
Autoría ditelliana
Otras autorías:
Fecha de publicación
Publicado como artículo en:

¿Cómo citar este artículo?

Típo de documento:

Solving the Traveling Salesman
Problem with release dates via branch
and cut

EURO Journal on Transportation and Logistics 12 (2023) 100121

A
2
a

a

b

c

d

Contents lists available at ScienceDirect

EURO Journal on Transportation and Logistics

journal homepage: www.elsevier.com/locate/ejtl

Solving the Traveling Salesman Problemwith release dates via branch and
cut
Agustín Montero a, Isabel Méndez-Díaz a,b, Juan José Miranda-Bront c,d,∗
Departamento de Computación, FCEN, Universidad de Buenos Aires, Argentina
Instituto de Investigación en Ciencias de la Computación (ICC), CONICET-UBA, Argentina
Universidad Torcuato Di Tella, Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

A R T I C L E I N F O

Keywords:
Traveling Salesman Problem
Release dates
Integer Linear Programming
Branch and cut

A B S T R A C T

In this paper we study the Traveling Salesman Problem with release dates (TSP-rd) and completion time
minimization. The TSP-rd considers a single vehicle and a set of customers that must be served exactly
once with goods that arrive to the depot over time, during the planning horizon. The time at which each
requested good arrives is called release date and it is known in advance. The vehicle can perform multiple
routes, however, it cannot depart to serve a customer before the associated release date. Thus, the release
date of the customers in each route must not be greater than the starting time of the route. The objective
is to determine a set of routes for the vehicle, starting and ending at the depot, where the completion time
needed to serve all customers is minimized. We propose a new Integer Linear Programming model and develop
a branch and cut algorithm with tailored enhancements to improve its performance. The algorithm proved
to be able to significantly reduce the computation times when compared to a compact formulation tackled
using a commercial mathematical programming solver, obtaining 24 new optimal solutions on benchmark
instances with up to 30 customers within one hour. We further extend the benchmark to instances with up to
50 customers where the algorithm proved to be efficient. Building upon these results, the proposed model is
adapted to new TSP-rd variants (Capacitated and Prize-Collecting TSP), with different objectives: completion
time minimization and traveling distance minimization. To the best of our knowledge, our work is the first
in-depth study to report extensive results for the TSP-rd through a branch and cut, establishing a baseline and
providing insights for future approaches. Overall, the approach proved to be very effective and gives a flexible
framework for several variants, opening the discussion about formulations, algorithms and new benchmark
instances.
1. Introduction and literature review

In this paper, we address the Traveling Salesman Problem with
release dates and completion time minimization (TSP-rd(time)) with
an exact approach. The TSP-rd(time) addresses a key operational con-
straint within nowadays last-mile logistics, which is partly motivated by
same-day and fast deliveries. The package requested by a customer may
not be available at the beginning of the planning horizon, representing
the timing of its arrival at the distribution center. Thus, the vehicle
is allowed to perform multiple routes to serve all customers. The
TSP-rd(time) is formulated as a synchronization problem, but so far,
neglects the effect of vehicle capacity. Variants of routing problems
with release dates have only recently been introduced in the literature,
and applications arise in the context of cross-docking and same-day
delivery problems (Mor and Speranza, 2020).

∗ Corresponding author at: Universidad Torcuato Di Tella, Buenos Aires, Argentina.
E-mail addresses: aimontero@dc.uba.ar (A. Montero), imendez@dc.uba.ar (I. Méndez-Díaz), jmiranda@utdt.edu (J.J. Miranda-Bront).

The motivation behind release dates is to represent the time at
which a requested package arrives at the depot. In this fashion, the
vehicle is required to only satisfy the requests of customers whose
packages are ready at the depot at the moment of departure. This
version of release dates is first introduced by Cattaruzza et al. (2016)
where the authors tackle the multi-vehicle routing problem with time
windows and release dates. The objective is to minimize the total travel
distance, and the authors propose a hybrid genetic algorithm on a set of
instances adapted from Solomon (1987). A single-vehicle variant of a
routing problem with release dates is presented in Archetti et al. (2015).
The problem is called Traveling Salesman Problem with release dates
(TSP-rd) for the first time by the authors and it does not consider capac-
ities or time windows. Two different objective functions are proposed:
(a) completion time minimization (TSP-rd(time)), where the idea is to
vailable online 20 November 2023
192-4376/© 2023 The Authors. Published by Elsevier B.V. on behalf of Associatio
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

https://doi.org/10.1016/j.ejtl.2023.100121
Received 2 February 2022; Received in revised form 8 November 2023; Accepted 1
n of European Operational Research Societies (EURO). This is an open access
nd/4.0/).

7 November 2023

https://www.elsevier.com/locate/ejtl
http://www.elsevier.com/locate/ejtl
mailto:aimontero@dc.uba.ar
mailto:imendez@dc.uba.ar
mailto:jmiranda@utdt.edu
https://doi.org/10.1016/j.ejtl.2023.100121
https://doi.org/10.1016/j.ejtl.2023.100121
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejtl.2023.100121&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

EURO Journal on Transportation and Logistics 12 (2023) 100121A. Montero et al.

e
a
i
t
a
t

w
a

P
o

minimize the time needed to complete the distribution of all packages
computed as the sum of the total traveling time plus the total waiting
time, and (b) total traveling distance minimization (TSP-rd(distance)),
in which there is a deadline for completing the distribution and the goal
is to minimize the total traveling distance. Although both variants are
NP-hard, the authors show that they can be solved in polynomial time
provided that the underlying graph has a special structure. Reyes et al.
(2018) generalize these results considering a service guarantee that
implies a common deadline for the orders after each release date. Still
the contributions are towards the complexity of the problem on specific
networks (e.g., the half-line). Archetti et al. (2018) present a Mixed
Integer Linear Programming (MILP) formulation for the TSP-rd(time)
and propose two iterated local-search procedures based on a destroy-
and-repair scheme. The article focuses on the heuristics and report
results for instances up to 500 customers. A natural extension for multi-
vehicle routing problem with release dates is presented in Shelbourne
et al. (2017) for which a path relinking algorithm is proposed. Due
dates are considered for each order, i.e. a time by which the order
must be delivered to the customer. The objective function considered
combines an operational cost and customer service level by means of
the total distance traveled and the total weighted tardiness of deliv-
ery, respectively. Waiting times are not considered and no results are
reported for the single-vehicle case. Another version which is related
to TSP-rd is the Multi-Trip Vehicle Routing Problem (MTVRP) where
each vehicle is allowed to perform multiple trips starting and ending at
the depot due to duration or capacity constraints (see Azi et al., 2007,
2010, 2014 for potential applications and results that, despite missing
release dates, incorporate time windows). An exact solution framework
which accounts for the modeling of release dates for the Capacitated
MTVRP with Time Windows (CMTVRP-TW) is proposed in Paradiso
t al. (2020). It relies on column generation, column enumeration
nd cutting planes. Among the four different variants, one of them
ncorporates release dates. However, the objective function accounts for
he minimization of the total traveled distance instead of the makespan
nd the developed labeling algorithm explicitly exploits the presence of
ime windows. Thus, no direct comparison with Archetti et al. (2018)
is established, as the framework cannot be directly adapted.

Finally, a survey about routing problems over time is presented
by Mor and Speranza (2020), and a recent article about challenges in
routing and inventory routing in the context of e-commerce and last-
mile delivery is presented in Archetti and Bertazzi (2021), including a
dedicated section about release dates.

Release dates are still relatively new in the VRP literature. The
contributions of our paper are threefold. First, on the methodological
side, we propose a new MILP formulation for the TSP-rd(time) where
the multiple trips are modeled via an adaptation of the Generalized
Cut Set (GCS) constraints (see, e.g., Taccari, 2016). To the best of our
knowledge, the only results with an optimality guarantee are reported
in Archetti et al. (2018), where the proposed formulation is solved
using an out-of-the-box MILP solver. Although both models consider
the edge flow variables, our approach provides an improved fashion
to model the multiple visits to the depot. In addition, we propose
two enhanced families of valid inequalities to model the interaction
among the release dates. Second, from an algorithmic standpoint, we
develop a tailored branch and cut (BC) algorithm incorporating the
new valid inequalities as part of the formulation, the GCS, an initial
heuristic to compute an upper bound on the instance and a specific
branching criterion. We conduct extensive computational experiments
over benchmark instances and compare our results with the ones
reported by Archetti et al. (2018). We show that our method improves
the results reported therein, and we provide strong evidence on the
components that drive such improvement via specific experiments. We
provide 24 new optimal solutions for the benchmark instances having
up to 30 customers proposed in Archetti et al. (2018), and we further
expand the benchmark and report results for instances with up to
2

50 customers. Third, building upon the previous results, we consider a
different variants for the TSP-rd by incorporating other characteristics
such as capacities, distances and profits. The model is adapted to each
variant and we generate tailored instances in each case to study the
performance of our algorithm in different setups, which may result
very valuable for practitioners or researchers tackling such problems.
Overall, our paper contributes with improved methodology and strong
computational results for a family of single vehicle routing problems
with release dates.

The rest of the paper is organized as follows. In Section 2 we present
the formal definition of the TSP-rd(time) and the notation used along
the paper. In Section 3 we introduce the formulation proposed by
Archetti et al. (2018) and our new formulation. Section 4 describes the
details of the BC algorithm based on the new formulation, and Section 5
reports the computational results for the TSP-rd(time). Several TSP-rd
variants are explored in Section 6, considering both completion time
and distance minimization, as well as capacities and the prize-collecting
version of the problem. Finally, we conclude and state some future
research lines in Section 7.

2. Problem definition

Let 𝐺 = (𝑉 ,𝐴) be a complete digraph, with 𝑉 the set of vertices
and 𝐴 the set of edges. The set 𝑉 = {0} ∪𝑁 models the depot, denoted
by vertex 0, and the set of customers 𝑁 = {1,… , 𝑛}. We consider a
traveling time 𝑡𝑖𝑗 associated to each edge (𝑖, 𝑗) ∈ 𝐴 which satisfy the
triangle inequality. We assume a non-negative release date 𝑟𝑖 for each
customer 𝑖 ∈ 𝑁 , which represents the time at which the requested
package arrives at the depot. In particular, setting 𝑟𝑖 = 0 models that
the package is available at the beginning of the distribution because
it arrived overnight. Note that the classical TSP can be retrieved by
setting 𝑟𝑖 = 0 for all 𝑖 ∈ 𝑁 . The operations are carried out by one
vehicle with infinite capacity, ready to depart at 𝑡 = 0. The vehicle is
allowed to perform multiple consecutive routes. However, each route
can only include packages which are ready before the corresponding
departure from the depot (i.e., its release date 𝑟𝑖 is at most the departure
time of the vehicle from depot). The objective is to serve all customers
at minimum total completion time, defined as the time at which the
vehicle is back to the depot after visiting all customers, computed as
the sum of travel and waiting times.

For simplicity, we adopt the definition of a route used in Archetti
et al. (2018). A route refers to a trip that starts and ends at the depot
and that does not visit the depot in between. Note that in the context
of multiple vehicles (e.g., Cattaruzza et al., 2016) trips and routes may
refer to different concepts.

Fig. 1 shows two examples of feasible solutions for a distribution
network with 3 customers. Let 𝑡𝑘 be the starting time of the 𝑘th route
within a solution. In the example, Solution (1(a)) involves one route
which departs as soon as all packages are available at time 40 =
max{𝑟1, 𝑟2, 𝑟3}, resulting in a completion time of 130 and a traveled
time of 90. Solution (1(b)) involves two routes. In the first one, the
vehicle departs at time 5 = max{𝑟1, 𝑟2} being able to deliver the
requested package of Customers 1 and 2. As soon as the vehicle returns
to the depot at time 85, the requested package of Customer 3 is available
(𝑟3 < 85), and the vehicle departs again to visit the remaining customer
with the second route. The total completion time is 125 with a traveled
time of 120 and a waiting time of 5. In this example, Solution (1(b)) is
better than Solution (1(a)) as the total completion time of the former
is lower.

We introduce two properties presented by Archetti et al. (2018),
hich are important to understand the structure of the TSP-rd(time)
nd to enhance the mathematical formulations presented in Section 3.

roperty 1 (No Waiting Time After First Departure). Given an instance
f the TSP-rd(time), there exists an optimal solution with no waiting time

fter the departure of the first route.

EURO Journal on Transportation and Logistics 12 (2023) 100121A. Montero et al.

f
n

T
r
b
D
i
i
t
t

e

Fig. 1. Examples of feasible solutions for the TSP-rd(time).
e
i

m

i

Fig. 2. Forward shift of Route 𝑖 to remove waiting time after departure (Property 1).

The intuition behind this result is that each departure can be shifted
orward without changing the set of customers served in each route,
either the total completion time as depicted in Fig. 2.

Property 2 (Routes & Latest Release Date). There exists an optimal
solution with exactly one route starting not earlier than 𝑟max, i.e., the latest
release date.

We omit the proof and refer the reader to Archetti et al. (2018) for
further details.

3. MILP formulations

In this section we present two MILP formulations for the TSP-
rd(time). First, we describe the formulation proposed in Archetti et al.
(2018). We then introduce our new formulation as well as an improved
version with tightened constraints.

3.1. AFMG formulation (Archetti et al., 2018)

The 3-index formulation introduced in Archetti et al. (2018) for the
SP-rd(time), named 𝐴𝐹𝑀𝐺, is based on flow variables indexed by the
oute in which the edge is traversed. Let 𝐾 be a set of routes, with |𝐾|

eing an upper bound for the number of routes in the optimal solution.
efine binary variables 𝑥𝑘𝑖𝑗 taking value 1 if and only if edge (𝑖, 𝑗) ∈ 𝐴
s traversed in route 𝑘 ∈ 𝐾, and let binary variables 𝑦𝑖𝑘 take value 1
f and only if vertex 𝑖 ∈ 𝑉 is visited in route 𝑘 ∈ 𝐾. To account for
he timing of the route, let 𝑡𝑘𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑘𝑒𝑛𝑑 denote the starting and ending
ime of route 𝑘 ∈ 𝐾, respectively.
Additional continuous non-negative flow variables 𝑢𝑘𝑖𝑗 are added to

nforce subtour elimination, and a binary variable 𝑥𝑘 is considered for
3

00
ach 𝑘 ∈ 𝐾, taking the value 1 if and only if route 𝑘 is an empty route,
.e., it visits no customers. As a result, the model is:

in 𝑡|𝐾|

𝑒𝑛𝑑 (1)
s.t.

∑

𝑘∈𝐾
𝑦𝑘𝑖 = 1 ∀ 𝑖 ∈ 𝑁 (2)

∑

𝑗∈𝑉
𝑥𝑘𝑖𝑗 =

∑

𝑗∈𝑉
𝑥𝑘𝑗𝑖 = 𝑦𝑘𝑖 ∀ 𝑖 ∈ 𝑉 ,∀ 𝑘 ∈ 𝐾 (3)

∑

𝑗∈𝑉
𝑢𝑘𝑗𝑖 −

∑

𝑗∈𝑉
𝑢𝑘𝑖𝑗 = 𝑦𝑘𝑖 ∀ 𝑖 ∈ 𝑁,∀ 𝑘 ∈ 𝐾 (4)

𝑢𝑘𝑖𝑗 ≤ 𝑛 𝑥𝑘𝑖𝑗 ∀ (𝑖, 𝑗) ∈ 𝐴,∀ 𝑘 ∈ 𝐾 (5)

𝑡𝑘𝑒𝑛𝑑 = 𝑡𝑘𝑠𝑡𝑎𝑟𝑡 +
∑

(𝑖,𝑗)∈𝐴
𝑡𝑖𝑗 𝑥

𝑘
𝑖𝑗 ∀ 𝑘 ∈ 𝐾 (6)

𝑡𝑘𝑒𝑛𝑑 ≤ 𝑡𝑘+1𝑠𝑡𝑎𝑟𝑡 ∀ 𝑘 ∈ 𝐾 ⧵ {|𝐾|} (7)

𝑡𝑘𝑠𝑡𝑎𝑟𝑡 ≥ 𝑟𝑖 𝑦
𝑘
𝑖 ∀ 𝑘 ∈ 𝐾,∀ 𝑖 ∈ 𝑁 (8)

𝑡𝑘𝑒𝑛𝑑 = 𝑡𝑘+1𝑠𝑡𝑎𝑟𝑡 ∀ 𝑘 ∈ 𝐾 ⧵ {|𝐾|} (9)

𝑡𝑘𝑠𝑡𝑎𝑟𝑡 ≤ 𝑟max ∀ 𝑘 ∈ 𝐾 ⧵ {|𝐾|} (10)

𝑥𝑘𝑖𝑗 ≤ 1 − 𝑥𝑘00 ∀ (𝑖, 𝑗) ∈ 𝐴,∀ 𝑘 ∈ 𝐾 ⧵ {|𝐾|} (11)

𝑥𝑘00 ≥ 𝑥𝑘+100 ∀ 𝑘 ∈ 𝐾 ⧵ {|𝐾|} (12)

𝑥𝑘𝑖𝑗 ∈ {0, 1} ∀ (𝑖, 𝑗) ∈ 𝐴,∀ 𝑘 ∈ 𝐾 (13)

𝑦𝑘𝑖 ∈ {0, 1} ∀ 𝑖 ∈ 𝑉 ,∀ 𝑘 ∈ 𝐾 (14)

𝑡𝑘𝑠𝑡𝑎𝑟𝑡, 𝑡
𝑘
𝑒𝑛𝑑 ≥ 0 ∀ 𝑘 ∈ 𝐾 (15)

𝑢𝑘𝑖𝑗 ≥ 0 ∀ (𝑖, 𝑗) ∈ 𝐴,∀ 𝑘 ∈ 𝐾 (16)

The objective function (1) minimizes the total completion time as it
s the ending time of the last route. Constraints (2) guarantee that all
customers are visited by exactly one route. Constraints (3) establish the
flow conservation between edges entering and leaving each customer,
and connect flow variables with indicator variables 𝑦𝑘𝑖 . Constraints (4)–
(5) impose that each route is a circuit connected to the depot. In
particular, constraints (5) were first proposed by Gavish and Graves
(1978) and are used to prevent subtours through a flow that decreases
while the vehicle visits customers. The relation between variables 𝑡𝑘𝑠𝑡𝑎𝑟𝑡
and 𝑡𝑘𝑒𝑛𝑑 is set by constraints (6) and (7). Feasible starting times of
a route depending on the release dates of the customers served is
modeled through constraints (8). Properties 1 and 2 are incorporated
by constraints (9) and (10) respectively in order to reinforce the for-
mulation. Note that constraints (9) imply (7), but we include both sets
of constraints to be consistent with the model presented by Archetti

et al. (2018). Constraints (11) enable an edge in a tour only if the latter

EURO Journal on Transportation and Logistics 12 (2023) 100121A. Montero et al.

b
n
(

s
r
i

3

v
s
f
b
a
c
a
s
t
g
f

m

i
(
t
s
(
t
p
n
a
a
r
t
w
i
c

u
H
o

3

s
v
f
m

P

𝑡

i

P
i
c
d

r
(
r

P

ℎ

i

P
i
t
t
ℎ
t

C
t
(
r

4

S
c
c

4

t
c
o
t
e
t
w
d
s
t

b
n

visits at least one vertex. Finally, constraints (12) remove symmetric
solutions by setting that if route 𝑘 is empty then all routes �̃� < 𝑘 must
e empty as well. Note that all empty routes, if any, will precede all the
on-empty routes given constraints (12), and the fact that the last route
noted as |𝐾|) departs not earlier than 𝑟max due to constraints (10).
Although the model uses an upper bound on the number of routes

in the optimal solution, Archetti et al. (2018) point out that the optimal
olution can always be retrieved by setting |𝐾| = 𝑛. The authors only
eplace it with a tighter value for the purpose of embedding the model
n a heuristic scheme.

.2. AJI formulation

We propose a new formulation that also uses the 3-index flow
ariables indexed by route in which the edge is traversed. However,
imilar to other TSP variants, modeling specific constraints in a dif-
erent fashion can translate into improved formulations that perform
etter in practice. This is the aim of our formulation, where subtours
re prevented by an adaptation of the GCS constraints. Thus, we do not
onsider variables 𝑢𝑘𝑖𝑗 as part of the formulation. Moreover, both 𝑡𝑘𝑠𝑡𝑎𝑟𝑡
nd 𝑡𝑘𝑒𝑛𝑑 are removed and we let continuous variables 𝑡𝑘 indicate the
tarting time of route 𝑘 ∈ 𝐾, and consider the special case of 𝑡

|𝐾|+1
hat indicates the ending time of route |𝐾|. For the sake of notation,
iven 𝑆 ⊆ 𝑉 , let 𝛿+(𝑆) = {(𝑖, 𝑗) ∈ 𝐴 ∶ 𝑖 ∈ 𝑆, 𝑗 ∈ 𝑉 ⧵ 𝑆}. Then, the
ormulation reads:

in 𝑡
|𝐾|+1 (17)
∑

𝑘∈𝐾
𝑦𝑘𝑖 = 1 ∀ 𝑖 ∈ 𝑁 (18)

∑

(𝑖,𝑗)∈𝐴
𝑥𝑘𝑖𝑗 =

∑

(𝑖,𝑗)∈𝐴
𝑥𝑘𝑗𝑖 = 𝑦𝑘𝑖 ∀ 𝑖 ∈ 𝑉 ,∀ 𝑘 ∈ 𝐾 (19)

∑

(𝑖,𝑗)∈𝛿+(𝑆)
𝑥𝑘𝑖𝑗 ≥ 𝑦𝑘𝑙 ∀ 𝑙 ∈ 𝑆 ⊆ 𝑁, |𝑆| ≥ 2,∀ 𝑘 ∈ 𝐾 (20)

𝑦𝑘0 ≤ 𝑦𝑘+10 ∀ 𝑘 ∈ 𝐾 ⧵ {|𝐾|} (21)

𝑡𝑘+1 = 𝑡𝑘 +
∑

(𝑖,𝑗)∈𝐴
𝑡𝑖𝑗 𝑥

𝑘
𝑖𝑗 ∀ 𝑘 ∈ 𝐾 (22)

𝑡𝑘 ≥ 𝑟𝑖 𝑦
𝑘
𝑖 ∀ 𝑘 ∈ 𝐾,∀ 𝑖 ∈ 𝑁 (23)

𝑡𝑘 ≤ 𝑟max ∀ 𝑘 ∈ 𝐾 ⧵ {|𝐾|} (24)

𝑥𝑘𝑖𝑗 ∈ {0, 1} ∀ (𝑖, 𝑗) ∈ 𝐴,∀ 𝑘 ∈ 𝐾 (25)

𝑦𝑘𝑖 ∈ {0, 1} ∀ 𝑖 ∈ 𝑉 ,∀ 𝑘 ∈ 𝐾 (26)

𝑡𝑘 ≥ 0 ∀ 𝑘 ∈ 𝐾 (27)

𝑡
|𝐾|+1 ≥ 0 (28)

The objective function (17) minimizes the total completion time as
t is the ending time of the last route, i.e., route |𝐾|. Constraints (18)–
19) play the same role as in the formulation from Archetti et al. (2018)
o ensure that all customers are visited and that flow conservation is
atisfied. Constraints (20) are based on Generalized CutSet Inequalities
GCS) to enforce elimination of subtours. Symmetry breaking is done
hrough constraints (21) which establish that all empty routes, if any,
recede all the non-empty routes. Note that variables 𝑥𝑘00 are not
eeded because of variables 𝑦𝑘0 and constraints (21). Constraints (22)
re similar to constraints (6), but also incorporate the idea behind (7)
nd (9) that exploit Property 1 by removing waiting times between
outes. As a consequence, the model removes solutions with waiting
ime after the first departure. Although it is not needed, such solutions
ith waiting time can be included by relaxing constraints (22) as
nequalities. Finally, constraints (23) and (24) are the analogous of
onstraints (8) and (10).
Regarding the set of routes 𝐾, the model is still flexible as it makes

se of an upper bound on the number of routes in the optimal solution.
owever, in all cases, we set |𝐾| = 𝑛 which is the trivial upper bound
4

n the number of routes. p
.3. Valid inequalities

Let 𝐾≤𝑘 = {ℎ ∈ 𝐾 ∶ ℎ ≤ 𝑘} denotes the subset of route indices
maller than or equal to 𝑘. We provide in this section two families of
alid inequalities to strengthen the AJI formulation. Intuitively, the first
amily states that once a customer 𝑖 ∈ 𝑁 is visited, all subsequent routes
ust start later than release date 𝑟𝑖.

roposition 1. Given a customer 𝑖 ∈ 𝑁 and a route 𝑘 ∈ 𝐾, constraint

𝑘 ≥ 𝑟𝑖
∑

ℎ∈𝐾≤𝑘

𝑦ℎ𝑖 (29)

s valid for the AJI formulation.

roof. Constraints (23) can be generalized by considering ℎ ≤ 𝑘,
.e. 𝑡𝑘 ≥ 𝑟𝑖𝑦ℎ𝑖 . Since at most one 𝑦ℎ𝑖 can take value 1 for ℎ ∈ 𝐾≤𝑘, (23)
an be lifted by adding the rhs of these constraints, resulting in the
esired inequality. □

The intuition behind the second family is to exploit that empty
outes, if any, precede non-empty routes. Then, route 𝑘 ∈ 𝐾 is used
i.e., 𝑦𝑘0 = 1), if at least one customer is assigned to 𝑘 or to a precedent
oute ℎ < 𝑘.

roposition 2. Given a customer 𝑖 ∈ 𝑁 and a route 𝑘 ∈ 𝐾, constraint
∑

∈𝐾≤𝑘

𝑦ℎ𝑖 ≤ 𝑦𝑘0 (30)

s valid for the AJI formulation.

roof. We separate the proof in two cases. If the lhs is 0, the inequality
s trivially satisfied. Otherwise, note that at most one of the variables
akes value 1 due to constraints (18). Let ℎ′ ≤ 𝑘 be the index of the
rip visiting 𝑖. Then, 𝑦ℎ′𝑖 = 𝑦ℎ′0 = 1 due to constraints (20) and (19). If
′ < 𝑘, then by constraints (21) we get 𝑦𝑘0 = 1 as well, which concludes
he proof. □

Constraints (23) are replaced by its strengthened version (29).
onstraints (30) are incorporated as part of the formulation, although
hey are not needed for the formulation to be correct. Both (29) and
30) should help by removing fractional points and improving the linear
elaxation. We call the resulting model AJI++ .

. Branch and cut algorithm

We develop a BC algorithm based on the formulation presented in
ection 3.2 for the TSP-rd(time). In this section we describe the main
omponents, such as how we compute an initial feasible solution, the
utting plane algorithm and the branching scheme.

.1. Initial feasible solution

The BC algorithm is initialized with a feasible solution obtained by a
ime-explorer multi-start heuristic depicted in Algorithm 1. The heuristic
onsiders as input a set 𝑇 of feasible departure-times for the first route
f the TSP-rd(time) solution, and the idea is to compute a sequence of
ours using the myopic-optimal solution for each 𝑡 ∈ 𝑇 . In other words,
very time the vehicle reaches the depot, it either departs to serve
he customers whose goods arrived while the vehicle was traveling, or
aits for the next customer that can be served and then immediately
eparts. The routing (i.e., the order in which customers are going to be
erved), is decided by solving to optimality a TSP instance defined by
he underlying sub-graph.
Algorithm 1 starts with the set 𝑇 of all the (integer) time instants

etween the minimum and maximum release dates, as there is no
eed to consider values outside that range. During the execution, it is

ossible for a TSP instance to appear as an auxiliary subproblem more

EURO Journal on Transportation and Logistics 12 (2023) 100121A. Montero et al.

𝑇
r
w
d
t
𝑡
r
T
a
b

i

a
o
i
n
t

4

w
a
o
C
t
s
b
o
d
g
p
t
r

4

t
b
h
i
c
h
p
s

5

5

i
T
a
l
(
t
i

t
i
I
i

i
i

u
e
3

Algorithm 1 Time-Explorer heuristic
Input: Instance of the TSP-rd(time), with 𝐺 = (𝑉 ,𝐴), 𝑉 = 𝑁 ∪ {0},
travel times 𝑡𝑖𝑗 for (𝑖, 𝑗) ∈ 𝐴
Output: Feasible solution 𝑥𝑏𝑒𝑠𝑡 of cost 𝑧𝑏𝑒𝑠𝑡

1. Initialization. Define 𝑇 = {𝑟min,… , 𝑟max} as the list of possible departure
times for the first trip of the depot as all the (integer) instants between
the minimum and maximum release dates, where 𝑟min = min𝑖∈𝑁 𝑟𝑖 and
𝑟max = max𝑖∈𝑁 𝑟𝑖.
Initialize the cache of TSP solutions 𝑚𝑒𝑚 = {}, indexed by subsets of
vertices; current solution information 𝑧𝑏𝑒𝑠𝑡 = ∞ and 𝑥𝑏𝑒𝑠𝑡 = 𝑛𝑖𝑙.

2. Iteration. If 𝑇 is non-empty, get the next 𝑡 ∈ 𝑇 and define the current
solution 𝑥 =< 0 > with makespan 𝑧 = 𝑡. Set 𝑁𝑆 = 𝑁 as the set of
non-assigned customers.

2.1 Auxiliary TSP. Compute 𝑆 = {𝑣 ∈ 𝑁𝑆 | 𝑟𝑣 ≤ 𝑧} as the set of
non-visited customers ready to be delivered at time 𝑧. Let 𝑆
be the auxiliary TSP instance defined by the subset of vertices
𝑆 ∪ {0}. If 𝑚𝑒𝑚[𝑆] is defined, retrieve the optimal solution 𝑥𝑡𝑠𝑝
and its objective value 𝑧𝑡𝑠𝑝. Otherwise, solve the auxiliary TSP
instance, obtain 𝑥𝑡𝑠𝑝 and 𝑧𝑡𝑠𝑝, and update 𝑚𝑒𝑚[𝑆] = (𝑥𝑡𝑠𝑝, 𝑧𝑡𝑠𝑝) for
future iterations. Update the current solution 𝑥 = 𝑥 + 𝑥𝑡𝑠𝑝 and
𝑧 = 𝑧 + 𝑧𝑡𝑠𝑝 as the current makespan.

2.2 Feasibility check. Update 𝑁𝑆 = 𝑁𝑆 ⧵ 𝑆. If 𝑁𝑆 is non-empty,
update 𝑧 = max{𝑧, min𝑣∈𝑁𝑆{𝑟𝑣}}, and return to Step 2.

3. Termination. If 𝑧 < 𝑧𝑏𝑒𝑠𝑡, then update 𝑧𝑏𝑒𝑠𝑡 = 𝑧 and 𝑥𝑏𝑒𝑠𝑡 = 𝑥. Set
𝑇 = 𝑇 ⧵ {𝑡}. If 𝑇 is non-empty, go to Step 2. Otherwise, return the
best solution found 𝑥𝑏𝑒𝑠𝑡, 𝑧𝑏𝑒𝑠𝑡.

than once. In order to avoid solving the same subproblem several times
and speed-up the execution, the algorithm stores a table that maps TSP
instances (i.e., subsets of vertices) to optimal solutions. In Step 2, every
time a TSP is formulated, this table is first examined to check whether
the same instance has been solved previously and, in that case, retrieves
the optimal solution. As the number of vertices 𝑛 is at most 50, this table
can be queried and modified efficiently.

We remark that it is not sufficient to consider in 𝑇 only the release
dates of the vertices, since eventually a better solution can be obtained
by initially departing from the depot at other time. For example, con-
sider an instance with 3 customers where 𝑡𝑖𝑗 = 2 for all (𝑖, 𝑗) ∈ 𝐴. Let the
release dates be 0, 4 and 5, respectively. Then, the best solution that the
Time-Explorer heuristic can provide is obtained by departing at 𝑡 = 1,
which is not a release date. However, during the execution it is possible
to identify time instants that will not lead to an improving solution
and, therefore, can be removed from 𝑇 as starting values in Step 3.
One of those situations involves the first auxiliary TSP considered and
eventual waiting times. Let 𝑡 be the current initial departure time
from the depot and 𝜏 the return to the depot after the first tour. If
the latter occurs before the minimum release date of the non-visited
vertices, i.e. 𝜏 < min𝑖∈𝑁𝑆 𝑟𝑖, the solution would include waiting times.
Then, the heuristic can remove the interval [𝑡, 𝑡 + min𝑖∈𝑁𝑆 𝑟𝑖 − 𝜏] from
since the subset of vertices in the underlying first TSP instance

emains unchanged for those time instants. A second situation arises
hen the initial departure time 𝑡 occurs before the maximum release
ate, but the return to the depot 𝜏 afterwards, i.e., 𝑡 ≤ 𝑟max ≤ 𝜏. In
hese cases, the heuristic does not need to consider initial departures
′ > 𝑡 since the subset of vertices in the underlying first TSP instance
emains unchanged for those time instants. Therefore, the subsequent
SP instances, if any, also remain unchanged and only lead to solutions
t most as good as the one obtained from the initial depart at 𝑡 in the
est case.
In practice, Applegate et al. (2015) is used to solve the auxiliary TSP

nstances, and a feasible solution is guaranteed (e.g., departing initially
5

t 𝑡 = 𝑟max). The speed-up is driven mostly by exploiting the cache
f TSP solutions, and the heuristic runs in less than one second per
nstance. These running times to compute an initial upper bound are
egligible in the context of the BC algorithm developed, specially for
he most demanding instances.

.2. Cutting planes

The family of GCS inequalities (20) is exponential, and therefore
e incorporate them as cuts through the corresponding separation
lgorithm. In this case, violated cuts can be found by solving a sequence
f polynomial-time max-flow sub-problems (see, e.g. Taccari, 2016).
onstraints (20) are needed to ensure the correctness of the formula-
ion, so we need to incorporate them as lazy-cuts, i.e., on every integer
olution. Moreover, such constraints can be used to tighten the model
y removing fractional points. In particular, we found that this type
f cuts are more effective when added at the root node, while they
owngrade the performance when added during node enumeration
iven that the trade-off between time required to separate them and im-
rovement in the linear relaxation is not convenient. As a consequence,
he upper limit on the number of cutting plane passes is set to 100 in the
oot node, and to 20 (i.e., CPLEX’s default value) on the other nodes.

.3. Branching scheme

During tree enumeration, decisions are made about which variable
o choose to branch on at each node. A custom branching is considered
y assigning priorities to variables (25) and (26). Variables 𝑦𝑘0 have
ighest priority as they determine whether a new route is used. Next
n priority order, we have variables 𝑦𝑘𝑖 for 𝑖 > 0, as they decide if a
ustomer is served or not in the route 𝑘. Finally, flow variables 𝑥𝑘𝑖𝑗
ave the lowest priority. Within each group, all variables have the same
riority and we let CPLEX apply its default criterion for the variable
election.

. Computational results

.1. Experimental setup

The proposed BC algorithm is evaluated on the instances considered
n Archetti et al. (2018) which are derived from Solomon (1987).
hese are adapted to the TSP-rd(time) by discarding time windows
nd considering different sets of clustered located (𝐶1, 𝐶2), randomly
ocated (𝑅1) and a mix of randomly located and clustered located
𝑅𝐶1) customers. Sets 𝑅2 and 𝑅𝐶2 were discarded because they have
he same coordinates as 𝑅1 and 𝑅𝐶1, respectively, and they only differ
n the time windows information.
The instances are characterized by 3 values:

• 𝑛: number of customers
• 𝑑𝑇𝑆𝑃 : optimal TSP value of the underlying graph• 𝛽: parameter that controls the width of the interval in which
release dates are defined

For each instance, the original data is truncated after 𝑛+1 nodes, and
he first node is set to be the depot. The release date of the 𝑖th customer
s determined by uniformly sampling an integer from [0, 𝛽 × 𝑑𝑇𝑆𝑃].
nstances are generated with 𝛽 = {0.5, 1, 1.5, 2, 2.5, 3} resulting in 24
nstances for each 𝑛 = {10, 15, 20, 25, 30, 50}.
In order to extend our results, we use the same approach to generate

nstances for 𝑛 = {35, 40, 45}, resulting in 72 new instances. All
nstances are publicly available at github.com/agusmontero/tsprd.
The algorithms are implemented in the C++ programming language

sing g++ 7.5.0 and an Ubuntu 18.04 LTS as operating system. The
xperiments are run on a workstation with an Intel Core i7-8700
.20 GHz processor with 32 GB of RAM. CPLEX 12.9 is used as

https://github.com/agusmontero/tsprd

EURO Journal on Transportation and Logistics 12 (2023) 100121A. Montero et al.

f
a
c

i
o
t
5
i
b
t
o

w
c

5

f
c

r
i
s
t
c
v
m
l

i
i
i
w
f
s
a
i
i
w
o
t
w
a
o

5

v
a
b
s
F

w
s

Table 1
Number of TSP-rd(time) instances solved to proven optimality within 3600 s. Instances
with 𝑛 ≥ 35 are not reported in Archetti et al. (2018) which is indicated as n.r.
Source 𝑛 AFMG AJI++

Solved % Solved Solved % Solved

Archetti et al. (2018)

10 24 100% 24 100%
15 24 100% 24 100%
20 23 96% 24 100%
25 13 54% 20 83%
30 7 29% 12 50%

New instances
35 n.r. n.r. 7 29%
40 n.r. n.r. 3 13%
45 n.r. n.r. 4 17%

Archetti et al. (2018) 50 n.r. n.r. 2 8%

optimization solver.1 We set the traditional branch and cut search
strategy2 and impose a total time limit of 3600 s for the execution
time of each instance. The source code is available at github.com/
agusmontero/tsprd.3

5.2. Comparison of formulations

We begin by comparing the performance of the AJI++ model with
the approach proposed in Archetti et al. (2018) which is, to the best
of our knowledge, the only work in the literature to report results
with optimality guarantee for the TSP-rd(time), in their case tackling
a compact formulation using a commercial solver. For the sake of
simplicity, in the remaining of the paper we refer to the methods
presented through the article both as formulations and as algorithms. The
ormer references the corresponding MILP model and the later the BC
lgorithm based on such MILP formulation. The following methods are
onsidered:

• AFMG: MILP model proposed in Archetti et al. (2018);
• AJI++: MILP formulation from Section 3.2 incorporating the GCS
for the subtour elimination, without initial heuristic and CPLEX
default branching strategy.

To account for the different machines used,4 time units are scaled
n AJI++. Table 1 reports the number of instances solved to proven
ptimality within 3600 s considering the time scaling. Our model is able
o solve all instances up to 𝑛 = 20, 83% of the instances for 𝑛 = 25 and
0% of the instances for 𝑛 = 30 within the time limit. Moreover, AJI++
s also able to solve a subset of instances up to 𝑛 = 50. It improves the
est known results5 of Archetti et al. (2018), for which authors report
o solve 96%, 54% and 29%, respectively, highlighting the effectiveness
f our proposal.
Building upon this initial comparison regarding the effectiveness,

e focus on the AJI++ to assess regarding the impact of the different
omponents affecting the BC algorithm.

.3. Impact of subtour elimination strategies

In this section, we focus on the impact of different alternatives to
orbid subtours within each route in the solution. For this purpose, we
onsider the following variants of the AJI++ formulation:

1 In particular, cuts described in Section 4.2 are added through CPLEX’s
legacy callbacks.

2 https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplex
mipsearch.

3 Upon acceptance of the article.
4 Our processor is 43% faster than the one used in Archetti et al. (2018)

according to the CPU Mark index from www.cpubenchmark.net (Benchmark,
0000).

5 Updated results w.r.t. to the ones published in Archetti et al. (2018) were
6

provided in a private communication with the authors.
• AJI: MILP formulation described in Section 3.2. We emphasize
that constraints (29) and (30) are not part of this formulation.

• AJI poly-subtours: AJI formulation but replacing the GCS (20) by
the polynomial family of constraints (4)–(5) used by Archetti et al.
(2018) for the AFMG model.

• AJI++ poly-subtours: Same modification as in the previous case,
but for the AJI++ formulation. Observe that the difference be-
tween these two variants is the presence of constraints (29) and
(30).

Table 2 compares these three variants with the AJI++ formulation
considered in Section 5.2. The key to the table is the following: the
number of instances solved to proven optimality before the time limit
(Solved), grouped by 𝑛; the average time (in seconds) required for
the solved instances by the corresponding method, also grouped by 𝑛
(Time); the average percentage gap of the best lower bound 𝑙𝑏 found by
the corresponding method in the root node of the BC with respect to the
best known solution (𝑏𝑘𝑠) for that instance, computed as |𝑏𝑘𝑠 − 𝑙𝑏|× 100

𝑏𝑘𝑠
(Root); the average percentage gap found at the end of the execution
of the BC algorithm (GAP).

The main message from Table 2 is that GCS-based subtour elimina-
tion constraints (20), when combined with constraints (29) and (30),
esult in the best method. More specifically, AJI++ solves 34 more
nstances to optimality within the imposed time limit than AJI++ poly-
ubtours in shorter computation times on average, and outperforming
he other variants as well. This behavior can also be observed when
onsidering the other two more basic variants that do not consider the
alid inequalities proposed in Section 3.3. In this case, AJI solves 5
ore instances to optimality than AJI poly-subtours within the time
imit.
This experiment also provides evidence on the impact of the valid

nequalities proposed in Section 3.3. The results indicate that the
ncorporation of constraints (29) and (30) has a very positive effect,
mproving the root average percentage gap, solving more instances
hen comparing polynomial-size subtour elimination and GCS based
ormulation independently (9 for AJI poly-subtour vs. AJI++ poly-
ubtour; 38 for AJI vs. AJI++) in shorter average computation times
nd with smaller average final percentage gaps. The only exception
s the case when 𝑛 = 10, in which the root average percentage gap
ncreases on GCS based formulations. Based on additional experiments,
e identified that the difference may be caused by a smaller number
f general purpose cuts incorporated by CPLEX during the execution of
he algorithm. Overall, AJI++ outperforms the other variants. Finally,
e remark that this experiment is limited to instances having 𝑛 ≤ 30
s the other variants only solve a very limited number of instances to
ptimality for larger values of 𝑛.

.4. Impact of the initial solution and the tailored branching strategy

Building upon the results in the previous section, we further in-
estigate the impact of the other components developed for the BC
lgorithm. Using AJI++ as a baseline, we evaluate and quantify the
enefit of incorporating the initial heuristic and the tailored branching
trategy when considered in an isolated fashion as well as combined.
or this experiment, we consider the following variants:

• AJI++ IS: AJI++ using an initial feasible solution obtained by
Algorithm 1 and CPLEX default branching scheme.

• AJI++ Br: AJI++ using the tailored branching strategy described
in Section 4.3. No initial solution considered.

• AJI++ IS+Br: A combination of the previous two variants, i.e. the
AJI++ model using both the initial feasible solution obtained by
Algorithm 1 and the tailored branching strategy from Section 4.3.

Table 3 summarizes the results obtained for these three variants as
ell as AJI++ over all the instances. The key to the table remains the
ame as in Table 2. Although it is not explicitly reported, Algorithm

https://github.com/agusmontero/tsprd
https://github.com/agusmontero/tsprd
https://github.com/agusmontero/tsprd
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplexmipsearch
http://www.cpubenchmark.net

EURO Journal on Transportation and Logistics 12 (2023) 100121A. Montero et al.

a
a

Table 2
Impact of adding GCS (20) subtour elimination constraints in combination with inequalities (29) and (30) when solving AJI++. Note that Column AJI++ corresponds to the same
lgorithm of Column AJI++ in Table 1. The difference that can be observed in Column Solved across the aforementioned tables is only due to the scaling needed in Table 1 to
ccount for the different machine used in Archetti et al. (2018).
𝑛 AJI poly-subtours AJI AJI++ poly-subtours AJI++

Solved Time Root GAP Solved Time Root GAP Solved Time Root GAP Solved Time Root GAP

10 24 2 6.82% 0.00% 24 2 10.68% 0.00% 24 1 2.76% 0.00% 24 1 6.85% 0.00%
15 24 311 15.41% 0.00% 24 344 14.43% 0.00% 24 39 12.06% 0.00% 24 12 10.41% 0.00%
20 9 1004 20.18% 3.09% 11 559 16.52% 2.81% 13 368 16.58% 1.06% 24 223 13.38% 0.00%
25 3 1206 19.12% 9.06% 5 1305 15.96% 6.65% 6 1013 15.65% 4.78% 20 1102 13.35% 0.14%
30 1 2920 23.68% 16.03% 2 803 19.30% 10.42% 3 817 18.61% 10.46% 12 678 15.52% 1.62%
Table 3
Impact of providing an initial solution to the BC as described in Section 4.1 in combination with the custom branching proposed in Section 4.3.
𝑛 AJI++ AJI++ + IS AJI++ + Br AJI++ + IS + Br

Solved Time GAP Solved Time GAP Solved Time GAP Solved Time GAP

10 24 1 0.00% 24 1 0.00% 24 1 0.00% 24 1 0.00%
15 24 12 0.00% 24 8 0.00% 24 5 0.00% 24 4 0.00%
20 24 223 0.00% 24 180 0.00% 24 43 0.00% 24 38 0.00%
25 20 1102 0.14% 15 616 0.53% 23 476 0.03% 24 445 0.00%
30 12 678 1.62% 11 443 2.29% 18 745 0.46% 19 661 0.48%

35 7 1365 7.35% 7 759 8.26% 13 1305 4.07% 10 717 4.33%
40 3 914 12.06% 3 743 9.70% 8 1571 8.16% 8 1194 7.85%
45 4 2068 14.54% 3 1281 14.90% 4 1706 12.81% 6 1702 10.57%

50 2 2433 17.85% 3 2544 16.55% 2 1849 16.92% 4 2302 13.57%
1 is always able to obtain an initial feasible solution is less than 1 s
with an average quality of 4.18% w.r.t. the best known solutions for
𝑛 ∈ {10, … , 50}.

If considered independently, only AJI++ Br show improvements,
solving 20 additional instances and reducing the average GAP by 21%.
For AJI++ IS, the addition of the warm-start only helps when combined
with the tailored branching, and often negatively impacts the perfor-
mance when applied independently (see, e.g., the case for 𝑛 = 25). In
AJI++ IS+Br, both features are activated and show further improve-
ments by solving 3 additional instances and reducing the average GAP
by 31% w.r.t. AJI++.

Finally, we remark that Archetti et al. (2018) also generated in-
stances for 𝑛 = 100. Although the authors do not report results for
such instances using the MILP formulation, it is worth mentioning
that Algorithm 1 is able to compute feasible initial solutions for all
instances with 𝑛 = 100. Briefly, it requires 13 s on average, having an
average quality of 5.26% w.r.t. to the best known solutions reported
in Archetti et al. (2018), which are obtained via more sophisticated
heuristic approaches. Regarding AJI++ IS+Br, we comment that it is
not able to solve any instance for 𝑛 = 100 within 3600 s.

Overall, the formulation AJI++, in combination with the initial
heuristic and the branching strategy, improves the current benchmark
based on the results reported by Archetti et al. (2018). Based on this
assessment, we select AJI++ IS+Br as the baseline for the remaining
experiments in the paper.

5.5. Analyzing the impact of release dates

Finally, we shift the focus to provide some insights regarding the
efficiency of the algorithms as well as for the structure of the optimal
solutions in terms of the characteristics of the instances. By construc-
tion, the release dates depend on the parameter 𝛽. Fig. 3 illustrates
the behavior for the completion time of the optimal solutions and the
computation time required by AJI++ IS+Br for the instances with 𝑛 = 20
as a function of 𝛽 and plotted by instance type (see Section 5.1). As
expected, the completion time increases as 𝛽 increases, meaning that
the more spread out release dates are (i.e., higher value of 𝛽), the later
the distribution will be completed. In particular, clustered instances
have the lower completion time. This is consistent with the behavior
we observe on the number of routes. Although not explicitly reported,
on average, 2 additional routes are required in the optimal solution per
7

additional unit of 𝛽. Therefore, as 𝛽 increases, there is a preference for
visiting customers as soon as they become available. We also observe
that the time required by the BC increases as 𝛽 increases. A similar
behavior is reported by Archetti et al. (2018).

6. TSP-rd variants

Given that release dates are relatively new in the literature, it
is interesting to incorporate them and study their impact from an
algorithmic perspective into other problem variants. The formulation
AJI++ from Section 3.2 can be adapted to other variants of the TSP-rd
considering different objective functions and operational constraints.
In this section we explore such adaptations. In all cases, an adapted
version of the Time-Explorer heuristic described in Section 4.1 and the
custom branching scheme proposed in Section 4.3 are used.

6.1. TSP-rd(distance)

Archetti et al. (2015) introduce the TSP-rd(distance) as a variant of
the TSP-rd(time) in which an upper bound, called 𝑇max, is imposed to
the completion time and the objective is to minimize the total traveled
distance. Then, in AJI++ the objective (17) is replaced by:

min
∑

𝑘∈𝐾

∑

(𝑖,𝑗)∈𝐴
𝑐𝑖𝑗𝑥

𝑘
𝑖𝑗 (31)

where 𝑐𝑖𝑗 denotes the distance incurred when traveling the edge (𝑖, 𝑗).
Note that the distance 𝑐𝑖𝑗 and the travel time 𝑡𝑖𝑗 do not need to be the
same. However, in Archetti et al. (2015) the variant TSP-rd(distance)
is introduced assuming 𝑐𝑖𝑗 = 𝑡𝑖𝑗 for the sake of simplicity. In addition,
the following constraint is added to model the deadline 𝑇max on the
completion time:

𝑡
|𝐾|+1 ≤ 𝑇max (32)

To illustrate how the TSP-rd(time) and TSP-rd(distance) objectives
may differ, consider the example depicted in Fig. 4 where 𝑐𝑖𝑗 = 𝑡𝑖𝑗 for
every edge (𝑖, 𝑗).

Solution (4(a)) consists of one route which departs at time 20 =
max{𝑟1, 𝑟2} and completes the distribution at time 50. The waiting time
before departing is 20 and the total traveled distance is 30. Solution
(4(b)) consist of two routes in which the first one departs at time 0,
visits Customer 1 (𝑟 = 0), returns to the depot at time 20, and then
1

EURO Journal on Transportation and Logistics 12 (2023) 100121A. Montero et al.

d
c
d
e
t
t
a
t
g

r
t
i
i
d
s
t
r

P
t

P
s
g
r
c

b

Fig. 3. Completion time (left) and BC time in seconds (right) w.r.t. the value of parameter 𝛽 in instances with 𝑛 = 20 solved by AJI++ IS+Br.
b
d

o
g
r
f
v
A
s

s
f
g

m
i
d

i
t
t
o
t
s
a
d
s
o
s
w
s
4
i
s
t

t
W
F
t

6

i
𝐶
t
t

𝑖

T

Fig. 4. Optimal solutions for TSP-rd(distance) (left) and TSP-rd(time) (right), for an
instance with two customers {1, 2} and 𝑇max = 50 for the case of TSP-rd(distance).

Fig. 5. Interval of interesting deadlines for the TSP-rd(distance).

eparts to visit Customer 2 (whose release date is 𝑟2 = 20). The total
ompletion time is 40 as there is no waiting time, and the traveled
istance is also 40. Solution (4(a)) reduces the traveled distance at the
xpense of a higher completion time, while Solution (4(b)) increases the
raveled distance but reduces the completion time. This highlights how
he different objective functions (i.e., completion-time minimization
nd traveled-distance minimization) may shape the solutions. Note
hat minimizing completion time, both in AFMG and AJI++, does not
uarantee the minimization of traveled distance.
In order to evaluate the adapted AJI++ formulation for the TSP-

d(distance), the instances presented in Section 5.1 require the addi-
ional definition of 𝑇max, i.e., a new constraint for the distribution that
mposes a deadline for the total completion time. In this regard, we
ntroduce the interval of interesting deadlines for the TSP-rd(distance),
epicted in Fig. 5. Let 𝑙1 denote the completion time of the optimal
olution for the TSP-rd(time), 𝑟max the latest release date, and 𝑧TSP
he traveled distance of the optimal TSP solution when discarding the
elease dates.

roposition 3. Let be an instance of the TSP-rd(distance). If 𝑇max < 𝑙1,
hen is infeasible.

roof. Assume 𝑇max < 𝑙1 and let 𝑥 be a feasible solution for the as-
ociated TSP-rd(distance) with completion-time 𝑧(𝑥). If the underlying
raph 𝐺 is considered, then 𝑥 is also a feasible solution for the TSP-
d(time) in 𝐺 with completion-time 𝑧(𝑥) < 𝑇max < 𝑙1, which is a
ontradiction. □

Values of 𝑇max > 𝑟max+𝑧TSP will not be of interest. The deadline
8

ecomes unrestrictive as the solution minimizing travel distance can w
e obtained by solving the underlying TSP instance (without release
ates) as the triangle inequality holds.
For every TSP-rd(time) instance, the start and ending of the quintiles

f the interval of interesting deadlines were selected as 𝑇max. The
reatest value for which the optimal solution of the associated TSP-
d(time) is known is 𝑛 = 30 and, as a result, instances are generated
or each 𝑛 ∈ {25, 30, 35, 40, 45, 50} using the best known solution for
alues of 𝑛 ≥ 35, resulting in a total of 720 instances. Similarly to
rchetti et al. (2018), for the sake of simplicity, in all instances we
et 𝑐𝑖𝑗 = 𝑡𝑖𝑗 for all (𝑖, 𝑗) ∈ 𝐴.
The adapted version of AJI++ to TSP-rd(distance) includes the

traightforward adaptation of Algorithm 1 used to obtain an initial
easible solution, in which instances having total completion time
reater than 𝑇max are discarded.
Table 4 reports the computational results obtained on the afore-
entioned TSP-rd(distance) instances. For this experiment, we further
ndicate in column 𝑇max QU the quintile of the interval of interesting
eadlines.
The main insight of Table 4 is that the time required to solve

nstances decreases as 𝑇max increases. For example, Fig. 7 shows such
rend on instances C101 and R101 for 𝛽 = 2.5 and 𝑛 = 30, in which
he time required by the BC is reported (log-scale) for multiple values
f 𝑇max. Intuitively, it makes sense as the problem becomes closer
o a pure TSP. Moreover, the problem suffers from allowing multiple
olutions with the same traveled distance but different completion time
s depicted in Fig. 6. As 𝑇max decreases, the number of such solutions
ecreases, arguably making less likely to encounter feasible primal
olutions during the enumeration of the BC tree. In this regard, we
bserve that the computation time required to find the first feasible
olution during the BC is larger for small values of 𝑇max. In addition,
e observe that the adapted version of Algorithm 1 only finds feasible
olutions for 68% of the instances, and in particular, only in 2 out of
8 instances for values of 𝑛 ∈ {25, 30} in which 𝑇max = 𝑙1. It would be
nteresting to explore more sophisticated methods to compute initial
olutions, aiming to reduce the time required to solve instances with
ight values of 𝑇max.
Regarding the number of instances solved, only 30 instances out of

he 720 considered are not solved in less than 3600 s (see Table 4).
e remark that 28 out of the 30 unsolved instances have 𝑇max QU= 1.
urthermore, in 37% of them, neither Algorithm 1 nor the BC were able
o find a feasible solution.

.2. Capacitated TSP-rd(time)

Another natural extension considers a single capacitated vehicle,
mposing a limit on the total demand to be delivered in each route. Let
max be the capacity of the vehicle. The following constraints are added
o AJI++ formulation from Section 3.2 to model the limit imposed by
he capacity:
∑

∈𝑁
𝑞𝑖 𝑦

𝑘
𝑖 ≤ 𝐶max 𝑦

𝑘
0 ∀ 𝑘 ∈ 𝐾 (33)

he value 𝑞𝑖 is a one-dimensional representation of the good (e.g., the

eight) to be delivered to customer 𝑖 ∈ 𝑁 . It is assumed w.l.o.g. that

EURO Journal on Transportation and Logistics 12 (2023) 100121A. Montero et al.

n

R
P

P

m
v
T

i

𝑦

T
s
r
r

a
a
m

T

v
f
n
f
b
t
(
{
i
m
c
t
T
a
i
{
g
3
t
t

Table 4
Computational results on TSP-rd(distance) instances.
𝑛 𝑇max QU Solved Time

25

1 24 55
2 24 8
3 24 4
4 24 3
5 24 2

30

1 22 462
2 24 41
3 24 13
4 24 8
5 24 3

35

1 21 745
2 24 86
3 24 23
4 24 19
5 24 8

40

1 17 673
2 24 197
3 24 46
4 24 34
5 24 17

45

1 17 565
2 23 358
3 24 105
4 24 62
5 24 35

50

1 15 434
2 23 489
3 24 141
4 24 111
5 24 64

𝑞𝑖 ≤ 𝐶max ∀ 𝑖 ∈ 𝑁 . The variable 𝑦𝑘0 on the right-hand-side is not actually
eeded, but improves the linear relaxation of the model.

emark 4. Let be an instance of the Capacitated TSP-rd(time). Then,
roperty 1 holds.

Remark 4 is deduced from the forward shift depicted in Fig. 2 which
is also feasible for the Capacitated TSP-rd(time). Therefore, constraints
(22) are valid as well.

Remark 5. Let be an instance of the Capacitated TSP-rd(time). Then,
roperty 2 does not hold.

Remark 5 can be easily proved by considering an instance where
ore than one route is needed after 𝑟max due to the capacity of the
ehicle. As a consequence, constraints (24) must be removed for the
SP-rd(distance).
Moreover, it is possible to tighten the formulation with the follow-

ng constraint:

|𝐾|+1−
⌈
∑

𝑖∈𝑁 𝑞𝑖
𝐶max

⌉

0 = 1 (34)

The rationale is to explicitly provide a lower bound on the number of
routes that the vehicle needs to perform.

Instances for the Capacitated TSP-rd(time) are obtained by setting
𝐶max = 100 and assigning to each customer a uniformly random integer
𝑞𝑖 in [1, 𝐶max] for every TSP-rd(time) instance with 𝑛 ∈ {15, 20, 25, 30}.
he adapted version of AJI++ is run over all the instances and an initial
olution is computed with an extension of Algorithm 1 that checks the
emaining capacity of the vehicle before adding every customer for
outing. It is guaranteed that an initial feasible solution is found.
Table 5 reports columns Solved, Time and GAP as in Table 2. In

ddition to each value of 𝑛, the instance type is reported to highlight
trend mostly observed for the Capacitated TSP-rd(time). The main
essage is that the problem is more challenging than the uncapacitated
9

Fig. 6. In the context of the TSP-rd(distance), multiple solutions with the same traveled
distance 𝑑 (but different completion-time 𝑧1, 𝑧2 and 𝑧3), may be obtained by shifting
the departure 𝑡0 to 𝑡′0 and 𝑡′′0 respectively.

Fig. 7. BC time (log-scale) in seconds w.r.t. the value of parameter 𝑇max on
SP-rd(distance) instances of type C101 and R101 for 𝛽 = 2.5 and 𝑛 = 30.

ersion, i.e. the TSP-rd(time). The number of instances solved decreases
rom 24 to 19 for 𝑛 = 20 and from 24 to 4 for 𝑛 = 25. Moreover, for 𝑛 = 30
o instance is solved to proven optimality within the time limit, and the
inal average GAP is about 12.95%. The number of routes also increased
y 2.55 times w.r.t. the uncapacitated version. Regarding the instance
ype, it is observed that the number of unsolved clustered instances
i.e., C101 and C201) is bigger than non-clustered instances for 𝑛 ∈
20, 25}. For 𝑛 = 30, the average GAP is also higher on pure clustered
nstance types. This suggests that the more clustered the customers, the
ore challenging the TSP-rd(time) instances become when a vehicle
apacity and random weights are incorporated. Additional investiga-
ions would be needed in this regard. Furthermore, we examine in
ables 6 and 7 the impact of 𝛽 and 𝐶max both on C101 (clustered)
nd R101 (non-clustered) instances, respectively. An extended set of
nstances is generated for 𝑛 = 20 varying the vehicle capacity 𝐶max =
100, 120, … , 200}, for 𝛽 ∈ {1, 2, 3}, maintaining the demand of a
iven customer fixed across all different combinations, resulting in
6 new instances. The BC time is reported on solved instances and
he optimality GAP is used on instances that are not solved before
he time limit. Table 6 shows 10 solved clustered instances out of 18,
whereas for non-clustered instances such number increases to 16 out
of 18 (see Table 7). In particular, given a fixed value of 𝐶max on C101
instances (see Table 6), both the GAP and Time decrease as 𝛽 increases,
which is inverted w.r.t. to the pattern reported for the TSP-rd(time)
(see Fig. 3). Moreover, such trend is less evident on R101 instances
(see, e.g., cases 𝐶max ∈ {100, 180} in Table 7). Further investigation
would be needed to elucidate the underlying factors responsible of
the observed trend inversion. Finally, we remark that the model does

not incorporate constraints that link both the vehicle capacity and the

EURO Journal on Transportation and Logistics 12 (2023) 100121A. Montero et al.
Table 5
Computational results on Capacitated TSP-rd(time) instances.
𝑛 Instance Solved Time GAP

15

C101 6 6 –
C201 6 9 –
R101 6 6 –
RC101 6 8 –

20

C101 3 233 1.93%
C201 5 1009 1.90%
R101 5 278 2.48%
RC101 6 460 –

25

C101 0 – 6.61%
C201 0 – 7.62%
R101 2 1670 4.21%
RC101 2 1378 6.69%

30

C101 0 – 14.87%
C201 0 – 14.31%
R101 0 – 16.08%
RC101 0 – 6.55%

Table 6
Results on Capacitated TSP-rd(time) instances of type C101 for 𝑛 = 20 segmented by
value of 𝛽 and 𝐶max. The optimality GAP is reported on unsolved instances, whereas
the BC time is presented (in seconds) for instances solved before the time limit.
𝛽 𝐶max

100 120 140 160 180 200

1 2.41% 2.84% 3.04% 1292 3271 358
2 2.08% 2.41% 1.21% 156 235 121
3 0.96% 2.12% 372 187 75 66

Table 7
Results on Capacitated TSP-rd(time) instances of type R101 for 𝑛 = 20 segmented by
value of 𝛽 and 𝐶max. The optimality GAP is reported on unsolved instances, whereas
the BC time is presented (in seconds) for instances solved before the time limit.
𝛽 𝐶max

100 120 140 160 180 200

1 2.48% 3.97% 2335 1014 283 251
2 356 2353 226 320 564 249
3 1055 325 116 237 124 90

weights of goods with the release dates, and it would be interesting
to study valid inequalities that exploit this connection to enhance the
formulation.

6.3. Capacitated TSP-rd(distance)

This version combines the Capacitated TSP-rd and the TSP-rd
(distance). Instances require the addition of the value 𝑇max to impose a
deadline for the total completion time. Thus, the interval of interesting
deadlines (see Fig. 5) is replaced with 𝑙1 = 𝑧CTSP-rd(time), i.e. the com-
pletion time of the optimal solution of the Capacitated TSP-rd(time),
and 𝑙2 = 𝑟max+𝑧CTSP which corresponds to the value of the optimal
solution of the Capacitated TSP where the vehicle departs at 𝑟max
and may require to perform multiple routes. A total of 120 instances
are generated from each Capacitated TSP-rd(time) instance for 𝑛 ∈
{10, 15, 20} where the optimal Capacitated TSP-rd(time) solution is
known.6

Table 8 shows the results similarly to Table 4, including also the
average final GAP for instances not solved within the time limit. We

6 All instances with 𝑛 = 20 are solved to optimality by running the adapted
AJI++ with a time limit of 12 h.
10
Table 8
Computational results on Capacitated TSP-rd(distance) instances.
𝑛 𝑇max QU Solved Time GAP

10

1 24 0 –
2 24 0 –
3 24 1 –
4 24 1 –
5 24 1 –

15

1 24 10 –
2 24 11 –
3 24 16 –
4 24 25 –
5 24 24 –

20

1 13 492 4.61%
2 14 412 4.42%
3 13 578 4.67%
4 12 547 4.55%
5 12 817 4.81%

note that for 𝑛 = 10 all instances are solved in 1 s on average, while
for 𝑛 = 15 instances require 15 s on average. Several instances remain
unsolved for 𝑛 = 20, where only 64 out of 120 instances are solved
to proven optimality. Regarding execution time, for 𝑛 = 20 it takes
on average 569 s, which is significantly larger in comparison with the
uncapacitated version, in which all instances are solved in 2 s on aver-
age. This suggest, once again, that incorporating the vehicle capacity
together with random weights make the problem more challenging than
the TSP-rd(distance). Finally, it is worth mentioning that, unlike the
corresponding uncapacitated variant, the trend regarding the different
values of 𝑇max is weaker, but still noticeable.

6.4. Prize-Collecting TSP-rd(time)

In this section we introduce the Prize-Collecting variant of the
TSP-rd(time). We adapt the definition stated in Vansteenwegen and
Gunawan (2019) to define the Prize-Collecting TSP-rd(time) where the
objective is to find a set of routes performed by a single uncapacitated
vehicle that minimizes the total completion time, with the constraint
that the total collected profit is at least 𝜌𝑚𝑖𝑛. Each customer 𝑖 ∈ 𝑁
contributes with a profit 𝜌𝑖 ≥ 0, and it is assumed that 𝜌𝑚𝑖𝑛 can be
collected by visiting all customers in the worst case, i.e., ∑𝑖∈𝑁 𝜌𝑖 ≥ 𝜌min.
However, not all customers need to be visited, but still the constraints
imposed by the release dates have to be satisfied. A first adaptation of
the AJI++ formulation to the Prize-Collecting TSP-rd(time) involves the
constraints (18), that are replaced by
∑

𝑘∈𝐾
𝑦𝑘𝑖 ≤ 1 ∀ 𝑖 ∈ 𝑁 (35)

The following result shows that it is not necessary to include such
constraints.

Proposition 6. Constraints (30) and (26) imply constraints (35).

Proof. Given 𝑖 ∈ 𝑁 , consider constraint (30) for 𝑘 = |𝐾| and note that
the left hand side is the same as in (35). Thus, if the left hand side is
0, the inequality is trivially satisfied. Otherwise, vertex 𝑖 is visited by
trip 𝑘 ∈ 𝐾 and the right hand side of (30) becomes 1, thus obtaining
(35). □

The following inequality must be further incorporated to account
for the total profit collected:
∑ ∑

𝜌𝑖 𝑦
𝑘
𝑖 ≥ 𝜌𝑚𝑖𝑛 (36)
𝑘∈𝐾 𝑖∈𝑁

EURO Journal on Transportation and Logistics 12 (2023) 100121A. Montero et al.

3

𝜌

w
p
T

t
T
o
d
v

T

a
o
i

t
w
A
b
o
c
i
n

o
𝑛
b

Table 9
Computational results on Prize-Collecting TSP-rd(time) instances.
𝑛 𝛼 Solved Time GAP

20

0.25 24 1 –
0.50 24 4 –
0.75 24 22 –
0.90 24 21 –

25

0.25 24 3 –
0.50 24 18 –
0.75 24 290 –
0.90 22 432 1.64%

30

0.25 24 9 –
0.50 24 82 –
0.75 17 548 4.97%
0.90 15 770 5.25%

35

0.25 24 26 –
0.50 22 226 3.39%
0.75 11 1012 11.34%
0.90 9 518 12.73%

40

0.25 24 53 –
0.50 18 1094 7.99%
0.75 6 701 21.86%
0.90 7 1193 21.80%

As regards the instances, we incorporate profits by following Rule
in Bérubé et al. (2009):

𝑖 = 1 +
⌊

99
𝑡0𝑖
𝜃

⌋

here 𝜃 = max𝑗∈𝑁 𝑡0𝑗 . The rule generates hard instances where larger
rofits are associated with customers that are far from the depot.
he parameter 𝜌𝑚𝑖𝑛 is defined as 𝜌𝑚𝑖𝑛 = 𝛼

∑

𝑖∈𝑁 𝜌𝑖, with 𝛼 ∈ {0.25,
0.50, 0.75, 0.90}, and instances are generated for 𝑛 ∈ {20, 25, 30, 35, 40},
resulting in a total of 480 instances.

We also adapted Algorithm 1 so that no additional customers are
considered once the collected profit is greater than 𝜌𝑚𝑖𝑛. Given that
∑

𝑖∈𝑁 𝜌𝑖 ≥ 𝜌min, an initial feasible solution is guaranteed.
Table 9 reports columns Solved, Time and GAP as in Table 2. Results

are grouped by 𝑛 and 𝛼. For 𝑛 = 20 all instances are solved to proven
optimality in 12 s on average. For 𝑛 = 25, only two instances cannot be
solved within the time limit, having a final GAP of 1.87% and 1.45%
respectively. For 𝑛 = 30 the number of solved instances is 80 out of
96, with an average GAP of 5.49%. The number of solved instances
decreases to 66 (avg. GAP of 11.50%) and 55 (avg. GAP of 19.20%)
for 𝑛 = 35 and 𝑛 = 40, respectively. Regarding execution time of the
BC algorithm, it can be noted that it increases as 𝛼 increases. This is
reasonable given that the higher the value of parameter 𝛼, the more
customers the vehicle needs to visit to satisfy the minimum profit
imposed by 𝜌𝑚𝑖𝑛. Therefore, as 𝛼 increases, the problem becomes closer
to the TSP-rd(time). Fig. 8 shows the aforementioned trend on BC time
(log-scale) both on clustered (C101) and non-clustered (R101) instances
for 𝑛 = 25, across values of 𝛽 ∈ {1, 2, 3}.

6.5. Prize-Collecting TSP-rd(distance)

Finally, we consider the variant that minimizes the total traveled
distance, formulated as an adaptation of the Prize-Collecting TSP-
rd(time) proposed in Section 6.4. The objective function is defined by
Eq. (31), and constraint (32) is incorporated to impose a deadline for
the completion time. Instances can be generated in a similar fashion by
replacing the interval of interesting deadlines from Fig. 5 with 𝑙1 being
he completion time of the optimal solution for the Prize-Collecting
SP-rd(time), and 𝑙2 corresponding to the value of the optimal solution
f the Prize-Collecting TSP departing at 𝑟max, both using the same un-
erlying network. Once again, the motivation is to evaluate interesting
11

alues of 𝑇max, where values of 𝑇max < 𝑙1 will result in infeasible i
Fig. 8. BC time (log scale) in seconds w.r.t. the value of parameter 𝛼 on Prize-
Collecting TSP-rd(time) instances of type C101 and R101 for 𝛽 ∈ {1, 2, 3} and 𝑛 =
25.

instances for the Prize-Collecting TSP-rd(distance), and values of 𝑇max≥
𝑙2 induce instances where release dates are not relevant. Instances
are generated for 𝑛 ∈ {20, 25, 30, 35, 40} based on Prize-Collecting
SP-rd(time) instances.7
Table 10 reports the average execution time required by the BC

lgorithm over the solved instances, grouped by 𝑛, 𝛼 and the quintiles
f 𝑇max. Although it is not explicitly reported, the number of unsolved
nstances is 5 for 𝑛 = 30, 7 for 𝑛 = 35 and 22 for 𝑛 = 40, resulting
in 33 out of a total of 2400 instances. Furthermore, 32 of them have
𝑇max QU = 1 and only 1 has 𝑇max QU = 2 (for 𝑛 = 40). The main
insight of the table is that the required time increases as 𝛼 increases
and 𝑇max decreases. This is consistent with what is observed for the TSP-
rd(distance), i.e., the lower the 𝑇max, the harder the problem instance,
and in variant Prize-Collecting TSP-rd(time), where higher values of 𝛼
result in more time required to solve the problem instance. Regarding
the unsolved instances, in 14 out of 33 the BC algorithm is not able to
provide a primal feasible solution within the time limit.

7. Conclusions and future research

In this paper, we propose an alternative formulation for the Trav-
eling Salesman Problem with release dates and completion time min-
imization, which we use to develop an exact algorithm following a
branch and cut scheme. The algorithm is able to solve to optimality
instances with up to 30 customers within one hour, outperforming
he benchmark from the literature studied by Archetti et al. (2018)
ith a compact formulation and tackled with a commercial solver.
n extended set of instances is proposed and our model proved to
e able to solve several instances up to 50 nodes. We further extend
ur formulation to account for other relevant variants of the TSP-rd
onsidering a capacitated vehicle, profits to be collected if a customer
s visited and the minimization of the total traveled distance as an alter-
ative objective function to the completion time. We explore variants,

7 The BC considers an extended time limit of 12 h for 𝑛 ∈ {20, 25, 30} in
rder to solve the Prize-Collecting TSP-rd(time), and only 4 instances with
= 30 remained unsolved with an average GAP of 1.24%. In all cases, the
est objective found so far is used to generate Prize-Collecting TSP-rd(distance)
nstances.

EURO Journal on Transportation and Logistics 12 (2023) 100121A. Montero et al.
Table 10
Time (in seconds) required to solve Prize-Collecting TSP-rd(distance) instances
segmented by parameters 𝛼 and 𝑇max.
𝑛 𝛼 𝑇max QU

1 2 3 4 5

20

0.25 0 0 1 1 1
0.50 2 1 1 1 1
0.75 7 3 2 1 1
0.90 6 3 2 2 1

25

0.25 2 2 2 2 3
0.50 10 4 3 3 3
0.75 181 7 5 3 3
0.90 208 16 7 5 2

30

0.25 4 4 6 7 6
0.50 62 12 9 9 6
0.75 2151 28 16 10 5
0.90 2070 67 16 11 5

35

0.25 17 9 11 14 15
0.50 371 28 22 19 12
0.75 1204 79 34 20 12
0.90 1175 134 33 22 13

40

0.25 25 17 22 30 30
0.50 793 75 46 37 27
0.75 1876 294 104 44 24
0.90 2269 507 96 42 26

analyze some properties and report extensive computational results
highlighting the most relevant trends for each case. The objective is not
only to find methodological and algorithmic improvements but to also
understand the difficulty of each variant. These models may be of value
for practitioners seeking for a flexible exact algorithm for Traveling
Salesman Problems with release dates. We also aim at opening the
discussion around benchmark instances and MILP formulations, by
releasing the source code to foster research on these problems.

Several research directions are worth considering as next steps. It
would be interesting to perform an in-depth analysis for each variant,
as well as strengthening each model with domain specific cuts. Other
variants can also be explored, for instance the Profitable TSP-rd should
be straightforward to obtain from the AJI formulation. More complex
frameworks may be explored, such as Paradiso et al. (2020) for the TSP-
rd, which would be interesting to evaluate the feasibility of adapting
it to the TSP-rd(time), as the time windows must be discarded and the
objective function should be modified to account for the completion
time. A comparison around the trade-off between performance, flexibil-
ity and simplicity of the implementation of such approaches would be
of practical interest. Following the scheme proposed by Archetti et al.
(2018), it would be interesting to re-consider the heuristic MathTSPrd
using this improved formulation and validate the impact on the results.
Another interesting line of research would be to explore models in
which the objective is to minimize distance over the set of solutions
with minimum completion-time and it could be interesting to explore
bi-level programming models (Kleinert et al., 2021) in this regard.
12
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors are grateful to the two anonymous referees and the Ed-
itor in Chief for their valuable and insightful suggestions for improving
previous versions of this paper. Additionally, the authors are grateful
to Andrea Mor for sharing all the details regarding the instances
used in Archetti et al. (2018) which helped benchmarking the algo-
rithms. This research has been founded by FONCyT, Argentina grants
PICT-2016-2677 and PICT-2018-2961 from the Ministry of Science,
Argentina.

References

Applegate, D., Bixby, R., Chvatal, V., Cook, W., Concorde. http://www.math.uwaterloo.
ca/tsp/concorde/index.html. Last Accessed: November, 2023..

Archetti, C., Bertazzi, L., 2021. Recent challenges in routing and inventory routing:
E-commerce and last-mile delivery. Networks 77 (2), 255–268.

Archetti, C., Feillet, D., Mor, A., Speranza, M.G., 2018. An iterated local search for the
traveling salesman problem with release dates and completion time minimization.
Comput. Oper. Res. 98, 24–37.

Archetti, C., Feillet, D., Speranza, M.G., 2015. Complexity of routing problems with
release dates. European J. Oper. Res. 247 (3), 797–803.

Azi, N., Gendreau, M., Potvin, J.-Y., 2007. An exact algorithm for a single-vehicle
routing problem with time windows and multiple routes. European J. Oper. Res.
178 (3), 755–766.

Azi, N., Gendreau, M., Potvin, J.-Y., 2010. An exact algorithm for a vehicle routing
problem with time windows and multiple use of vehicles. European J. Oper. Res.
202 (3), 756–763.

Azi, N., Gendreau, M., Potvin, J.-Y., 2014. An adaptive large neighborhood search for
a vehicle routing problem with multiple routes. Comput. Oper. Res. 41, 167–173.

Cpu Benchmark, https://www.cpubenchmark.net/compare/Intel-Xeon-E5-1650-v2-vs-
Intel-i7-8700/2066vs3099.

Bérubé, J.-F., Gendreau, M., Potvin, J.-Y., 2009. A branch-and-cut algorithm for the
undirected prize collecting traveling salesman problem. Networks 54 (1), 56–67.

Cattaruzza, D., Absi, N., Feillet, D., 2016. The multi-trip vehicle routing problem with
time windows and release dates. Transp. Sci. 50 (2), 676–693.

Gavish, B., Graves, S.C., 1978. The travelling salesman problem and related problems.
Massachusetts Institute of Technology, Operations Research Center.

Kleinert, T., Labbé, M., Ljubić, I., Schmidt, M., 2021. A survey on mixed-integer
programming techniques in bilevel optimization. working paper or preprint.

Mor, A., Speranza, M., 2020. Vehicle routing problems over time: a survey. 4OR 1–21.
Paradiso, R., Roberti, R., Laganá, D., Dullaert, W., 2020. An exact solution framework

for multitrip vehicle-routing problems with time windows. Oper. Res. 68 (1),
180–198.

Reyes, D., Erera, A.L., Savelsbergh, M.W., 2018. Complexity of routing problems with
release dates and deadlines. European J. Oper. Res. 266 (1), 29–34.

Shelbourne, B.C., Battarra, M., Potts, C.N., 2017. The vehicle routing problem with
release and due dates. INFORMS J. Comput. 29 (4), 705–723.

Solomon, M.M., 1987. Algorithms for the vehicle routing and scheduling problems with
time window constraints. Oper. Res. 35 (2), 254–265.

Taccari, L., 2016. Integer programming formulations for the elementary shortest path
problem. European J. Oper. Res. 252 (1), 122–130.

Vansteenwegen, P., Gunawan, A., 2019. Orienteering Problems - Models and Algorithms
for Vehicle Routing Problems with Profits. Springer Nature Switzerland AG;
Switzerland.

http://www.math.uwaterloo.ca/tsp/concorde/index.html
http://www.math.uwaterloo.ca/tsp/concorde/index.html
http://www.math.uwaterloo.ca/tsp/concorde/index.html
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb2
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb2
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb2
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb3
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb3
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb3
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb3
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb3
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb4
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb4
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb4
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb5
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb5
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb5
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb5
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb5
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb6
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb6
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb6
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb6
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb6
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb7
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb7
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb7
https://www.cpubenchmark.net/compare/Intel-Xeon-E5-1650-v2-vs-Intel-i7-8700/2066vs3099
https://www.cpubenchmark.net/compare/Intel-Xeon-E5-1650-v2-vs-Intel-i7-8700/2066vs3099
https://www.cpubenchmark.net/compare/Intel-Xeon-E5-1650-v2-vs-Intel-i7-8700/2066vs3099
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb9
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb9
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb9
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb10
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb10
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb10
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb11
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb11
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb11
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb12
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb12
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb12
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb13
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb14
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb14
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb14
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb14
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb14
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb15
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb15
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb15
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb16
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb16
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb16
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb17
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb17
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb17
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb18
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb18
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb18
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb19
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb19
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb19
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb19
http://refhub.elsevier.com/S2192-4376(23)00018-3/sb19

	Solving the Traveling Salesman Problem with release dates via branch and cut
	Introduction and literature review
	Problem definition
	MILP formulations
	AFMG formulation (archetti2018iterated)
	AJI formulation
	Valid inequalities

	Branch and Cut algorithm
	Initial feasible solution
	Cutting planes
	Branching scheme

	Computational results
	Experimental setup
	Comparison of formulations
	Impact of subtour elimination strategies
	Impact of the initial solution and the tailored branching strategy
	Analyzing the impact of release dates

	TSP-rd variants
	TSP-rd(distance)
	Capacitated TSP-rd(time)
	Capacitated TSP-rd(distance)
	Prize-Collecting TSP-rd(time)
	Prize-Collecting TSP-rd(distance)

	Conclusions and future research
	Declaration of competing interest
	Acknowledgments
	References

