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Abstract—Multifunction phased array radars (MPARs) exploit
the intrinsic flexibility of their active electronically steered array
(ESA) to perform, at the same time, a multitude of operations,
such as search, tracking, fire control, classification, and com-
munications. This paper aims at addressing the MPAR resource
allocation so as to satisfy the quality of service (QoS) demanded
by both line of sight (LOS) and reflective intelligent surfaces
(RIS)-aided non line of sight (NLOS) search operations along
with communications tasks. To this end, the ranges at which
the cumulative detection probability and the channel capacity
per bandwidth reach a desired value are introduced as task
quality metrics for the search and communication functions,
respectively. Then, to quantify the satisfaction level of each task,
for each of them a bespoke utility function is defined to map
the associated quality metric into the corresponding perceived
utility. Hence, assigning different priority weights to each task,
the resource allocation problem, in terms of radar power aperture
(PAP) specification, is formulated as a constrained optimization
problem whose solution optimizes the global radar QoS. Several
simulations are conducted in scenarios of practical interest to
prove the effectiveness of the approach.

Index Terms—dynamic resource allocation, single radio fre-
quency (RF) platform integrated sensing and communication
(ISAC), quality of service, resource management, RIS.

I. INTRODUCTION

Modern radar systems are becoming more and more sophis-
ticated due to the stressing requirement of multifunctionality
which can be defined as the capability of performing and
managing a multitude of different operations. This is becoming
of vital importance both in the modern battlefield scenario,
that could comprise a plethora of different challenging re-
quirements so as to account for possibly different threats,
and in civilian applications (e.g., for a radar in urban en-
vironment attempting to detect drones both in line of sight
(LOS) and non line of sight (NLOS) as well as sending
(possibly unidirectionally) communication signals to vehicular
systems to convey potentially situational awareness informa-
tion). Therefore, the multifunction phased array radar (MPAR)
must perform different functions, such as search, tracking,
fire control, classification, communication (COM), electronic
counter-counter measure (ECCM), and also a multitude of
tasks associated with each radar function [1]. To realize the
aforementioned operations, the radar exploits the intrinsic
flexibility provided by its active electronically steered array
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(ESA) antenna, which allows to synthesize multiple diverse
beams, as well as to steer them into specific directions with
negligible delays and without angular continuity requirements.
Moreover, on the transmit side different waveforms, pulse
repetition interval (PRI), dwells, and energy values can be
used. The management of the system degrees of freedom
is demanded to the radar resource manager (RRM), which
assigns priorities to the functions and to the tasks compos-
ing them. Additionally, it performs their dynamic scheduling
together with the parameter selection and optimization [2].
Accordingly, the mentioned functions and tasks are generally
accomplished dedicating (to each of them) specific amounts of
the available radar resources, for instance multiplexing them
over different time intervals and/or looking angles. It is also
clear that, in assigning the resource to each function/task, the
RRM has to comply with physical and technical constraints, so
as to appropriately handle the limited resource budget and the
task induced performance constraints. In this respect, the RRM
must decide, on the basis of the assigned priorities, for the
optimal controllable resource allocation in order to guarantee
the necessary quality for the high priority tasks at the expense
of the others. Needless to say, in the scheduling process, once
the resources to manage are specified, a tailored figure of merit
for each involved task as well as the associated utility function
must be defined to realize an optimized distribution of the
available radar degrees of freedom [3]. Additionally, priorities
are represented via scalar weights associated with each task.
Then, the optimization problem for the resource sharing is set-
up on the basis of the above quantities, where the objective
function that describes the satisfaction for the overall success
of the radar mission is maximized [3]. In this respect, the
RRM can use different optimization tools to perform resource
allocation. Among them, it is worth mentioning the quality
of service resource allocation method (Q-RAM) [4] and the
continuous double auction parameter selection (CDAPS) [5],
[6].

The Q-RAM consists of few steps to handle a constrained
optimization problem for discrete parameter selection. In a
nutshell, starting from the situation where the resource for each
task is zero, it performs an iterative subdivision of the degrees
of freedom to each task in the order specified by the highest
to the lowest marginal utility. Once the available resource is
entirely allocated, the algorithm ends. Other interesting appli-
cations of the Q-RAM within the framework of radar resource
management can be found in [1], [7]–[13]. Analogously, the
CDAPS models the tasks as agents, each of them having its
own resource to utilize. Since, the total amount of resources for
all tasks should not exceed a specific quantity, the problem is
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tackled through the application of a continuous double auction
(CDA) market algorithm [2]. Some other interesting uses of
the CDAPS related to the radar resource management problem
can be found in [14]–[16]. Other studies devoted to the
optimization of the power allocation in a distributed multiple
input multiple output (MIMO) system performing both radar
and communication functions have also been developed in the
last years [17]–[19]. In particular, in [17], an optimization
problem is formulated to reach as better as possible the desired
performance in terms of target detection along with the desired
data rate of the communication function. Moreover, in [18], the
allocation paradigm is modified to boost the performance of
the distributed MIMO system in terms of its low probability of
intercept (LPI). Finally, in [19], the above described resource
allocation is expanded to the context of multi-target tracking.

Unlike the mentioned references, in this paper, a quality-
of-service (QoS) optimization is developed for a suitable
allocation of the resources in a MPAR system performing
integrated sensing and communication (ISAC) activities, via a
multitude of functions and tasks ranging from surveillance in
both LOS and NLOS environments to possibly unidirectional
data transmission operations. Specifically, this paper is framed
in the context of a single radio frequency (RF) ISAC platform
where the resources of a common phased array are shared
among different concurring tasks in a smart way so as to
avoid mutual interference. This is a different operational mode
as compared with the ISAC approaches developed in [20]–
[25], where the waveforms and/or reflective intelligent sur-
faces (RIS) elements are controlled for communication/sensing
centric or co-design paradigms considering the sum or linear
combination of the signal to interference plus noise ratio
(SINR) for the different tasks as objective function. To this
end, following the lead of [3], after defining parameters char-
acterizing multiple search sectors, RIS-aided search, as well
as multiuser COM tasks, their respective quality metrics and
utility functions are introduced. Hence, the resulting resource
allocation is formulated as a constrained optimization problem,
where the power-aperture product (PAP) is distributed to allow
maximization of the overall QoS. Notably, the formulated
resource allocation problem is characterized by a non-convex
objective function also only available in an implicit form.
Hence the resulting optimization program can only be tackled
via numerical methods. Several case studies of practical inter-
est are analyzed to demonstrate the validity of the approach.

The paper is organized as follows. In Section II, the MPAR
system is presented and the QoS optimization problem is
formulated considering the PAP as degree of freedom. Then,
in Section III the quality metrics are defined for each task
together with their respective utility functions. The problem
is particularized and solved for some case studies of practical
interest in Section IV. Finally, some concluding remarks are
given in Section V.

NOTATIONS
symbol description

a vectors (i.e., boldface)
(·)T transpose operator
(·)† conjugate transpose operator
RN set of N -dimensional vectors of real numbers
| · | modulus of a complex number
∥ · ∥ Frobenius matrix norm
E [·] statistical expectation

f−1(·) inverse of a function f(·)

II. PROBLEM STATEMENT

In this paper, a MPAR system equipped with an active ESA
antenna is considered (see Fig. 1 for a notional illustration of
the operating scenario). It is capable of performing multiple
functions, e.g., just to mention a few, radar surveillance
(search) in LOS scenarios, RIS-aided search in NLOS scenar-
ios (a.k.a. detection over the corner), COM activities (possibly
unidirectional) toward some users, tracking, and so on.

Fig. 1. A notional representation of a MPAR system performing surveillance
in LOS situations, using RISs for NLOS search, as well as implementing a
COM functionality.

To allocate appropriately the resources required to each task,
the radar employs a dynamic radar parameters assignment. In
an ideal context, the system has the possibility to assign at each
task the resources demanded to reach the desired performance.
However, due to the limited availability, the radar system has
to face with a suitable distribution of the degrees of freedom
over the different tasks. Therefore in a MPAR, the resources
at the radar disposal are not a-priori fixed as in the classic
surveillance systems, but rather they are dynamically allocated
during its operation on the basis of the specific mission and its
actual state, as well as depending on some priorities associated
with each task. From a practical point of view the active ESA
is composed of many tiles each with a given PAP. They are
clustered according to the requirements of the system tasks
so that each group realizes an overall PAP value. A pictorial
description of the concept can be seen in Fig. 2.
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Fig. 2. A pictorial description of the PAP allocation to the different tasks of
the active ESA.

The PAP (defined as the product between the average
transmitted power and the radar aperture) is considered as the
limited resource that must be granted to perform the different
tasks. Obviously, if the available PAP overcomes that needed
to satisfy the requirements for all the active tasks, enough
PAP is given to each of them. Nevertheless, being the PAP
physically and practically limited, only a percentage of the
resource demanded by each task can be, in general, allocated
by the RRM at each schedule time. The aforementioned
assignment is performed on the basis of a pool of figure
of merits and utility functions depending, in general, on the
specific resources to distribute as well as on the design and
environmental parameters (that are not under control), say
ζi, i = 1, . . . , L, where L is number of independent tasks,
T = {T1, . . . , TL} that must share a finite common resource.
To proceed further, recall that the i-th task utilizes the allocated
resource to achieve a specific QoS, quantified by a quality
measure qi(PAPi; ζi) tailored to the specific task. Therefore,
the objective function for the resource allocation problem is
obtained via the definition of a mapping among the L task
qualities and the achieved utilities in order to measure the
overall effectiveness of the MPAR mission. As a consequence,
the RRM should find the optimal partition of PAP between
tasks such that the weighted sum of their utilities is maximized
[15, Chap. 3], [3, Chap. 5]. In this context, the task utility
function provides the satisfaction level corresponding to the
achieved task quality metric value. Moreover, to partially
account for different degrees of relevance and priorities among
the tasks, these utilities are suitably weighted in the formation
of the overall RRM utility metric. In other words, denoting by
PAP = [PAP1,PAP2, . . . ,PAPL]

T ∈ RL the vector containing
as i-th entry the PAP attributed to the i-th task, i = 1, . . . , L,
the PAP distribution is obtained as the optimal solution to the
following constrained optimization problem [3, Chap. 5]


max
PAP

u(PAP)

s.t.
L∑

i=1

PAPi ≤ PAPtot

PAPi ≥ PAPmini , i = 1, . . . , L

, (1)

where

u(PAP) =
L∑

i=1

wiui(qi(PAPi; ζi)) (2)

PAPtot is the total amount of PAP available at the MPAR, ui(·),
i = 1, . . . , L, is the utility function of the i-th task, whereas wi,
i = 1, . . . , L, are the weights reflecting the priorities among
the L tasks. Finally, PAPmini , i = 1, . . . , L, guarantees that the
i-th task is accomplished with a minimum level of QoS. Note
that, it is assumed

∑L
i=1 PAPmini ≤ PAPtot, in order to ensure

feasibility to the resource allocation problem.
Now, if the task utility function ui(qi(PAPi; ζi)) is a con-

tinuous convex function of PAPi, then the objective function is
convex and hence the Karush-Kuhn-Tucker (KKT) conditions
can be exploited to establish the optimal resource allocation
[3, Chap. 5]. If the resource, quality and utility functions
are available in a closed-form, then the KKT conditions can
be solved analytically. However, it is often the case that
the quality metrics do not possess a closed-form. In such a
situation, even if the utilities exhibit a closed-form and the
constraints are linear, the objective function is only available
numerically, making the problem unsolvable in analytic form.
As a consequence, the solution to the resource allocation
problem can be only numerically obtained, as it is the case
of the resource planning handled in this paper.

The next section describes the task quality metrics together
with their corresponding utilities herein considered for the
dynamic PAP allocation paradigm described by (1).

III. TASK QUALITY AND UTILITY FOR QOS RESOURCE
MANAGEMENT

The allocation strategy formalized by Problem (1) depends
on the considered figure of merits qi(·; ·), and utility functions
ui(·), i = 1, . . . , L. The goal of this section is to specify them,
so as to concretely define the scheduling machinery.

A meaningful figure of merit for the surveillance functions
(both in the LOS and NLOS scenarios) is provided by the
cumulative detection range, denoted as R, that is the range
where the cumulative probability of detection (Pd) is larger
than or equal to a desired value [3], [13], [15], [26]. The
cumulative Pd is indeed defined as the probability that a target
is detected at least once in a given number of dwells [3], [26].
In fact, when a target enters in a search sector, its detection can
be performed over multiple scans. Moreover, the cumulative
Pd increases at each scan especially as the target approaches
the radar.

Similarly, for the COM function, the quality metric can
be defined as the communication range, indicated as Rcom,
corresponding to the maximum distance at which a minimum
bit-rate can be conveyed reliably. These two metrics are deeply
described in Subsections III-A and III-B.

Before proceeding further, it is worth recalling the one-way
link equation, which is useful for subsequent derivations.

Remark 1: Let us consider a source located at the point
V1 ∈ R3, transmitting an electromagnetic (EM) wave with
a peak power of PT and an antenna steered in the direction
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described by the azimuth and elevation angles ϕ0 and θ0, ac-
cording to the coordinate system depicted in Fig. 3. Denoting
by GT the peak antenna gain when it points in the boresight
direction, the spatial power density at point V2 is

Pin =
PTGT

4πR2LsLsteer
, (3)

where R = ∥V2−V1∥, i.e., the distance between the transmitter
and the receiver, and Ls is the combined system operational
loss [27]. Moreover, Lsteer is the term accounting for the scan-
ning gain loss of the steered antenna in the pointing direction1

(θ0, ϕ0), which implicitly embeds the spatial selectivity in the
antenna gain. In fact, as the pointing angles deviates from the
boresight, the beam broadens while its peak drops out. The loss
in peak gain due to scanning for a generic planar array depends
on both the pointing direction (i.e., azimuth and elevation) and
the single element radiating pattern. Practically, the values of
these losses are off-line evaluated and then stored in a look-up
table to be applied during radar’s operation. However, in the
particular case of a uniform rectangular array (URA) under
some technical assumptions as for instance large array size
and omnidirectional array elements, Lsteer assumes a simplified
approximated form, depending only on the elevation angle
cosine [28], [29].

Fig. 3. Reference system of a generic planar array.

A. Search task quality metric

Let us indicate with Pd(R
′) the single-look Pd at range R′,

and assume that S is the number of scans the target needs
to reach the range R from the pop-up range Rm. Hence, the
respective cumulative Pd for the search sector of interest at
range R is given by [26]

1It is worth to underline that, even if Lsteer depends on the considered
pointing angles, to simplify the notation, the dependence on (θ0, ϕ0) is
omitted in the rest of the paper.

Pc(R|Rm) = 1−
S−1∏
n=0

[1− Pd (Rm − nvrtf −∆)] , (4)

with vr the target radial speed, tf the frame time (i.e., the time
necessary to perform a single scan of the sector), and ∆ a
sample of a uniform random variable2 in the interval [0, vrtf ],
with vrtf the distance traveled by the target in a single scan,
modelling the initial target position in the corresponding radar
cell. Note that, the functional dependence of the range on the
pop-up range is R = Rm − (S− 1)vrtf −∆. The single-look
Pd can be evaluated once the desired false alarm probability,
say Pfa, is set. More specifically, assuming a Swerling (SW)
0 (respectively a SW 1) model for the target amplitude and
assuming a coherent integration of the pulses in a dwell, the
single-look detection probability at range R′ can be obtained
as [27]

Pd(R
′) = QM

(√
2SNR,

√
−2 logPfa

)
(SW0) (5)

and
Pd(R

′) = P
1/(1+SNR)
fa (SW1), (6)

where QM (·, ·) is the Marcum Q-function [30]. Note that,
the functional dependence on the variable R′ of the Pd is
embedded in the expression of the coherent signal to noise
ratio (SNR).

Let us now consider a radar located at point V1 aimed at
detecting a (possible) target at point V2 in a LOS environment.
To contextualize the cumulative Pd expression to the resource
allocation process, it is necessary to particularize the result of
Remark 1 (3) to the links V1-V2 and V2-V1. Accordingly, the
SNR can be expressed as [27, eq. 2.17]

SNRLOS =
PTGTGRλ

2
0σnp

(4π)3R4
LOSkBTsBLLOS

s LLOS
steer

, (7)

where GR is the receiving antenna peak gain, RLOS =
∥V1 − V2∥, Ts is the system noise temperature, LLOS

s is the
combined two-way system operational loss [27], LLOS

steer is the
total scanning loss in the LOS scenario, σ is the target radar
cross section (RCS), kB is the Boltzmann’s constant, λ0 is
the operating wavelength, and np is the number of integrated
pulses in a dwell. Assuming a monostatic radar configuration
using the same beam in transmission and reception, (7) can be
arranged in the search-form of the radar range equation (RRE)
[27]. To this end, recall that [27]

td =
tf
M

=
tf

ΩAe
λ2
0, (8)

where M is the number of beam positions to cover the solid
angle search sector Ω and the effective area of the radar
antenna Ae is related to the radar peak gain by [27]

GT = 4π
Ae

λ2
0

. (9)

2Without loss of generality, ∆ is set equal to zero in the next analyses.
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Hence, substituting (8)-(9) in (7), the search-form of the
RRE (5)-(6) boils down to

SNRLOS = PAP
σ

4πkBTsR4
LOSL

LOS
s LLOS

steer

tf
Ω

(10)

where PAP = PavgAe, with Pavg the average transmit power.
Before concluding the description of the LOS scenario, it is
worth to underline that (10) implicitly assumes the absence
of interference among the signals of the different concurring
tasks. In fact, the system manager itself coordinates the entire
pool of sub-systems and allocates the resources of its phased
array to avoid mutual interference among the different spatial
beams.

As to the NLOS scenario, encompassing a gapfiller RIS
that aids the detection over the corner [31], let us indicate
with V1, V2, and V3 the positions of the radar, RIS, and
target, respectively, and, accordingly, rNLOS = ∥V1 − V2∥
and RNLOS = ∥V2 − V3∥. Therefore, leveraging Remark 1,
the expression for the SNR can be derived accounting for
the multiple paths involved in the surveillance process, i.e.,
V1-V2, V2-V3, V3-V2, and V2-V1, along with the target RCS
and the radiation patterns synthesized at the RIS equipment.3

Specifically, the RRE assumes the form [31]

SNRNLOS =
G2

TG
2
RISA

2
RISη

2
RISλ

2
0σPavgtd

r4NLOSR
4
NLOS(4π)

5kBTsLNLOS
s LNLOS

steer
, (11)

with LNLOS
s the combined system operational loss in the NLOS

case [27], LNLOS
steer the total scanning loss in the NLOS scenario.

ARIS is the RIS area, that for a uniform rectangular geometry
can be expressed as δxδyN1N2, with δx = δy = λ0/2 the
patch size along x- and y-direction, respectively, and N1, N2

the respective number of patches. Additionally, ηRIS is the
RIS efficiency (assumed, for simplicity, common to all the
patches), which accounts for taper and spillover effects [36].
Hence, the product ARISηRIS is the effective aperture of the
RIS. Finally, GRIS is the RIS peak gain.

The SNR of a RIS-aided search radar can be again expressed
in terms of PAP. Precisely, substituting (8)-(9) in (11), the
search-form of the RIS-aided RRE is

SNRNLOS =
PAPG2

RISA
2
RISη

2
RISσ

r4NLOSR
4
NLOS(4π)

3kBTsLNLOS
s LNLOS

steer

tf
Ω
. (12)

Before concluding this section, it is now worth observing
that a commonly reference value for the objective Pc is 0.9.
For this reason, the corresponding cumulative detection range
denoted by RLOS

90 for LOS tasks, can be expressed as

RLOS
90 = P−1

c,LOS(0.9, Rm), (13)

having denoted by P−1
c,LOS(x|Rm) the inverse of the function

in (4) for the LOS case, i.e., when the SNR is dictated by
SNRLOS in (10). Analogously, for the NLOS search task

3It is assumed that a RIS realizes an appropriate beamforming, i.e., the
parameter-settings of the RIS, such as its element phase shifts, are already
suitably optimized to face with the assigned task. In this respect, some
techniques for RIS phase-shift optimization can be exploited. The interested
readers could refer to [32]–[35], just to list a few.

RNLOS
90 = P−1

c,NLOS(0.9, Rm), (14)

with P−1
c,NLOS(x|Rm) the inverse of the function in (4) for the

NLOS case, i.e., when the SNR is given by SNRNLOS in (12).
Note that equations (13) and (14) implicitly define the PAPs

demanded to attain the desired QoSs for the surveillance tasks.

B. COM task quality metric

The metric that describes the quality for a COM task is
the maximum range, indicated as Rcom, for which the channel
capacity per bandwidth is equal to a specific value. Before
evaluating Rcom, let us consider the transmission of a signal
composed by the superposition of U ≤ BCOMT sym frequency
(or code) orthogonal waveforms, xi(t), i = 1, . . . , U , to U
COM receiving users, with BCOM the bandwidth reserved by
the radar to COM operations, and T sym the symbol interval.
Then, the transmitted signal is

x(t) =

U∑
i=1

N sym−1∑
h=0

si(ϕi, θi)xi(t− hT sym)αi(h),

0 ≤ t ≤ TCOM,

(15)

where TCOM = T symNCOM, NCOM indicates the number
of symbols transmitted in each scheduled interval, αi(h),
h = 0, . . . , N sym − 1, accounts for the information symbols
for the i-th user, and si(θi, ϕi) is the transmit beamformer
pointing toward the i-th user at position (θi, ϕi) w.r.t. the
coordinate system centered at the transmitting antenna phase-
center position.

Assuming an additive white Gaussian noise (AWGN) chan-
nel, with w(t) the noise contribution, the signal acquired at
the k-th receiver, with reference to the h-th symbol interval,
can be expressed as

rk(t) = s†kβkx(t− τk) + w(t)

= βk

U∑
i=1

s†ksixi(t− τk)αi(h) + w(t),
(16)

with sk the steering vector in the direction (θk, ϕk), βk the
complex scaling factor accounting for channel propagation
effects and receive antenna, and τk the propagation time of
the k-th user. Note that, the functional dependence of sk on
(ϕk, θk) is omitted for brevity.

At receiver side, the samples of the incoming signal after
matched filter operation to xk(t− τk) becomes

⟨rk(t), xk(t−τk)⟩ = βkgkαk(h)+wk(h), h = 0, . . . , N sym−1,
(17)

where gk is the transmitter beamformer complex gain in the
direction (ϕk, θk) of the k-th user, and ⟨·, ·⟩ denotes the inner
product operator.

Finally, the channel capacity per bandwidth (expressed in
bit/s/Hz) for the k-th user can be defined as [37]–[39]

C = log2
(
1 + SNRCOM

k

)
, (18)
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where SNRCOM
k is the SNR at the k-th COM user receiver.

Let us indicate with V1 and V2 the positions of the trans-
mitter and the k-th COM user, respectively, and Rk,COM =
∥V1 − V2∥. According to Remark 1, the SNR in (18) can be
computed with respect to the link V1-V2 as

SNRCOM
k =

Pk|gk|2 |βk|2

σ2
k

, (19)

where Pk = E
[
|αk|2

]
is the transmitting power for the k-

th communication link, and σ2
k = kBT

COM
s BCOM is the noise

power at the k-th receiver, with TCOM
s and BCOM the respective

noise system temperature and effective bandwidth. Let us
observe now that

|gk|2 |βk|2 =
GTA

rx,k
e

4πR2
k,COMLCOM

s LCOM
steer

with Arx,k
e the effective area of the k-th user receiving antenna,

LCOM
s the COM system operational loss, and LCOM

steer the total
scanning loss in the COM scenario. Hence, following the
above definitions, SNRk in (19) can be expressed in terms
of PAP, i.e.,

SNRk =
Pk|gk|2 |βk|2

σ2
k

= PAPk
Arx,k

e

λ2
0R

2
k,COMLCOM

s LCOM
steer σ

2
k

.

(20)
Finally, denoting by Cdesired the reference value for the

objective channel capacity, its corresponding range, say Rcom,
is derived as follows

Rcom =

√
PAPkA

rx,k
e

λ2
0L

COM
s LCOM

steer (2Cdesired − 1)σ2
k

. (21)

C. Task utility

Once the task quality metrics are defined, the joint optimum
allocation of tasks’ PAPs can be computed as the optimal
solution to the QoS optimization problem in (1). In this
respect, the RRM needs to map the quality metrics to their
corresponding utilities. As a matter of fact, the utility provides
a description of the degree of satisfaction reached when each
task is completed. A possible way to define the utility for the
i-th considered task is through the following model [13]

ui(qi(PAPi, ζi)) = ui(Rc)

=


0, Rc < Rti

Rc−Rti

Roi
−Rti

, Rti ≤ Rc ≤ Roi

1, Rc > Roi

(22)

where Rti and Roi are the threshold and objective ranges of
the i-th task, respectively. Moreover, Rc denotes the quality
metric for the specific task4, viz. the cumulative detection
range R90 or the communication range Rcom, respectively.
Obviously, at ranges lower than the threshold, the utility is

4Note that, the dependence on ζi is omitted, being the environmental
parameters fixed in the addressed problem.

zero, because the considered ranges are too close to the MPAR
making the function useless. Then, the utility increases linearly
as the range increases since it reaches its objective value,
beyond which it saturates to 1. It is worth noticing that both the
threshold and objective range are task depending parameters.

D. Optimization algorithm

To obtain a solution to the challenging and non-convex
resource allocation problem defined in (1) the iterative op-
timization algorithm in [40] is exploited. Therein, the interior-
point approach to constrained optimization5 is employed,
which amounts to solve a sequence of approximate mini-
mization problems which include non-negative constrained
slack variables (as many as the inequality constrains of the
original problem) and equality constraints. These are easier to
solve than the original inequality-constrained problem and are
handled either via a direct solution of the corresponding KKT
equations (via a linear approximation, i.e. a Newton step) or
via a conjugate gradient method [41]–[43]. Specifically, the
algorithm first attempts to pursue a direct step. If it cannot be
applied, it employs a conjugate gradient approach. Notably,
one relevant case where the direct step is not exploited arises
when the approximate problem is not locally convex near the
current iterate.

From an implementation point-of-view, the solution algo-
rithm is based on the availability of an oracle (realized via
a tailored numerical procedure) that provides the values for
the objective function for each choice of the parameters as
well as with the desired accuracy. This is indeed possible
thanks to the analytic expressions which in implicit form rule
the relationships among the objective and the different design
parameters.

It is fundamental to remark that no optimality claims can
be done being the problem at hand non-polynomial (NP) hard,
in general. Nevertheless, the proposed technique leads to a
solution that is a-posteriori practically effective, as shown by
the results reported in Section IV.

IV. CASE STUDIES

In this section, some case studies for the pondered MPAR
system performing both search and COM operations are
analyzed. Specifically, the resource allocation is done after
defining the priority weight for each task as well as the
overall PAP available at the system. Problem (1) is solved
using the Mathworks Matlab® Quality-of-Service Optimization
for Radar Resource Management [44] which performs a con-
strained minimization of a given objective function. The focus
is on a scenario involving seven different tasks: three refer
to search in LOS scenarios (shortly referred to as Horizon,
Long-range, and High-elevation, respectively), three COMs
with three different users, and a RIS-aided search to tackle
a NLOS surveillance.

5Maximizing a utility is tantamount to minimizing the associated cost, given
by the opposite of the utility.
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A. Parameter setting

Tests conducted in this paper refer to a MPAR operating in
X-band with its central frequency f0 = 10 GHz. Now, before
providing the definition of all the involved parameters, for each
considered task, the antenna coverage sector is specified in
terms of angle limits, and observation range. In particular, the
angular parameter setup specifies the following sector limits:

• Horizon, [−45, 45] degrees in azimuth and [0, 4] degrees
in elevation,

• Long-range, [−30, 30] degrees in azimuth and [0, 30]
degrees in elevation,

• High-elevation, [−45, 45] degrees in azimuth and [30, 45]
degrees in elevation.

• COM functions, [−45, 45] degrees in azimuth and [0, 45]
degrees in elevation.

• RIS-aided, [15, 20] degrees in azimuth and [28, 32] de-
grees in elevation.

Additionally, the maximum range of interest (a.k.a. range
limit) for each task is set as:

• Horizon, 40 km,
• Long-range, 70 km,
• High-elevation, 50 km.
• COM user 1, 45 km,
• COM user 2, 55 km,
• COM user 3, 65 km,
• RIS-aided, 4 km.
Other parameters for the three search tasks are summarized

in Table I, for the three COM tasks are reported in Table II,
and for the RIS-aided (a uniform rectangular RIS is considered
during the analysis) search in Table III. It is worth highlighting
that, a practical example for a search radar, which in part
agrees with Table I, is that of a ground surveillance system
SHORAD (short range air defence) for air reconnaissance.
In fact, it can possibly transmit with a low effective radiated
power, and can also operate above C-band, where free-space
loss is high [45]. Finally, in all the conducted simulations
herein presented, PAPmini , i = 1, . . . , L, is set to 0 W·m2

unless otherwise stated.

TABLE I
LOS SEARCH TASKS SIMULATION PARAMETERS.

parameter value
Horizon Long-range High-elevation

tf (s) 0.5 6 2
Ts (K) 913 913 913
vr (m/s) 250 250 250
σ (m2) 1 1 1
Pfa 10−6 10−6 10−6

LLOS
s (dB) 22 19 24

LLOS
steer (dB) 0.01 0.13 2.31

B. Case study 1

The first case study refers to a MPAR with the parameters
described in Section IV-A assuming a SW1 fluctuating target
model for both the high-speed targets considered in three
LOS search functions and for the small unmanned aerial
vehicle (UAV) to be detected via RIS-aided surveillance. In

TABLE II
COM TASKS SIMULATION PARAMETERS.

parameter value
user 1 user 2 user 3

TCOM
s (K) 916 916 916

BCOM (MHz) 40 40 40

Arx,k
e (m2) 0.7× 10−3 0.7× 10−3 0.7× 10−3

LCOM
s (dB) 27 27 27

LCOM
steer (dB) 0.15 0.62 0.87

TABLE III
RIS-AIDED SEARCH TASK SIMULATION PARAMETERS.

parameter value
tf (s) 2
Ts (K) 913
vr (m/s) 50
σ (m2) 0.02
Pfa 10−6

LNLOS
s (dB) 19

Gpatch (dB) 4
δx, δy λ0/2
N1, N2 101
ηRIS 0.8

rNLOS (km) 1
LNLOS

steer (dB) 1.25

this scenario, the cumulative Pd (4) and channel capacity
per bandwidth (18) are shown in Fig. 4 versus range for
three different values of the PAP assigned to each task, viz.
[20, 40, 80] W·m2. Subfigures a) and c) of Fig. 4 refer to search
tasks, whereas subfigure b) to COM operations.

20 30 40 50 60 70 80

0

0.5

1

P
c

Horizon search

20 30 40 50 60 70 80

0

0.5

1

P
c

Long-range search

20 30 40 50 60 70 80

range (km)

0

0.5

1

P
c High-elevation search

PAP=20 (W·m²) PAP=40 (W·m²) PAP=80 (W·m²)

Range limit objective

(a) LOS search

20 30 40 50 60 70 80
0

5

10

C
 [

(b
it
/s

)/
H

z
]

COM user 1

20 30 40 50 60 70 80
0

5

10

C
 [

(b
it
/s

)/
H

z
]

COM user 2

20 30 40 50 60 70 80

range (km)

0

5

10

C
 [

(b
it
/s

)/
H

z
]

COM user 3

PAP=20 (W·m²) PAP=40 (W·m²) PAP=80 (W·m²)

Range limit objective

(b) COM

1 2 3 4 5 6

range (km)

0

0.2

0.4

0.6

0.8

1

P
c

RIS-aided

PAP=20 (W·m²) PAP=40 (W·m²) PAP=80 (W·m²)

Range limit objective

(c) NLOS search

Fig. 4. Cumulative Pd for the LOS (subfigure a) and NLOS (subfigure c)
search tasks, and channel capacity per bandwidth (subfigure b) for the COM
tasks, considering multiple per-task PAP allocations.

For all the subfigures of Fig. 4, the corresponding range
limit is also shown. QoS values beyond these limits are
not of interest and set to zero as is evident for the COM
tasks. Moreover, the desired value for the cumulative Pd (i.e.,
Pcdesired = 0.9), and for the channel capacity per bandwidth
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(i.e., Cdesired = 8 bit/s/Hz) are highlighted in the same graph.
Hence, the corresponding range values R90 and Rcom are
derived for each PAPs, numerically solving the equations
P LOS
c (RLOS|Rm)−Pcdesired = 0, PNLOS

c (RNLOS|Rm)−Pcdesired =
0, and C(RCOM) − Cdesired = 0 with respect to the variable
RLOS, RNLOS, and RCOM, respectively. These results are re-
ported in Fig. 5, where the task quality is shown versus the
allocated resource to any specific task, i.e., PAPi = PAPh, for
any i, h = 1, . . . , 7. As expected, increasing the assigned PAP
produces a growth of the task quality until its limit is attained.
This means that if the current value of PAP for a specific
task is such that the range limit is almost attained, it is no
longer required to allocate additional resource, since it does
not produce appreciable improvements in the corresponding
quality.
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Fig. 5. Task quality versus assigned resource for the different radar operations.

In Fig. 6 the utility functions for the above considered tasks
are reported, particularizing the general form given by (22) set-
ting the objective ranges to Ro = [38, 65, 45, 35, 45, 50, 2] km
and the threshold ranges to Rt = [25, 45, 30, 5, 15, 20, 0.153]
km for the three search (subfigure a), three COM (subfigure
b) and RIS-aided (subfigure c) tasks, respectively. Note that,
the threshold ranges are set following different requisites
for each task under study. Precisely, for the LOS search
functions, it is the minimum range beyond which the mission
is considered failed, because the target is too close to the radar
for successfully activate subsequent actions. As to COM tasks,
the communication is assumed valid within a specific segment
between two circles centered at the radar location, i.e., with
the user located beyond a minimum distance from the radar
until the possible maximum range of interest. For the RIS-
aided detection, the threshold range is set equal to the far
field distance (FFD) that can be computed as [31]

RFFD =
2 (max(δxN1, δyN2))

2

λ0
. (23)

Therefore, for the parameter values summarized in Table
III, FFD computed via (23) is approximately 153 m. Finally,
the objective ranges, that allow to reach the maximum utility,
are set according to the mission requirements.
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Fig. 6. Utility functions for LOS search tasks (subfigure a), COM (subfigure
b) and NLOS search operation (subfigure c) tasks.

Moreover, using the above-described utility functions, the
PAP (namely, the resource) can be mapped to the utility space
as shown in Fig. 7. From the inspection of these curves, it
appears that the Long-range search, High-elevation search,
COM user 2 and 3 need to exploit non negligible PAP values
to reach non-zero utilities, viz., 56, 74, 22, and 40 W·m2,
respectively. Conversely, the rest of the tasks are capable of
reaching nonzero utilities with very low values of assigned
PAP. Moreover, the Long-range and High-elevation search
functions demand high PAP values to obtain the maximum
utility, i.e., 422 and 435 W·m2. Interestingly, the operation
that requires the minimum PAP value to attain the maximum
utility is the RIS-aided search with PAP of 38 W·m2.
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Fig. 7. Utility versus resource for the different radar operations.

Now, the first simulation analyzes the case where the
resource allocation is performed under normal operational
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conditions (i.e., no optimization is performed) in which the
maximum utility is reached for each of the operating tasks.
Hence, each task exploits all the necessary resource (i.e.,
the maximum utility PAP) to fulfill its demanded nominal
objective, viz. cumulative Pd and/or channel capacity per
bandwidth. To highlight this distribution, Fig. 8 proposes
a graphical representation of the antenna coverage sectors
as well as the objective value R90 (respectively Rcom) for
the different radar operations. Subfigures refer to a) LOS
search, b) COM, and c) NLOS search tasks. Additionally,
on the right side of this diagram a bar chart indicating the
PAP allocated to each task is also reported. Specifically,
the maximum utility values are obtained with the allocation
PAP = [74, 435, 422, 103, 190, 248, 37]T W·m2, correspond-
ing to a total PAP used by the MPAR of about 1509 W·m2

(i.e., the sum of the maximum utility PAP values for each
task).

Comparing the bar chart of Fig. 8 with the diagram repre-
senting the utility versus resource of Fig. 7, it is evident that in
the case of normal operational conditions, all tasks are capable
of obtaining the maximum utility. In this situation, therefore,
independently of the task, the respective quality metric is
greater than or equal to its desired objective value. However,
in some operating conditions, the total amount of resources
available at the MPAR cannot allow to assign the ideally re-
quired PAP to each task. This can be also explained observing
that, often, a non negligible part of the available resources
should be reserved to other tasks (e.g., tracking) [46]. For
the above reasons, the RRM should compute the optimal PAP
allocation, once its maximum available value is set. Hence,
in this case study, the maximum PAP is set to the 50% of
that under normal operational conditions, that is approximately
755 W·m2. Moreover, the following set of priority weights
is enforced, w = [0.4, 0.1, 0.2, 0.06, 0.06, 0.06, 0.12]T , pro-
viding low priorities to COM tasks with respect to search
ones. Solving Problem (1) with the above constraints results
in the resource distribution reported in Fig. 9, where as before
subfigures refer to a) LOS search, b) COM, and c) NLOS
search tasks. More specifically, the allocated PAPs are equal to
PAP = [74, 138, 275, 84, 75, 72, 37]T W·m2. To give insights
into the obtained results, Fig. 10 shows for each task the
optimal resource allocation in terms of PAP versus the R90

(respectively Rcom) together with the corresponding utility,
with subfigures referring to a)-c) LOS search, d)-f) COM, and
g) NLOS search operations. As expected, the RRM allocates
PAP so that the maximum utility is reached for the Horizon
search function, being the task with highest priority, with a
corresponding R90 = 38 km. Analogously, also the RIS-aided
search experiences an allocation of PAP that allows to reach
the maximum utility with R90 = 2 km. This is because it has a
medium priority (i.e., a weight 0.12) together with the fact that
it has low requirements in terms of resource. The worst case
is observed in the COM user 3 task where the PAP allocation
only ensures a utility of 0.23, being its priority weight quite
low and given by 0.06.

Now, the algorithm solving Problem (1) with the weighted
sum of SNRs as objective function is considered as a possible
competitor. In such a case, the optimization of the weighted

(a) LOS search

(b) COM

(c) NLOS search

Fig. 8. Resource allocation of MPAR LOS search tasks (subfigure a), COM
activities (subfigure b), and NLOS search operation (subfigure c) under normal
operational conditions. The line style of each attribute inherits the color of
the corresponding task.

SNR together with the linear constraints gives rise to a linear
programming problem. Results are graphically reported in
Fig. 11, where the competitor provides a PAP allocation,
i.e., PAP = [74, 222, 421, 0, 0, 0, 37]T W·m2, that substan-
tially differs from that given by the proposed method, i.e.,
PAP = [74, 138, 275, 84, 75, 72, 37]T W·m2. With the above
allocation, the competitor reaches utilities equal to 1, 0.81, 1,
0, 0, 0, and 1, for the seven tasks, respectively, with an average
utility of 0.801, whereas the proposed method provides as
utility values 1, 0.58, 0.80, 0.89, 0.44, 0.23, and 1 with an
average utility of 0.831. Analyzing these results it is clear
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(a) LOS search

(b) COM

(c) NLOS search

Fig. 9. Resource allocation of MPAR LOS search tasks (subfigure a), COM
activities (subfigure b), and NLOS search operation (subfigure c), with priority
weights w = [0.4, 0.1, 0.2, 0.06, 0.06, 0.06, 0.12]T .

that the competitor does not allocate any resources to the
COM tasks with a corresponding zero utility. Differently, the
proposed method is capable of allocating some resources to all
tasks providing at least some non-zero utilities. Moreover, the
average utility reached by the proposed method is higher than
that of the competitor (the competitor experiences a loss of
3.6% in this case). Therefore, the validity and advantages of
the proposed method should appear now much more evident.

To give further insights about the behavior of the proposed
algorithm, the analysis of the case study 1 is repeated with
a PAP requirement set so as to ensure a utility of 0.5 for
each task, viz. PAPmin = [25, 122, 168, 34, 85, 122, 5]T W·m2.
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Fig. 10. Optimized resource allocation and utility of MPAR LOS search
(subfigures a-c), COM (subfigures d-f), and NLOS search (subfigure g) tasks,
with priority weights w = [0.4, 0.1, 0.2, 0.06, 0.06, 0.06, 0.12]T .

Solving Problem (1) results in the resource distribution PAP =
[74, 138, 245, 54, 85, 122, 37]T W·m2, with corresponding util-
ities equal to 1, 0.58, 0.73, 0.68, 0.50, 0.50, and 1, for the seven
tasks, respectively. In such a case, the average utility is 0.825,
whereas in the previous case without any guarantees on the
minimum offered QoS it was 0.831. As expected enforcing
additional requirements reduces the feasibility region (i.e.,
the available degrees of freedom) and possibly the resulting
achieved objective function (2). Moreover, from the inspection
of these results, the evidence is that the RRM allocates the PAP
so that the maximum utility is reached for the Horizon search
function, being it the task with highest priority. Similarly, the
RIS is maintained invariant since it requires very low PAP.
However, the RRM, accounting for a minimum ensured QoS
to the different tasks, tends to sacrifice the High-elevation task,
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activities, and NLOS search operation, with priority weights w =
[0.4, 0.1, 0.2, 0.06, 0.06, 0.06, 0.12]T . Comparison of the proposed algo-
rithm with the competitor maximizing the weighted sum of SNRs.

and COM user 1 that experience a loss in their achieved utility,
to ensure that COM user 2 and 3 attain the minimum required
PAP with utility 0.5. Definitely, when a non-zero lower bound
on the PAP is considered, the MPAR is prone to subtract some
resources to the (low weights) tasks whose allocation exceed
the minimum requirements.

Before concluding this case study, Fig. 12 shows the objec-
tive function (2) achieved by the proposed algorithm versus
the utility value (assumed equal among the different tasks).
As expected, the allocation performed by the RRM attains a
global utility that reduces as the constraints become more and
more demanding.
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Fig. 12. Achieved objective function (2) versus minimum required utility
(assumed equal for all the tasks).

C. Case study 2

In this situation, the PAP allocation is performed for a
different set of priority weights, again setting its maximum
value to 755 W·m2, i.e., half of that used under normal
operational conditions. As a matter of fact, the priority weights
for the COM tasks are fixed to 0, resulting in the vector
w = [0.4, 0.2, 0.2, 0, 0, 0, 0.2]T . The solution to Problem (1)
with the above constraints produces the PAP assignment over
the considered tasks illustrated in Fig. 13, where subfigures
refer to a) LOS search tasks, c) COM tasks, and d) RIS-
aided search task. Specifically, the allocated PAP values are
PAP = [74, 266, 378, 0, 0, 0, 37]T W·m2. Again, Fig. 14 shows
for each task the optimal resource distribution in terms of

PAP versus R90 (respectively Rcom) together with the corre-
sponding utility, with subfigures referring to a)-c) LOS search
tasks, d)-f) COM tasks, and g) RIS-aided search task. As
expected the RRM does not allocate any PAP to the COM tasks
reflecting the associated zero priority weights. On the contrary,
the Long-range and High-elevation experience a growth in the
assignment of their resources, with a consequent increment of
utility that increases from 0.65 to 0.88 and from 0.83 to 0.95
w.r.t. the case study 1, respectively. Obviously, the other two
tasks (namely, Horizon and RIS-aided search), having already
reached their maximum utility, continue to maintain the same
allocation as before.

(a) LOS search

(b) COM

(c) NLOS search

Fig. 13. Resource allocation of MPAR LOS search tasks (subfigure a), COM
activities (subfigure b), and NLOS search operation, with priority weights
w = [0.4, 0.20, 0.20, 0, 0, 0, 0.2]T .
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Fig. 14. Optimized resource allocation and utility of MPAR LOS search
(subfigures a-c), COM (subfigures d-f), and NLOS search (subfigure g) tasks,
with priority weights w = [0.4, 0.20, 0.20, 0, 0, 0, 0.2]T .

D. Case study 3

The test performed in this subsection is devoted to the
impact of the antenna pointing direction on the performance of
the MPAR in terms of resource distribution over the different
tasks. In particular, for all tasks, the term accounting for
scanning losses is fixed according to the values summarized
in Table IV. Moreover, as to the other parameters, this study
refers to the same simulation setting as in Section IV-B,
apart for, as already specified losses accounting for the spatial
selectivity of the antenna gain are set equal to their respective
worst case for each angular sector.

The conducted test considers the availability of maximum
PAP of 755 W·m2 (that is again approximately the 50% of
that under normal operational conditions in the case study
1), with the same priority weights as in the first case study.

TABLE IV
SCANNING LOSS (EXPRESSED IN DB) FOR THE WORST ANTENNA

POINTING DIRECTION CASE.

HHorizon Long-range High-elevation COM user 1-3 RIS
0.02 1.25 3.01 1.51 7.45

Solving Problem (1) with the above constraints results in
the PAP assignment illustrated in Fig. 15, where subfigures
refer to a) LOS search, c) COM, and d) RIS-aided search
tasks. More in detail, the allocated PAPs are now equal
to PAP = [74, 157, 287, 54, 54, 56, 73]T W·m2, respectively.
Again, to further shed light on the results, Fig. 16 shows
for each task the optimal resource allocation in terms of PAP
versus R90 (respectively Rcom) along with their corresponding
utility, with subfigures referring to a)-c) LOS search, d)-f)
COM, and g) RIS-aided search tasks. It is now interesting
to observe that the resource allocation does not follow the
trend as in the scenario analyzed in Section IV-B. In fact, the
COM tasks are all penalized with a reduction in the assignment
of their PAP due to their very low priorities (i.e., 0.06). The
majority of resources are allocated to the other tasks, with the
Horizon search function that attains its maximum utility thanks
to the attributed high priority. The RIS-aided search task also
reaches a high utility of 0.78 because of a joint combination
of a medium priority weight and a reduced PAP necessary to
satisfy it. Finally, it is worth observing that all the considered
tasks (except the Horizon) suffer the effect of the scanning
loss that in turn reflects on a higher PAP that is required to
reach the same utility. Therefore, the RRM tends to sacrifice
the tasks with the lowest priority, i.e., COM ones, to guarantee
sufficient performance to the others.

V. CONCLUDING REMARKS

This paper has addressed the problem of optimal PAP
allocation in a MPAR system performing ISAC operations.
More specifically, the considered methodology has been aimed
at solving the QoS optimization problem jointly accounting
for search scenarios in LOS and NLOS as well as COM
tasks. Therefore, to maximize the QoS, the resource allocation
is formulated as a constrained optimization problem whose
objective function is the weighted sum of the utilities achieved
with the assigned PAP to each specific task. In this respect, the
cumulative detection range is defined as a quality metric for
search tasks, whereas for COM tasks it is chosen as the range
ensuring a desired channel capacity per bandwidth. Several
case studies have been analyzed to prove the validity of the
designed allocation strategy in challenging operational sce-
narios, ranging from the analysis of different priority weights
selections to the study of the impact of the spatial selectivity of
the antenna pointing angle. From the analyses of the results,
the evidence is that the MPAR tends to mostly allocate the
available resources to the high priority tasks at the expense
of the others. By doing so, it is ensured that the utilities for
the most important tasks attain values close to their objectives,
whereas for the remainder tasks a lower level of satisfaction
is obtained.
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(a) LOS search

(b) COM

(c) NLOS search

Fig. 15. Resource allocation of MPAR LOS search tasks (subfigure a), COM
activities (subfigure b), and NLOS search operation, assuming the worst case
scanning loss.

Possible future researches could consider the extension of
the framework to a multiface and/or multiband radar as well
as to the multiradar systems. Moreover, the allocation of the
beamformer weights to the different tasks is another valuable
topic.
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Fig. 16. Optimized resource allocation and utility of MPAR LOS search
(subfigures a-c), COM (subfigures d-f), and NLOS search (subfigure g) tasks,
assuming the worst case scanning loss.
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