

Spatial Imperatives for Solar Potential: Resultant outcomes

PROF SAVIOUR FORMOSA – MARIO BONNICI, JOHN PAUL ELLUL, FRANK FARRUGIA, THERESE GALEA, SANDRO LAURI, DANIEL SPITERI

NATIONAL ENERGY CONFERENCE - MALTA

 25^{TH} OCTOBER 2023

Scope

Building polygon extraction

- To finalise the DSM/DTM generation, data cleaning and Building Polygon extraction

Building of a GIS-Based model

- The creation of the spatial layers
- overlays of the layers in a workspace linked to the different datasets provided by EWA
- creation of the aligned solar panels
- estimating output

Solar Potential Determination

- determine the technical potential, in terms of energy (capacity and generation), separately of rooftop and facade solar PV in Malta using tools (moved from QGIS and the UMEP tool) to ArcGISPro and in-house python coding

FFO

The layers employed...

Building a Spatial Model: the data layers, methods and technologies

- LiDAR pointcloud and updates due to using a 2018 base
- Planning applications 2018 2022
- Digital Surface Model Digital Terrain Model
- Roof extraction
- Roof splitting
- Slope analysis
- Roof area categorisation >1.5m²

Change from 10m2 to 1.5m2 Frankie Farrugia, 2023-10-21T11:45:54.792 FF0

The Simple things in life...

And the more complex ones

Space from space...

LiDAR and its anomalies

Initial processing...

Stepped approach...

Deep Learning – Identify Solar Panels using AI

eoprocessing		~ 	'
Ð	ter	ŧ	
arameters Envir	onments		?
Input Raster			
Attard_UA.tif		~	
Output Extent			
Urban_Areas_Less	_Hubs	*	
• The input has	a selection. Records to be p	rocessed: 1	3
Rectangle			2
← 427749.1277	→	461761.317	
\$ 3963956.3269	1	3992917.6959	
↓ 3963956.3269	ures for Clipping Geometry	3992917.6959	_
↓ 3963956.3269 ✓ Use Input Feat Output Raster Dat	ures for Clipping Geometry aset	3992917.6959	
↓ 3963956.3269 ✓ Use Input Feat Output Raster Dat Attard_UA_Clip	ures for Clipping Geometry aset	3992917.6959	~
↓ 3963956.3269 ✓ Use Input Feat Output Raster Dat Attard_UA_Clip NoData Value	ures for Clipping Geometry aset	3992917.6959	2
 ♣ 3963956.3269 ✓ Use Input Feat Output Raster Dat Attard_UA_Clip NoData Value 256 	ures for Clipping Geometry aset	3992917.6959	

Variable identification...

To Identify suitable rooftops

To find appropriate rooftops for installing solar panels, two factors were taken into consideration:

- Roof Slope: The rooftops that have a **slope of 70 degrees or less** were considered. Rooftops were identified as flat (slope degree of 0 to 10) in addition to higher slopes (10 to 70 degrees).

- Solar Radiation: Suitable rooftops should receive a **minimum of 900 kWh/m**² of solar radiation. This criterion can be evaluated using a solar radiation raster layer.

- By analysing these two criteria and overlaying the respective raster layers, the rooftops that meet the requirements for solar panel installation were identified.

Deep Learning – Identify Solar Panels using AI

- Creation of a Mosaic
- Clipping of the raster against the urban area boundary
- Extraction of the building parcels
- Deep Learning
- Dissolving the detected features

aramete	rs Environments	5 5 1 5	0
Input Ras	ter		
Attard_U	IA_Clip1		v 📔
Output D	etected Objects		
Attard_D	Lshp		[_]
Model De	finition		
C:\Users	\ffarr\Desktop\deeple	aming\SolarPanelDetection_Malta.dl	pk 📔
Argumen Name	ts	Value	
pado	ling	100	
batc	h_size	4	
thres	hold	0.9	
retur	n_bboxes	False	
tile_s	ize	400	

Splitting of basemap blocks to create individual parcels and Assign UUID

- Splitting a polygon dataset by a line dataset
- Assigning a UUID
 - Run Python script (imported a tool in ArcGIS Pro toolbox)

Modify Feature	es 中 Split	? ~ 7 >
A Highlighting exceeds 100	g of selected features is disabled if sele)	ection count X
Interactive By Fe	pature	
Change the	selection.	~
Input Features Ta Basemap_WGS Buildings_Only	rget Features _Lines (1346) (1961	Î
▲ gharb ▲ gharb ▲ gharb	Move to Target	
d gharb gharb d gharb	🖗 Zoom To	
d gharb d gharb d gharb	Only Select This	
d gharb gharb		

Field: 🐺 Add 🕎 Calculate			Calculate	Selection: 🔓 Select By Attributes 😌 Zoom To 🔮 Switch 🗐 Clear 💭 Delete				
- 24	FID	Shape *	COL_SEQ	NAME	ISLAND	Shape_Leng	Shape_Area	UUID
1	0	Polygon ZM	12	attard	М	8.386708	3.901123	attard_1
2	1	Polygon ZM	12	attard	М	101.896946	309.135337	attard_2
3	2	Polygon ZM	12	attard	М	68.505607	264.134067	attard_3
4	3	Polygon ZM	12	attard	М	80.730919	315.725471	attard_4
5	4	Polygon ZM	12	attard	М	80.954911	316.950014	attard_5

Estimate Solar Power Potential

- Create a solar radiation raster layer
- Convert the units of measurement to KWh
- Identify suitable rooftops
- Create a slope layer
- Reclass the slope to identify flat and steeper roofs
- Convert the raster to polygon
- Assign UUID to suitable roofs
- Add the Min and Max Z value of the building
- Find the minimum Z for each UUID (Python)

Slope Analysis – Identifying Flat roofs

Estimate Solar Power Potential...

- Identify the Mean Radiance and Roof type for each Rooftop
- Rank Polygons by UUID and Height (Python)
- Extract the Flat roofs only roofs that are rank 1 or 1.1 into two separate datasets
- Recalculate the area for the new dataset
- Remove Existing solar panels from suitable roofs
- Recalculate mean radiance and new solar radiance
- Calculate the "Usable_SR", "Elec_Prod", and "PV_Cap"

Radiance Analysis – more than 900 KWh

Deliverables

Estimate Solar Power Potential...

Locality_Roofs.shp Locality_Roofs_Flat.shp Locality_Roofs_Rank1.shp Locality_Roofs_NoPanels.shp Locality_Roofs_ NoPanels_Flat.shp Locality_Roofs_ NoPanels_Rank1.shp Locality_Footprints_UUID.shp Locality_Rad_KWh_70_900_Int.tif Locality_Slope_Every5.tif

Vectorised Suitable Roofs

Verification and Panel positioning

Aligning panels...

- Output validation and verification
- Visual analysis and review
- Sampling
- Python coding by EWA to assign rooftop panel positioning

All roofs & highest roofs only

Aligning panels...

- PV panel footprints for 20° tilted panels

- No inter-row spacing for installations with two rows on one roof.

- 2 Scenarios:

- All roofs
- Highest roofs

Industrial Areas

- 2 Scenarios:
- Flat roofs Scenario: with interrow spacing
- Gable (tilted) roofs
 Scenario: without inter-row spacing

Outputs...

- Sample outputs: Technical potential in Nadur: 8.2 MWp

- Sample outputs: Technical potential in St Julian's: 10.1 MWp

- Results show maximum possible technical potential without any restrictions, assuming 300Wp PV panels footprints

Spatial Imperatives for Solar Potential: Resultant outcomes

PROF SAVIOUR FORMOSA – MARIO BONNICI, JOHN PAUL ELLUL, FRANK FARRUGIA, THERESE GALEA, SANDRO LAURI, DANIEL SPITERI

NATIONAL ENERGY CONFERENCE - MALTA

 25^{TH} OCTOBER 2023