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RESUMO 

Nas últimas décadas, a maioria dos esforços para catalogar e caracterizar o ambiente 

construído para a avaliação de riscos múltiplos têm-se concentrado na exploração de 

dados censitários habitacionais, conjuntos de dados cadastrais e pesquisas locais. A 

primeira abordagem é atualizada apenas a cada 10 anos e não fornece informações sobre 

a localizações dos edifícios. O segundo tipo de dados está disponível apenas para algumas 

áreas urbanos, e a terceira abordagem requer levantamentos realizados por profissionais 

com formação em engenharia, o que é proibitivo em termos de custo para estudos de risco 

em larga escala. Portanto, é evidente que os métodos para caracterizar o ambiente 

construído para a análise de riscos em larga escala, estão atualmente ausentes, o que 

dificulta a avaliação do impacto de fenómenos naturais para fins de gestão de riscos. 

Alguns esforços recentes têm demonstrado como algoritmos de aprendizagem-máquina 

podem ser treinados para reconhecer características arquitetónicas e estruturais 

específicas dos edifícios a partir de imagens das suas fachadas e propor, de forma 

probabilística, uma ou várias classes de edifícios. Neste estudo, demonstrou-se como tais 

algoritmos podem ser combinados com dados do OpenStreetMap e imagens do Google 

Street View para desenvolver modelos de exposição para a análise de riscos múltiplos. 

Um conjunto de dados foi construído com aproximadamente 5000 imagens de edifícios 

da freguesia de Alvalade, no distrito de Lisboa (Portugal). Esse conjunto foi utilizado para 

testar diferentes algoritmos, resultando em níveis de desempenho e exatidão distintos. O 

melhor resultado foi obtido com o Xception, com uma exatidão de cerca de 86%, seguido 

do DenseNet201, do InceptionResNetV2 e do InceptionV3, todos com exatidões 

superiores a 83%. Estes resultados servirão de suporte a futuros desenvolvimentos na 

avaliação de modelos de exposição para análise de risco sísmico. A novidade deste 

trabalho consiste no número de características de edifícios presentes no conjunto de 

dados, no número de modelos de aprendizagem profunda treinados e no número de 

classes que podem ser utilizadas para construir modelos de exposição. 

Palavras-chave: Aprendizagem Profunda; Redes Neurais Convolucionais; Visão 

Computacional; Modelos de Exposição de Edifícios; Análise de Risco Sísmico.  
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ABSTRACT 

In the last decades, most efforts to catalog and characterize the built environment for 

multi-hazard risk assessment have focused on the exploration of housing census data, 

cadastral datasets, and local surveys. The first approach is only updated every 10 years 

and does not provide information on building locations. The second type of data is only 

available for some urban areas, and the third approach requires surveys carried out by 

professionals with an engineering background, which is cost-prohibitive for large-scale 

risk studies. It is thus clear that methods to characterize the built environment for large-

scale risk analysis at the asset level are currently missing, which hampers the assessment 

of the impact of natural hazards for the purposes of risk management. Some recent efforts 

have demonstrated how machine learning algorithms can be trained to recognize specific 

architectural and structural features of buildings based on their facades, and 

probabilistically propose one or multiple building classes. This study demonstrates how 

such algorithms can be combined with data from OpenStreetMap and imagery from 

Google Street View to develop exposure models for multi-hazard risk analysis. A dataset 

was built with approximately 5000 images of buildings from the parish of Alvalade, 

within the Lisbon district (Portugal). This dataset was used to test different algorithms, 

which led to distinct performance and accuracy levels. The best result was obtained with 

Xception, with an accuracy of approximately 86%, followed by DenseNet201, 

InceptionResNetV2 and InceptionV3, all with accuracies above 83%. These results will 

support future developments for assessing exposure models for seismic risk analysis. The 

novelty of this work consists in the number of building characteristics present in the 

dataset, the number of deep learning models trained and the number of classes that can 

be used for building exposure models. 

Keywords: Deep Learning; Convolutional Neural Networks; Computer Vision; Building 

Exposure Models; Seismic Risk Analysis;  
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1. INTRODUCTION 

1.1 Problem Statement 

Droughts, floods, storms and earthquakes have been the main cause of casualties and 

economic losses ever since (Ritchie & Roser, 2014). Consequently, the disaster risk 

management caused by these natural disasters is a permanent worldwide concern. 

Exposure models play a crucial role in assessing a building's vulnerability to seismic 

events. These models use building information, such as construction material, year or 

period of construction, number of storeys, number of doors and windows and other 

structural information to make them as useful as possible. However, ensuring access to 

up-to-date, complete, and reliable building-level information is a challenge, especially in 

specific regions and cities. Traditional methods for collecting building data typically 

involve housing census and cadastral data. 

The housing census has the advantage of providing nationwide coverage, but the spatial 

resolution makes the data insufficient for assessing the impact of localized catastrophes 

such as floods or landslides or even earthquakes. Cadastral data, on the other hand, is 

frequently collected at the building level, but it is only available for a restricted number 

of places and ignores vulnerability-related factors such as the primary construction 

method or the presence of structural problems. Due to a lack of accurate information on 

the built environment, it is impossible to determine the potential for damage, economic 

losses, and fatalities, which might aid in the development of disaster risk management 

methods. Similarly, a lack of data makes it difficult to estimate the impact of natural or 

anthropogenic risks as soon as they occur. In the case of Portugal, the assessment of the 

impact of natural disasters is based on observations and damage data that are normally 

published weeks or months after the event, influencing the strategic allocation of human 

resources or the early release of financial help to promote recovery. But why choose the 

parish of Alvalade as the study area? This region of Portugal has been the focus of several 

prior studies that provide actual earthquake data specific to this location. The goal of these 

studies was to develop an extensive understanding of the type of construction we should 
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anticipate in this specific region. Additionally, the level of seismic hazards and risk in 

this area is quite high, making it particularly important for assessing the risk of 

earthquakes. 

According to (Silva et al., 2014), the number of people affected as well as the economic 

losses for a given earthquake are determined by the frequency and size of earthquakes in 

the study region (seismic hazard), the inventory of people and infrastructure (exposure), 

and the capacity of buildings to handle earthquake loading (vulnerability). 

In order to establish effective emergency plans, it is crucial to possess and maintain 

trustworthy and up-to-date exposure models. These provide a comprehensive overview 

of all assets in the region under study. However, developing such models is a complex 

task, especially in regions where data is not consistently gathered by government entities, 

such as emerging nations. In some cases, data from local surveys, housing census records, 

or even cadastral databases may be used to acquire information on building characteristics 

when analyzing specific regions (if available). Nevertheless, as the region grows larger, 

it becomes more expensive and time-consuming to accomplish these activities, presenting 

a significant challenge for researchers as well as politicians who attempt to quickly and 

affordably build large-scale exposure models. 

1.2 Proposed Approach 

This dissertation addresses this kind of problems by looking at innovative solutions, in 

particular, how machine learning algorithms may be trained to identify specific building 

architectural and structural characteristics from images of their facades. Additionally, 

these algorithms can probabilistically suggest one or more building classes. This 

methodology contributes to advancing earthquake risk assessment and management by 

offering a scalable and effective solution to the data constraints that often limit the 

development of exposure models. 

As a result, it is evident that using traditional approaches for characterization of the built 

environment for risk assessment on a national or regional scale is unsustainable. To 

achieve such a milestone, it is critical to rely on recent advancements in crowdsourcing, 

satellite imagery, big data, and artificial intelligence. The OpenStreetMap (OSM) project, 

an editable map of the world with information given by volunteers, is one example of a 
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growing supply of building information. OSM is typically limited to the building footprint 

and main use, but it provides adequate coverage for most urban areas. Satellite imagery 

released in the previous decade has also reached a degree of spatial resolution that permits 

determining exposure factors such as the height of buildings and large structures (Cao & 

Huang, 2021). Finally, the well-known Google Street View service allows users to 

explore and visualize building imagery even in remote locations. While none of these 

sources of information are sufficient in and of themselves to produce an accurate and 

comprehensive exposure model, their major characteristics can be merged using an 

artificial intelligence framework to create digital models of entire regions for disaster risk 

reduction. 

This work exploits Google Street View images and OpenStreetMap building footprints to 

construct a comprehensive dataset for training deep learning models. The dataset was 

meticulously manually annotated on-site, simplifying the process and increasing the 

collection of building facade images. Additionally, a selection of deep learning models 

was made, based on their past performance in similar tasks. The study not only evaluates 

and contrasts the performance of these chosen models but also recommends additional 

dataset structuring for a more nuanced analysis of the building stock. 

Following the construction of the dataset, algorithm training, and comparisons of 

inference results, the primary objective is to employ the obtained data to create an 

exposure model that will be used to estimate the impact of an earthquake scenario. 

Subsequently, these estimated results can be compared with the impact calculated using 

ground truth data, providing a comprehensive evaluation of the model's predictive 

accuracy and reliability. 
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1.3 Contributions 

Due to the significance and results of the work undertaken in this project, scientific 

publications have already been made, with others currently under submission. It is 

important to highlight not only the importance of these contributions to the scientific 

community but also the direct impact these results have on the real world. 

• Feliz Gouveia, Vítor Silva, Jorge Lopes, Rui Moreira, José Torres, Maria 

Guerreiro, “Automated Identification of Building Features with Deep Learning 

for Risk Analysis”, SN Applied Sciences, Springer Nature, ISSN 2523-3971. 

(Submitted) 

 

• Vitor Silva, Romain Sousa, Feliz Gouveia, Jorge Lopes, Maria João Guerreiro, “A 

Building Imagery Database for the Calibration of Machine Learning Algorithms”, 

Earthquake Spectra.  

 

• Vitor Silva, Jorge Lopes, Feliz Gouveia, Romain Sousa, “Exposure Modeling 

through Machine Learning for Multi-Hazard Risk Assessment”, 14th 

International Conference on Applications of Statistics and Probability in 

Civil Engineering, ICASP14, July 9-13, 2023, Dublin, Ireland. 

 

• Jorge Lopes, Feliz Gouveia, Vítor Silva, Rui Moreira, José Torres, Maria 

Guerreiro, Luís Paulo Reis, "Using Deep Learning for Building Stock 

Classification in Seismic Risk Analysis", Encontro Português de Inteligência 

Artificial, EPIA 2023, September 5-8, 2023, Ilha do Faial, Azores, Portugal. 
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2. LITERATURE REVIEW 

In the past years there has been a growing interest in employing deep learning techniques 

to accomplish and simplify human tasks. For example, various studies have previously 

been conducted in which the usage of Google Street View (GSV) images proved to be 

effective in detecting building facades with graffiti artwork (Novack et al., 2020), urban 

frontage classification (Law et al., 2020), visual screening of soft-story buildings (Yu et 

al., 2020), classification of building’s utility classes (Laupheimer et al., 2018), seismic 

damage prediction (Bhatta & Dang, 2023) and estimating building age (Li et al., 2018). 

There has also been some work on the prediction of building features, such as construction 

material and age, which is directly relevant to this work and is presented in the following 

sections. 

2.1 Building Classification 

Kang et al. (2018) proposed to use deep learning to classify building facades from street 

view images. The authors retrieved, for several cities in Canada and the United States, the 

building footprints and their geographic locations from online geographic information 

systems (GIS), such as OpenStreetMap1. 

Since each building had an associated GPS coordinate (latitude, longitude), the authors 

downloaded each image using the Google Street View Static API2 with the corresponding 

metadata3, i.e., the image size and pitch value defined as 512 x 512 pixels and 10 degrees, 

respectively, which show facade structures of individual buildings. 

Due to the uncontrolled quality of street view images, many of them could not be directly 

utilized for the building classification. For example, some of the images were taken from 

 
1
 https://www.openstreetmap.org/ 

2
 https://developers.google.com/maps/documentation/streetview/overview 

3 https://developers.google.com/maps/documentation/streetview/metadata 

https://www.openstreetmap.org/
https://developers.google.com/maps/documentation/streetview/overview
https://developers.google.com/maps/documentation/streetview/metadata
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the inside the building and others had the facade hidden by vehicles and trees. The authors 

removed those outliers using the VGG16 model (Simonyan & Zisserman, 2015) trained 

on the Places2 database (Zhou et al., 2018). 

This process resulted in a dataset with 19658 street view images from eight classes, i.e., 

apartment, church, garage, house, industrial, office building, retail and roof, each with 

approximately 2500 images, in other words, a balanced dataset. 

The authors chose to fine-tune all the convolutional layers of pre-trained state-of-the-art 

CNNs (Convolutional Neural Networks) on a large dataset, such as ImageNet 

(Russakovsky et al., 2015), however now applied to a lower sized dataset. For example, 

for the training of the CNNs used, i.e., AlexNet (Krizhevsky et al., 2017), VGG16, 

ResNet18 and ResNet34, they experienced overfitting behaviors in both ResNet 

architectures (He et al., 2016a). Overall, the architecture with worst classification 

performance was AlexNet and the best was VGG16 with an F1 Score of 0.53 and 0.58, 

respectively. 

  



 

7 

 

2.2 Exposure Models 

In Santiago (Chile’s capital), a city prone to earthquakes, Aravena Pelizari et al. (2021) 

created a reference dataset based on which they assess the potential of DCNNs (Deep 

Convolutional Neural Networks) to predict a risk-oriented SBST (Seismic Building 

Structural Type) and individually estimate the LLRS (lateral load resisting system) 

material and the height of buildings. In order to categorize building exposure in a 

standardized way, by using the GEM or the GED4ALL taxonomy, an adaptation for 

multi-hazard risk analysis (Silva et al., 2018), the authors seek to automatize the 

classification of structural features of buildings for large-area seismic risk assessments. 

Unlike the work mentioned previously, these authors obtained the buildings information 

and geo-location through property cadastral data from the Chilean Internal Revenue 

Service and the Ministry of Housing and Urbanism as well.  

Aravena Pelizari et al. (2021) used the exact same process of Kang et al. (2018) for 

downloading the building images and also to remove the outliers; both with minor 

changes in parameters definition. 

They downloaded three street-level images for every building using the Google Street 

View Static API with a size of 640 x 640 pixels, FOV of 100 degrees and pitch of 15 

degrees; the first image downloaded corresponded to the GPS location of the building and 

the second and third images corresponded to a 90 degrees deviation, i.e., right (+90°) and 

left (-90°) side views. For the images that remained with non-facade building being 

visible, the authors also used VGG16 DCNN trained on the Places3654 dataset, the latest 

subset of Places2 database, to retrieve the top 4 predictions filtering the intersection of 

these with a group of 24 predefined outdoor classes, such as: apartment building, beach 

house, building facade, chalet, church, cottage, courthouse, embassy, fire station, 

hangar, hospital, hotel, house, hunting lodge, mansion, manufactured home, motel, office 

building, palace, school-house, shed, skyscraper, synagogue, tower; if in the top 4 model 

predictions, 2 or more belonged to the 24 classes of the group, a building facade was 

 
4 https://github.com/CSAILVision/places365 

https://github.com/CSAILVision/places365
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considered as found, otherwise, the image was discarded (meaning the facade was not 

visible). 

Their dataset had a total of 204,030 filtered building facade images and was used to train 

from scratch, and through transfer learning, several pre-trained architectures, such as 

InceptionResNetV2 (Szegedy et al., 2017), Xception (Chollet, 2017) and NasNet-A 

(Zoph et al., 2018) obtaining very promising results. The transfer-learned NasNet-A 

model has performed the best overall with accuracy bigger than 0.80 and 0.85 for SBST 

and for LLRS material and height prediction, respectively. 

Unlike the works previously mentioned, Gonzalez et al. (2020), manually annotated and 

filtered (without using any possible outlier’s removal algorithm) a dataset containing 

approximately 10,000 GSV facade images of buildings within the Medellín (Colombia) 

urban area. The authors did not however specify how they obtained the geo-location of 

each building (coordinates or addresses) to feed into the GSV Static API. 

Their objective was the same as the Aravena Pelizari et al. (2021) work, that is, to predict 

the building material and the lateral load-resisting system type. For that, they selected five 

state-of-the-art CNNs that also have shown great results in ImageNet: VGG16, VGG19, 

InceptionV3 (Szegedy et al., 2016), ResNet50 (He et al., 2016a), and Xception. 

Among the five network architectures trained in their study, ResNet50 showed the best 

performance because it classified fewer non-ductile buildings as ductile. However, 

overall, the results were not as good as expected, falling short of the results of the 

previously mentioned works. 

In Oslo, Norway, Ghione et al. (2022) have also performed a study similar to the one in 

this document and other works already mentioned. The main goal remains the same: to 

develop a cost-effective building exposure model. To this end, the general information of 

the buildings, such as their total number with the corresponding coordinates, number of 

stories, number of housing units, usable and total area, was obtained from the public 

cadastre of Norway, which compares and manages detailed public geographic 

information of the country. As well as the other works, the street view facade images were 

retrieved from GSV Static API using the building location. In addition to those, the 

authors also photographed the facades of the buildings on location. Then, with the help 
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of earthquake engineering experts, all the images were labeled and filtered using a 

topology classification.  

They did not manually check the quality of the images (whether the facades were 

occluded by trees, passing vehicles or scaffoldings), instead, during the labeling process, 

they labeled those images as “other”, expecting that it would result in a considerable 

source of uncertainty for training the models. 

Their dataset had a total of 5,074 manually labeled images from fieldwork and from GSV 

divided into test (20%) and train (80%). At training, looking at the lower number of 

images compared to other works, the authors increased the size of the dataset artificially, 

i.e., by using image augmentation, by applying randomly zooming in by up to 20%, 

randomly rotating by up to 25° and randomly mirroring along the vertical axis. Still in the 

training process, by choice, the authors did not apply class-specific weights, although the 

dataset was unbalanced, i.e., all images were given equal priority. According to the 

authors, this should increase the final overall accuracy. 

They used state-of-the-art CNNs pre-trained on the ImageNet database, such as Xception, 

VGG16, VGG19, ResNet50V2 (He et al., 2016b), InceptionV3, InceptionResNetV2, 

DenseNet201 (Huang et al., 2017). 

The fine-tuned DenseNet201, classified typology in previously unseen images with 

82.5% accuracy, using only data sources available online: the public cadastre and Google 

Street View. Without fine-tuning, this model had an accuracy of only 76.3%, showing 

that fine-tuning is greatly beneficial to performance. 

 

  



 

10 

 

3. TOOLS 

3.1 OpenStreetMap 

OpenStreetMap (OSM) is a collaborative tool that provides an editable geographic 

database completely free of charge. Through it, by layering satellite images, it is possible 

to view, add or edit polygons (building footprints) in a given area, in this case the Alvalade 

parish, and also manipulate specific information linked with the polygon, such as the type, 

name, address, or height of the building. Because any user can edit the map, it is vital to 

maintain a critical and cautious eye during this process, as a single polygon may 

sometimes delimit two or more buildings, which is incorrect because a polygon should 

delimit one and only one building. 

In the case of Alvalade, it is worth mentioning that, whether correctly or incorrectly 

delimited, almost 75% of the parish already had the buildings bounded. Therefore, the 

remaining 25% had to be done manually. 

 

Figure 3.1 - Buildings in Alvalade as shown on OpenStreetMap. 
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3.2 QGIS 

QGIS (Quantum Geographic Information System) is a free and open-source geographic 

information system (GIS) application that supports the visualization, editing, and analysis 

of geospatial data. Using one of the available plugins, “QuickOSM”, queries were 

executed on the extracted OSM layer to acquire all the objects marked with the tag 

“building”, that is, all the previously delimited buildings. This allowed to manipulate 

Alvalade data, and based on the area of each building, the center point of each polygon 

(also called the centroid) and its corresponding location (latitude and longitude) was 

geometrically calculated. As mentioned before, besides accessing and manipulating the 

characteristics that derive from the OSM, such as the osm_id (unique building footprint 

identifier), it is also possible to visualize all buildings, assign them an identifier (id), and 

divide them by zones and, consequently, sub-zones. 

 

Figure 3.2 - Division of Alvalade buildings by zones and subzones.
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3.3 Google Street View Static API 

Google Street View (GSV) is a Google Maps and Google Earth feature that provides 

panoramic views of numerous areas around the world, allowing users to virtually explore 

streets and landmarks as if they were physically present. Using the Street View Static 

API, for a given osm_id and the associated building location, i.e., the geographic 

coordinate pair of its center point, an image is returned that, most of the time, corresponds 

to its facade (if it exists, of course).  

For this work, and for each location, the camera parameters were previously defined for 

all the requests, where pitch (camera orientation angle, e.g., 90°: up and -90°: down) was 

set to 20°, source set to outdoor (limiting searches to outdoor collections) and radius set 

to 150 meters (maximum distance to search for a panorama). These values were not 

randomly chosen; for example, the pitch was defined to avoid seeing cars, people, 

sidewalks, or the road itself; the source was selected because we only want the facades of 

the buildings; and the radius was set because some buildings had a larger area, causing 

the distance from the central point to the street to be greater than 50 meters (the default 

radius), causing the API to return no image. All the remaining parameters were not 

specified, being automatically initialized by the API defaults. 

The main purpose of using this tool is to automate the process of collecting images of the 

facades and compare the results obtained between these images and those that were later 

collected in the field. In case of a failure, i.e., the API cannot find images for the specified 

building, no image will be stored in the database. However, such buildings (without 

image) are kept since later it will be necessary to collect data regarding their 

characteristics (construction material, number of floors, among others) as well as to 

capture images of them on the field. 
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4. DATASET CONSTRUCTION 

4.1 Project Pipeline 

Natural disasters, such as earthquakes, can create a wide range of issues, including loss 

of life, injury, damage to buildings and infrastructure, and displacement of people. For 

example, when attempting to reduce disaster risk, the construction material, height, and 

construction period are some of the most important building features to consider. 

The most common ways to collect these types of data are through cadastral data or 

surveys, such as housing census, crowdsourcing, such as the OpenStreetMap platform, 

and Geographic Information Systems, such as Quantum Geographic Information System 

(QGIS) or even Google Street View (in part). 

Recently, as described in the previous sections, it is possible to automate this process of 

collecting data, such as the properties of the building. 

As with any project involving deep learning, first of all, it is necessary to have an 

annotated dataset for a given problem context. In this case, based on data retrieved using 

OpenStreetMap and using the Google Street View Static API, street-level images of the 

facade of each building in the Alvalade parish were collected. In addition, in order to 

increase the amount of data in the dataset, groundwork was also performed where, for 

each building, up to three images of the building’s facade were taken from different 

angles. With the help of civil engineers, a quality control of the collected data was also 

performed during the labeling process in order to obtain the best results for the future. 

Gathering data is a crucial phase in any machine learning project since it supplies the raw 

material needed to train and refine models. Machine learning algorithms cannot be trained 

effectively without sufficient and high-quality data, as the resulting models will be 

inaccurate and unreliable. Additionally, both human skills and technical tools are required 

in the data collection process, as they assist in identifying and collecting important data, 

preprocessing and cleaning it, and assuring its accuracy and completeness. As a result, 
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devoting time and resources to this phase is critical to the success of any machine learning 

project. 

The models to train were selected from the best performers in the ImageNet challenge, 

and were also used in the related works previously described: ResNet50V2, 

InceptionResNetV2, NASNetLarge, Xception, InceptionV3 and DenseNet201. 

To achieve the best-performing CNN for predicting the building material, the number of 

floors and the construction period of buildings (for example), the transfer-learning feature 

extraction and fine-tuning procedures were used. 

With all that data gathered and results, the final goal is to develop an exposure model for 

multi-hazard risk analysis for the parish of Alvalade. 

The Figure 4.1 illustrates the images acquisition and training pipeline developed during 

this work. 

 

Figure 4.1 - Overall project pipeline. 
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To perform the complex computational tasks efficiently, the hardware setup used was an 

Intel Core i9-10900K 10-Core processor, running at a base clock of 3.7GHz with a turbo 

boost capability up to 5.3GHz. This CPU provided the necessary processing power for 

data analysis and model training. A Gigabyte RTX 3090 Gaming OC 24GB graphics card 

was used, which delivered the necessary performance for GPU-intensive machine 

learning tasks, ensuring rapid model training and inference. To support these components, 

the system was equipped with 64GB (2x32GB) of Kingston DDR4 3200MHz HyperX 

Fury Black RAM, offering enough memory for data manipulation and model storage. 

4.2 Data Gathering 

Initially, using OpenStreetMap and its satellite images, the building footprints were 

delimited. Then, all the building information was extracted into QGIS, where the 

available data was used in order to calculate the geographic coordinates of each building 

to feed into the Google Street View Static API. 

The following table gives an example of the result of one of the database entries, that is, 

a building, its image and other information. Afterwards, all these images went through a 

manual quality filtering, which will be described in the following sections. 

Table 4.1 - GSV Static API response image and related information. 

osm_id 97680569 

 

id 79 

y_Lat 38.7498558 

x_Long -9.1425503 

ZONE_LABEL A.5 
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In total, 2844 buildings were delimited in the parish of Alvalade, 2670 street views were 

acquired from the GSV API (one per building) and subsequently 4085 images were 

captured on the field (up to three images per building). The difference between the total 

number of buildings and the total number of street views reflects a constrain that is the 

limited coverage and/or access restrictions. In other words, Google Street View may not 

have coverage for all geographic locations. Some areas, especially in remote regions, may 

not have Street View imagery available. In addition, access to certain locations may not 

exist because these buildings may be on private property. 



 

17 

 

4.3 Feature Collection 

Given the number of features that were selected to be identified, for practical reasons and 

to make this task easier, the parish of Alvalade was divided into 3 major zones (A, B, and 

C) with around 900 buildings each. Each zone was then divided into 9 smaller subzones, 

each with roughly 100 buildings (A.1, A.2, and so on). This division was made to make 

the field work easier to organize. 

To aid this task, an excel file per subzone was automatically prepared, in order to allow 

the manual addition of the visible attributes, including up to three photographs of the 

particular building’s facade. 

 

Figure 4.2 - A.1 subzone excels file example. 

With the help of three civil engineering students the following features were identified: 

● Building Material; 

○ Masonry, Adobe, Reinforced Concrete (granties), Reinforced Concrete 

(load-bearing walls), Reinforced Concrete (prefabricated), Wood or 

Metallic. 

● Construction Period; 

○ Newer than 2010, 2000 to 2010, 1985 to 2000, 1960 to 1985 or Older than 

1960. 

● Number of Floors; 

● Presence of Basements; 

○ Yes, No or Not sure. 

● Entry Height (cm); 
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● Occupancy Type; 

○ Residential, Residential + Commercial, Commercial, Industrial, Public, 

Education, Health or Other. 

● Position; 

○ With adjacent building on one side, With adjacent building on both sides 

or Isolated. 

● Number of Small Windows; 

● Number of Large Windows; 

● Number of Doors on Ground Floor; 

● Number of Balconies; 

● Number of Chimneys; 

● Vertical Irregularities; 

○ Soft-storey, Vertical alteration, Pounding or Other. 

● Horizontal Irregularities; 

○ Potential for torsion or Other. 

● Roof Type; 

○ Flat, Inclined with ceramic tile, Inclined with sandwich panel or Other. 

● Facade Images; 

A total of 15 features were selected for this study. For instance, when compared to state-

of-the-art works such as Gonzalez et al. (2020), who used only two features (number of 

storeys and the material of the LLRS), Ghione et al. (2022), who focused on a single 

feature (building typologies), and Aravena Pelizari et al. (2021), who used three features 

(number of storeys, material of the LLRS, and SBST), the approach developed in this 

work offers a comprehensive and detailed dataset for analysis. 
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4.4 Analysis and Processing of Collected Data 

As expected, several issues emerged concerning the quality and excess of information 

contained in the images. The building’s facade sometimes was not clearly visible in both 

the street views Google returned and the images that were taken on the field, leading to 

images with black borders, images in which the building’s facade or the building itself is 

not visible, and images that had obstructions (such as trees, vehicles, traffic signs, or even 

people) in the way. 

Table 4.2 - Images captured on the field where the building facade isn’t clearly visible. 

   

419369328_1024_0 209356615_319_2 708520232_1735_2 

4.4.1 Outliers Removal Algorithm 

To address problems related to non-visible facades or the presence of obstructions the 

approach of Aravena Pelizari et al. (2021) was used. The VGG16 DCNN (Simonyan & 

Zisserman, 2015), trained on the Places365 dataset (the latest subset of Places2 database 

with more than 1.8 million photos from 365 scene classes), was used to determine whether 

any of the images were actually of a building facade. To do this, a group 𝑆 of 24 

predefined building classes was defined: [‘apartment_building/outdoor’, ‘beach_house’, 

‘building_facade’, ‘chalet’, ‘church/outdoor’, ‘cottage’, ‘courthouse’, ‘embassy’, 

‘fire_station’, ‘hangar/outdoor’, ‘hospital’, ‘hotel/outdoor’, ‘house’, 

‘hunting_lodge/outdoor’, ‘mansion’, ‘manufactured_home’, ‘motel’, ‘office_building’, 

‘palace’, ‘schoolhouse’, ‘shed’, ‘skyscraper’, ‘synagogue/outdoor’, ‘tower’].  
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Then, the set of street view images was fed into the DCNN where the following rule was 

applied on the output (Aravena Pelizari et al., 2021): 

𝐿𝑖 = ′𝐹𝑎𝑐𝑎𝑑𝑒′ 𝑖𝑓 | 𝐶𝑖 ∩  𝑆 | ≥ 2, 𝑒𝑙𝑠𝑒 ′𝑂𝑡ℎ𝑒𝑟′, 

with 𝐿𝑖 representing the label of image 𝑖, and 𝐶𝑖 the 4 classes assigned as most likely.  

If the intersection of the top four model predictions with the set S is greater than or equal 

to two, the image is considered to contain a building (that is, there’s a facade). For 

example, if two of the top four predictions are “hospital” and “house”, this image is 

automatically labeled as a “Facade” because these two classes are in set S. If an image is 

classified as “Other”, it is discarded. 

4.4.2 Black Edge Trimming 

Regarding the black borders, since different smartphones were used in the field to capture 

the photographs of each building’s facade, the existence of images with black borders has 

proven to be a relevant factor and worthy of being fixed. This was done by using the 

Python library OpenCV. 

 

Figure 4.3 - Before and after removing black borders. 

 

 

  

 

 

988289703_2651_1 988289664_2612_1 

987168475_2319_1 
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First, the image is scanned and converted to grayscale before being thresholded to create 

a binary image that distinguishes between the object of interest and the background. It is 

then morphologically opened, which removes small objects while smoothing the 

boundaries of the larger object. The biggest exterior contour in the processed image is 

then detected using OpenCV’s findContours function. Its bounding box coordinates will 

then be acquired using boundingRect function. At last, the original image is cropped to 

isolate the largest object using these resulting bounding box coordinates, and the resulting 

image is saved back to the original file. If the bounding box coordinates begin at the top 

left corner of the image, it has already been cropped, and the algorithm skips it. 

This process wasn’t necessary on GSV images because there were no black edges, in 

other words, either there is an image for a given coordinate pair or not at all. 

 

Figure 4.4 - OpenCV developed code to remove black borders from images. 
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4.4.3 Data Annotation (Web Platform) 

For both the street views returned by Google and those collected in the field, the facade 

of the building may not be clearly visible since it may be obstructed by trees, vehicles, 

traffic signs, or even people, i.e., likely to contain anomalies. 

In order to obtain data in the best possible quality, a web platform (backend and frontend) 

hosted on AWS (Amazon Web Services) was also developed using Python combined with 

the Flask framework. Using the platform an expert could assess the quality of the data 

collected for both the images and the properties of each building using the following 

scale: “Excellent”, “Acceptable”, “Wrong”, and “Unclassified”. As shown in the 

following figures (Figure 4.5 and Figure 4.6), it was also possible to add or correct the 

properties that were previously collected in the field and also add comments when 

necessary (for example, “building is not visible”). 

Table 4.3 - Option for expert assessment. 

 Images - State Properties - State 

Excellent 
Images where the building’s facade 

is clearly visible. 
Properties are correct. 

Acceptable 

Images where the building’s facade 

is visible but obstructed by 

something. 

Properties are correct but there 

may be some missing. 

Wrong 
Images without visible facade or 

building. 

Properties do not match at all 

what is seen in the image. 

Unclassified Images yet to be reviewed (default). 
Properties to be reviewed 

(default). 

 

The platform allowed visualization and editing of the database contents, searching with 

filters, statistics to monitor the development and status of the analysis, and a page 

dedicated to the classification of the properties and images of each building. The main 

goal of this manual process was to increase the quality of the data to be used for the 

training. The experts were specialists in Civil Engineering and had the appropriate 

training to use the platform. 
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The following images show some of the platform’s interfaces. 

 

Figure 4.5 - Interface for viewing the contents of the database. 
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Figure 4.6 - Image and classification interface for a building. 
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4.5 Creation of the Dataset 

4.5.1 Cleaning the Dataset 

Considering the classifications after all the preprocessing tasks described previously and 

the manual annotation using the developed web platform, each image resulted in an entry 

in the dataset, i.e., a building with 𝑁 associated images will have 𝑁 entries. 

However, if any of the following occurs, the entries will be ignored: 

● The GSV image is “Unclassified” or “Wrong”; 

● The captured image is “Unclassified” or “Wrong”; 

● There are comments/notes; 

● The features to be used for training (e.g., construction material and number of 

floors) are not filled. 

● Finally, the outlier’s removal process (VGG16 + Places365) was also used. 

 

 

4.5.2 Classes Configuration 

As not all attributes could be used to define the classes, and to identify what would be the 

best combination of attributes for the future creation of the exposure model the following 

class configurations were created. 

A configuration reflects the classes resulting from the aggregation of two or more features 

previously chosen, as can be seen in the following sections, which shows the letter 

assigned to the respective configuration and its set of features. 
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4.5.2.1 Configuration A 

Buildings were grouped by building material and number of floors (in ranges). For this 

and other configurations where it was chosen to keep the building material it was 

necessary to remove buildings of type ‘Metallic’, ‘Adobe’ and ‘Wood’ since they had 

very few images associated with (9, 1 and 0, respectively) compared to the other options 

(‘Concrete’ and ‘Masonry’). 

Table 4.4 - Configuration A classes details. 

Classes Attributes 

● Masonry 1-3 

● Masonry 4+ 

● Concrete 1-3 

● Concrete 4-6 

● Concrete 7+  

Total Dataset Entries After “Cleaning” (VGG16 + Places365) 

5252 

Num. “Facade”s 4239 (80.71%) 

Num. “Other”s 1013 (19.29%) 

 
Figure 4.7 - Configuration A classes frequency. 
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4.5.2.2 Configuration B 

Buildings were grouped by building material and number of floors, using none or 

smaller intervals compared to configuration A. 

Table 4.5 - Configuration B classes details. 

Classes Attributes 

● Concrete 1 

● Concrete 2 

● Concrete 3 

● Concrete 4 

● Concrete 5 

● Concrete 6 

● Concrete 7+ 

● Masonry 1 

● Masonry 2 

● Masonry 3 

● Masonry 4 

● Masonry 5+ 

 

Total Dataset Entries After “Cleaning” (VGG16 + Places365) 

5252 

Num. “Facade”s 4239 (80.71%) 

Num. “Other”s 1013 (19.29%) 

 
Figure 4.8 - Configuration B classes frequency. 
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4.5.2.3 Configuration C 

Buildings were grouped according to their building material and construction period. 

Due to the removal of buildings with incomplete construction period data, for example 

ids 1831 (2 entries), 1840 (2 entries), and 2224 (3 entries), the dataset’s overall entries 

were reduced to 5247 from earlier configurations. However, because both construction 

material and period characteristics were now available, buildings with ids 1120 and 2072, 

which previously lacked the number of floors, were included in this arrangement. 

Additionally, one entry containing information on a facade was also removed during the 

cleaning process. In particular, the building with the id 2072 was first added to the dataset 

but then removed following an anomaly removal procedure. 

Table 4.6 - Configuration C classes details. 

Classes Attributes 

● Concrete 1960>=<1985 

● Concrete <1960 

● Concrete >1985 

● Masonry 1960>=<1985 

● Masonry <1960 

● Masonry >1985 
 

Total Dataset Entries After “Cleaning” (VGG16 + Places365) 

5247 

Num. “Facade”s 4233 (80.67%) 

Num. “Other”s 1014 (19.33%) 

 
Figure 4.9 - Configuration C classes frequency.  



 

29 

 

 

4.6 Splitting 

Regardless of the class configuration chosen, for the results in the following sections, the 

entire procedure, including the removal of the black borders, the web platform states, and 

the outlier removal step, was always used. The dataset was then divided into three subsets: 

training, test and validation. Randomly, for the training set, 80% of the dataset was 

assigned, with the remaining 20% assigned to the test set. For the validation set, 20% of 

the data from the training set was assigned (nested-splitting), resulting in 16% of the total 

dataset. In addition, the results were also tested for a training set with 70% of the dataset 

and the remaining 30% assigned to the test set. Again, for the validation set, 20% of the 

data from the training set was assigned. 

 

Figure 4.10 - Dataset splitting for configuration A. 
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4.7 Image Augmentation 

Image augmentation is a well-established machine learning strategy for improving the 

accuracy of models that rely on image input by producing new versions of existing data 

to artificially expand the size of a dataset. A data_augmentation model was created 

through TensorFlow Sequential, where the output of each layer is fed as input to the next 

layer in sequence. In this case, each layer represents an image augmentation technique 

that modifies the original input. The following augmentation layers were used on the 

training subset: 

● RandomFlip: This layer randomly flips the image horizontally. By setting the seed 

parameter, it ensures that the same transformation is applied to all images in a 

given batch during training, which helps with reproducibility. 

● RandomRotation: This layer randomly rotates the image by a degree between -0.1 

and 0.1, with fill_mode set to ‘nearest’. The fill mode parameter specifies how 

empty pixels should be filled after rotation. The ‘nearest’ option uses the pixel 

values that are closest to the empty space. 

● RandomZoom: With fill mode set to ‘nearest’, this layer randomly zooms in or 

out of the image by a factor between -0.1 and 0.1 in both the horizontal and vertical 

axes. This can aid in simulating photographs shot from various distances or with 

various camera settings. 

● RandomTranslation: With fill mode set to ‘nearest’, this layer randomly translates 

the image horizontally and vertically by a factor between -0.1 and 0.1. This can 

also aid in simulating photographs captured from various perspectives or 

positions. 

● RandomBrightness: This layer randomly adjusts the image’s brightness by a 

factor ranging from -0.1 to 0.1. This can help in simulating different lighting 

conditions. 

● RandomContrast: This layer randomly modifies the image’s contrast by a factor 

ranging from -0.1 to 0.1. This can aid in simulating images captured with various 

camera settings or under diverse lighting situations. 
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By applying these image augmentation techniques to the training data, the model can be 

made to be more robust to variations in the input data, which can lead to better 

performance on new, unseen data. Therefore, the size of the dataset was efficiently 

expanded which helped to prevent overfitting and improve the performance of the 

machine learning models.  

4.8 Class Weights 

Overfitting occurs when a model becomes overly complicated and begins memorizing the 

training data rather than learning general patterns. Because it has more samples to learn 

from some classes when dealing with unbalanced datasets, such as this one, the method 

may be more prone to overfitting on the majority class. In general, applying class weights 

is a practical method for handling unbalanced datasets and can improve the performance 

of machine learning algorithms (Fernández et al., 2018). The algorithm can develop a 

more balanced representation of the data by giving each class the proper weights, which 

can improve generalization and prevent overfitting. In other words, when one class has 

much more samples than another in a dataset, the algorithm may be biased towards the 

majority class and perform poorly on the minority class. This method can provide more 

attention to the minority class during training by assigning different weights to each class, 

resulting in a more balanced and accurate model. 
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5. MACHINE LEARNING ARCHITECTURES 

5.1 Selected Models 

Based on the articles referenced in the literature review section, six Convolutional Neural 

Networks (CNNs) that have been shown to be most successful on ImageNet, a large-scale 

classification, were selected: InceptionResNetV2, ResNet50V2, NasNetLarge, 

InceptionV3, Xception and DenseNet201. 

These architectures and their respective weights pre-trained on ImageNet allowed to use 

a technique called Transfer Learning with Fine Tuning, in which the earlier layers of the 

network are preserved, maintaining the low visual level of features they learned on the 

ImageNet dataset, while the later layers are re-trained to learn features specific to a 

particular domain, i.e., our problem. Fine tuning techniques has been shown to improve 

generalization performance in many classification tasks. 

Table 5.1 - Input sizes of pre-trained models. 

Models Image Sizes (Input) 

DenseNet201 224x224 

InceptionResNetV2 299x299 

InceptionV3 299x299 

NasNetLarge 331x331 

ResNet50V2 224x224 

Xception 299x299 

Apart from the characteristics and differences of each architecture, it should be noted that 

each one receives the data in its own way and that each image has to be resized both in 

the training and classification processes.  
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5.1.1 DenseNet201 

Traditional CNNs sequentially connect one layer to the next, which can result in 

information loss due to the vanishing gradient problem. It occurs during the training 

process when the gradients of the loss function with respect to the network’s parameters 

become extremely small as they are backpropagated through the layers of the network. 

When gradients become increasingly small, it becomes challenging to update the weights 

of the earlier layers effectively, and these layers may not learn meaningful features or 

contribute much to the overall learning process. DenseNet201 (Huang et al., 2017), on 

the other hand, is a DCNN architecture that overcomes this issue by adding dense 

connections between layers, where the number (201) in the model’s name denotes the 

number of neural network layers. 

The DenseNet architecture is made up of several dense blocks, each with a set of 

convolutional layers. Each dense block’s output is connected as input to the next dense 

block, resulting in a dense connection among the layers. This enables for more efficient 

exchange of data between layers and minimizes the number of training parameters. 

The basic idea behind dense connections is to concatenate the feature maps of all previous 

layers to the current layer rather than adding them as in residual networks (such as 

ResNet). This gives each layer access to the feature maps of all preceding layers, which 

improves feature reuse and, as a result, overall network performance. 

This design is made up of four dense blocks, each with a different number of 

convolutional layers. Each dense block is made up of a series of convolutional layers that 

have batch normalization and ReLU (Rectified Linear Unit) activation function, followed 

by a transition layer. The transition layer reduces the feature maps spatial dimensions 

while preserving the number of feature maps. This helps reduce the network’s computing 

cost. 

DenseNet201’s last layer is a global average pooling layer, followed by a fully connected 

layer with softmax activation. For each input image, the global average pooling layer 

computes the average of the feature mappings across spatial dimensions, resulting in a 

fixed-length feature vector that is mapped to a probability distribution over the classes by 

the fully connected layer. 
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DenseNet201 outperforms other state of the art architectures on benchmark datasets like 

CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton, 2009), and ImageNet while utilizing 

fewer parameters. Its dense connections allow for faster information flow, which leads to 

better feature reuse and, as a result, higher accuracy. 

5.1.2 InceptionResNetV2 

The InceptionResNetV2 architecture (Szegedy et al., 2017) combines the Inception 

architecture with residual connections (ResNet), which are shortcut connections that 

allow data to bypass neural network layers.  

It is built on the concept of “Inception modules”, which are layers that perform 

convolution, pooling, and other operations in parallel, allowing the network to learn 

information at different scales. Additionally, the architecture also incorporates “ResNet 

modules” that are based on the residual connection concept. These modules are used to 

connect the Inception modules and allow the network to learn more sophisticated and 

abstract characteristics in order to increase gradient flow and help prevent the vanishing 

gradient problem. 

The InceptionResNetV2 also features a number of other performance-enhancing 

techniques, including batch normalization, dropout, and weight decay, in which the model 

is trained using the cross-entropy loss function and optimized using stochastic gradient 

descent with momentum. 

This architecture is an enhancement to a previous version that includes a greater number 

of Inception-ResNet modules. It incorporates broader layers in some areas of the network, 

increasing the network’s ability to learn more complex features and representations. 

Furthermore, the Inception blocks utilized in InceptionResNetV2 include batch 

normalization before the activation function, which can increase the training process’s 

stability. 

InceptionResNetV2 architecture, as a whole, is a powerful CNN that can achieve cutting-

edge performance on a range of computer vision tasks, including picture classification 

and object recognition. For the network to acquire features at various dimensions and 

levels of abstraction, which is necessary to achieve high accuracy on challenging visual 

tasks, both Inception and ResNet modules must be used. 
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5.1.3 InceptionV3 

InceptionV3 (Szegedy et al., 2016) is a CNN architecture built for image classification 

and object recognition tasks. It is based on the concept of “Inception modules”, which are 

designed to collect spatial characteristics of images at various sizes efficiently. 

This architecture includes multiple layers of convolutional and pooling operations, as well 

as inception modules with multiple parallel convolutional layers of varying filter sizes 

(1x1, 3x3, and 5x5, for example), as well as 1x1 convolutions to reduce the number of 

channels and prevent overfitting. 

Furthermore, “auxiliary classifiers” at intermediary layers allow the network to learn 

more robust features and assist prevent the vanishing gradient problem during training. 

Overall, the InceptionV3 architecture is one of the best among the competition on various 

large-scale picture classification benchmarks (such as ImageNet), while being 

computationally efficient and scalable. It is commonly used in computer vision 

applications such as image recognition, object detection, and segmentation.
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5.1.4 NasNetLarge 

NASNet, or Neural Architecture Search Network (Zoph et al., 2018), is a deep learning 

architecture designed for image recognition applications, with the main goal of 

automating the creation of neural network architectures. Creating a neural network 

architecture is typically a time-consuming and complex procedure that requires a great 

deal of trial and error. NASNet, on the other hand, uses a process known as reinforcement 

learning to automatically seek for the best architecture for a given task. 

Reinforcement learning is a type of machine learning in which an agent learns to make 

decisions by interacting with its surroundings. The neural network architecture is the 

agent in the case of NASNet, while the environment is the image recognition problem. 

The agent learns from the environment by getting feedback in the form of a reward signal, 

which indicates how well the architecture is performing on the job. 

In the NASNet architectural search process, a large number of candidate architectures are 

trained on a smaller amount of data. After that, the best architectures are chosen and 

trained on the entire dataset. This technique is repeated until the required level of 

performance has been achieved. 

NASNet has demonstrated the usefulness of the automated architectural search strategy 

by achieving state-of-the-art performance on a variety of image recognition benchmarks. 

Furthermore, NASNet has been proved to be transferable, which means that designs 

discovered for one work can be employed for other similar activities, decreasing the 

requirement for manual architecture design even further. 

Overall, it is a big step forward in the field of deep learning, giving an automated and 

scalable technique to creating neural network designs for image identification tasks. 

But why use “Large” architecture rather than “Mobile”? In summary, NASNetLarge is a 

larger and more complex architecture intended for high-accuracy image recognition 

applications, whereas NASNetMobile is a smaller and more efficient architecture 

intended for mobile and embedded devices with limited processing resources. Both 

designs were created using automated architectural search and have performed well on a 

range of workloads. 
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5.1.5 ResNet50V2 

ResNet50V2 (He et al., 2016b) is a deep learning architecture designed to improve the 

performance of CNNs for use in computer vision applications such as image recognition 

and object detection. It is a 50-layer ResNet based design, which pioneered the concept 

of residual blocks in deep neural networks to tackle the disappearing gradient problem. 

The introduction of residual connections, which enables the training of very deep neural 

networks with many layers, was ResNet50V2’s key advance. The remaining connections 

allow data to move from one layer to the next without passing through multiple 

intermediate layers. By addressing the vanishing gradient problem, this strategy makes it 

easier to train deeper networks. 

The residual connections are introduced between convolutional layer blocks, each of 

which has numerous convolutional layers with a growing number of filters being the last 

layer of the network, a fully connected layer that outputs a probability distribution across 

the various classifications. It was trained on large datasets such as ImageNet, which 

contains millions of annotated pictures, and delivers world-class performance on a range 

of benchmark datasets. 

Overall, ResNet50V2 is a sophisticated machine learning architecture that has proven to 

be cutting-edge in a range of computer vision applications. 
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5.1.6 Xception 

Xception (Chollet, 2017) is a deep learning architecture based on the concept of depth 

wise separable convolutions, a sort of convolutional operation that can be utilized to 

minimize the computational complexity of CNNs while maintaining performance. 

Each convolutional layer in a typical CNN applies a set of filters to the full input volume, 

specifically, the entire three-dimensional input data, including all the pixels and channels, 

in order to extract features from it. This can be computationally costly, particularly if the 

input volume is very large. Depthwise separable convolutions address this issue by 

splitting the typical convolution into two operations: a depthwise convolution and a 

pointwise convolution. 

Depthwise convolution applies a single filter to each input channel individually, resulting 

in a set of output feature maps with the same number of channels as the input. The 

pointwise convolution then applies a series of 1x1 filters to the depthwise convolution 

output, resulting in a set of output feature maps with differing channel counts than the 

input. 

Depthwise separable convolutions have the advantage of requiring fewer parameters and 

computations than classic convolutions while still capturing crucial spatial and channel-

wise correlations in the data. As a result, they are ideal for mobile and embedded systems 

with low processing resources. 

Xception uses the concept of depth wise separable convolutions to construct a DCNN 

architecture capable of performing state-of-the-art computer vision applications. It 

replaces classic CNNs regular convolutional layers with a set of depthwise separable 

convolutions interleaved with shortcut connections to optimize information flow and 

gradient propagation. 
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6. TRAINING 

Initially, for the training of each model architecture, a set of metrics and parameters were 

set, such as a threshold of 50 epochs and a batch size of 32.  

6.1 Transfer Learning 

Transfer Learning (Yang et al., 2020) is a machine learning technique that applies 

knowledge learned from a pre-trained model on bigger dataset to another similar task or 

dataset. The underlying notion behind it is that knowledge gained from solving one 

problem can be applied to a different but related problem. Transfer learning, by 

employing pre-trained models as a starting point, can speed up the training process, need 

less labeled data for the target task, and frequently result in greater generalization and 

performance. There are two general techniques to transfer learning: Feature Extraction 

and Fine-Tuning. 

The following image shows the developed code snippet with the flexibility to implement 

these techniques on a model based on the specified “FINE_TUNE” flag and the chosen 

pre-trained model architecture. It begins by defining an input layer with a specific shape, 

representing the size of input images with three color channels: red, green and blue 

(RGB). The script then calls a function called “get_pretrained_model” to obtain the 

desired pre-trained neural network model. Next, if the flag “FINE_TUNE” is set to 

“True”, the script proceeds to fine-tune the model. The choice of layers to unfreeze from 

is determined by a dictionary, which maps the pre-trained model with the corresponding 

layer. If the flag is set to “False”, then all the layers from the pre-trained model are frozen 

– default transfer learning with feature extraction. Lastly, regardless the flag state, the 

code defines additional layers for classification tasks on top of the model. These layers 

include flattening the output, adding a dense layer with ReLU activation, applying 

dropout for regularization, and finally, a dense output layer with a softmax activation 

function for classification. 
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Figure 6.1 - Transfer Learning Feature Extraction VS Fine-Tuning procedures. 

 

6.1.1 Feature Extraction 

In this approach, the pre-trained model is employed as a feature extractor. Its weights are 

frozen, and only the weights of the newly added layers, also known as “classifier layers”, 

are trained on the target task. The pre-trained model extracts significant features from the 

input data, which are then fed into the newly added layers to perform the final 

classification task. 
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6.1.2 Fine-Tuning 

Fine-tuning goes beyond feature extraction by allowing the pre-trained model’s weights 

to be adjusted while training on the target task. During this process, a few of the top layers 

of a frozen base model are unfrozen, allowing for joint training of the newly added 

classifier layers as well as the base model’s final layers. Using this method, we can “fine-

tune” the higher-order feature representations in the base model, making them more 

relevant to the job at hand. The model can adapt and specialize its acquired features to the 

target job by updating these unfrozen layers, exploiting the pre-trained knowledge to 

improve performance and generalization. 

When using the Transfer-Learning with Fine-Tuning technique to train the models, a 

“unfreeze_from” dictionary was used to specify which layer to start fine-tuning from for 

a specific pre-trained model; in other words, it maps model names to layer names, 

indicating the last layer that will remain frozen during training. The pre-trained model is 

then made trainable, and the dictionary of unfreezing layers is searched to see if a fine-

tuning layer exists for the particular model architecture. If the layer is found, all layers 

before it are frozen, and only the layers following the fine-tuning layer are trained. If it 

cannot be found, an error is displayed, and all layers are frozen (working as a default 

Transfer-Learning with Feature Extraction). Finally, following TensorFlow’s 

documentation5, a loop is executed over all the layers in the pre-trained model, and if a 

layer is an instance of “BatchNormalization”, it is frozen (setting trainable as “False”) to 

avoid training issues: 

➔ “(...) When you unfreeze a model that contains BatchNormalization layers in 

order to do fine-tuning, you should keep the BatchNormalization layers in 

inference mode by passing ‘training = False’ when calling the base model. 

Otherwise, the updates applied to the non-trainable weights will destroy what the 

model has learned.” 

 
5
 

https://www.tensorflow.org/tutorials/images/transfer_learning#important_note_about_batchnormalization

_layers 

https://www.tensorflow.org/tutorials/images/transfer_learning#important_note_about_batchnormalization_layers
https://www.tensorflow.org/tutorials/images/transfer_learning#important_note_about_batchnormalization_layers
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6.2 Hyperparameter Tuning 

As can be seen in the Figure 6.2, using TensorFlow’s Keras API, the neural network 

model started with a “Input” layer defined with the shape of the input data specified as a 

tuple of the size of the image (pre-trained model input dimensions) and three-color 

channels (RGB). 

 

 
Figure 6.2 - Model layers order and organization. 

The code invokes the “get_pretrained_model” auxiliary method to retrieve a pre-trained 

model to be used as a feature extractor. This model’s output is then flattened with the 

“Flatten” layer before being fed through a fully connected (“Dense”) layer with 1024 

nodes and a ReLU activation function. To prevent the model from overfitting, a dropout 

layer is introduced with a rate of 0.2. Lastly, the output is a fully connected layer with a 

softmax activation function that predicts the probability of each class. The built model is 

saved in the variable “my_model” with a custom name that reflects the pre-trained model 

and the used technique (Transfer-Learning with Feature Extraction or Fine-Tuning). 

6.2.1 Regularization Methods 

As explained before, overfitting occurs when a model begins memorizing the training 

data rather than learning general patterns. In order to prevent this from happening, a 

Dropout layer was used with a rate of 0.2 as a regularization technique to avoid overfitting 

and to increase the robustness of the neural network in order to improve the generalization 

capabilities of the model. In other words, the Dropout layer works by randomly “dropping 
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out” a specific fraction of the input units (neurons) throughout each training stage. The 

“0.2” means that during training, 20% of the input units will be set to 0 at each update, 

while the remaining 80% will be rescaled by 1 / (1 −  𝑑𝑟𝑜𝑝𝑜𝑢𝑡_𝑟𝑎𝑡𝑒) to retain the 

overall magnitude of the input. 

Beyond that, when fitting the model, “EarlyStopping” and “ReduceLROnPlateau” 

callbacks were added to help prevent overfitting and enhance model performance. The 

first callback checks the validation loss throughout training and stops it if it does not 

improve after a set number of epochs (specified by patience with 10 epochs). The second 

callback is used to dynamically adjust the learning rate during training by monitoring 

validation accuracy and reducing the learning rate by a factor of 0.5 if the metric does not 

improve after a given number of epochs (defined by patience with 5 epochs), in other 

words, taking smaller steps towards the optimal solution. 

 

Figure 6.3 - Model fitting callbacks. 

6.2.2 Evaluation Metrics 

When analyzing the efficiency of machine learning models, it is critical to take into 

account a variety of metrics that provide insight into various elements of the model’s 

performance.  

6.2.2.1 Accuracy 

Accuracy computes the ratio of correctly predicted instances to the total number of 

instances in the dataset as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 



 

44 

 

6.2.2.2 Precision 

Precision measures the proportion of accurately predicted positive cases (𝑇𝑃 - true 

positives) out of all instances predicted as positive (𝑇𝑃 + 𝐹𝑃, with 𝐹𝑃 representing false 

positives). It calculates the model’s capacity to minimize false positives as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

6.2.2.3 Recall 

The proportion of properly predicted positive cases (true positives) out of all actual 

positive instances (𝑇𝑃 + 𝐹𝑃, with 𝐹𝑃 representing false negatives) is measured by recall, 

also known as sensitivity or true positive (𝑇𝑃) rate. It assesses the model’s ability to 

minimize false negatives as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

6.2.2.4 F1 Score 

The F1 Score is derived from the harmonic mean of precision and recall. It gives a 

balanced assessment of a model’s performance by taking both recall and precision into 

account at the same time, and is calculated as follows: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

6.2.3 Optimization Algorithms 

Optimizers are algorithms that adjust or tweak the properties of a neural network, such as 

layer weights or learning rate, to reduce loss and so enhance the model. Adam (Adaptive 

Moment Estimation) (Kingma & Ba, 2015) is a deep neural network training adaptive 

optimization technique that can be thought of as a combination of the properties of 

AdaGrad (Adaptive Gradient Algorithm) (Duchi et al., 2011) and RMSprop (Root Mean 

Square Propagation Algorithm) (Tieleman & Hinton, 2012). When compared to others, 

this algorithm was chosen for the task with a learning rate of 0.0001 because of its 

efficiency and speed, low memory demand, wide applicability, and robustness to sparse 

gradients. 
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6.3 Training History 

For configuration A, Xception and InceptionV3 were the best performing models. The 

following figures show the training history of these models with Transfer Learning and 

Fine-Tuning. 

 
Figure 6.4 - Xception model training history. 

 
Figure 6.5 - InceptionV3 model training history.  

When inspecting the Xception model training history, Figure 6.4, an oscillation or 

unstable pattern can be seen around epoch number 7. In other words, “sharp spikes” or 

“dips” in the validation loss or accuracy may suggest that the model is struggling to 

generalize and is extremely sensitive to slight differences in the training data, a condition 

known as overfitting. The loss/accuracy discrepancy is another major symptom of this 

issue. After a certain number of epochs (ten for the first, twelve for the second), the 

training loss (blue line) continues to decrease while the validation loss plateaus or begins 

to increase, indicating that the model is memorizing the training data rather than learning 

generalizable patterns. Similar to the loss values, a significant difference between training 

and validation accuracy, also indicates potential overfitting. As can be seen, training 

accuracy improves while validation accuracy stagnates or decreases, indicating that the 

model is becoming too specialized in the training data and may not perform well on new 

examples. 
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In summary, overfitting is a complex phenomenon driven by factors such as dataset 

quantity, quality and diversity of samples (which are unchangeable at the time of writing), 

model complexity, and hyperparameter settings. It is critical to analyze these elements 

collectively rather than relying exclusively on individual outcomes from training graphs. 

As a result, regularization techniques such as dropout, early stopping, or class weighting 

were applied to add constraints to the model’s learning process; otherwise, the outcomes 

would have been substantially worse. 

Table 6.1 - Training history results for each model with fine-tuning (configuration A). 

Transfer Learning + Fine-Tuning 

Training History 

Results 

(Configuration A) 

Train 

Loss 

Val. 

Loss 

Train 

Accuracy 

Val. 

Accuracy 

Elapsed 

Time 

(mm:ss) 

Num. 

Epochs 

DenseNet201 0.02258 0.22636 0.99337 0.96165 13:38 23 

InceptionResNetV2 0.01509 0.31952 0.99466 0.94100 20:57 26 

InceptionV3 0.01585 0.28321 0.99392 0.94100 12:03 23 

NasNetLarge 0.03079 0.34904 0.98876 0.93068 28:52 20 

ResNet50V2 0.03487 0.20026 0.98821 0.95870 08:00 19 

Xception 0.01463 0.40957 0.99392 0.93953 11:55 17 

Average ( x̅ ) 0.02230 0.29799 0.99214 0.94543 15:54 21 

The average training accuracy of 0.99214 and validation accuracy of 0.94543 show that 

the models perform well on both sets. Similarly, the low average loss values for training 

of 0.02230 and validation of 0.29799 indicate that the models effectively minimize errors 

throughout training and evaluation. 

Aside from the models clearly exhibiting overfitting, as evidenced by the significant 

disparity between training and validation performance, the high training accuracy 

indicates that the models have learned the training data well, whereas the lower validation 

accuracy indicates difficulty generalizing to new data.  

Overall, the results suggest the models are performing well and reaching high accuracy 

with low losses, implying that learning and generalization were successful. 
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7. RESULTS 

The six different trained CNN architectures were evaluated using transfer learning with 

two different approaches: feature extraction and fine-tuning. As expected, while all 

models showed similar results, the best performance was consistently achieved when 

using transfer learning with fine-tuning.  

The results achieved match the expected benefits of using this technique, including task 

adaptation, increased model capacity, and knowledge transfer. Overall, the results show 

how this technique can improve model performance and highlight how pre-trained models 

can be used to take on new tasks. Besides, when compared with some related works 

referenced earlier, the results are at least similar, and in some cases are better. 

Table 11.1 demonstrates that, compared to the results that were obtained for models 

trained with a training set with a larger number of data (80%), a smaller training set (70% 

of the total data) and a correspondingly larger test set (30%) result in a worse accuracy 

regardless of the selected configuration and model. This occurs because the model 

struggles to recognize the patterns in the data since it has less data to learn from during 

training. As a result, it performs worst when tested against new, unseen data. 
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Table 7.1 - Accuracy results comparison between each model-configuration with fine-tuning 

(training w/70%). 

Transfer Learning + Fine-Tuning (Training Set w/70%) 

Accuracy Results  

(Test Subset) 

CONFIGURATIONS 

A B C 

DenseNet201 0.788 0.733 0.750 

InceptionResNetV2 0.810 0.736 0.761 

InceptionV3 0.812 0.752 0.747 

NasNetLarge 0.770 0.704 0.728 

ResNet50V2 0.773 0.741 0.741 

Xception 0.821 0.763 0.759 

Average ( x̅ ) ~0.796 ~0.738 ~0.748 

 

Nevertheless, as shown by the results in Table 11.3, it is advised to choose a ratio of 80% 

to 20% for training and testing data since it achieves a fair balance between having enough 

data for the model to be trained efficiently and enough test data for accurate evaluation. 

Compared to smaller training set sizes, such as the one used for Table 11.1, it enhances 

model generalization, which results in improved overall performance. 

Table 7.2 - Accuracy results comparison between each model-configuration with feature extraction 

(training w/80%). 

Transfer Learning + Feature Extraction (Training Set w/80%) 

Accuracy Results  

(Test Subset) 

CONFIGURATIONS 

A B C 

DenseNet201 0.798 0.750 0.754 

InceptionResNetV2 0.783 0.684 0.739 

InceptionV3 0.750 0.702 0.724 

NasNetLarge 0.762 0.673 0.730 

ResNet50V2 0.776 0.716 0.719 

Xception 0.776 0.700 0.744 

Average ( x̅ ) ~0.774 ~0.704 ~0.735 

Table 7.3 - Accuracy results comparison between each model-configuration with fine-tuning 

(training w/80%). 

Transfer Learning + Fine-Tuning (Training Set w/80%) 
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Accuracy Results  

(Test Subset) 

CONFIGURATIONS 

A B C 

DenseNet201 0.833 0.781 0.793 

InceptionResNetV2 0.835 0.787 0.744 

InceptionV3 0.836 0.764 0.754 

NasNetLarge 0.800 0.749 0.757 

ResNet50V2 0.829 0.769 0.763 

Xception 0.858 0.791 0.779 

Average ( x̅ ) ~0.832 ~0.774 ~0.765 

For instance, the accuracy results for each model configuration in the test subset (images 

that the models have never seen) are shown in the tables above. As can be seen, the 

accuracy is generally better when the models were trained using the fine-tuning technique, 

with an average accuracy of roughly 80%. In configuration A, Xception reached the best 

result with 85.8% accuracy (Figure 7.1 and Table 7.3). 

 

Figure 7.1 - Confusion matrix for configuration A and Xception model trained with fine-tuning. 

Table 7.4 - Classification report for configuration A and Xception model trained with fine-tuning. 

 Precision Recall F1 Score Support 

Concrete 1-3 0,7857143 0,8800000 0,8301887 100 
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Concrete 4-6 0,8807339 0,8067227 0,8421053 238 

Concrete 7+ 0,9160305 0,9160305 0,9160305 131 

Masonry 1-3 0,8651685 0,8700565 0,8676056 177 

Masonry 4+ 0,8325359 0,8613861 0,8467153 202 

Macro AVG 0,8560366 0,8668392 0,8605291 848 

Weighted AVG 0,8602514 0,8584906 0,8585408 848 

The “Support” column in the classification report (Table 7.4) provides the number of 

instances in the test subset for each class. Additionally, the “Weighted AVG” row 

considers each class’s performance weighted by its proportion in the data, which accounts 

for the class imbalance. As a result, the Precision, Recall, and F1 Score weighted averages 

are, respectively, 0.8602512, 0.8584906, and 0.8685389.  

It’s important to point out that “Concrete 1-3” had the worst accuracy and, as a result, the 

worst F1 Score. This is likely because, as can be seen in Figure 4.7, it has the fewest data 

among all dataset subsets. That is, there weren’t enough samples in the training subset to 

allow the model to generalize and get a better result on the test subset. 

Despite the differences in these measurements between classes, they show overall fairly 

good performance in identifying each of the categories. 
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Figure 7.2 - ROC Curves for configuration A and Xception model trained with fine-tuning. 

Using the “One-VS-All” (OvA) approach, the ROC (Receiver Operating Characteristic) 

Curves can be expanded to assess the performance of each class separately, which helped 

to look into this model more effectively. Its performance in distinguishing between 

classes improves with increasing Area Under the Curve (AUC) size. By looking at the 

theoretical graph in the lower right corner of Figure 7.2, the model performs very well 

overall, approaching excellence. However, the question of how the algorithm could 

anticipate these features simply by looking at an image arose throughout development. 

Activation heatmaps were created to try to explain this behavior. 
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Figure 7.3 - Three randomly picked activation heatmaps from the test subset. 

Grad-CAM (Gradient-Weighted Class Activation Mapping) is a machine learning 

technique that identifies the region of the image that has the most influence on the 

prediction that was made (the region that is most activated). This enables us to find 

potential errors or areas for improvement as well as comprehend the logic behind the 

model’s predictions. 

Figure 7.3 displays three randomly selected pictures from the test subset that the model 

correctly predicted. The first image (on the left) was returned by Google’s API, while the 

other two were taken in place. 

A tree can be seen in the first image, obtained from the GSV, hiding a small region of the 

building’s facade. However, it was neither significant enough to be detected during the 

anomaly removal procedure nor to mislead the model prediction. 

Figure 7.4Figure 7.3 illustrates three images from the test subset, all of which were 

incorrectly predicted by the model. The first and third images (on the left and right, 

respectively) were captured in the research area, while the middle image was obtained 

through Google's API. 

These mispredictions highlight the challenges associated with classifying building 

characteristics, including construction material and the number of floors. Notably, even 

for qualified professionals, identifying materials such as concrete and masonry solely 

through visual inspections can be difficult.  
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Figure 7.4 - Three activation heatmaps from the test subset with mispredictions. 

While the model accurately predicts the number of floors in the central image, other 

instances of prediction errors may result from the inherent difficulty in visually 

distinguishing between these specific building materials. Furthermore, upon closer 

examination of the third (right) image, it becomes clear that the activated region is not 

properly concentrated on the building's facade, i.e. it ignores the upper floors, which is in 

line with the incorrect prediction of the number of floors. This observation suggests a 

potential limitation in the model's ability to capture details in higher buildings or, for the 

opposite situation, that is, when it fails the prediction because it ignores the first floor of 

the building (ground floor). 

Overall, the model performs as expected given its training. In other words, it sharply 

concentrates on the building’s facade independently of other elements in the scene, such 

as nearby cars and trees. 
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8. DISCUSSION AND CONCLUSION 

The contributions of this work, as compared to the state of the art, are the wider variety of CNN 

architectures utilized, the increased number of building characteristics used, and the careful 

handling of the data - being manually and automatically verified. 

When directly comparing with the results obtained from the related state of the art, besides the 

context and limitations of each study as well as possible dataset biases and other external 

factors, the Transfer Learning approach with Fine-Tuning seems to yield the better results. 

However, different datasets and building attributes in different locations can definitely impact 

the model’s performance. Factors such as the number of classes, data quantity and quality, and 

distribution may vary, leading to different results (as demonstrated by the results obtained from 

different class configurations and subset sizes - training subset with 70% or 80% of the total 

data, for example). 

In particular, the developed Xception model has shown promising performance, outperforming 

the best model reported in the Oslo paper in terms of accuracy and precision, although its recall 

is slightly lower compared to the top-performing models in other works. Overall, the 

performance metrics (accuracy, precision, and recall) of the developed models are generally in 

the same range as those reported in the papers, indicating that the model (this one in particular) 

is a strong competitor against the state-of-the-art models in the field. 

For example, in the study conducted by Aravena Pelizari et al. (2021), different accuracy results 

were obtained based on three distinct building features. Notably, the transfer-learned NasNet-

A consistently performed the best across all scenarios. In the first scenario, which involved six 

classes representing only the height of the buildings (storeys), the highest accuracy achieved 

was 85.9%. In the second scenario, with seven classes representing the material of the LLRS, 

the top accuracy reached 87.1%. Lastly, in the third scenario, with 14 classes representing the 

SBST (an aggregation of classes from the two previously described scenarios), the best 

accuracy obtained was 82.7%. On the other hand, in the Oslo Study (Ghione et al., 2022), with 

6 classes representing only the building typologies, the fine-tuned DenseNet201 was the best 

model with 82.5% of accuracy. 
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Although the results so far are encouraging, the performance of the final model can still be 

improved. In comparison to other similar works, the dataset used in this one can be considered 

as being relatively small. The chosen approach also has inherent limitations. We have identified 

2844 buildings in total for the Alvalade parish, a number that doesn’t change in a short period 

of time. If we were to rely only on the automated method, we would have only 2844 images in 

our dataset, which would be considerably insufficient given the difficulty of our target problem. 

The effectiveness of the model is strongly dependent on the size of the dataset, which relies on 

the region being studied. 

Future research should be centered on the developed CNNs capacity to be used in various 

regions or even countries, both with and without retraining the entire neural network, that is, 

without going through the full procedures again. This means that it’s crucial to know how much 

of what has already been done may be applied to other cities and still produce acceptable results. 

This is expected to be possible, at least in other locations or cities in Portugal, where the building 

types are fairly similar and the models can generalize. 

In order to decide the best predicting characteristics, future work will test the use of additional 

classes that combine other pertinent building-related attributes. Also, the trained models will be 

applied to other Lisbon boroughs to assess the generalizability of the overall approach. The 

outcomes will also be compared to ground truth seismic event data. Additionally, at the time of 

this document’s submission, optimization of several of the steps of this work has already begun. 

It will be possible to determine not only the precise location of each building but also the route 

between the person’s current location and the building thanks to the development of a mobile 

application and the resulting new website. In addition, it will be possible to take pictures of its 

facade and annotate its features directly on the application. With this new improvement, 

independent of the application’s speed, usability, and responsiveness, a rise in productivity 

related to this step is anticipated as a number of tasks are brought together in one place at the 

same time. 

In conclusion, this study clearly demonstrates the possibility for automating the classification 

of building typologies in order to simplify wide seismic risk assessment using machine learning 

and existing street-level images. A state-of-the-art CNN, fine-tuned on the ImageNet database, 

such as Xception, was used to construct a model that achieved 86% accuracy on unseen data by 

utilizing information from Google Street View and images captured during fieldwork. The 
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workflow that has been produced points out a quick and highly automated method for assessing 

seismic risk while minimizing costs and time demands.  

Furthermore, this research emphasizes the efficiency of CNN models for attribute classification, 

offering insightful information on the effectiveness of different architectures and techniques in 

diverse geographic locations. However, as with any comparison research, careful interpretation 

of the results is important: considering the particular attributes, classes, and unique 

characteristics of each study. It is also very important to keep in mind that real-world 

applications could bring up more complications and differences requiring for more research. 

Nevertheless, the results of this study highlight the potential influence of machine learning-

driven techniques in seismic risk assessment and present a promising direction for further 

development in the area. 
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