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Summary

� Understanding the evolutionary conservation of complex eukaryotic transcriptomes

significantly illuminates the physiological relevance of alternative splicing (AS). Examining the

evolutionary depth of a given AS event with ordinary homology searches is generally challen-

ging and time-consuming.
� Here, we present CATSNAP, an algorithmic pipeline for assessing the conservation of putative

protein isoforms generated by AS. It employs a machine learning approach following a data-

base search with the provided pair of protein sequences.
� We used the CATSNAP algorithm for analyzing the conservation of emerging experimentally

characterized alternative proteins from plants and animals. Indeed, most of them are con-

served among other species. CATSNAP can detect the conserved functional protein isoforms

regardless of the AS type by which they are generated. Notably, we found that while the pri-

mary amino acid sequence is maintained, the type of AS determining the inclusion or exclu-

sion of protein regions varies throughout plant phylogenetic lineages in these proteins. We

also document that this phenomenon is less seen among animals.
� In sum, our algorithm highlights the presence of unexpectedly frequent hotspots where

protein isoforms recurrently arise to carry physiologically relevant functions. The user web

interface is available at https://catsnap.cesnet.cz/.

Introduction

In plants, animals, and other eukaryotes, alternative splicing (AS)
enables the generation of multiple different mRNAs from a single
gene. It is typically a major transcript that codes for a reference
(canonical) protein isoform and at least one, generally less abun-
dant, alternative splice variant. Previous studies from diverse
organisms have demonstrated that AS can change properties of
the resulting proteins (Stamm et al., 2005; Kelemen et al., 2013;
Staiger & Brown, 2013; Szakonyi & Duque, 2018; Chaudhary
et al., 2019; Kashkan et al., 2022b). A significant part of the alter-
native transcripts are not translated and/or are functionally neu-
tral (Pan et al., 2006; Zhang et al., 2015; Tress et al., 2017).
However, many of them carry out relevant regulatory roles, such
as control of the protein abundance via coupling with nonsense-

mediated decay (NMD) or by the timing of protein production
through nuclear retention of not fully processed transcripts
(Lewis et al., 2003; Marquez et al., 2012; Wegener & M€uller-
McNicoll, 2018). Hence, the biological purpose of the most AS
events is obscure.

Among the main indicators of the presumed biological rele-
vance is the evolutionary conservation of the AS event (Wang &
Brendel, 2006; Keren et al., 2010; Tress et al., 2017). Combined
transcriptomics and computational approaches have been
employed to assess the conservation of AS in animals (Modrek &
Lee, 2003; Barbosa-Morais et al., 2012; Merkin et al., 2012;
Xiong et al., 2018) and in plants (Wang & Brendel, 2006; Sever-
ing et al., 2009; Chamala et al., 2015; Ling et al., 2019). How-
ever, the published data frequently show several methodological
limitations. For example, almost all of the computer pipelines
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were designed for the identification of the conserved nucleotides
flanking the area modified by the AS event and on the premise
that the conserved splice isoforms are encoded by the same AS
event type during evolution (Wang & Brendel, 2006; Baek
et al., 2008; Wang et al., 2008; Darracq & Adams, 2013; Xu
et al., 2014; Chamala et al., 2015; Mei et al., 2017; Ling
et al., 2019). Furthermore, these reports have typically centered
on a small number of representative organisms (up to 10), omit-
ting the growing complexity of information currently available in
public databases (Barbosa-Morais et al., 2012; Chamala
et al., 2015; Mei et al., 2017). In addition, a user-friendly inter-
face determining the conservation of the provided splice isoforms
is lacking. Assessing the conservation of the AS event of interest
by a plain BLAST search is relatively tricky, owing to challenges in
interpreting the data output. Therefore, a simple tool for per-
forming such a task is among the experimental community highly
desired.

Machine learning (ML) algorithms gained use as a powerful
instrument for solving many biological questions where the given
patterns can be learned on a training data set and applied to stu-
died data, including identification of DNA and RNA protein
binding motifs and prediction of splice sites (Zitnik et al., 2019).
Logistic regression is among the most efficient classification algo-
rithms in ML, which achieves remarkable performance in binary
classification (Lever et al., 2016; Subasi, 2020).

Here we present the CATSNAP pipeline (Conserved AlTernative
SpliciNg in Animals and Plants). It employs a logistic regression
ML model to assess the conservation of protein isoforms, com-
paring them to those deposited in RefSeq and GenBank. The
algorithm does not take into account the type of AS event. There-
fore, it is also well suited for detecting the instances where the AS
events evolved several times independently with a repetitive ten-
dency to impact equivalent protein features. A web interface
dedicated to a common user is available at https://catsnap.cesnet.
cz/.

Materials and Methods

Sequence database

The internal CATSNAP database was made by gathering protein
sequences originating from genes with at least one AS event,
alternative transcription start site (AltTSS) or alternative cleavage
and polyadenylation in their coding regions. They were obtained
from the curated RefSeq database (release 204, January 4, 2021),
and extended with the complementary GenBank data set for
plants (release 242.0, February 16, 2021). The full-size CATSNAP

database contains sequences from 176 plants and 701 animals,
and the reduced database includes 176 plant and 97 animal spe-
cies (Supporting Information Table S1).

Processing of query sequences without a database
accession number

For the cases when a protein sequence of interest is not present in
RefSeq (animals) or RefSeq and Genbank (plants) databases, we

introduced the possibility of testing the sequences provided by
the user. The algorithm requires nucleotide coding sequences of
both isoforms (lacking the untranslated regions) and the sequence
of the gene of their origin (unspliced transcript). For the user’s
comfort, CATSNAP removes any character different from A, T, G,
C. Then, the three entered sequences are aligned by MUSCLE

(Edgar, 2004) to determine the exon–intron structure, and the
coding regions of the alternative isoforms are translated to amino
acids. The genetic code is translated using the Standard codon
table from BIOPYTHON Project (Cock et al., 2009).

ML model, training set, and features

Initially, 31 conserved protein pairs from Arabidopsis thaliana (L.)
Heynh. were selected from the literature (Table S2). They were
BLASTed against the RefSeq database of plant proteins. The
obtained sequences were ordered in pairs most similar to the query
canonical and alternative isoforms, respectively, using the MEGA

multiple sequence alignment software (Kumar et al., 2018). Then,
the 31 arrays containing a total of 1426 isoform pairs were used as
an ML training set. To evaluate the model performance and pre-
vent overfitting, we performed cross-validation by sequentially
excluding each of the 31 initial protein pairs and all its filial hits
from the training set. A logistic regressionMLmodel from the SCI-
KIT library (linear_model.LogisticRegression) (Pedregosa et al.,
2011) was employed. Four independent ML features were speci-
fied for the MLmodel (Fig. S1):
(1) The amino acid sequence similarity was set as a bit score pro-
vided by the BLAST alignment. It favors sequence pairs, which
show the highest overall sequence similarity with those entered as
a query.
(2) The mutual exclusivity of the regions affected by AS (AS
regions) in the sequence pair is calculated according to the for-
mula: F2 = |Q D H|/|Q| + |H|, where Q and H are sets of positions
of aligned AS regions of the query and hit sequences, respectively,
and |Q D H| is the symmetric difference between query and hit in
the AS region (Fig. S1a,b).
(3) Amino acid similarity of AS regions is the number of match-
ing amino acids in the AS regions in the query and hit within the
subregion determined by BLAST as matching (m), divided by the
length of this whole subregion (l ) (F3 = m/l ). This feature parti-
cularly weights short conserved sequences. Identical subregions
will get a score equal to 1 (Fig. S1c).
(4) Amino acid dissimilarity shows the proportion of the match-
ing amino acids (m) identified by the feature (3) in the context of
the length of both AS regions. The formula for this feature is
F4 = (q + h � 2m)/(q + h), where q is the length of the AS region
of the query, h is the length of the AS region in the hit sequence,
and m is the number of matches in the matching subregion. Iden-
tical subregions will get a score equal to 0 (Fig. S1d).

On the basis of the listed features, the sequence pairs receive a
similarity score, which reflects the closeness of the hit pair to the
query pair. The similarity score ranges from 0 to 1, where 1 is
complete identity. The score is used to sort the output list of
identified hits from the most similar to the least similar. For the
isoforms having more than one AS region, each AS region obtains
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a location identifier describing its position relative to the regions
processed by constitutive splicing by counting the number of the
uninterrupted constitutively spliced regions from the N- and C-
terminal direction (exemplified on the Fig. S1e).

The code of the algorithm is available at GitHub (https://
github.com/kdcd/catsnap).

Results

CATSNAP – an ML computational pipeline for the
identification of conserved AS

For assessing the conservation of a pair of isoforms of interest,
the CATSNAP pipeline analyzes two protein queries. Isoform 1 is
typically the reference (canonical), and Isoform 2 alternative iso-
form (Fig. 1a,b). They can be provided as RefSeq accession num-
bers or as nucleotide sequences. In the first step, both sequences
are separately BLASTed against the internal database of protein
variants (see the Materials and Methods section; Fig. 1b). As this
is the most computationally demanding step of the pipeline, the
user can select whether the full-sized or reduced (Table S1) data-
base will be searched. Both BLAST output lists usually contain,
besides the companion sequence and homologous isoforms, also
those resulting from unrelated AS events (Fig. 1b, D X1.3) or AS
events of paralogous genes (Fig. 1b, C X2.1 and C X2.2). Next,
using the RefSeq gene annotation, the algorithm separates the
sequences assigned to each species and gene (Fig. 1c) and creates
all possible pairwise combinations within these subsets (Fig. 1d).

To determine which of the rearranged sequence pairs are simi-
lar to the query (i.e. a conserved protein pair), the logistic regres-
sion ML model is employed. It uses pairwise alignments and
scores provided by BLAST (Fig. 1e,f). The following ML features
have been implemented: whole sequence amino acid similarity as
determined by BLAST, (2) the position of the (non-)aligned amino
acids within the AS region; and features (3) and (4) which score
amino acid similarity specifically within the AS region (Fig. S1;
see the Materials and Methods section). The candidate ortholo-
gous isoforms are returned as a file in the FASTA format, sorted
from the highest to the lowest score. A large number of sequences
found can complicate a quick visual examination of the results.
Therefore, a list containing the single most similar isoform pair
per species is also available for download and can be directly ana-
lyzed online by a built-in MUSCLE alignment tool (Fig. S2).

Plants tend to show a high degree of plasticity of the AS
types during evolution

To validate the outlined algorithmic pipeline, we examined the
depth of conservation of prominent experimentally validated pro-
tein isoforms from plants (Staiger & Brown, 2013; Brown
et al., 2015; Hrtyan et al., 2015; Shang et al., 2017; Szakonyi &
Duque, 2018; Kashkan et al., 2022b; Figs 2, S3a; Table S3). Those
identified in Arabidopsis generally showed evolutionary conserva-
tion within Brassicales or deeper, as evidenced by a number of hits
from the RefSeq and GenBank databases. This underlines that,
indeed, the majority of functionally relevant protein isoforms tend

to be sustained during evolution and that CATSNAP provides a reli-
able baseline for assessing their conservation.

The CATSNAP pipeline is designed to assess the conservation of
AS with the outcome at the protein level (Fig. 1). For example,
two Arabidopsis isoforms of TRANSTHYRETIN-LIKE PRO-
TEIN (TTL) differ in the presence of a peroxisome targeting sig-
nal, whose inclusion is regulated by the alternative acceptor site
(AltA) in the third intron (Lamberto et al., 2010). CATSNAP finds
the predicted peroxisome- and cytosol-targeted isoforms in 35
eudicot and monocot species. However, in Glycine max, Solanum
lycopersicum, AltA removes sole glutamate and does not affect the
predicted peroxisome targeting signal, evidencing that this event
is likely non-homologous in these species (Fig. S4). Hence, the
evolutionary history of this event documented by Castnap illus-
trates the relevance of determining the conservation of AS events
at the amino acid level.

From the principle, CATSNAP is able to identify the instances
where the AS type varies, but the homology of the resulting amino
acid sequence persists. We searched in the literature whether there
were such examples presented earlier. AS of RUBISCO ACTI-
VASE (RCA) was among the first AS events identified in plants
(Werneke et al., 1989; Reddy, 2007). The resulting longer RCAa
and shorter RCAb isoforms show a differential ability to activate
the Rubisco enzyme (Zhang & Portis, 1999; Zhang et al., 2002).
Both proteins have been detected in multiple species, including
Arabidopsis or various monocots (Salvucci et al., 1987). To
et al. (1999) characterized the RCA isoforms in rice. They indeed
noticed that the isoforms result from a different AS type than in
other species, including Arabidopsis. The CATSNAP algorithm, in
accord with the focused RCA event evolutionary analysis (Nagara-
jan & Gill, 2018), revealed that the RCA isoforms are produced
even by more AS types in various plants (Fig. S5). It illustrates
that the protein isoforms can be functionally conserved and show
high plasticity of AS types they arise from.

JASMONATE-ZIM-DOMAIN PROTEIN 10 (JAZ10) pro-
duces, besides the canonical JAZ10.1 isoform, a frame-shifted
JAZ10.4 protein, which interferes with the protein interactions
required for JAZ10.1 signaling. This gene also codes for the
JAZ10.3 protein (from two transcripts), which impedes the
JAZ10 signaling pathway in a moderate way (Chung &
Howe, 2009; Moreno et al., 2013; Fig. S6a). CATSNAP detects the
JAZ10.4 orthologs in multiple species within the Brassicaceae
family, being the products of the same AS type. JAZ10.3 ortho-
logs are found in eudicots and monocots. However, the CATSNAP

search revealed that the types of AS in JAZ10.3 highly vary
among other plants (Figs 2a, S6b,c). Moreover, SGR5b, a trun-
cated non-DNA binding isoform of the transcriptional factor
SHOOT GRAVITROPISM 5 (SGR5) (Kim et al., 2016), can
be seen in the wide range of plant species, including the liverwort
Marchantia polymorpha. We observed, too, that the different AS
types and AltTSSs lead to the production of the proteins match-
ing the alternative SGR5b isoform (Fig. S7). Thus, the CATSNAP

pipeline efficiently allows for detecting the instances when the
isoforms are functionally conserved at the amino acid level, but
underlying mechanisms at the nucleotide level (AS types or
AltTSS) can differ during gene evolution.
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Fig. 1 The scheme of the CATSNAP algorithmic pipeline. (a) A diagram of an example gene X1 with alternative skipping of exon 3 (turquoise); the outline of
its imaginary phylogenetic relationships (from Organism A to D) is on the right. (b) The query isoforms A X1.1 and A X1.2 (hatched) are BLASTed against the
internal database of protein isoforms. The BLAST output also contains isoforms originating from unrelated alternative splicing (AS) events (D X1.3) or
occurring in paralogous genes (C X2). (c) The protein isoforms identified by BLAST are separated according to the gene name and organismal source. (d)
Protein isoforms from each organism are paired by all combinations. (e) Each generated pair is re-associated with the query sequences using initial BLAST
alignments (c), and, (f) evaluated.
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Fig. 2 Evolutionary conservation of functionally validated alternative isoforms from plants. (a) The schemes of relevant alternative splicing (AS) types, in
addition to the alternative transcription start site (AltTSS) and alternative polyadenylation (APA). Dark green and dark blue colors represent coding constitutive
and alternative regions, respectively; light green and light blue colors are for non-coding constitutive and alternative regions, respectively. (b) The conservation
of validatedArabidopsis thaliana andOryza sativa (Os) isoformswithinmain plant phylogenetic lineages, including example transcripts without protein-
coding potential (undergoing nonsense-mediated decay (NMD), separated by dashed line). (c) Inmost of the functionally validated plant AS events, the
changes seen at the amino acid level arewidely conserved, independent of the AS type (or AltTSS and APA), it even includes the transcripts undergoing NMD
(separated by dashed line); the y-axis denotes the proportions of alternative isoforms arising from the different outlinedmRNA processing type.
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CALCIUM-DEPENDENT PROTEIN KINASE 28 (CPK28)
produces an alternative isoform with a premature termination
codon (PTC), predicted to remove Ca2+-binding EF-hands
domains, required for the kinase activity of the resulting protein
(Dressano et al., 2020). This is likely a characteristic of the
broader CPK family (CDPK) and was suggested as exerted via
several AS types among angiosperms (Loranger et al., 2021).
Accordingly, CATSNAP recognizes the conservation of the shor-
tened CPK28-RI isoforms up to bryophytes (Fig. S8). Interest-
ingly, the presented molecular model (Dressano et al., 2020)
does not exclude, in principle, the scenario that the CPK28-RI
transcript might actually not be translated. Hence, we also exam-
ined the transcripts, which have earlier been shown to be con-
trolled by AS coupled with NMD. They are associated
with PTCs; they are not translated and undergo subsequent
degradation (Lewis et al., 2003). Among them, the NMD-
controlled autoregulatory circuits of the polypyrimidine tract-
binding proteins (PTBs) have been intensively investigated (Wol-
lerton et al., 2004; Stauffer et al., 2010). Indeed, the sequences
related to the imaginary truncated protein derived from the Ara-
bidopsis alternative PTB2 SPII transcript were found in 41 plant
species up to monocots (Fig. S9). Similarly, the expression of
TRANSCRIPTION FACTOR FOR POLYMERASE III A
(TFIIIA) is autoregulated via the generation of an alternative
NMD-dependent transcript (Fu et al., 2009). CATSNAP finds the
nominal shortened proteins in 25 angiosperms (Fig. S10). Thus,
CATSNAP is able to detect the conservation of a regulatory event
(even) regardless of the presumed isoform translatability.

As it appears that many plant genes show a high degree of plas-
ticity of the AS types during evolution, we systematically
inspected the types of AS in the protein sequences related to the
remaining experimentally validated AS events in plants (Fig. 2b).
Strikingly, we found that the variability of AS types is seen
among the most well-characterized alternative isoforms (Fig. 2c).
Altogether, we conclude that examining the evolutionary conser-
vation on the basis of amino acid sequence, as provided by

CATSNAP, brings a remarkable insight into the evolutionary con-
servation of AS. The homologous protein isoforms are main-
tained during evolution, but the underlying AS types can largely
vary with respect to the organismal group.

The evolution and plasticity of AS in animals

To test the versatility of the CATSNAP pipeline further, we also
examined the conservation of prominent characterized AS events
in animals (Stamm et al., 2005; Kelemen et al., 2013). For exam-
ple, for the GluR-Di and GluR-Do isoforms of the AMPA-type
ionotropic glutamate receptors (Sommer et al., 1990; Mosbacher
et al., 1994; Dawe et al., 2019; Zhao et al., 2019), we found that
both are conserved among > 300 vertebrate species ranging from
the cartilage fishes (Chondrichthyes) to mammals (Figs S3b,
S11). Furthermore, the CATSNAP pipeline documented a stable
and long evolutionary history of selected prominent animal
events, including that of neurexin I (Nrxn1) (Iijima et al., 2011),
the Wilms tumor susceptibility gene (WT1) (Larsson
et al., 1995), transmembrane 16A (TMEM16A or anoctamin1)
(Ko et al., 2020; Fig. 3a), and a large number of other function-
ally confirmed isoforms (Figs 3b, S3b; Table S4). Altogether, this
demonstrates that although the CATSNAP ML algorithm has been
trained on plant sequences (see the Materials and Methods sec-
tion), it can also be used for examining the evolutionary history
of protein isoforms in other eukaryotes, including animals.

We analyzed the AS plasticity of the experimentally validated
AS events from animals, too (Fig. 3b). The KIF2A.3 isoform of
the microtubule destabilizer Kinesin family member 2A lacks 20
amino acids by the alternative choice of a donor splice site (AltD)
in the 5th intron (Akkaya et al., 2021; Figs 3, S12a). The alternative
inclusion of the internal protein motif is conserved up to the
ancient teleost fishes. However, in the evolutionarily derived bony
fishes (Euteleostei), this region is encoded by a separate exon, and
the event is regulated by exon skipping (Fig. S12b–d). The alterna-
tive isoform of tumor necrosis factor receptor CD40 lacks a C-
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Fig. 3 Conservation of functionally validated
alternative isoforms from various animal
model organisms. (a) The summary of the
evolutionary history of validated animal
protein isoforms discussed in the main text.
(b) Some validated alternative splicing (AS)
events in animals show evolutionary
plasticity; several detected rare changes of
AS type can be perhaps ascribed to the
misannotation of the corresponding
transcript. The values on the x-axis indicate
the analyzed isoform pairs listed in
Supporting Information Table S4; the y-axis
denotes the proportions of alternative
isoforms arising from different AS types,
alternative transcription start site (AltTSS)
and alternative polyadenylation (APA).
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terminal part present in the canonical protein, including a trans-
membrane domain (Tone et al., 2000; Eshel et al., 2008; Hou
et al., 2008). The truncated version is conserved in mammals and
is processed by multiple AS types as well (Fig. S13). Human NOS-
TRIN (eNOS trafficking inducer) undergoes shortening of its
N-terminus in the stressed liver, resulting in the NOSTRINb iso-
form (Mookerjee et al., 2007; Wiesenthal et al., 2009). NOS-
TRINb is conserved up to cartilaginous fishes and arthropods and
arises from exon skipping, various combinations of AS types and
AltTSSs (Fig. S14). Taken together, although much less prevalent
than in plants (compare Figs 2c, 3b), the evolutionary plasticity of
AS types is also seen in animal systems.

Discussion

Several studies demonstrated that evolutionary conservation clo-
sely correlates with the functionality of a given isoform (McCart-
ney et al., 2005; Lamberto et al., 2010; Astro et al., 2022). On the
contrary, another set of reports has presented that mutations
underlying AS are linked with recent evolutionary adaptations,
highlighting the transitivity of AS events (Barbosa-Morais
et al., 2012; Ling et al., 2019; Wright et al., 2022). To address the
two extreme viewpoints, as a proof of concept of the algorithm,
we show here that the functionally validated isoforms arising from
AS tend to exhibit prevailingly deeper evolutionary origin. More-
over, we have designed a user-friendly interface, available at
https://catsnap.cesnet.cz/, which allows, even in a batch mode, for
a quick visual overview of the evolutionary conservation of pro-
tein (transcript) variants of choice. Together with other available
large-scale data resources (e.g. Berardini et al., 2015; Mart�ın
et al., 2021; Cunningham et al., 2022; Gramates et al., 2022), it
is aimed to help the researcher to hint at whether the event of
interest could have a detectable biological function, and be, for
instance, suitable for further experimental characterization.

In contrast to the effort done previously (Barbosa-Morais
et al., 2012; Merkin et al., 2012; Darracq & Adams, 2013; Cha-
mala et al., 2015; Ling et al., 2019), we employed an amino acid
sequence view on the conservation of AS. Our approach reveals
that the expression of the conserved functional isoforms is in dif-
ferent plant species likely commonly controlled by different types
of AS. It should be underlined that the protein models present in
the current databases mostly arise from algorithmic predictions.
The annotated proteins may show a different authentic amino
acid sequence or might not be translated at all. Thus, the results
should be interpreted critically (Brown et al., 2015). On the con-
trary, from previous reports, the two RCA isoforms, processed by
multiple types of AS (Figs 2c, S5; Nagarajan & Gill, 2018), have
been functionally characterized in different plant species (Wer-
neke et al., 1989; To et al., 1999; Xu et al., 2017). A similar phe-
nomenon has recently been proposed for the isoforms of
REGULATOR OF LEAF INCLINATION 1 (RLI1a and b) in
rice and Arabidopsis, where they show a high evolutionary plasti-
city of the AS events controlling their expression (Fig. 2c; Guo
et al., 2022). Moreover, the individual RCA isoforms can even be
encoded by separate genes in several species (Salvucci et al., 2003;
Yin et al., 2010; Nagarajan & Gill, 2018) and the differentially

localized auxin synthase isoforms YUCCA4 (YUC4) are paralle-
lized by individual gene products of the YUC family in Arabidop-
sis (Fig. 2c; Kriechbaumer et al., 2012, 2016). Taken together, it
seems that particularly plant genes show a high extent of evolu-
tionary plasticity of protein isoforms controlled by AS.

In contrast to the situation in animals, plants show high varia-
bility in genome sizes (explicitly in terms of ploidy), general DNA
organization and sequence divergence. In addition, their coding
and non-coding sequences evolve faster (Leitch & Leitch, 2008;
Kejnovsky et al., 2009; Murat et al., 2012). Our analysis of the
experimentally validated alternative isoforms revealed that the AS
patterns in plants broadly vary compared to animals as well. Reg-
ulation of AS is jointly carried out by the cis-elements, encoded by
the pre-mRNA sequence, and trans-acting protein regulators,
which bind these motifs (Reddy, 2007; Fu & Ares, 2014). Ling
et al. (2019) noted a considerably high rate of gains and losses of
AS among plant transcriptomes analyzed, strongly linked with the
rapid evolution of plant cis-elements (Shen et al., 2014; Thatcher
et al., 2014; Ling et al., 2019; Wang et al., 2019). Altogether, the
presented plasticity of the prominent protein isoforms in plants
represents just another manifestation of the remarkable variability
of their genomes. Hence, the conservation of the protein isoforms
can mark a hotspot that leads to the production of the same evolu-
tionary conserved regulators and recurrent functional adaptation.
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Supporting Information section at the end of the article.

Fig. S1 The outline of the CATSNAP machine learning features.

Fig. S2 The snapshots of the Catnap graphical output interface.

Fig. S3 Schematic relationships of the main plant and animal
phylogenetic groups.

Fig. S4 Alternative splicing of TTL from representative plant spe-
cies.

Fig. S5 Alternative splicing of RCA in various plants.

Fig. S6 Alternative splicing of JAZ10 in various plants.

Fig. S7 Alternative splicing and alternative transcription start
sites of SGR5 in various plants.

Fig. S8 Alternative splicing of CPK28 in various plants.

Fig. S9 Alternative splicing of PTB2 in various plants.

Fig. S10 Alternative splicing of TFIIIA in various plants.

Fig. S11 Alternative splicing of Glu4 in various animals.

Fig. S12 Alternative splicing of Kif2a in various animals.

Fig. S13 Alternative splicing of CD40 in various animals.

Fig. S14 Alternative splicing and alternative transcription start
sites of various animal NOSTRIN genes.

Table S1 Animal species included in the reduced web-mode
database of alternative isoforms.
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events used as an initial source for the training set for the
machine learning algorithm.
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Table S3 AGI codes and accession numbers of validated plant
alternative proteins.

Table S4 The full list of analyzed isoform pairs from animals, in
the order corresponding to the graph presented in Fig. 3(b).
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