
Proceedings of CIBB 2014 1

Network-based survival analysis methods for pathway detection in
cancer

Antonella Iuliano (1,§), Annalisa Occhipinti (2,§), Haoming Xu(2), Claudia Angelini (1), Italia De Feis
(1), Pietro Lió (2)
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Abstract. We compare three penalized Cox regression methods for high-dimensional
survival data in order to identify the pathways involved into cancer occurrence and pro-
gression. We analyze each method with three gene expression datasets including breast,
lung and ovarian cancer. More precisely, we focus on cancer survival prediction and on
top signature genes. The goal of this study is to gain a deeper insight of the benefits
and drawbacks of the regression techniques in order to find the pathways involved in a
specific type of cancer and identify cancer biomarkers useful for prognosis, diagnosis
and treatment.

1 Scientific Background
Cancer is a multi-factorial disease since it is caused by a combination of genetic

and environmental factors working together in a still unknown way. Genetic screen-
ing for mutations cannot predict exactly whether a patient is going to develop a disease
but only the risk to have the disease. Hence, a woman inheriting an alteration in the
BRCA2 gene can develop breast cancer more likely than other women, although she
may also remain disease-free. The genetic mutation is only one risk factor among many.
Lifestyle, environment and other biological factors are also involved in the study of the
disease development. The integration of all this supplementary information is the key
point of such analysis in order to stress the mechanism of disease progression and iden-
tify reliable biomarkers. The advancement of recent biotechnology has increased our
knowledge about the molecular mechanism involved into cancer progression. However,
this biological knowledge is still not fully exploited since the integration of all those
different types of data generates the high-dimensionality problem. Indeed, gene expres-
sion data share a common scenario: the number of covariates (molecular and clinical
information) exceed the number of observations (patients). As a result, many classical
statistical methods cannot be applied to analyze this kind of data and new techniques
need to be proposed to cope with the high-dimensionality problem.

Cancer research is also based on survival analysis, which is usually applied to study
microarray gene expression data and evaluate cancer outcomes depending on time in-
tervals. Those intervals start at a survival time and end when an event of interest occurs
(a death or a relapse). By using this technique and exploiting the relationship between
event distributions and gene expression profiles, it is possible to achieve more accurate
prognoses or diagnoses. Moreover, including other variables and comorbidity into a
survival model can be also useful to identify genes that are significant for the events of
interest. Due to the high-dimensionality of gene expressions data, the Cox proportional
hazard model [2] is usually used in survival analysis combined with penalties tech-
niques. Specifically, regression methods such as L2-Cox, L1- Cox and elastic net Cox
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Figure 1: Cancer survival model. Three penalized Cox regression methods (Net-Cox, AdaLnet and
Fastcox) are compared for survival analysis with high dimensional data including different patients and
cancer features.

models (an improved variant of the lasso for high-dimensional data [9]) have been intro-
duced to incorporate the gene pathways information. A pathway is a group of genes that
are involved in the same biological process or have similar biological functions. Those
genes are co-regulated and their expression levels are expected to be highly correlated.
The pathway structures play a biologically important role to understand the complex
process of cancer occurrence and progression.

Our aim is to compare the most recent methods based on the integration of pathway
information into network-based survival analysis (as illustrated in Figure 1) in order to
identify common pathways between different kind of cancer and overcome the limita-
tions of the existing methodologies for survival analysis with high-dimensional data.

2 Materials and Methods
2.1 Introduction
A crucial point in genomic research is to identify a list of genes and pathways in-

volved in cancer and use gene expression data to predict different molecular and clinical
outcomes. The Cox model [2] is the most popular survival model used to describe the
relationship between survival times and predictor variables. Given a sample of n sub-
jects, let Ti and Ci be the survival time and the censoring time respectively for subject
i = 1, . . . , n. Let ti = min {Ti, Ci} be the observed survival time and δi = I(Ti ≤ Ci)
the censoring indicator, where I(·) is the indicator function (i.e δi = 1 if the survival
time is observed and δi = 0 if the survival time is censored) and Xi = (Xi1, . . . , Xip)

′

be the p-variable vector for the ith subject (i.e. the gene expression profile of the ith
patient over p genes). The survival time Ti and the censoring time Ci are assumed
to be conditionally independent given Xi. Furthermore, the censoring mechanism is
assumed to be non-informative. The observed data can be represented by the triplets
{(ti, δi, Xi) , i = 1, ..., n}. The Cox regression model assumes that the hazard function
h(t|Xi), which means the risk of death at time t for the ith patient with gene expression
profile Xi , is given by

h(t|Xi) = h0(t)exp

(
p∑
i=1

X′
iβ

)
= h0(t)exp(X

′β)

where h0(t) is the baseline hazard and β = (β1, . . . , βp)
′ is the column vector of the

regression parameters. In the analysis of microarray gene expressions, if the number of
predictors p (genes) is much greater than the number of observations n (patients), the
Cox model cannot be applied directly and a regularization approach needs to be used to
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select important variables from a large pool of candidates. For instance, a Lasso penalty
can be used to remove not significant predictors by shrinking their regression coeffi-
cients exactly to zero. Due to the high correlation among variables (genes), network-
based regularization methods have been introduced in order to identify the functional
relationships between genes and overcome the gap between genomic data analysis and
biological mechanisms. By using these network-based models, it is possible to obtain
a deeper understanding of the gene-regulatory networks and investigate the gene signa-
tures related to the cancer survival time. The regression coefficients are estimated by
maximizing the penalized Cox’s log-partial likelihood function

lpen(β) =
n∑
i=1

δi

X′
iβ − log

 ∑
j∈R(ti)

exp(X′
jβ)

− Pλ(β), (1)

where ti is the survival time (observed or censored) for the ith patient, R(ti) is the risk
set at time ti (i.e. the set of all patients who still survived prior to time ti) and Pλ(β) is
a network-constrained penalty function on the coefficients β.

2.2 Network-constrained Cox regression
In this work, we analyze three penalized Cox regression methods for high-dimensional

survival data in order to determine pathway structures involved into cancer disease. We
assume that the relationships among the covariates (genes) are specified by a network
G = (V,E,W ) (weighted and undirected graph), where V = {1, ..., p} is the set of ver-
tices (covariates), an element (i, j) in the edge set E ⊂ V × V indicates a link between
vertices i and j, and W = (wij), (i, j) ∈ E is the set of weights associated with the
edges. Each edge in the network is weighted between [0,1] and indicates the functional
relation between two genes [10]. The Functional Linkage graph plays an important role
in our tests since it includes more information than Human protein-protein interaction,
frequently used as the network prior knowledge.

The first method used in this analysis defines a network-based Cox regression model,
called Net-Cox [8]. It integrates gene network information into the Cox’s propor-
tional hazard model to explore the co-expression and functional relation among high-
dimensional gene expression features. The network penalty function in Eq. (1) is given
by

Pλ,α(β) = λ
[
α|β|2 + (1− α)Φ(β)

]
, (2)

where λ and α ∈ (0, 1] are two regularization parameters in the network constraint and
Φ(β) =

∑
(i,j)∈E wi,j(βi − βj)2. The penalty (2) consists of two parts: the first term is

an L2-norm of β that regularizes the uncertainty in the network constraint; the second
term is a quadratic Laplacian penalty Φ(β) = β′Lβ that encourages smoothness among
correlated gene in the network, where L is a positive semi-definite matrix derived from
network information. More precisely, for any pair of genes connected by an high weight
edge and with a large difference between their coefficients, the objective function will
result in a significant cost in the network.

The second method, called AdaLnet [7] (Adaptive Laplacian net), introduces a
network-based regularization method for high-dimensional Cox regression in order to
incorporate network information into the analysis of the genomic data. AdaLnet is based
on prior gene regulatory network information, represented by an undirected graph, for
the analysis of genomic data and survival outcomes. Indicating with di =

∑
i:(i,j)∈E wij

the degree of vertex i, the network-constrained penalty in Eq. (1) is given by

Pλ,α(β) = λ [α|β|1 + (1− α)Ψ(β)] , (3)

with Ψ(β) =
∑

(i,j)∈E wi,j

(
sgn(β̃i)βi/

√
di − sgn(β̃j)βj/

√
dj

)2
. The equation (3) is

composed by two penalties. The first one is an L1-penalty that induces a sparse solution,
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Adalnet(α = 0.5)
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NetCox (α = 0.5)

FastCox (α = 0.5)

Adalnet(α = 0.5)

(a) Breast Cancer (b) Lung Cancer (c) Ovarian Cancer

Figure 2: Overlapped Genes. The graphs show the number of common genes among the top 300 genes for
each dataset and method tested with the Functional Linkage matrix. The x-axis is the number of selected
genes ranked by each method. The y-axis is the percentage of the overlapped genes between the selected
ones across the different datasets.

the second one is a quadratic Laplacian penalty Ψ(β) = β′L̃β that imposes smoothness
of the parameters β between neighbor vertices in the network. Note that L̃ = S′LS with
S = diag(sgn(β̃1), . . . , sgn(β̃p)) and β̃ = (β̃1, . . . , β̃p) is obtained from a preliminary
regression analysis. The matrix L is always a positive semi-definite matrix derived from
network prior knowledge. The scaling by degree of the coefficients β allows the genes
with more connections (i.e. the hub genes) to have larger coefficients. Hence, small
changes of expression levels of these genes can lead to large changes in the response.

The third method, Cocktail algorithm [3], computes the solution paths of the elastic
net penalized Cox’s proportional hazards model. In this algorithm the penalty function
in Eq. (1) is given by

Pλ,α(β) = λ

[
αwj|β|1 +

1

2
(1− α)βj

]
,

where the non-negative weights wj allows more flexible estimation. The Cocktail algo-
rithm is a mixture of three optimization methods: the Coordinate descent, the Majorization-
minimization principle and the Strong rule. [3] presents an R package, called Fastcox,
that runs the cocktail algorithm.

2.3 Datasets
In this analysis, we considered three case studies involving different types of cancer.

In particular, we used gene expression datasets downloaded from Gene Expression Om-
nibus as raw .CEL files. The raw files were processed and normalized individually by
RMA package and library files provided by the Bioconductor project. The details about
each dataset are shown in Table 1.

Accession Number Reference Cancer Type Sample Number Platform
GSE45255 Nagalla et al. [4] Breast 139 Affymetrix U133A
GSE37745 Chen et al. [1] Lung 196 Affymetrix U133 Plus 2.0
GSE26712 Zhang et al.[8] Ovarian 195 Affymetrix U133A

Table 1: Details of the datasets used in the analysis.

3 Results
We compare the methods listed in Section 2.2 by analyzing three datasets in order

to compare the different performances. Each method takes into account the Functional
Linkage networks previously created for each dataset. It is interesting to analyze each
dataset separately in order to determine how gene expression data are processed by the
each method.
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Breast Cancer Lung Cancer Ovarian Cancer
Net-Cox Fastcox AdaLnet Net-Cox Fastcox AdaLnet Net-Cox Fastcox AdaLnet

AKR1C3 GJA8 EPHA3 NEFL FGF8 PDHA2 S100A2 ELL IREB2
CLCA2 EDN1 RPS6KB2 PTPRR CSF3R OTC EEF1A2 HPR RAD51
GRIA2 COL5A2 CRY1 MMP7 AOX1 SSH1 WNT4 MYOD1 AFF1
FGG GALR2 TXNRD1 NEFH CSF1 ABCD4 MYBL1 PF4 JMJD5
TXNRD1 CDC25C CAPN2 GNAI1 F9 GRIA4 LCN2 CDH2 ACVR2A
CRY1 KRT81 ST3GAL4 NPY1R C1S CRH ZBTB16 PRKACA MSH3
COMP TUBB1 STX7 NOS3 CD70 GABARAP IGFBP3 MDM4 CDC6
ITGB6 LLGL1 CXXC4 BTC CYP2C19 SLC2A4 KRT17 MDS1 NRP1
COL11A1 MPZL1 INHBC TNFRSF11B CCR7 PRKCE HOXA9 CITED1 F8
FGA CACNA1D AGK ITGB6 CSF3 NADSYN1 RAB25 E2F2 NCOA1
FADD CACNG3 LTA THBD CTLA4 ACSL6 MAGEA1 MAP2K5 CDH13
DDIT4 MMP14 GADD45B SPP1 ARHGEF2 FPR1 PLAGL1 ETS1 TYRO3
KRT81 PTGDR GOT1 GPX2 CHRM4 DDIT3 HOXA5 FGFR1 BCKDHA
F12 APBA1 IDH3A BCAT1 GABRA1 STX8 TFRC EDN2 CDC25B
FGB BCL2 ATP6V0A4 ABCC2 MTNR1B PIGK CDC6 FKBP8 HOXA1

Table 2: Top-15 signature genes for each dataset and method tested with the Functional Linkage matrix.
The table lists the most significant genes selected by the three algorithms for each dataset.

In particular, we analyzed the percentage of common genes selected by each method
from each dataset. This investigation assumes that the genes that are selected by mul-
tiple methods are more likely to be true signature genes. Therefore, the higher the
overlapping across the methods, the higher the quality in the gene selection.

In Figure 2, we report the percentage of common genes in the rank lists identified by
Net-Cox, Fastcox and AdaLnet for each dataset. We plot the percentage of overlapped
genes among the first k (up to 300) genes in the gene ranking lists for the breast, lung
and ovarian datasets (Figure 2 (a), (b) and (c) respectively). By setting the α parameter
equals to 0.5, we observed that both Net-Cox and AdaLnet identify more common genes
than Fastcox through all the datasets.

We also analyzed the signature genes identified by the different methods and in Table
2 we present the Top-15 signature genes for each algorithm and dataset. From each list
of the Top-15 genes, we extracted the networks among the genes and Figures 3 (a), (b)
and (c) report the pathways for three of the lists in Table 2 (Net-Cox with Breast cancer
dataset, FastCox with Lung cancer dataset and AdaLnet with Ovarian cancer dataset
respectively). In each graph, the edge labels indicate the strength of the interaction be-
tween a pair of genes on a scale from 0 to 1. These weights are based on the Functional
Linkage interaction which summarizes information from prediction of protein function
and functional modules, cross-talk among biological processes and association of genes
and pathways with known genetic disorders. All calculations have been carried out in R
statistical environment and Matlab.

We also tested each algorithm using the correlation matrix instead of the Functional
Linkage one. We calculated the Top-15 lists and the plots of the overlapped genes but
we omitted these results due to lack of space.

By using these methods, we are able to select significant pathways and genes among
the ones related to breast, ovarian and lung cancer. Moreover, we can develop a pre-
dictive model for patient survival based on specific genetic groups. Consequently, the
network information is useful to improve the accuracy of survival prediction and to in-
crease the consistency in identifying signature genes across all the three independent
datasets.

4 Discussions and Conclusions
A central problem in genomic research is to identify genes and pathways involved

in cancer in order to create a prediction model linking high-dimensional genomic data
and clinical outcomes. In cancer genomic, gene expression levels provide important
molecular signatures which can be useful to predict the survival of cancer patients. Since
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(a) Breast Cancer - Net-Cox (b) Lung Cancer - FastCox (b) Ovarian Cancer - AdaLnet

Figure 3: Subnetworks identified by (a) Net-Cox algorithm in the Breast Dataset, (b) FastCox algorithm
in the Lung Dataset and (c) AdaLnet algorithm in the Ovarian Dataset. The graphs represent the pathways
among the Top-15 genes selected by each algorithm (Table 2) and the edges’ weights indicate the strength
of the interaction between two genes (in a scale from 0 to 1).

gene data are characterized by a small set of samples and a large number of genomic
data, the main challenge of gene expression data analysis is the high-dimensionality.
To tackle this problem, a variety of penalized Cox proportional hazards models has
been proposed. In this paper, we have compared three methods for the analysis of
microarray gene expression data in order to better understand the disease’s mechanism.
Furthermore, this kind of analysis is important to understand how patients’ features
(i.e. age, gender and coexisting diseases-comorbidity) can influence cancer treatment,
detection and outcome. Therefore, the future aim will be to highlight the impact of
comorbidity on cancer survival analysis [5].
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