewer, the reviewer and potential buyers would

not likely care much about the speed that new reviews show up on the front-end.

Finally, we tested the accuracy of the NLP evaluation feature. Our goal is to use

111

the technology which evaluates reviews in the same way as humans do. This means that if

a person perceives a review as mostly positive, then the NLP system should also appraise

the same text as mostly positive. The same dataset of product reviews was used as in the

previous test. We gauge how positive the review comment is through sentimental analysis,

which provides a single number (0-5) evaluation for each sentence, where 0 denotes very

negative, and 5 denotes very positive. If this system is provided multiple sentences, it

returns an evaluation for each sentence. Our implementation computes an average of all

those evaluation scores and then the result is scaled to the interval (0-100). In some cases,

the rating matches the evaluation: e.g., see the review text 5, “Trash filled with more trash”.

In other cases, the rating given by the reviewer does not match the associated text: e.g., see

the review text 2, “Best book ever read”. In the latter case, the reviewer’s rating does not

match their comment; however, our system catches this, evaluates the comment accurately,

and determines the level of (in)congruence. From this, our system will decide whether the

reputation should be increased or decreased.

In conclusion, with this new model we have moved towards showing how technology

can be used to evaluate the trustworthiness of both the reviews and the corresponding

reviewers. We deploy NLP to determine whether the reviews are congruent and trustworthy.

We note that this information can also be useful at a higher level, such as in dApps

for various purposes. For instance, a dApp can rely on this immutable information, using

the evaluation scores of the reviews for making decisions. The sole incentive in our model

is to increase one’s reputation. No financial incentive is currently present, although it may

be introduced in the future if potential applications demand it. Our system provides an

accurate way to implement an automated analysis of reviews ensuring the trustworthiness

of the evaluation.

Our preliminary results show comparable block consensus timings for the cases of

using tokens or reputation as a stake in our Proof of Stake component. Additionally, we

show that a real-time NLP evaluation may introduce a substantial overhead to about 50%

of transactions. This may be caused by either the complexity of the text being evaluated or

112

the resources available during that round.

More significantly, by using a dataset adapted from Amazon product reviews, it is

demonstrated the NLP evaluation component performs similarly to a human evaluation

(ground truth). As mentioned in previous sections, our proposal derives the trustworthiness

and credibility of a participant via evaluation of their reviews, which is in turn reflected in

their reputation. Then, this reputation is used by the consensus algorithm.

6.1.3. Proof-of-Review Consensus

The above research focused on applying this solution to decentralized marketplaces

using “off the shelf” components and did not deliver the functionality we would like to

have. Our next problem examined was to generalize our research to other problem types to

provide the functionality we need. We needed to provide better trustworthiness of both the

data stored on a blockchain and the nodes participating in the consensus process with this

new functionality. One area we focused on is the length of the effect of a malicious player

in the network. Our solution was to implement a new consensus protocol to implement the

needed mechanisms to prevent the “bad guys” from participating in the consensus as quickly

as possible, when acting both technically and behaviorally malicious. We also investigated

ways to better prevent Sybil attacks in a reputation driven system. We implemented our new

Proof of Review (PoRev) consensus by heavily modifying the Algorand blockchain engine and

system. This allowed us to validate our system as well as to demonstrate the performance

of blacklisting and minimum-reputation components.

We needed a way to test our new functionality in an easy and controllable way.

We decided on the distributed app (dApp) used from the previous problem, since it had a

re-configurable graphical interface and its simplicity to reprogram for testing parts of our

protocol. Additionally, this dApp already had a mechanism to output metrics, which could

be adapted for the metrics we needed.

The goal of our simulations was to show that the modifications which we introduce

to the Algorand system do not affect the functionality of the resulting PoRev architecture.

In particular, we show that our proposed blockchain system has liveliness and complete-

113

ness properties. Specifically, blacklisting does not affect liveliness or completeness (that a

transaction is guaranteed to be added to the blockchain eventually) when < 75% of nodes

are blacklisted, and requiring a minimum stake to participate always shows liveliness and

completeness regardless of the number of parties not meeting the stake requirement when

based upon the rules defined in a previous section.

Our first focus was to study how blacklisting affects the consensus times (the agree-

ment on which a block of transactions are added to the blockchain). We wanted to show

that liveliness and completeness in each round is preserved regardless of having nodes black-

listed. Informally, liveliness implies that the consensus round ends in a reasonable amount

of time, i.e., the protocol does not get caught waiting indefinitely, and proceeds to the next

round. Also informally, completeness implies that a transaction is eventually added to the

blockchain, regardless of the number of rounds it takes.

Next, we ran a study to test how a minimum stake requirement affects the dynamic

reputation and consequently the time it took the system to come to a consensus, while

assuring the set of possible participants is never zero. All twelve nodes started with the

same reputation value of 10001, and therefore the same stake value calculated from that

reputation. Although we assume that initially, the user joins the system with a reputation

of 1, for this test, we assumed that we are working with a “bootstrapped” version of the

system where the parties already gained a substantial yet equal reputation. This is done in

order to save time on running the experiments by ensuring large jumps in reputation values.

In our results, we show that three messages (as transactions) were submitted for each

blacklisting bracket (0% blacklisted, 25%, 50%, 75%, and 100%). The first two brackets, 0%

and 25%, had similar times of 23-36 seconds. When 50% were blacklisted, the timing doubled

to 75-84 seconds. At 75% blacklisted, only the first test run produced completed transactions

at 107-113 seconds. With the other tests, it never completed and consequently showed a lack

of completeness for transactions when 75% of the nodes in the system are blacklisted. None

of the 100% bracket completed, as expected. The system continued adding empty blocks

and progressing to the next round.

114

This experiment has shown that blacklisting players for technical or behavioral mali-

ciousness does not affect that round’s “honest users agreeing on the same block” or the time

interval of when they know of that block (properties from [16]). Essentially, blacklisting

does not affect liveliness, correctness, or completeness (that a transaction is guaranteed to

be added to the blockchain eventually) when < 75% of nodes are blacklisted.

To test minimum stake, we again ran our system with 12 nodes each having equal

initial reputation values of 10001. Again, three messages (as transactions) were submitted

to the blockchain system for each reputation bracket (0% with higher reputation, 25%, 50%,

75%, and 100%). At each bracket, three additional nodes had their reputation increased

the same amount from their initial reputation value. In the results of the Minimum Stake

test, the first two brackets, 0% and 25%, showed similar times for completion, i.e., when a

transaction is added to the blockchain. At 50%, the second median of the set of reputation

(R) values is greater than the lowest value in R, so 50% of the nodes are excluded from

participating in the consensus protocol. In this case, the timing increased to 47-51 seconds.

At 75%, the minimum stake has increased and 75% of the nodes meet this stake value at

equal or higher levels. The timing jumped again upwards to 62-68 seconds, which could be

caused by the amount of time it took to form committees due to there being fewer possible

participants available. As expected, when 100% of the nodes have a reputation higher than

their initial value, then 100% can participate again (similar to the 0% bracket), since all

nodes have the same reputation and stake values again.

With this new consensus model, Proof of Review (PoRev), we have shown how this

technology can be used to derive the trustworthiness of both the review and the reviewer par-

ticipants. It does this through an evaluation of reviews to determine whether it is congruent,

trustworthy, and honest. Additionally, we have shown how our model prevents maliciousness

and provides strong security guarantees for the data, participants, and reputation values.

We employed blacklisting and a minimum stake requirement. We showed how our Proof of

Review model addresses several types of attacks that are common for Proof of Stake and

Reputation systems, as seen in Chapter 5. We implemented the proposed Proof of Review

115

consensus by modifying Algorand’s core engine. We also modified an existing dApp to allow

us to validate our system as well as to demonstrate the performance of blacklisting and

minimum-reputation / minimum-stake components. Since we altered and extended Algo-

rand’s engine for our protocol, we examined Algorand’s Theorem 1 and associated security

properties in respect to our changes. We show in proofs that our modifications effectively

continue to preserve the security properties.

In testing, our simulation results showed that our proposed blockchain system has

liveliness and completeness properties. Specifically, blacklisting does not affect liveliness or

completeness (that a transaction is guaranteed to be added to the blockchain eventually)

when < 75% of nodes are blacklisted. We also show that requiring a minimum stake to

participate always shows liveliness and completeness regardless of the number of parties not

meeting the stake requirement when based upon the rules defined this paper.

6.2. Future Work

The following directions are recommended for the future work.

6.2.1. Combining Reputation and Tokens

This approach will aid in determining a user’s weighted influence in a token-based

system, with reputation calculated into that weight. This could allow a user with a high

reputation and a small amount of tokens to have a greater influence and opportunity to

participate in the protocol. This could better incentivize participants to “play nice” and do

the “right thing”, since money is on the line and there would be a small financial reward as

is currently in PoS systems.

6.2.2. Block Re-Assembly

During the consensus steps, we may allow the block leader to modify their block

by removing review transactions, when the majority of verifiers identify any transactions

as “bad”. Such transactions can be defined as either technically incorrect or the verifier’s

evaluation is disparate from the leader’s evaluation (including the blacklisting flag for the

reveiwer). A one-time cycle is used to give the leader a single opportunity to remove “bad”

116

transactions and reassemble a block of “good” ones. If the leader fails to remove them, the

verifiers will vote to blacklist the leader; otherwise, the new block is voted to be the round’s

block.

6.2.3. Industrial Applications

Other future work is to explore ways this model can be leveraged in autonomous

systems or micro-accreditation (connecting students with employers) to aid in assigning

rigor to courses and associated knowledge units. Since computational costs of PoW should be

avoided, a PoS system or similar would be beneficial in speeding up transaction times. Proof

of Review is an excellent fit. In sensor-array systems, a consensus on a node’s assessment

being incongruent could indicate a failure or corruption of a sensor. Furthermore, we would

also like to explore the application towards autonomous vehicles that caravan together in an

ad-hoc manner (consensus on decisions on a route, re-routing if new information, determining

speed, assessments to deliver a vehicle safely from point A to point B, etc.). A variation

would need to be considered, including a hybrid decentralized-centralized solution. Vehicles

would only need a limited blockchain history but still trust in the credibility of others.

In the context of the discussion on minimum reputation in Section 5.3.5, it is interesting to

study the application reputation distributions and the approaches to ensure a reputation-fair

lottery.

117

REFERENCES

[1] AlgoChatPoR - Proof of Review dapp, github.com/ZeeNexus/algochatPoR, [Online].

[2] AlgorandPoR - Proof of Review (core engine modified), github.com/ZeeNexus/

algorandPoR, [Online].

[3] AlgorandPoR Go SDK - Proof of Review SDK in Go Language, github.com/ZeeNexus/

go-algorandpor-sdk, [Online].

[4] Ganashe - Truffle Suite, trufflesuite.com/ganache/, [Online].

[5] Alchemy, Ethereum’s Ropsten Testnet: A Complete Guide, www.alchemy.com/

overviews/ropsten-testnet, [Online].

[6] Ahmed S. Almasoud, Farookh Khadeer Hussain, and Omar K. Hussain, Smart con-

tracts for blockchain-based reputation systems: A systematic literature review, Journal

of Network and Computer Applications 170 (2020), 102814.

[7] Musab A. Alturki, Jing Chen, Victor Luchangco, Brandon M. Moore, Karl Palmskog,

Lucas Peña, and Grigore Rosu, Towards a verified model of the Algorand consensus

protocol in Coq, Lecture Notes in Computer Science abs/1907.05523 (2020).

[8] Marianne A Azer, Sherif M El-Kassas, Abdel Wahab F Hassan, and Magdy S El-

Soudani, A survey on trust and reputation schemes in ad hoc networks, Availability,

Reliability and Security, 2008. ARES 08. Third International Conference on, IEEE,

IEEE, 2008, n/a, p. 881–886.

[9] Shaimaa Bajoudah, Changyu Dong, and Paolo Missier, Toward a decentralized, trust-

less marketplace for brokered iot data trading using blockchain, 2019 IEEE International

Conference on Blockchain (Blockchain), 2019, pp. 339–346.

[10] Hanneh Bareham, Itt tech student loan forgiveness update: What for-

mer students need to know, www.bankrate.com/loans/student-loans/

what-itt-tech-students-need-to-know-about-loan-forgiveness/, 2023, [On-

line].

[11] Golam Dastoger Bashar, Joshua Holmes, and Gaby G. Dagher, Accord: A scalable

118

github.com/ZeeNexus/algochatPoR
github.com/ZeeNexus/algorandPoR
github.com/ZeeNexus/algorandPoR
github.com/ZeeNexus/go-algorandpor-sdk
github.com/ZeeNexus/go-algorandpor-sdk
trufflesuite.com/ganache/
www.alchemy.com/overviews/ropsten-testnet
www.alchemy.com/overviews/ropsten-testnet
www.bankrate.com/loans/student-loans/what-itt-tech-students-need-to-know-about-loan-forgiveness/
www.bankrate.com/loans/student-loans/what-itt-tech-students-need-to-know-about-loan-forgiveness/

multileader consensus protocol for healthcare blockchain, Trans. Info. For. Sec. 17 (2022),

2990–3005.

[12] Imran Bashir, Blockchain age protocols, pp. 331–376, Apress, Berkeley, CA, 2022.

[13] BitBay, Bitbay decentralized marketplace double deposit escrow, bitbay.market/

double-deposit-escrow, 2020, [Online].

[14] Sonja Buchegger, Jochen Mundinger, and Jean-Yves Le Boudec, Reputation systems for

self-organized networks: Lessons learned, Technology and Society Magazine, IEEE 27

(2008), 41 – 47.

[15] Jing Chen and Silvio Micali, Algorand, https://arxiv.org/abs/1607.01341, 2017,

[Online].

[16] Jing Chen and Silvio Micali, Algorand: A secure and efficient distributed ledger, Theor.

Comput. Sci. 777 (2019), no. C, 155–183.

[17] D. M. Chiu and Raj Jain, Analysis of the increase and decrease algorithms for congestion

avoidance in computer networks, Comput. Networks 17 (1989), 1–14.

[18] ChronoBank.io, Hiring, rebuilt, https://chrono.tech/, 2018, [Online].

[19] Nicholas Diana, Michael Eagle, John Stamper, Shuchi Grover, Marie Bienkowski, and

Satabdi Basu, Data-driven generation of rubric criteria from an educational program-

ming environment, Proceedings of the 8th International Conference on Learning An-

alytics and Knowledge (New York, NY, USA), LAK ’18, Association for Computing

Machinery, 2018, p. 16–20.

[20] Akanksha Dixit, Arjun Singh, Yogachandran Rahulamathavn BSc(Hons), PhD, and

Muttukrishnan Rajarajan, Fast data: A fair, secure and trusted decentralized iiot data

marketplace enabled by blockchain, IEEE Internet of Things Journal PP (2021).

[21] Zulfadzli Drus and Haliyana Khalid, Sentiment analysis in social media and its appli-

cation: Systematic literature review, Procedia Computer Science 161 (2019), 707–714.

[22] Sanjeev Kumar Dwivedi, Mohammad S. Obaidat, Ruhul Amin, and Satyanarayana Vol-

lala, Decentralized management of online user reviews with immutability using ipfs and

119

bitbay.market/double-deposit-escrow
bitbay.market/double-deposit-escrow
https://arxiv.org/abs/1607.01341
https://chrono.tech/

ethereum blockchain, 2022 International Mobile and Embedded Technology Conference

(MECON) (2022), 534–539.

[23] Society for Human Resource Management, https://www.shrm.org/hr-today/news/

hr-news/pages/shrm-benchmarking-report-4,100-average-cost-per-hire.

aspx, 2016, [Online].

[24] Lisa Frye, The cost of a bad hire can be astronomical, https://www.shrm.org/

resourcesandtools/hr-topics/employee-relations/pages/cost-of-bad-hires.

aspx, Aug 2019, [Online].

[25] FTC, Equifax Data Breach, www.ftc.gov/enforcement/refunds/

equifax-data-breach-settlement, [Online].

[26] Fangyu Gai, Baosheng Wang, Wenping Deng, and Wei Peng, Proof of reputation: A

reputation-based consensus protocol for peer-to-peer network, pp. 666–681, 05 2018.

[27] Google, Google Cloud Natural Language, cloud.google.com/natural-language, [On-

line].

[28] Pankaj Gupta, Ritu Tiwari, and Nirmal Robert, Sentiment analysis and text summa-

rization of online reviews: A survey, 04 2016, pp. 0241–0245.

[29] Thomas Hardjono and Alex Pentland, Data cooperatives: Towards a foundation for

decentralized personal data management, https://arxiv.org/abs/1905.08819, 2019,

[Online].

[30] Yao-Chieh Hu, Ting-Ting Lee, Dimitris Chatzopoulos, and Pan Hui, Hierarchical inter-

actions between ethereum smart contracts across testnets, Proceedings of the 1st Work-

shop on Cryptocurrencies and Blockchains for Distributed Systems (New York, NY,

USA), CryBlock’18, Association for Computing Machinery, 2018, p. 7–12.

[31] IAD.gov, CAE-CD knowledge units, 2018.

[32] Shailak Jani, An overview of ethereum its comparison with bitcoin, International Jour-

nal of Scientific & Engineering Research Volume 10, Issue 8 (2017).

[33] Yuhao Jiang, Haiguang Wang, and Tianlun Yi, Evaluation of product reviews based on

text sentiment analysis, 2021 2nd International Conference on Artificial Intelligence and

120

https://www.shrm.org/hr-today/news/hr-news/pages/shrm-benchmarking-report-4,100-average-cost-per-hire.aspx
https://www.shrm.org/hr-today/news/hr-news/pages/shrm-benchmarking-report-4,100-average-cost-per-hire.aspx
https://www.shrm.org/hr-today/news/hr-news/pages/shrm-benchmarking-report-4,100-average-cost-per-hire.aspx
https://www.shrm.org/resourcesandtools/hr-topics/employee-relations/pages/cost-of-bad-hires.aspx
https://www.shrm.org/resourcesandtools/hr-topics/employee-relations/pages/cost-of-bad-hires.aspx
https://www.shrm.org/resourcesandtools/hr-topics/employee-relations/pages/cost-of-bad-hires.aspx
www.ftc.gov/enforcement/refunds/equifax-data-breach-settlement
www.ftc.gov/enforcement/refunds/equifax-data-breach-settlement
cloud.google.com/natural-language
https://arxiv.org/abs/1905.08819

Information Systems (New York, NY, USA), ICAIIS 2021, Association for Computing

Machinery, 2021.

[34] Pankaj Joshi and Anoj Kumar, A novel framework for decentralized c2c e-commerce us-

ing smart contract, 2020 11th International Conference on Computing, Communication

and Networking Technologies (ICCCNT), 2020, pp. 1–5.

[35] Leonard Kleinrock, Rafail Ostrovsky, and Vassilis Zikas, Proof-of-reputation blockchain

with nakamoto fallback, Progress in Cryptology – INDOCRYPT 2020: 21st Interna-

tional Conference on Cryptology in India, Bangalore, India, December 13–16, 2020,

Proceedings (Berlin, Heidelberg), Springer-Verlag, 2020, p. 16–38.

[36] Nicolas Kube, ”daniel drescher”: ”blockchain basics: a non-technical introduction in 25

steps”, Financ Mark Portf Manag 32 (2018), 329–331.

[37] Mario Larangeira, Reputation atnbsp;stake! anbsp;trust layer overnbsp;decentralized

ledger fornbsp;multiparty computation andnbsp;reputation-fair lottery, Information Se-

curity and Cryptology – ICISC 2022: 25th International Conference, ICISC 2022, Seoul,

South Korea, November 30 – December 2, 2022, Revised Selected Papers (Berlin, Hei-

delberg), Springer-Verlag, 2023, p. 195–215.

[38] Stefanos Leonardos, Daniël Reijsbergen, and Georgios Piliouras, Weighted voting on the

blockchain: Improving consensus in proof of stake protocols, 2019 IEEE International

Conference on Blockchain and Cryptocurrency (ICBC), 2019, pp. 376–384.

[39] , Weighted voting on the blockchain: Improving consensus in proof of stake pro-

tocols, arXiv, 2021.

[40] Lexalytics, Lexalytics, an NLP feature stack, www.lexalytics.com, [Online].

[41] Min Li, Helen Tang, and Xianbin Wang, Mitigating routing misbehavior using

blockchain-based distributed reputation management system for iot networks, 2019

IEEE International Conference on Communications Workshops (ICC Workshops), 2019,

pp. 1–6.

[42] Xiaoman Li, Qinghua Zhu, Naina Qi, Jinqiu Huang, Yong Yuan, and Fei-Yue Wang,

121

www.lexalytics.com

Blockchain consensus algorithms: A survey, 2021 China Automation Congress (CAC),

2021, pp. 4053–4058.

[43] Katie Lobosco, Feds pull the plug on itt tech’s accrediting agency, money.cnn.com/

2016/09/22/pf/college/itt-accreditor-acics/, 2016, [Online].

[44] Woolf Development Ltd, Woolf: Building the first blockchain university, 2018.

[45] CIO Magazine, The 11 biggest issues it faces today, 2019.

[46] Finance Magnates, Buterin: Proof-of-stake ethereum is really no longer so far away,

2018.

[47] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard, and

David McClosky, The Stanford CoreNLP natural language processing toolkit, https:

//stanfordnlp.github.io/CoreNLP, June 2014, [Online], pp. 55–60.

[48] Kashif Mehboob, Junaid Arshad, and Muhammad Khan, Empirical analysis of trans-

action malleability within blockchain-based e-voting, Computers Security 100 (2021),

102081.

[49] metamask, MetaMask: The Crypto Wallet for Defi, https://metamask.io/, [Online].

[50] Satoshi Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2008, [Online].

[51] Shmuel Nitzan and Ruth Ben-Yashar, The optimal decision rule for fixed-size com-

mittees in dichotomous choice situations: The general result, International Economic

Review 38 (1997), 175–86.

[52] nltk, Natural Language Toolkit (NLTK) for python, nltk.org, [Online].

[53] Patrick Ocheja, Brendan Flanagan, and Hiroaki Ogata, Connecting decentralized learn-

ing records: A blockchain based learning analytics platform, Proceedings of the 8th

International Conference on Learning Analytics and Knowledge (New York, NY, USA),

LAK ’18, Association for Computing Machinery, 2018, p. 265–269.

[54] Panchalika Pal and Sushmita Ruj, Blockv: A blockchain enabled peer-peer ride sharing

service, 2019 IEEE International Conference on Blockchain (Blockchain) (2019), 463–

468.

[55] Lifang Peng, Zhong Chen, and Qi Li, Model and method for evaluating creditability

122

money.cnn.com/2016/09/22/pf/college/itt-accreditor-acics/
money.cnn.com/2016/09/22/pf/college/itt-accreditor-acics/
https://stanfordnlp.github.io/CoreNLP
https://stanfordnlp.github.io/CoreNLP
https://metamask.io/
nltk.org

of c2c electronic trade, Proceedings of the 8th international conference on Electronic

commerce: The new e-commerce: innovations for conquering current barriers, obstacles

and limitations to conducting successful business on the internet, 2006, pp. 244–249.

[56] Julie Polisena, Martina Andellini, Piergiorgio Salerno, Simone Borsci, Leandro Pecchia,

and Ernesto Iadanza, Case studies on the use of sentiment analysis to assess the effec-

tiveness and safety of health technologies: A scoping review, IEEE Access PP (2021),

1–1.

[57] Vishnu Prasad Ranganthan, Ram Dantu, Aditya Paul, Paula Mears, and Kirill Morozov,

A decentralized marketplace application on the ethereum blockchain, 2018 IEEE 4th

International Conference on Collaboration and Internet Computing (CIC), 2018, pp. 90–

97.

[58] Poonam Rani and Rajul Bhambay, A comparative survey of consensus algorithms based

on proof of work, Emerging Technologies in Data Mining and Information Security

(Singapore) (Paramartha Dutta, Satyajit Chakrabarti, Abhishek Bhattacharya, Soumi

Dutta, and Vincenzo Piuri, eds.), Springer Nature Singapore, 2023, pp. 261–268.

[59] Paul Resnick and Richard J. Zeckhauser, Trust among strangers in internet transac-

tions: Empirical analysis of ebay’ s reputation system, The Economics of the Internet

and E-commerce, Emerald Group Publishing Limited, vol. 11, 2002, pp. 127–157.

[60] Abiola Salau, Ram Dantu, Kirill Morozov, Kritagya Upadhyay, and Syed Badruddoja,

Multi-tier reputation for data cooperatives, pp. 253–273, 02 2023.

[61] Abiola Salau, Ram Dantu, and Kritagya Upadhyay, Data cooperatives for neighborhood

watch, 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC),

2021, pp. 1–9.

[62] Alexander Schaub, Rémi Bazin, Omar Hasan, and Lionel Brunie, A trustless privacy-

preserving reputation system, 05 2016, pp. 398–411.

[63] Holberton School, Holberton school of software engineering, 2018.

[64] Ayelet Sheffey, An agency elizabeth warren criticized for exacerbat-

ing the student debt crisis and signing off on the ’worst for-profit

123

colleges’ just lost its federal recognition, www.businessinsider.com/

devos-backed-acics-loses-federal-recognition-biden-elizabeth-warren-profit-2022-8,

2022, [Online].

[65] Alchemy Site, A Complete Guide to Ethereum’s Rinkeby Testnet, www.alchemy.com/

overviews/rinkeby-testnet, [Online].

[66] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, An-

drew Ng, and Christopher Potts, Recursive deep models for semantic compositionality

over a sentiment treebank, Proceedings of the 2013 Conference on Empirical Methods

in Natural Language Processing (Seattle, Washington, USA), Association for Compu-

tational Linguistics, October 2013, pp. 1631–1642.

[67] Hyland Software, Learning machine, https://www.learningmachine.com/, 2018, [On-

line].

[68] Zeenat Tariq, Sayed Shah, and Yugyung Lee, Speech emotion detection using iot based

deep learning for health care, 2019 IEEE International Conference on Big Data (Big

Data), 2019, pp. 4191–4196.

[69] TeachMePlease, Teachmeplease – educational courses from all over the world, https:

//www.teachmeplease.com, 2018, [Online].

[70] Dejan Vujiić, Dijana Jagodić, and Sinia Rand̄ić, Blockchain technology, bitcoin,

and ethereum: A brief overview, 2018 17th International Symposium INFOTEH-

JAHORINA (INFOTEH) (2018), 1–6.

[71] Shuai Wang, Yong Yuan, Xiao Wang, Juanjuan Li, Rui Qin, and Fei-Yue Wang, An

overview of smart contract: Architecture, applications, and future trends, 2018 IEEE

Intelligent Vehicles Symposium (IV), 2018, pp. 108–113.

[72] Daniel Davis Wood, Ethereum: A secure decentralised generalised transaction ledger,

https://gavwood.com/paper.pdf, 2014, [Online].

[73] Jie Xu, Cong Wang, and Xiaohua Jia, A survey of blockchain consensus protocols, ACM

Comput. Surv. (2023), Just Accepted.

[74] Zachary Zaccagni, Ram Dantu, and Kirill Morozov, Maintaining Review Credibility

124

www.businessinsider.com/devos-backed-acics-loses-federal-recognition-biden-elizabeth-warren-profit-2022-8
www.businessinsider.com/devos-backed-acics-loses-federal-recognition-biden-elizabeth-warren-profit-2022-8
www.alchemy.com/overviews/rinkeby-testnet
www.alchemy.com/overviews/rinkeby-testnet
https://www.learningmachine.com/
https://www.teachmeplease.com
https://www.teachmeplease.com
https://gavwood.com/paper.pdf

Using NLP, Reputation, and Blockchain, 2022 IEEE 4th International Conference on

Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), 2022,

pp. 58–66.

[75] , Proof of Review - Trust Me, It’s Been Reviewed, 2023 5th Blockchain and

Internet of Things Conference (BIOTC23), 2023.

[76] Zachary Zaccagni, Aditya Paul, and Ram Dantu, Micro-Accreditation for Matching Em-

ployer E-Hire Needs, 2019 IEEE International Conference on Blockchain (Blockchain),

2019, pp. 347–352.

125

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1. INTRODUCTION
	1.1. Research Focus of This Work
	1.1.1. Problem 1: Accreditation for Workforce Development
	1.1.2. Problem 2: Reputation Management for Review Systems
	1.1.3. Problem 3: A Fitting Consensus Mechanism.

	1.2. Organization of This Thesis

	CHAPTER 2. BACKGROUND
	2.1. Related Consensus Models
	2.1.1. Proof-of-Work Blockchains
	2.1.2. Proof-of-Stake Blockchains
	2.1.3. Proof-of-Reputation Blockchains
	2.1.4. Discussion

	2.2. Notations and Definitions
	2.3. Overview of Ethereum
	2.4. Algorand Overview

	CHAPTER 3. MICRO-ACCREDITATION FOR MATCHING EMPLOYER E-HIRE NEEDS
	3.1. Introduction
	3.2. Problem Description and Requirements
	3.3. Related Works
	3.4. Proposed Architecture
	3.4.1. Requirements Considered
	3.4.2. Course creation and a peer-review component
	3.4.3. Detailed Design
	3.4.4. Application for Course Peer-Review
	3.4.5. Application for Enrolled Students

	3.5. Experimental Methodology and Steps to Goal
	3.5.1. Tests for Simulating the Hiring Data
	3.5.2. Tests for Simulating a Course and Course Peer Review

	3.6. Results and Discussion
	3.6.1. Metrics Used
	3.6.2. Datasets and Results
	3.6.3. Discussion

	3.7. Limitations
	3.8. Additional Considerations and Challenges
	3.9. Conclusions
	3.10. Future Work

	CHAPTER 4. MAINTAINING REVIEW CREDIBILITY USING NLP, REPUTATION, AND BLOCKCHAIN
	4.1. Introduction
	4.2. Related Works
	4.3. Overview of Our Contribution
	4.4. Review Analysis and Reputation Management
	4.4.1. Review Analysis Using NLP
	4.4.2. Reputation Systems

	4.5. Proposed Architecture
	4.5.1. High-Level Architecture
	4.5.2. Modification of Algorand
	4.5.3. Integrating the Review Evaluation Component
	4.5.4. Modifying the Algorand Core Code
	4.5.5. Analysis of the Proposed System

	4.6. Simulation Results
	4.6.1. Testbed
	4.6.2. Metrics and Simulation Results

	4.7. Conclusion

	CHAPTER 5. PROOF OF REVIEW: A NEW CONSENSUS PROTOCOL
	5.1. Introduction
	5.1.1. Comparison to The Existing Consensus Mechanisms

	5.2. Related Works
	5.2.1. Overview of Our Contribution

	5.3. Our Proposal
	5.3.1. Overview of the Proposed Architecture
	5.3.2. Details of the Proposed Architecture
	5.3.3. Proof of Review Consensus
	5.3.4. Integrating the Blacklisting Component
	5.3.5. Integrating the Minimum Reputation Component

	5.4. Security Analysis
	5.4.1. Further Examination of Blacklisting
	5.4.2. Analysis of Practical Attacks

	5.5. Simulation Results
	5.5.1. Testbed
	5.5.2. Testing Process
	5.5.3. Metrics and Simulation Results

	5.6. Conclusion
	5.6.1. Concluding Remarks
	5.6.2. Future Work

	CHAPTER 6. CONCLUSION AND FUTURE WORK
	6.1. Conclusion
	6.1.1. Micro-Accreditation Using Blockchain Applications
	6.1.2. Review Credibility via NLP Analysis on the Blockchain
	6.1.3. Proof-of-Review Consensus

	6.2. Future Work
	6.2.1. Combining Reputation and Tokens
	6.2.2. Block Re-Assembly
	6.2.3. Industrial Applications

	REFERENCES

